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A Rigorous Stability Result 
for the Vlasov-Poisson System in Three Dimensions (*). 

J/JRGEN BATT - GERHARD REIN 

Abstract. - It is proven that in a neutral two-component plasma with space homogeneous posi- 
tively charged background, which is governed by the Vlasov-Poisson system and for which 
Poisson's equation is considered on a cube in R 3 with periodic boundary conditions, the 
space homogeneous stationary solutions g with energy gradient ag / as <~ o and compact sup- 
port are (nonlinearly) stable in the L Lnorm with respect to weak solutions of the initial 
value problem. 

Introduction. 

We consider the nonlinear Vlasov-Poisson system (VPS) in three dimensions in 
the form 

at f + va~ f + E(t, x) av f = O, 

E(t, x) = - a~ U(t, x), 

AU(t, x) = Po + 7~(t, x), 

~(t, x):= I f ( t ,  x, v)dv,  t >i 0, x, v e R 3, 

where f = f(t, x, v) denotes the distribution function of an aggregation of gravitating 
particles or electrons, ~ = ~(t, x) their local density and U = U(t, x) their Newtonian 
or Coulomb potential. In the description of stellar systems, we have P0 = 0 and 
7 = + 1. I n  a plasma, po I> 0 stands for a constant, positively charged background 
density, 7 = - 1 ,  and the (VPS) is often considered as a simplified model for the 
Vlasov-Maxwell "system (VMS), in which the influence of the magnetic field is ne- 
glected. As is well known, the existence theory of these and related systems has been 

(*) Entrata in Redazione il 29 settembre 1990. 
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the subject of extensive mathematical research. We mention the work of AR- 
SEN'EV[2], BARDOS and DEGOND[3], DIPERNA and LIONS[12,13], GLASSEY and 
SCHAEFFER[16,17], GLASSEY and STRAUSS[18,19,20], HORST [25, 26], HORST and 
HUNZE [27], ILLNER and NEUNZERT [28], PFAFFELY[OSER [32], SCHAEFFER [35], and 
of the authors [5, 34] (for a survey up to the year '87 see also GANGULY and VICTORY 
Jr. [15]). 

Comparatively little is known about the qualitative behaviour of the solutions. 
We know about the existence of particular, almost explicit solutions describing 
spherically symmetric stellar systems, which are time-periodic or contracting and 
then expanding [29], and of time-periodic solutions without cylindrical symmetry [7]. 

�9 Moreover, there are results about the asymptotic behaviour (in space) of stationary 
solutions [9]. In [6] it was shown that the t ime averages of the potential and kinetic 
energy and of I(t)/t 2 and [ (t)/t (I(t) being the moment of inertia) converge for t --~ 
for spherically symmetric stellar systems. 

In the astronomical literature much effort has been devoted to the question of sta- 
bility of certain stationary solutions g of the (VPS), particularly of the spherically 
symmetric models of polytropic gas spheres which have the form g = (~0- s)% Fk, 

> - 1, k > - 1, ~ + k + 3/2 >/0 (see also [8, p. 177]; e is the local energy and F the 
angular momentum). For a good account of the development of these results, we refer 
the reader to the monographs of FRIDMAN and POLYACHENKO [14, Chapter III, 2] and 
BINNEY and TREMAINE [11, Chapter 5]. For k = 0 the sufficient condition ag/a~ < 0 
appears already in the early work of ANTONOV [1]  and was later investigated by BAU- 
MANN, DOREMUS and FEIX[10], HI'NON[21], SOBOUTI[36], BARNES, GOODMAN and 
HUT [4], and many others. However, from a mathematical point of view, it must  be 
pointed out that without a rigorously defined concept of stability, these investiga- 
tions contribute at best to the problem of spectral stability; existence for the lin- 
earized equation and of eigenmodes [14, p. 152-153] [11, p. 291] require more detailed 
mathematical work. For anisotropic spherical systems, the given arguments are ad- 
mittedly self-contradictory [11, p. 308]. 

For our purpose, we need to make precise the concept of stability of solutions of 
the (VPS) that we have in mind. If the distribution functions take their values in a 
Banach space B, a stationary solution g of  the (VPS) is called (nonlinearly) stable if 
for every neighborhood U of g in B, there exists a neighborhood V of g such that for all 
initial values f0 e V (in general satisfying an additional geometric condition) 

a) a solution t ~ f ( t )  of the (VPS) with f(0) = f0 exists for all t >~ 0, and 

b) f(t) e U for t i> 0. 

To the best of our knowledge, a (rigorous) stability result for the (VPS) does not 
exist. Two things however, must be added. First, in their proof of global existence 
for small initial data, BARDOS and DEGOND [3]  c o m e  very close to what could be called 
asymptotic stability of the zero solution--the local density ~(t, x) corresponding to 
small initial data tends to zero uniformly in x (the additional geometric condition con- 
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sists of a prescribed decay in R 6). Secondly, in connection with investigations of the 
stability of plasma systems by HOLM, MARSDEN, RATIU and WEINSTEIN [22], and with 
an earlier application of Arnold's approach to planar Euler flows [30], MARCI~IOaO and 
PULVIRENTI proved a partial result on the way towards stability, namely a statement 
of type b) in the Banach space L ~ (Q • R N) (Q a cube in R N) for N = 1, 2, 3, ~o = 1 and 

= - 1 ,  and periodic boundary conditions for Poisson's equation on Q [31]. 
It is the intention of the present paper to continue the work of MARCHIORO and 

PULVIRENTI by establishing the existence part a) for N = 3, and thus to get a com- 
plete stability result for the (VPS). It was our first hope to be able to prove the exis- 
tence of global classical solutions by applying the new ideas in the recent work on the 
existence of classical solutions in the full space R 3 • R 3 [32]. Similarly, it seemed nat- 
ural to study the evolution of small perturbations of the stationary solutions g which 
induce the characteristics of the free streaming as the zero solution does in R ~ • 
• R 3 [3]. But we found no substitute for the hypothesis of the decay (in space) of the in- 

itial condition, which cannot be present in the space-periodic situation on Q • R s. 
Hence these two problems remain open (verifying the often encountered fact that 
properties of the (VPS) and (VMS) are very unstable against seemingly small 
perturbations). 

Our main result (Theorem 5.5) says that space homogeneous stationary solutions 
g of mass 1 (which are decreasing functions of I vl and have compact Iv I-support) 
are stable with respect to weak solutions of the (VPS) with mass 1 in the norm of 
L 1 (Q • R 3) for Po = 1 and 7 = - 1. Although a result for weak solutions might be 
considered a stronger result than for classical solutions, and many known solutions on 
R 3 • R 3 are not classical solutions (which makes the extension of the classical exis- 
tence theory desirable), weak solutions f present particular difficulties which ob- 
struct an easy access to stability properties: they are not known to be uniquely deter- 
mined and to satisfy the conservation of energy, they may not preserve the compact- 
ness of the v-support of f(0), and f(t) and f(0) may not be equlmeasurable. We shall 
circumvent these problems by considering regularized solutions in Section 3, from 
which the weak solutions are constructed in Section 4. Because weak solutions on 
R 3 • R ~ have been studied earlier by HORST and HUNZE [27], and later by DIPERNA 
and LIONS in a preliminary article [12], our presentation will be confined to the parts 
necessary to show that relevant results do hold in our situation. In Section 2 we con- 
struct and investigate the Green's function for Poisson's equation on a cube Q in R 3 
with periodic boundary conditions--this is an indispensable preparation for the later 
work, for which sufficient information does not seem to be available in the literature. 

1. - N o t a t i o n  a nd  p r e l i m i n a r i e s .  

We shall use the following notation. Q:= {x ER3; 0 <~ xi <~ 1, i = 1, 2, 3} is a cube 
in R 3 and S : =  Q • R ~ the corresponding strip in R 6. Functions in the set ~ Q ) : =  
{ f :R3-->R;f (x  +ei)=f(x) ,  x E R  3, i = 1, 2, 3} for ei: = (~ij)]=leR ~ are called pe- 
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riodic. Similarly, we define ~(S):= {f: R 6 - ~ R ;  f(', v) e ~Q), v e R 3 } .  Elements in 
~Q) and $(S) are often identified with their restrictions to Q and S respectively. Let 
R0+:=[0, ~[, N : =  {1, 2, ...}, No:={O, 1 ,2 , . . . } .  For pe [1 ,  cr we consider the 
spaces 

L~(Q) := { f e  $(Q); f e  L p (Q)}, 

L~ (S) := {fE KS); f e  LP (S)}, 

C ~ ( Q ) : = C ~ ( R 3 ) N ~ S ) ,  n e N U { r 1 6 2  

C~=(S):= {fe  ~5 )  A CI(R6); 3P > 0 V(x, v) e R  e , lvl >1 P: f(x, v) = 0}. 

The plus sign appearing as an upper index refers to the nonnegative functions. By p' 
we always denote the conjugate to p. The pair (x, v) is often written z. Unless other- 
wise indicated, integration will always be extended over Q or R ~ or S. Note that for 
f e  L~ (Q) the integral I f (x  + y) dy is independent of x e R 3. The Lebesgue measure is 
denoted by t~. Occasionally we use the weak LP-spaces: 

L~, ~(Q):= { fe  $(Q);f.~Q, e L~ (RS)}, 

[33, p. 30]. For 1 ~< ~, r, q ~ ~ with 1/~ + 1/r = 1 + 1/q the convolution o f f e  L~'(Q) 
and g e L~ (Q), 

f * g(x) : = ; f ( x  - y) g(y) dy, 

is a well defined element in L~ (Q), and l[f * gllq ~< tlftt~ tlgll~. Similarly, for 1 < ~, r, 
q < :r with 1/~ + 1/r 1 + 1/q the convolution o f f e  ~ = L~. ,~(Q) and g e L~ (Q) lies in 
Lq(Q) and I~ * gllq <~ Cz,~l~llz,~ttgll~. These are the Young's and extended Young's in- 
equalities [33, p. 32]. 

2. - Construction of  the Green's function for Poisson's equation on Q with peri- 
odic boundary conditions. 

For this, there does not seem to exist a better reference than [37, p. 32]. We shall 
need the following proposition. 

2.1. PROPOSITION. - There exists a function G e C ~ (R 3 \ Z ~ ) N 5"(Q) with the fol- 
lowing properties: 

(2.1.1) AG = - 1 on R S \ Z  8, 

(2.1.2) for a constant •eR,  ~G(x+y)  dy=], ,  and Ia~G(x+y)  dy=O for 
X ~R 3, 
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(2.1.3) 

(2.1.4) 

(2.1.5) 

G is a even function in x~ x2, xs, 

there exists a function Go e C ~ ( ( R 3 \ Z  3) [2 {(0, 0, 0)}) such that 

G(x) = - 1_~ + Go(x) on R 3 \ Z  3 r : =  Ixl 
4zr 

for every HSlder-continuous F ~ ~Q) with ~ F(xi dx = 0 

U(x) : = f G(x - y) F(y) dy 

is in C~ (Q) the unique solution of the problem 

~U(x) = F(x), ~ U(x) dx = O. 
J 

PROOF. - We shall obtain G as 

G(x) = - G~ (x) - G~ (x) , 

with two functions G1, G2 to be specified. Let 

sj :-- 1 for j = 0 and sj:= 2 for j �9 N, 

~j(~, s):= sjcos(2=j$)exp(-4r~j2s) for j eNo and 

~(x, s) : = ~ ~ (x~, s) ~m (x~, s) ~ (x~, s), 
(O, O, O) ~ (1, m, n) ~ N~ 

and define 

G~ (x) := f ~(x, s) ds ,  
1 

Then G1 e C ~ (R 3) A $(Q) and 

x = (xl, x2, x3) e R 8. 

~ 1  (x) = I ~ ( x ,  s) ds = f a~ ~(x, s) ds = - ~(x, 1). 
1 1 

It follows from [38, p. 475] with the third theta function ~3 that 

1 ~ exp 
2 V ~  ~ - ~  4s 

F(~, s) := ~ ~($, s) = ~3 (=~, 4ms) - - -  
/ = 0  

~, 8 E R ,  

8 > 1 1 ,  

=: Fo($,s)+ ~ e x p  - ~ s  ' ~ z R \ Z ,  0 < s ~ < l .  
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Now we define 

1 

G 2 (x) : :  f u 8) ~F(x2, s) ~(x3, 8) d 8 .  

0 

Then G2 �9 C ~ ( R 3 \ Z  ~) A ~Q) and on R 3 \ Z  ~ 

1 
AG 2 (x) = I/l(IF(Xl ' 8) ~I2(x2, s) IF(x3, 8)) ds = 

o 

1 

= I a~ (F(x~ 
o 

, s) ~F(x2, s) ~(x 3, s)) ds = ~(xl, 1) T(x2, 1) F(x 8, 1) = ~(x, 1) + 1. 

We also have 

G2(x)= f [I(wo(Xj, S)+ 2 - ~ s e X p ( - ~ s  )) 
0 j= l  

ds. 

Multiplying out the terms in the integrand, we see that there exists a function 
G8 �9 C ~ ( ( R S \ Z  ~) U {(0, 0, 0)}) such that 

1 

f 1 s-~/2exp --~s ds+Gs(x), r : =  I x l .  
62 (x) = V ~  3 o' 

Now 

1 1 

1 -s/2 exp ~ss 4~a/2 r ~_~3 o. s - ds - r~ /4 
t - 1/2 e -t dt= 

1 1 
4~ /2  r 

F(1/2) - 

r~/4 ] 
I t-1/2e-tdt = - - -  

o 
4r~/2 r i =o j ! ( j  ~ 1/2) = 

1 =: - -  + G4(x), 
4r~r 
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with G4 e C = (R3),  and (2.1.1)-(2.1.4) are immediate. As for (2.1.5), it follows from 
(2.1.4) and classical arguments that  UeC~(Q). Let  W:= { x � 9  Ixl~ ~ 1/2}. If  

e R ~, then for all x �9 5 + (1/2) W and y �9 5 + W one has x - y e (3/2) W, where Go is 

regular with /IG0 = - 1, and hence 

I 1 I 1 F(y)dy+ I eo(x-y)F(y) y, U(x) = a(x - y) F(y) dy = 47: Ix - Y I 
"~+W ~ + W  

AU(x) = F(x) + I AGo(x - y)F(y)dy = F(x) - f F(y)dy = F(x), 
~ + W  ~ + W  

and 

I U(x)dx= I I G ( x - y ) F ( y ) d y d x =  I ( I  G(x)dx)F(y)dy=O.  

For  the difference V of any two solutions with equal integrals, we have 

O= IV(x)3V(x)dx= - f 18~V(x)]2dx' I V(x)dx=O'  

and hence V = 0. 

2.2. COROLLARY. - a )  We have G �9 L~ (Q) for I ~< 7 < 3, and for 1 <~ r, q <~ ~ with 
1/)~ + 1/r = 1 + 1/q (~ = r ' /2  for q = r') the operator G: u ~ G  * u maps L~(Q) into 
L q~ (Q) and is compact, with norm <<. I]GII~,. Furthermore, G e L 3w, ~ (Q) and for 1 < r, 
q < ~ with 1/r = 2/3 + 1/q the operator G maps L~(Q) into Lq(Q) and has norm 
<<. Cr [IGIIs, w. 

b) We have 8~ G �9 L~' (Q)3 for 1 ~< ~ < 3/2, and for 1 <~ r, q <<. ~ with 1/7~ + 
1/r = 1 + 1/q (21 = r ' /2  for q = r') the operator 8=G: U ~ S x G  * u maps L~(Q) into 
L:  (Q)a and is compact, with norm <~ Ila~ GIL,. Furthermore, 8~ a �9 ~.,L 3/2= (Q)3, and for 
1 < r, q < ~ with 1/r = 2/3 + 1/q the operator a~ G maps L~" (Q) into L~ (Q)3 and has 
norm <. C;lla GIl / ,.. 

3. - R e g u l a r i z e d  s o l u t i o n s .  

We need the existence of regularized solutions to obtain weak solutions in Section 4. 

3.1. - For  0 < ~ < 1/2 let ~o~, e C~ (Q) be such that  % I> 0, %(x) = 0 for Ixl I> 7, 
% is an even function in x l ,x2 ,  x8 and I % d x = l .  For  z � 9  we let %:=  
% * a eL~(Q) be the regularization of a; we have I]%llp ~< IIzllp, 1 ~<p ~< ~ .  If  

�9 L,~'+(Q), then % �9 L~'+(Q) and Ilzlll = II% II1. We note some properties of the regular- 
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ization G~ of G (see Proposition 2.1): 

(3.1.1) for all x e R  ~, IG~(x+y)= ~,, hence I~G~dx=O, 

(3.1.2) G~ is an even, ~G~ is an odd function in xl, xe, x~, 

(3.1.3) IIG~,II~ -< II~,II~IIGII1, lla~G, llo -< I1%11~ Ila~Glll. 

3.2. - Let  us assume fo ~ L2' + (S) and Ilfo111 = 1. We have to convince o~selves 
that for ~ E]0, 1/2[, the initial value problem 

(3.2.1) at f +  vS~f + E(t, x)avf  = O, 

(3.2.2) E(t, x) = - 8~ U(t, x), 

(3.2.3) U(t, x) = G * (1 - ~ (t))(x) = G~ * (1 - p(t))(x), 

(3.2.4) ~ (t, x) := % * ~(t)(x), ~(t, x) := If(t, x, v) dv, 

(3.2.5) f(O) = fo, 

is globally solvable by periodic functions fi p, U, E. A quick way to see this is to con- 
struct the phase flow induced by the corresponding system of characteristics by solv- 
ing an abstract differential equation (this was done for the (VPS) on R 6 in [24]). For 
the weight w(z):= 1 + Iv I, we consider the Banach space 

L:= {Ae C~,(S)6; w - l A  is bounded on S}, 

with the norm 1~411L: = IIw-IAII~. It is easy to see that for ~ e L~(S) the mapping 
Q ~ : L x L ~ L ,  

Q~(A, B)(z):= ( v +  A2(z), I a~G~(x+ Al(z) - x ' -  Bl(z'))~(z')dz'), 

A = (A1, A2), B = (B1, B2 ) E L, is well defined and there exists a constant c~ such that 
for A, B, A, B e L  

IIQ~ (A, B) - q~ (A, B)II L <~ (1 + c~ II~II1)IIA - A I I L ,  if ~ e L~ (S), 

IIQ~ (A, B) - Q~ (A, B)IIL ~< (1 + c~ 11~I1~)1~4 - AIIL + e~ IIw~lll liB - BILL, if w~ e L 1 (S), 

IIQ~(A,A)- Q~(A,A)II~ <~ (1 + c~1]~111)1~4- AII~ + c~ll~- ~111, 

if ~, r e L~ (S) and A - A is bounded. 

This implies that for w~ E L~(Q) there exists a unique (strong) solution W~ = 
(W~. 1, W~, ~): Ro + ---> L of the initial value problem 

r162 = q~ (W, W), W(0) = 0. 

Because the set of these ~ is dense in L~ (S) and because the difference of two so- 
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lutions is t-iocally bounded over S, this s ta tement  also holds for ~ ~ L~ (S). W~ is also 
the unique solution of the initial value problem 

?r = Q~ (w, w~) ,  w(o) = o. 

It  follows that  there exists a unique solution Z(., s, z): Ro + ~ R 6 of the initial value 
problem 

J( = V, ~J = I a~ G~ ( X -  x ' -  Wfo ' 1 ( t)(z ' )) j~ (Z') dz ' ,  Z(s, S, Z) z~ 

(note that  the right hand side is continuous on Ro* x R ~ and C ~ with respect  to (X, V) 
with bounded derivatives). In particular, 

Z(t, O, z) = Wfo (t)(z) + z (3.2.6) 

and 

Z(t, s, (x + ei, v)) = Z(t, s, (x, v)) + (ei, 0), i = 1, 2, 3. 

Z(t, s) is C a with continuous derivatives on R0 + x Ro ~ x R 8 and Z(t, s): R6---)R 6 is a 
measure preserving homeomorphism with Z(t, s)-I = Z(s, t). If  ~ denotes the canoni- 
cal projection of R 6 onto [0, l [ a x  R 8, it is easy to see that  

(3.2.7) ~(~: o Z(t, s)) - 9 , 

that is, these functions are equimeasurable on S (see (5.1)), and hence 

(3.2.8) ~ ?(KoZ(t, s, z))dz : f ~(z) dz.  

In the sequel we shall use the notation Z for ~ oZ. We define 

(3.2.9) f(t, z) :=  f i  (Z(0, t, z)), t/> 0, z e R 6, 

~ and ~ by (3.2.4), and U and E by (3.2.3) and (3.2.2). Then with (3.2.7) and 
(3.2.6) 

E(t, x) = a~ G~ * ~(t)(x) = ~ a~ G~, (x - Y)fo (Z(O, t, y, v)) dv dy 

= f o G (x - x(t ,  o, = O G (x - x ' -  Wfo, l (t)(z')) f o ( z ' ) d z ' ,  

and Z is the phase flow induced by the solutions of 

(3.2.10) 2 = V, V = E(t, X) .  

f is constant along the characteristics, and satisfies (3.2,1) iffo is, in addition, continu- 
ously differentiable. 
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3.3. - We denote the functions constructed in 3.2 by f %  ,z~, p~, U% and E ~'. Le t  
f o e  L~'+(S), {~0 {{~ = 1 and let p e [1, ~ ] be such tha t  3% e L~'+(S). Then: 

(3.3.1) f ~  e C(R~-, L~'*(S)) and I]~'(t)llp = ILfollp on R0 + , 

(3.3.2) ~, e C(R~-,  L:,+(Q)) and II~ ~ (t)ll~ = 1 on Ro*, 

(3.3.3) U ~ e C ( R ~ ,  C:  (q)), E ~' e C ( R [ ,  C:  (O)) for all n e N, 

U ~ (t, x) dx = 0 (see (2.1.5)), 

3.4. DEFINITION. - F o r  ~ e L~'+(S) and z (x ) :=  ]?(x,  v )dv  we define 

E ~ : =  f f v ~ ( x ,  v ) d v d x  < ~ , 

( 

E p o t ~ . -  - G~ * z(x) z ( x ) d x  

I t  follows with (3.i.1) and (3.3.3) tha t  

(3.4.1) E~o~ f~'(t) = - [G~ * ~ ' ( t ) (x) f ' ( t ,  x3dx  -- 
J 

-- - f G * % ( x ) o ( x ) d z .  

= ] U ~ (t, x)~ '  (t, x ) d x  - y = - f U ~' (t, x)(1 - ~ (t, x ) )dx  - ~ = 

= - I G~, * (1 - ~ (t))(x)(1 - p~ (t, x)) dx - 7. 

3.5. - Fo r  la ter  use we r emark  the following: If  ~ e L~'+(S) is a function which does 
not  depend on x and for which tl~ltl = 1, then  v = 1, and hence 

E ~  f~( t )  - E~ot~ = E~ot f ' , ( t )  + y = - f f G~ * (1 - p~ (t))(1 - j ' ( t ,  x ) )dx  = 

= - f G~ * ( ~ ' ( t ) -  1)(x) f (f~'(t, x, v) - ~ (v ) )dvdx  = Z;ot (f~'(t) - ~). 

3.6. PROPOSITION (Conservation of energy).  - I f  foeL~'+(S) ,  
E~ ,  fo < ~ , then fo r  all )7 and t >~ 0 

(3.6.1) E ~ f ~ ( t )  + E~ot f ' ( t )  = E ~ f o  + Epotfi .  
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PROOF. - With (3.2.8), (3.2.3), and (3.2.10) we have 

d E  d I -~  ~ f ~ ( t )  = -~  V2(t, 0, z)fo(z)dz = 

= 2 f f V(t, O, z)'axG~(X(t, O, z ) -  X(t, O, z ' ) ) fo(z ' ) fo(z)dz '  dz,  

d E~~ = dt 

= - ] I (V(t, O, z ) -  V(t, O, z'))~xG~(X(t, O, z) - X(t, O, z ' ) ) fo(z ' ) fo(z)dz '  dz : 

because of (3.1.2), and the sum is zero. 

3.7. LEMMA [25, p. 22], [12, p. 656]. - F o r  all s e] l ,  ~ ]  there exists c~ > 0 such that 
for all measurable ~ >t 0 on S with z(x) := ] ~(x, v)dv 

1 ] . ~ ] 1 2 s / ( 5 s  - 3) ( i ~  . ~ ( 3 s  - 3)/(5s - 3) 

where r~:= (5s - 3)/(3s - 1) i f  s < ~ , and r~ := 5/3 (note that r9/7 = 6/5 and s ~ r s  is 
strictly increasing). 

We are now in the position to derive estimates which are uniform in V. 

9 /7  + 3.8. LEMMA.- Iffo e L= ' (S), and E ~ f o  < ~ and IIfoI]i 1, then there exists J > 0 
such that for  all -~ and t >I 0 

E~ f~ , ( t )  <~ J.  

PROOF. - We use HSlder's inequality and Corollary 2.2a) with r = 6/5, r '  = 6 = q 
to obtain 

IE~otf~(t)[ <~ f IV * ~ ( t ) ( x )~( t ,  x) I dx <<. fiG * p~,(t)llGIl~(t)l[G/~ <<- 

~< cr IIG]k o, ]J~ (t)t]~/5 ]If (t)J]6/5 <. C r NGJ[3, w II~ ~ (t)ll~/~ �9 

By Lemma 3.7 with s = 9/7 and r~ = 6/5 and (3.2.8) 

3/~4 I1~ ' (t)ll6/~ < c9/7 IJf '( t)l]g/7 (Skin f ~( t) ) 1/4 = C9/7 lifo I1~ 4 ( E L  f ~'( t) ) ~/4, 

so that  

I E~otf~'(t) l <~ C~IIGII3. ~c~/7 lifo II~ ( E ~  f~(t)  ) ~/2. 
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The assert ion now follows f rom (3.6.1), because we have shown tha t  E~otf(0) is 
bounded in ~. 

3.9. COROLLARY. - Letfo e L~/7'+(S), Ekmfo < ~ ,  Ilfoll = 1, and let p ~ [1, ~ ] be such 
that foe  L~' + (S). Then we have: 

a) For s E [1, p], all ~, and t >I 0 

IIJ' (t)ll o c llfoll  

b) I f  ~ e C~, ~ (S) and ,o~' (~, t, x):= ~ ~(x, v) f~  (t, x, v) dv, then for  all s e [1, p], all 
and t >1 0 

t)ll  c ( )llfoll , with c~(~):= sup II~(x, ")11~'. 
x ~ Q  

PROOF. - a )  follows f rom L e m m a  3.7, (3.3.1), and L e m m a  3.8; b) follows f rom 
HSlder 's  inequali ty and (3.3.1). 

Next  we show tha t  E~otf~(t) + ~ is uniformly ~almost-  nonnegative.  

3.10. LEMMA. - Let foeL~'+(S) for  some p > 9/7 ,  Ek~fo < ~ and I~0111 = 1. Then 
there is a positive continuous function ~ on ]0, 1/2[  with ~(~) --> 0 (7 ~ O) such that for  
all ~7 and t >~ O 

(3.10.1) --E~otf~(t)  <. A(V) + •. 

PROOF. - F r o m  (3.4.1) 

r~ I - -  - E p o t f  (t) = (G~ G) * (1 - ~( t ) ) (x)(1 - ~'(t,  x))dx + y + 

+ I G * (1 - ~' (t))(x)(1 - ~ (t, x)) dx.  

To es t imate  the first  te rm,  we use HSlder 's  inequali ty and Corol lary 2.2a) with r := 
rp > 6/5, q : = r '  < 6, ~ : = r ' / 2  < 3 to obtain with Corol lary 3.9a) 

I I ( G ~ - G ) . ( ! - ~ ( t ) ) ( x ) ( 1 - S ( t , x ) ) d x ]  <~ 

<~ H(G~ - G) * (1 - p~ (t))[[r, II1 - ~ (t)[Ir ~< IIG~ - GII~, II1 - ~ (t)[l~ ~< 

]l~c []2p/(5p - 3) T(3p - 3)/(5p - 3) )2 ~< IIG~ - Vl l~  ( 1  + ~piIJ0, ,p , ~ 
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For  the second term we have with a regularization by oJ~ 

f G * (1 - p~ (t))(x)(1 - p~ (t, x)) dx = ~-~0jlim ~ G * (1 - ,~ (t))(x)(1 - p~ (t, x)) dx = 

= lira ~ G * (1 - ,~ (t))(x) A x (G * (1 - p~ (t))(x)) dx = 
d--+O . /  

= - (1 - <. o ,  

after integrating by parts and using Proposition 2.1. 

4. - W e a k  s o l u t i o n s .  

In this section we prove the existence of weak solutions and study their proper- 
ties. For  any space L~ over Q or S, s e [1, ~] ,  we denote by ~ the topology 
~. 8 8 '  (L=, L~. ). 

4.1. DEFINITION. - Let  p e [1, ~ ] and f o e  L~' + (S) A L~ (S), lift II1 = 1. Let  f :  Ro + --) 
L~ (~6) be a function and define 

(4.1.1) p(t, x):= f f ( t ,  x ,  v ) d v ,  

(4.1.2) 

U(t) := G �9 (1 - ~(t)), 

E(t, x) :=  - 2x U(t) = ax G �9 :(t). 

We call f a weak p-solution of the (VPS) with initial condition fo, if 

a) f e  C(R~-, (L~(S), o-,)) for s E [1, p] and I]f(t)][1 = Ilfoll,, ]lf(t)]l, ~< Jlfol[, for 
s e] l ,  p], 

b) ~ E c ( n ~ ,  (L~ (S), ~ ) )  for s e [1, rp ], 

c) E e C(R~-, L~' (Q)), 

d) for all ~ e C ~ ( S )  and t1>O 

t 

(4.1.3) f +(z)(f(t, z ) - f o ( z ) ) d z  = f f (vax+(z) + E(~:, x)av~(z)) f(z, z)dzd~.  
0 
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4.2. REMARK. - For  r e C~ ~(S) we have 

d--t r z)dz = -~  r 0, z))fo(z)dz = 

= I (V(t, O, z)8~r O, z)) + E~(t, X(t, O, z))Svr O, z)))fo(z)dz = 

= Ivaxr z)dz + IE~'(t, X)3vr z)dz, 

hence (after integrating over t ) f '~  and E ' satisfy (4.1.3). 

4.3. THEOREM. - Let Po:= (12 + 3Vr5)/11 (> 9/7)  and assume that fo 
L~.+(S) A L~(S) for some p ~]Po, ~],  E ~ f i  < r162 and I~o11~ = 1. Then for every se- 
quence )~n $ 0 there exists a subsequence ( ~ )  and a function f ~ C(Ro + , (L2' + (S), ~ )) 
such that (with (4.1.1), (4.1.2) and writing i for the index ~.~.) we have t-locally uni- 
formly on R~  

(4.3.1) f f ( t ) - ) f ( t )  in (L~(S), z~) for s ~ [ 1 ,  p], 

(4.3.2) / (t) ---) ~(t) in (L~ (Q), as) for s e [1, rp], 

m s  ~ (4.3.3) ~ (r t) --> p(r t) in ( ~ (Q), ~ ) for s e [1, p] and all r e C~ ~ (R 6 ), 

(4.3.4) E i (t)---) E(t) in the norm of Lg' (Q) for every q e]po, p]. 

The limit f is a weak p-solution of the (VPS) with initial condition fo, and 
satisfies 

E i i (4.3.5) E L  f(t) <<. lira inf E~, f i  (t), Epot f(t) <<. lira pot f (t). 
i - - -*  ~ i - - - )  ~ 

PROOF. - We indicate the main ideas; for a comparable situation see [27]. 

STEP 1. - W e  note: For  all t I> 0 the set  { f "  (t); V e]0, t /2[} is relatively sequential- 
ly compact in (L~ (S), ~s ) for s e [1, p]. In view of (3.3.1) this fact relies on the reflexiv- 
ity of L~ (S) for 1 < s < ~ ,  on the separability of L 1 (S) for s = ~ ,  and the criterion of 
B. J. PETTIS for 8 = 1 (the uniform integrability of the set is a consequence of the 
measure preservation of the flow (see (3.2)) and the uniform smallness of the inte- 
grals over complements of big sets follows from 

(4.3.6) I I f ~ ( t ' x '  v)dvdx <~ - ~ E ~ f ~ ( t )  <" - ~  J---~O (R---* ~) 
q bl ~R 

with Lemma 3.8). 

STEP 2 .  - We have: For  all F e L~' (S) the set {(F, f~'(')); V e]0, 1/2[} is equicontin- 
uous. By a density argument for 1 < s ~< ~ and with the help of (4.3.6) for s = 1, it is 
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sufficient to show this for F :  = r ~ C~ =(S) with Remark 4.2. The first term on the 
right hand side is hounded by Corollary 3.9b). We prove the boundedness of the sec- 
ond term. We observe that  Po is determined by the equation 1/po + 1/rpo = 4/3 = 2 - 
- 1/(3/2) and that q ~  1/q + 1/rq is strictly decreasing. Hence for all finite q e]po, p] 
there exists )~ ~ [1, 3/2[ such that 1/q + 1/rq = 2 - 1 / ~  or 1/)~ + 1/rq = 1 + 1/q'.  
Applying Corollaries 2.2b) and 3.9 yields 

flax G~ II~ lip ~ (t)l]~. ll~(a~ ~, t)llq ~ Ila= GII~,~ ~ c~ (a~ ~)llfo II~ ~ - ~ / (~  - *) J ( ~  - ~)/(~ - ~) 

STEP 3. - Steps 1 and 2 imply the existence of f with (4.3.1), (4,3.2), and (4.3.3) 
first for s = 1 and then for the other s (see [27, p. 269]). To prove (4.3.4) we consider 
q E ]P0, P] and 21 as in Step 2. The operator a~ G: L:~ (Q) --~ L q' (Q) is compact by Corol- 
lary 2.2 and maps weakly convergent sequences into strongly convergent sequences. 
Hence with Corollary 3.9a) and (4.3.3) 

tlE~(t) - E(t)ll q, = Ila~G~ * p~(t) - a~G * ~(t)llq, ~< 

~< II(a~G~ - ~xG) * p~(t)ll q, + ]IO~G �9 ( ~ ( t )  - p(t))]lq 

<- ]l~x G~ - ~x GII~,~ sup ]1~ ~ (t)ll,~ + Ila~ G * ( ~  (t) - p(t))llq, ~ O, 
t , i  

locally t-uniformly. 

STEP 4. - We show that f is a weak p-solution. Only d) remains to be proven. By 
Remark 4.2, 

I ~(z)(f i (t, z) - fo (z)) dz 
t t 

= f § f f z)d d  
o o 

for i e N. I f  we let i--)  ~ ,  by (4.3.1) the first three terms tend to the corresponding 
terms in (4.1.3). As for the last term, we have t-locally uniformly with Corollary 
3.9b) 
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= [I(Ei(z,x)-E(z,x)),zi(avqJ, z ,x)dxl  + 

~< IIE~(~)- E(~-)llq, sup II~(av+, ~)11. + sup II;(~)ll~.lla.G * (;~(av+, "~)- ,o(a~+, ~))11~-+ O. 
t ,  i r 

Here we have used (3.1.2) and the results of Step 3, and applied a similar argument to 
the operator ~xG: Lq,(Q)~L~7(Q) 3 (note that also 1/~1 + 1/q = 1  + 1/rq ). 

STEP 5. - We show the second relation of (4.3.5): Using the same r, q, ;t as in the 
proof of Lemma 3.10 and exploiting the compactness of G: L~(Q) ----> L~ ' (Q) as in Step 
3, we get with a suitable constant Mp > 0, 

<<. IIG~-GILM,5 + IIG * (,~(t)- ,o(t))ll~,M. + M, IIG * ( ,~( t ) -  ,~(t))llr,--+ 0. 

4.4. REMARK.- Any classical solution (as long as it exists) is the limit of the f~  for 
-~ 0 even in a stronger sense if the initial condition fo~ C1'+(S) satisfies the decay 

condition 

Ifo(x, v)l ~ K(1 + Ivl) -~, 

for some K > 0, ~ > 0, together with its derivatives. The argument given in [27, p. 
265] can be extended to the present situation. 

5.  - S t a b i l i t y .  

5.1. - In this section, we consider initial values f0 in the neighborhood of certain 
stationary solutions g and estimate the difference f(t) - g  in the norm of L 1 (S). We 
choose g in the class 

g~:= {9 eL~'+(S);~ depends only on Ivl,(]vl ~ ( I v l ) )  

is decreasing in Ivl >I 0, P~ < ~,  I[~[11 = 1}, 
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where for a function ~ �9 ~ S )  we define 

P~:=  inf{P > 0; ~(x, v) -- 0 for I vl > P} �9 [0, oo] 

(inf 0 := + oo). Obviously, g �9 g~ satisfies the conditions for the initial values in Theo- 
rem 4.3 for p = oo, the constant function g(t) := g is a weak oo_solution of the initial 
value problem for g (and, as will follow from the results of this section, is the only 
one). Because then U = 0, g is a function of the energy ~ = v 2/2, and 8g/8~ <<. 0 a.e. 
The initial conditions f0 are allowed in the class 

oo + 5:= {~ e L ~ '  (S); P~ < oo, N~II1 = 1}. 

fo also induces a (weak) oo-solution f of the initial value problem. We call two measm ~- 
able functions r ~ �9 $+(S) equimeasurable and write ~ - r if for all ), I> 0 

~({z  �9 s;  ~(z) > ~}) = ~({z  �9 s;  r > ~}), 

which implies II~ll~ = Hr for all p �9 [i, oo ]. 

5.2. LEMMA. - For ~ �9 5 there exists 9 * � 9  :~ such that ~ ~ ~*, PC <~ P~ and 
119" - gll~ ~< I1~ - g[h for all g �9 t~. 

P R O O F .  - For  ~ �9 ~ and )~ t> 0 let 

A~ (9) := {z �9 S; ~(z) > ~}, 
3 - \ I/~ 

The function y is decreasing and right continuous. The rearrangement  9" of ~ is 
given by 

?* ( Iv l ) :  = sup {;~; 0 < 2 < II~ll~, y(;~)/> ]vl}.  

It  is standard that  9" �9 g~, 9" - ? and P~. ~< P~. Let  g �9 gr~. The function ZA~(v*) -- ZA)(g) 
does not change sign on S. Hence 

,~.(A~ (I ~* - g I)) = ~(A~ (v*)) + ,u(A~ (g)) - 2~(A~ (rain (~*, g))) = 

= [z(A~(~*)AA~(g)) = f ]Za~(~*)- 7~(g) I dz = 

<- ~ ]7.A~(~)- ~ ( g ) ] d z  =/z(A~(~)AA~ (g)) ~< ~(A~(I~ - g l ) ) ,  

and integration over ~ yields the last assertion of the lemma. 
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5.3. LEMMA. - F o r  h, ~ ~ ~ w i t h  h ~ ~ w e  h a v e  

IIh - ~* I1~ <<- 8rzPv lIPlI~ ( E ~  h - E ~  p* ) . 

P R O O F .  - We let  a :=  Ilhll| = 119" II~ and for  n I> 2, 

A k  : = z e S; h(z)  > T ' 

Ak*: = z e S ; ~ o * ( z ) > - - n -  ' l < . k < ~ n - 1 ,  

n-1 n-1 

hn: = 2 k = l k = l -~ ZA~ , 

fl~:= t~(Ak \ A :  ) = , ~ ( A r  \ A A k )  = ~ ( Ak~ iA~  ) = -~llza, - ZA~I[1 

(note tha t  h - ~*). Since ~* e g g  and flk ~< t~(Ak* ), t he re  exist cons tants  rk, ~k, 4~ >I 0 

such tha t  

A :  = Q x B~,  ~(Q x B~, ~ + e~ ) = flk = ~(Q x B~ _ 4, ~)  

for  1 ~< k ~< n - 1, whe re  B~: = {v e R 3 ; iv I < r} and B,,~ : = B~ \ B~. As an immedia te  

consequence of  these  definitions, we obtain 

and thus  

If 
Ak \Ak* 

Similarly, 

v2dxdv>~ ] ] v2dxdv= I v2dv= ~ ( ( r k + ~ k ) 5 - @ ) "  
Q • Br~, vk + z~ Br~r~ + ~k 
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I t  follows with Schwarz' inequality that  

Ekin hn - Ekin ~* = ~- 

A~ \A~ 
v2dxdv-fAt \A~:fvZdxdv) >t 

n-1 
I> n 5 k=l ~ ) 5 _ 2 r 2 + ( r k _  ~')5)= 

(( ( - ~  5 ~=1 ~2 l + ~ r ~ ]  + 1 4zr3 ~k ) ) 1 ~ n~ lrS[ ~k r~ ] - 2  j : 
2= = 1 

n~l ( n ~ l ) 2 (  ~_~_2)_ 1 
_ 1 zr r ~ _ l f l ~  1 

2rr n- k = 1 ~ n P ~ l  \k = 1 n-ilk (n - 1) = 

1 n 

2 7 : n - 1  
1 1> (8rz~Pr []hn _ ~ [[2, 

and for n ~ ~ we obtain the assertion. 

5.4. REMARK. - The preceding lemmas may be used for ~ :=fo E ~ and h : = f ~  (t). In 
fact, by (3.2.7) and (3.2.9), f ~  (t) - f  o; also, because the field E ~' is uniformly bounded 
by (3.3.3) and because Pro < ~ we have PF,(t) < ~.  These properties and the conserva- 
tion of energy are not guaranteed for the weak solutions. Therefore we shall argue for 
f ~  first and obtain the stability result for f by approximation. 

5.5. THEOREM. - Let g ~ g~ be a stationary solution. Then we have for any weak 
solution f constructed in Theorem 4.3 with initial condition fo E 

where 

IIf(t) - gill <~ C( fo ) i l fo  - gi]~/2 + lifo - g i l l ,  t >>- O, 

C(fo) := (167:Pfollfo]I, (P~ + IlGlll ([[t:(0)]t. + 1))) 1/2. 

PROOF. - By conservation of energy (3.6.1) and the estimate (3.10.1), 

rl E~,f~(t) = E~fo + E p " o t  j ~  - Ep~tf~'(t) <<- E~fo + Epot fo + y + A ( r / ) .  
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If we subtract Ekm fo* and use (3.5) for t = 0 and ? : = f ? ,  we get 

E ~ f ~ ( t )  - E ~ f ~  <~ E ~ f o  - E ~ f ?  + E~ot fo - E~otf~ + A(~) = 

= E ~ ( f o  - f ~ ' ) -  I G, * (p (0 ) -  1)(x) I (fo(x, v ) - f ~ ( I v l ) ) d v d x  + A(V) <~ 

2 <~ P~ lifo - fo*  I]1 + IIV, * (~(0) - 1)11~ lifo - fo*  II1 + A(~) ~< 

~< (P~ + IIG,III(II~(o)II~ + 1)) l l fo- f?Jl l  + ,~(~;)<~ 

~< (P~ + IIGIII(IIp(o)II~ + x ) ) l l f o - f? l l l  + 3(v). 

Hence by the preceding remark (Lemmas 5.3 and 5.2) 

IIf ~ (t) - f ?  II1 <- (8rzPfo lifo ]1 ~ )1/2 (Ekm f~ (t) - Ekm f0* )1/2 <~ 

~< (87vPfo lifo H| )1/2 ((p~ + IIGI{1 (I[~:(o)ll~ + 1))1/2 lifo - f ?  II~/2 + A(~) 1/2 ) <~ 

C(fo ) 
~< - -~ - ( l l fo  - gll~ + Ila - f? l l l )  ~/2 + (s=)l/2P2/~llfll~23(v)l/2 <~ 

C(fo) ):/2 
-< ---v~--(llfo - gill + Hg-foill + (s;=)l/2p2/211foll~2~(v)l/~ = 

1/2 1/2 1/2 1/2 = c(fo)llfo - gllY 2 + (s=) p~ lifo I1~ ~(v) , 

so that  

(5.5.1) IIf~(t) - gill <<-IIf~(t) - f $ l l l  + IIf~ - gill <~ 

~< c(fo)Hfo - gl lV ~ + II~ - gill + (8=) 1/2P~/~ lifo I1~ 2~(v)1/2. 

For a suitable sequence V~ $ 0 we have from Theorem 4.3, 

f ~ ( t ) - g o f ( t ) - g  in (L~(S), ~1), 

which implies 

IIf(t) - gill <- lira inf IIf v~ - gill, 
i ---> r 

and the assertion follows from (5.5.1) together with A(V)--~ 0 (V--. 0). 

5 . 6 .  C O R O L L A R Y .  - Given g ~ 31[, ~ > 0 and a constant C > 0, there exists ~ > 0 such 
that for  all f oe  ~ with lifo - g i l l  < ~ and satisfying the geometric condition C(fo ) <~ C 
we have IV(t) - g111 < ~ for  t >I O. 

We want to acknowledge the work of our former student A. HORMANN the clari- 
fication of the Green's function in Section 2 was part  of this diplom thesis. 
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Note added in proof, 

The above mentioned problem of the existence of global classical solutions on O x R 3 has 
been solved meanwhile; see J. BATT - G. REIN, Global classical solutions of the periodic Vlasov- 
Poisson system in three dimensions, C.R. Acad. Sci. Paris, 313, S6rie I (1991), pp. 411-416. 

The Vlasov-Maxwell system has been treated in: K.-O. KRUSE - G. REIN~ A Stability result 
for the relativistic Vlasov-MaxweU system~ Arch. Rat. Mech. Anal., to appear. 


