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Gradient Estimates for a Class of Elliptic Systems (*).

GARY M. LIEBERMAN

Summary. - Gradient bounds are proved for solutions to a class of second order elliptic systems
1 divergence form. The main condition on this class is a genevalization of the assumption
that the system be the Euler-Lagrange system of equations for a functional depending only
on the modulus of the gradient of the solution.

0. - Introduction.

In this work, we consider solutions of certain second order elliptic systems of the
form

0.1) D, (A#(x, u, Du)) + B;(%, u, Du) =0 in

for some domain 2 in R", n > 1, where we use the summation convention with Greek
indices going from 1 to # and Latin indices going from 1 to N. To describe our basic
additional structure, let (G*),(g;) be positive define matrices on 02 x RY and
set

v=(G** (@, 2) g; @, &) pip)"*.

(Here we use z = (z") and p = (p}) as dummy variables for % and Du, respectively.)
Our main assumption will be that there is a scalar function F on 2 x RV x R™Y
satisfying

Af (=, 2, p) = OF(v)/3p

and additional conditions deseribed below. When F(») = »™ for some m = 2 and B =
= — 9F(v}/3z, such systems were studied by Fusco and HUTCHINSON [2] as generaliza-

(*) Entrata in Redazione il 27 aprile 1990.
Indirizzo dell’A.: Department of Mathematics, Iowa State University, Ames, IA 50011,
USA.
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tions of the variational problem associated with the functional J defined by

Jle] = j | Du|™dz,
0

which is fairly well-understood (see, e.g.[3, Sect. VI.4] and [13]).

An important distinction between the results for v of the form given here and
v = |Du| (with F(v) = v™, m > 1 in both cases) is the nature of the regularity results.
In the first case, only partial regularity has been proved, ie. there is an open dense
set £, ¢ Q such that any weak solution of (0.1) is in C1#(Q,) for some g8 > 0 (and Q, may
depend on the solution). In the second case (; = . Moreover, TOLKSDORF [12] has
shown everywhere regularity if G and g are independent of z.

Here we prove a gradient bound for solutions of (0.1) under more general hy-
potheses. Because of the nature of our estimates, it will not always be clear whether
we are proving directly that the solutions are Lipschitz but that point is not our
present interest. We will, however, reproduce both partial and everywhere regulari-
ty results.

Our approach is a modification of the Moser iteration scheme [10] along the lines of
Simon’s interior gradient estimatesfor single equations[11]. We begin by proving a
gradient bound for constant G and g in Section 1. This special case will demonstrate
the relevant new ideas, which will then be applied to the general case in Section 2.
Examples appear in Section 3.

Some results on bounds for the solution are given in[8] under related structure
conditions.

1. — Gradient estimates for constant G and ¢.

When the matrices G and g are constant, various simplifications arise which make
our calculations more transparent. We define the function f by f(t) = F'(t)/t and note
that our system can be written as

1.1) D,(fw)G**g;Dyu’) + B;(x, u, Du) = 0.

From now on, we suppress the arguments of f and B (which are always assumed to be
v and (x,u, Du), respectively) and of their derivatives. If f, u, and B are smooth
enough we can differentiate (1.1) with respeet to x° thus obtaining

0=D,(f' G**g;Dyu’D;v + fG** g;; Dsyu’) + D;B;.

Next we multiply by G* (D, u* /v) { for some {e L ® N W*? with compact support in
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O, sum over &, and integrate the expression involving D, by parts. It then follows
that

0= J’v-lf' G*#G* g, Dyu’D,.u' Dt d +
0

+j GG g, Dyyu’ Dy’ D,u' C +
0

v
+ o7’ G“ﬁG*giiju"DsuiDavDaCdac +

Q

+ [ v fG**G*g,;Dyu’D,u'D,{dx —

Q

J
|
j —2fGaﬁGo‘sgiijujDsuiDav(:dx B
|
|

Q

v G*D,u' (@B; /9p)) D, u’tdx —

v
v 2 G*G*g,Dyu’D,u' D;vD,vldx ~
v

Q

v

“1G*D,u'[(8B; /02") D,u’ + (8B, Ja)] L dw.

Q2

To proceed, we introduce some notation:
2= v‘ZG“ﬂG*gijDaﬁufDasui, By = — G*D.u'(3B; /dp),
G?=v*G*G*g,Dyu’D.u’, I'“?=of ' G¥ + fG*,
B =~ G*D,u'[(3B; /32"y Dyu’+ (3B; /3xz°)],
and we observe that
D.v=v"'G*g;D,.u'Dyu’.
Our integral identity then becomes

12 0= jvfeﬁcdx + j(f' G* — v L1*% D, wDyvl de +
Q Q

+ JgrP“ﬁDaCDﬁvder J(v‘lBi“"‘Daaui+v”ll_i’)Cdx-
Q Q

Let us note here an important distinction between the case of a single equation (as
in [11]) and the case of a system of equations. Writing (g¥) for the inverse matrix to
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(g9;), we see that there are tensors E and F, satisfying

EFy, FPLg=0

for all matrices ¢, such that
vfed + (f' G** — v ') D, vDyv = EFFi 9% D u™Dgu’.

This quantity is clearly nonnegative if N = 1, but in the present case its nonnegativi-
ty is not clear even if G and g are identity matrices.

Next we choose £ = (v — 7)., x(v) n* for some ¢ > 0, nonnegative C' increasing fune-
tion , and 5 € C%1(Q) with compact support to be further specified. In this way we
infer that

0= va(?%(v — 1),y de +
]

+ f{f’ G* — v~ 'r**} D,wDyo(v — ), yrf dw + JF“ﬁD“vDﬁv{x + -1y} nfda +
g 0

+2 j I DyuD, gy — 7)., 7 de + jv “U[B#D,ui+ Blw — ) yrtde.
g g
Now the matrix I will be nonnegative definite if
13) ' +f=z0,

in which case we can estimate the fourth integral in this equation via Cauchy’s
inequality.
Hence for any 6 e (0,1) we have

0= va@%(v —7), P de + J{f’G"‘ﬁ — 71 D, v Dyv(w — 7). ot doe +
g )

* Jw{x + =1,y — ¢} DovDgvorfde — 67 [FaﬁDa’?DM(” — o xde -
o) Q-

+ J.vlei”Daaui(v — 1),y de + Jv—lﬁ(v — ),y dx.
G a

Next we note that v22 = G**D,vDyv, v2C} = ¢; |[D*u|* for some ¢; depending
only on the minimum eigenvalues of the G and g matrices. As it stands, we can't con-
trol the terms involving Dv, so we strengthen (1.3) to

(14) o'+ uf =0
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for some u € [0,1). Then

A+wf
v

{f G —v '} D,vDyv(v — 7)), = — 5

G**D,vDyv(v — 1), —

It e wD,w - o), 2 - %ﬁfvczw — 9, - %—“—paﬂuzwﬁv,

and so, recalling that »' =0,

1__
0= ( .U~) J'ﬁ)@z(v _ T)+X7)2dx+ (_%_(1 _iu.) —_ 6)JF“ﬁDavDﬁvxn2d$ —

2
q 0

—0‘1JF“ﬁDanDﬁnvzxdw + Jv‘lBi‘”Dm\ui(v — 1), yrtda + jv—lﬁ(v — 1),y da.
Q Q

We now choose 6e(0,(1/2)(1 — ) and estimate the integral involving B/ via
Cauchy’s inequality. Then we set '

Ag=v2(f)y +uf, CE=fCs, &=v'fG¥D,vDyv, du=vdx,
and we write x for the maximum eigenvalue of the matrix »I" If also
(L5) |B,|*/f + Bfv < A,

we obtain from routine ecalculations, and the observation that '(1.4) implies I"' =
= c(u) fG, that

j[ez(l - %) + 8];07205# < Czj[ﬂ?/lovz + & Dy|*1 x du
* g

Q

for some constant ¢, determined by ¢; and . This inequality is an energy inequality
analogous to [11, (2.11)] or [6, Lemma 4.1], which is a key to our gradient bound. Note
that the estimate does not depend on an upper bound for (v — z) ' /y because our cal-
culations correspond to the case a; = 0 in[11].

Another important tool is a suitable Sobolev inequality, which we give in terms of
the matrix y defined by

, 8% — ¢, |Du| 2D, u'Dyu’ =z, B<n,
A, P Ca=n+lorf=n+1
and the vector 3C given by

%, = > [|Du|*D;u'Dyu’— |Du|*DuilD,u'/|Dul .

58147

Writing ¢ for the operator with components ¢, = y*D; and setting dz = |Du|dzx, we
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see that try =% and

jahdg = jhacdﬁ
Q Q

for any h € C'(Q) with compact support. If & also vanishes wherever |Du| <1 (or if
we modify y, 3G, &, di, appropriately there), we combine Michael and Simon’s Sobolev
inequality [9, (1.8)] with the argument in [6, Lemma 1.3] to see that

2
Jh2§n+2)/ndﬁ < Cln) thdﬁ. /n J[WLIZ + Bl l%lz]dﬁ')
! ) !
A straightforward calculation shows that, for A, = vf, we have
lalEse®, vy w|Ps .

Then the proof of [11, Lemma 1] allows us to estimate the supremum of v over a ball in
Q in terms of integral norm of v over a larger ball provided the structure
condition

)\0(1 + ('U)K(,) /)\0)2)]/ < )\0G,

holds and (Ag /29)™*?/2 /A behaves like a rational function near infinity. (A more pre-
cise statement of this property will be given below.) In fact we can replace A, by any
smaller function A, Ay by any larger function A and v by an increasing function w of v
provided w, A, A are suitably connected. (The case of general w, A, A for single equa-
tions is the one given in [11].) Setting Q, = {x € Q: v(x) > 7}, we have as our first part
of the estimate the following result.

LEMMA 1.1. — Let 7, > 1 be a constant and let w, A, A be C* increasing function on
[79, ) with

(1.6a) A®) 2 2 (f@®). + HQ),
(1.6b) 2O + (' O/A0)) < 1),

Suppose there are nonnegative constants pu <1, 8, 81, B such that

(1.7 wf (AN D2 [A s increasing

(1.8) @) +uf®) =0 fort=n,

(1.9) |B, |[f()™" + v ‘1E < B3A(W)  wherever v = 1,
(1.10) GzLg=I; |G| < 8, 9| < 8-

Then for any ¢ > 0, and x, e Q such that the ball B(xy, o) c (Q, there is a constant
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Cl (n, B, Bros Bes H) such that

(1.11) sup (1 -z

)(n +2)/2
Bz, o/2) v

Wl < Co™" j W) (A 0"+ D2y dg
B(z,, an Q.

+
for any © = v, and any WEEN W= solution u-of (0,1). =

We note that the normalization of the minimum eigenvalues of G and g in (1.9)
guarantees that |Du| > 1 wherever v > 7y, as required by our Sobolev inequality.
Moreover, in this case, (1.7) is the only monotonicity condition we need because of the
special form of our energy inequality.

For our next estimates, we introduce the shorthand notation Du-A to denote
D,utAg. If we assume now that

(1.12) A/ 0" 22y < Bowh Du- A

for nonnegative constants f;, 85, we reduce the estimate of supw to one on

quDu-Adx,

which we estimate by adjusting the proof of [11, Lemma 2] along the lines of [6, Lem-
ma 4.3] (see also[7, p. 41]).

LEMMA 1.2. — Suppose that in addition to the hypotheses on w, X, A, f, B, G, g in
Lemma 1.1, that there are a positive constant 35 and a positive decreasing function ¢
such that

(1.13a) |A|w')? < Bsuf(w),

(1.13b) w|A| <p2Du-A,

(1.13¢) v¥f | +vif<8;Du-A,

(1.13d) Av < ew?Du-A.

Fix %y, 0 in Lemma 1 and set ¢ = Bgscp)u Then for any q > 0, there are constants
Co(n, B, m, Q) and Cs(n, B, u, Bip, Be, Bs) such that if =, is so large that

(1.14) CyB5(B10) % e(ry) <1

and if = 1, then

(1.15) f wIDu-Ads < Cylw(zy) + ofp)? j Du-Adz. ®

By, £/2)N 0, Blxg, ) N Q.

The final estimate, on the integral of Du- A, is slightly delicate. If we assume that
u = ¢ on 02 for a known Lipschitz function ¢, we have a simple estimate in terms of
Q. ={xeQ: |Du| > 1}
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LEMMA 1.3 A. - If u = ¢ on 0Q, and if there are constants B [0, 1), 3> 0,9 >0
and an increasing function ¢ such thait

(1.16a) (u'— ¢ )B; < BsDu-A
(1.16b) Du-A = |Du|i(|Du), |A| < (| Du|)
on Q. and if |De| <D, then

|Q| sup {(u*—o"YB;— Du-A+ Dop- A}++,87§Pgb( 26,2 ))

1.17 jDu-Adxs
( )g; a- ol e 13,

PROOF. — Multiply (0.1) by u’— ¢, sum on 4, and integrate by parts to see
that

J{Du-A—(ui—¢i)Bi}dm= J{(ui—goi)Bi—Du-A}derfD;o~Adac+ J Dy-Ads.
Q! Q-0 Q! Q-9

If we write XY for the supremum on the right hand side of (1.17), then (1.16a) and
(1.166) give, for any ¢ > 0,

(1 —,Bﬁ)jDu-Adx S IQ|2+57I |Do|W(|Du|)dx < Q]2 + fs|Du|gb(|Du|)dx +
o o

Q!
J,B7]Df|¢/( &l ‘”‘) dae < |Q|2+ejDu-Adx+ 1218, 043, D/c).
Q!

The desired conclusion follows from this inequality by taking ¢ = (1 — 5)/2 and re-
arranging the resulting inequality. =

In particular, if L* bounds for % and ¢ are known and if A the form assumed in
this paper, then a bound on the integral of Du-A is guaranteed if |B|=
= o(| Du|F'(|Du))).

So far our estimates have been purely local in nature. To derive a local estimate
for the integral of Du - A requires some additional hypotheses, which do not appear in
the scalar case. (In fact SiMoN[11] showed that the hypotheses |B| = O(Du-A),
|Du| |A| = O(Du-A) as |Du| — » suffice in the scalar case.)

LemMA 1.3 B. - Suppose there are constants s < [0, 1), By > 0 and an increasing
Junction ¢ such that (1.160) and

(1.18) u'B; < BsDu-A
hold on Q.. Define h and h by
(1.19) M) yohty=t, R =1/{th(1/t)}
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and suppose h is integrable near zevo. If |u| < M in B(x,, 2¢) c Q, then there are con-
stants Cs determined by n, Bg, Br, ¢ and M/c and Cg determined by n ond Bg such
that

(1.20) f Du-Adx < Cyo" + Cgo" sup |{u'B; — Du-A}, + %[A[J
2,0 B, o T

PrOOF. ~ Now we multiply (0.1) by n(1 = |x|*/R*) %', with R = 2¢ and » a smooth
nonnegative function satisfying »(f) = 0 for £ <0 to be further specified. We then
have

fn[Du-A—uiBi]dx= f n{uiBi—Du-A}dx—fn' —Z—;uiAi“dx— f n'-gizqu;dm.

Q-0 Q 0-

Now we use our structure conditions to see that

"M
—n TSulAr < r ' | G UIDUD < frenl Dul1Dul) + || g ({Z;;s )

for any ¢ > 0, so, assuming » < 1, we have

&

<|B,] sup (u'B;—Du-A},)+ sup M)AjJ‘]Dn]dx—k

|Du| <5,xeBy leBi- 5
+ﬁ7f In’lj—g-sb(%—!-%)d%-
0
Now we observe that
R i} R ,
J |Dﬂdﬂc=c(n)[ ' (1 - EE) —Ig—g-dr$c(n)R”‘1[ l 7 (1 -~ }2—2) Eridr.
R 0 0

If » is monotone (and hence increasing), then

[l )

R
2 7(1)
E?"Edr—f (1~ RZ)der— ~Jn(s)ds~ > <1,
0
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Therefore
j |Dy|de < cm)R" L.

It remains only to estimate the last integral in (1.21). To this end, we introduce a
constant H (to be further specified) and consider the initial value problem

e M 1@ M 3

Because the differential equation here can be written as

| M

(1.22) WH [ye) = N F
it follows that » is given implicitly by
en(t)/H
_do _ Re
(123) f h1fa) M

(note that » must be increasing, so »' = 0). Since % is integrable, the initial value
problem has a solution.

Now we choose ¢ = (1 ~ 33)/28; and then H so that the function » given by (1.23)
has the value 1 when ¢ = 3/4, and define by (1.23) for 0 < ¢ < 38/4, y(t) = 0 for t <0,
n(t) =1 for t=3/4. To see that this » is Lipschitz, we need only check that

lim (1)nf n'(t) is finite. By virtue of (1.22), it suffices to show that hm R(t) is nonzero be-
t—

cause y'(t) = RH/Mh(ne/H). Simple calculations show that
A{th(1/0)} /dt = h(L/t) ~ R'(L/1)/t,
h(s) — sh'(s) = h(s)*¢' (W()) /[{((s)) + (8) ¢’ ()] = 0

and hence % is decreasing. Since % is nonnegative and somewhere positive, 2(0 +)

must be positive.
After noting that n(1 — |2|?/R®) =1 on B,, we see that

Du- Adac< |B| sup {u'B;— Du-A} +
{Du| <
QN B, ze By
2 M
" A + B |H.
t{og 0w lpsuug_l | B7| I

e Bp

Finally | Du-Adx< j Du-Adx + cm)g” sup Du-A. ®
QN B, Q.0 B, [Du| <<

Clearly h is integrable if ¢ grows no faster than polynomially. For example, if
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Y@ty =t m =0, then A() = t/m+D and E(tz =¢ ™+ Additionally if (f) =
= (expt*)/t for some k > 0, then k(t) = (Int)/*so k = {1/(—int)*/*t}, which is integrable
at zero if and only if k < 1.

2. - Nonconstant G and g.

When the matrices G and g depend on z and 2, the argument of the previous sec-
tion remain applicable upon taking proper account of the terms arising from the
derivatives of these matrices. The details must be suitably modified but the results
can be given the same general form as before.

The major difference is in the derivation of the energy inequality. If we note that
now

D.v=v"'G"*g,;D,.u"Dyu’ + v 'D.(G*g,)D,u' Dyu’
and define
@1a) & =G*Dy(G*gy) Dsu'Dou’(w i f— v f) +

+G**Dy(G*) g, D,u'D,u' ') = v 2fD,(G*g,) Dyu'D,ui G*,

(2.1b) ¥ = G*g,D,(g) D,ui + D,(G*g;) D,u'G*,
2.1¢) & =0 "' fD;(G*g,) Dyu’D.u'G*,
(2.1d) f=v"fD;(G**g,) D, (G*) Dyu’D.u’,

"we obtain (1.2) with the additional integrals

a “1g48 i Ta F
JE D, vdx +Jv fo¥ D,gu'ldx +JE D, tdx +focdx

on the right hand side. After taking £ = (v — ), xr® as before, we estimate the first
three of these new integrals via Cauchy’s inequality. Because of the £“D,{ term, we
must assume of y that there is a constant c, such that

0 <y - 0)/3x®) <e,
for ¢ > 7. If we also assume in addition to (1.4), (1.5) that
(220/) ’Ulf,ZS‘B%Alf, i@;szIB%AI’U, |§|2Sﬁ§Alvf’

(2.2b) f <A,
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for some function A; = Ay, then our energy inequality has the form
2.3) ”62(1 - %)+ * 8]X’72dM < ¢ By, WA + c,) J[ﬁ?/lmz + | Dy |*] x du.
g g

Before stating the new version of Lemma 1, let us note that when G and g are in-
dependent of z, conditions (2.2) hold for A; = Ay, while if G and g depend on z, then
Ay = v%A,. This observation will be crucial for our examples. We also note that the ap-
pearance of ¢, in (2.3) entails the use of all the monotonicity conditions of [11].

LEMMA 2.1. - Let 7, be a positive constant and let w, A, A be C' increasing func-
tions on [ry, ®) satisfying (1.6). Suppose there are nonnegative constants
@ <1,8, By, B with 7oB: > 1 such that (1.7)-(1.10) are satisfied and also, for &, ¢, & f
defined by (2.1), we have

24 v|eP<giAf,  elPf<pidv,  |EPsiAdf, f<piA,
for v> v, and
2.5) t AR/ AD)" D2 JA®),  tPw(t) are decreasing.

Then for any o> 0 and xy € Q with B(xy, o) c £, there is a constant Cy(n, B, fi1o, B2, 1)
such that (1.11) is wvalid for any vt and any W22N WL > solution u of
©01). =

The integral estimate on w?Du-A is also a little trickier in this case.

LeEmmA 2.2. - Suppose m addition to the hypotheses on w, ), A, f, B, g, G in Lem-
ma 2.1 that there are a positive constant s and o positive decreasing function e such
that (1.13) holds and that

(2.6) G| 1ga] + 191 1G.| <.
Fix %y, ¢ as in Lemma 2.1 and set o = ose u. Then for any q > 0, there are positive

Blxo, p)

constants Co(n, B, 1, @) and Cg(n, B, u, Bip, B2, 85,5 Bae) such that if =, is so large
that

@ Colls (B0 etz) + sup {|g]G:| + |g:] G} <1

Bz,

and if = 7y, then (1.15) holds.

Proor. — As in the references listed before Lemma 1.2, we integrate the
integral

j (w? — w(x)), 77D, uiAf de
Q
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by parts. We find rather easily that

j(wn)unAdx < ¢(n, 8, 23 ‘319: Bz, ;35) [w(fl) + % ! J Du-Adx +

Q. Q.M By, 0)

+4ﬁgcjquq [Alds + ()= sup {Ig] 6.1 + g | lGl}j(wn)un-Adac
(@, p
Q Q

for 72 7;. The last two integrals arise from the additional terms generated from
D, (A?) (written as divA in[6] and [7]), which have the form fD,[G** 91 Dgu’ (" —

—mY y?[w? — w(z)], , where m' = B(inf )ui. The integral of w%y7 |A| is estimated via
Loy P

(1.13b) and Young's inequality while the last integral is controlled by using (2.7) to
guarantee that the expression multiplying it is sufficiently small. ®

The estimates on the integral of Du-A in Lemmas 1.3A and 1.3B apply without
change to the general case of nonconstant G and g.

The estimates in Lemmata 2.1 and 2.2 apply to equations in which B is not differ-
entiable. We suppose (cf.[6, p. 220]) that B = E + E’ with E differentiable with re-
spect to x, 2, p. The proofs of the lemmata are only changed in the derivation of the
energy estimate. First we redefine the quantities B/ and B, by replacing B by E in
their definitions. Then we integrate by parts:

f G*(D.u' [v)(D,E; dx = — j D,[G*(D,wi/v){1E; da.

Q Q

We expand this derivative and then estimate the terms as we did for Lemma 2.1.
The conditions on E' are similar to (2.2), namely,

v 2w 2G=D.u'E} T < BiAf,
f %_[fﬂG“ﬁEi']z < fidv,

2w 'G*D,u'E;F < B Aof,

v 'D(G*)D.u'E{ < BiA.
More simply, if we suppose that

(2.8) |E'|? < BiAf,
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then, except for a factor determined by 5., the first three inequalities above are satis-
fied; the final one will be satisfied if we assume that

2.9) |Ge| + 1G. | [ Dul < pu(A/fo)2.

Of course when G, = 0, this inequality follows if |G,| <.

The statements of Lemmata 2.1 and 2.2 under the decomposition B = £ + E’ with
(2.8) and (2.9) holding are omitted.

We close this section by obtaining an integral bound on Du-A under slightly dif-
ferent hypotheses than in Lemmata 1.3A and 1.3B.

LEMMA 2.3. - Suppose that B = — 3F(v)/32 and that there is a constant m such
that tF'(t) < mF@). If w = ¢ on 3Q for some Lipschitz function ¢, then

(2.10) | [ Du-Ade < m | Foe) de.

Q Q

Proor. - The hypothesis on B guarantees that « minimizes the integral

_J F(v)dw

over all functions agreeing with % on 92. Hence

] Flo(w) dz < j F(u(p)) de.
Q Q

Now the hypothesis on F says that t2f(t) < mF(f). But
Du-A = vwlflo(w). =

Note that Lemma 2.3 requires more of F than Lemmata 1.8A and 1.3B. On the
other hand, if B = — 0F(v)/dz, then

B = D,(G*g,)D,u'Dj f),

which is O(Du-A) as |Du| — « if G or g depends on z. Hence Lemma 2.3 is not a con-
sequence of the results in Section 1.

3. - Examples.
We now demonstrate our estimate with some examples.

EXAMPLE 1. — Suppose f (defined by f(t) = F'(t)/t) satisfies
0 S [f< 6
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for some constants 6, = 6, > — 1. Suppose also that
|B| < 65 f(|Du|)|Dul .
If G and g are independent of z with
|G| + 1g2] < 6,
we can use Lemma 2.1, with
r=vf, A=cl)yf, w=@)NYE p=max{2, 6},
w=max{—0,1/2}, B =cm, B)0, w=1.
Hence
1\t
sup vf(v)(l - 5)
+

S 0(61, 627 63(0’ ;82);0—” J D’M/Adx
Blxg, o/4)

By, 2/2) N 0,

This integral is estimated via Lemma 1.3. First we note that, in this case, we can ar-
range S = 1/2 by choosing 7y = 26, M = 2(6;5)(M /¢). Then we can take ¢(t) = tf(¢) and
H = c(B)(M /o) f(M/p). 1t follows that

sup |Du|f(|Du|) < c(6y, 65, O30, B)1 + (M /o f(M/e)].
More generally, if these is a decreasing function &; with & (%) =0 such that
|B| < 63, (| Du)) f(| Du|)(|Dul® + 1),
we can use Lemma 2.1 with
a=af, A=Cl)vf, w=v, B=cl), «=max{—6,1/2},
Bi=cm, %)0;, =1,
Lemma 2.2 with
A = o(8y) & WP 0'f,
g=m+49/2, f=cB),
e=¢f, T =c, 00,0, 00 5, M/)

and w, 8, 4, £, 7y as before, and then Lemma 1.3B with 35 = 1/2, 5; = ¢(&), and 7 =
= (030, M/ 1, ¢). It follows that sup |Du| < c(n, 6;, 05, O30, Ba, M/g, ).

BF/2
EXAMPLE 2. — Suppose f is as in Example 1 and that
|B| < 6, f(| Du|)1 + | Dul?),
,Gx,+,gac'$647 ,Gz,+|gz|$63-

If 6; is sufficiently small (depending on n, 6;, 65, 04¢, f2)) We can imitate Example 1
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with ;. More generally we see with these structure conditions Lemmata 2.1, 2.2 and
1.3B apply if 6, ggc) u is sufficiently small. Such is the case provided » is continuous

at x;, and p is chosen sufficiently small. Continuity at an arbitrary point x, can
be obtained if the one-sided smallness condition (1.18) is satisfied and
litm inf ¢~ <f(£) > 0 for some ¢ > 0 because then (by Lemma 1.8B) e W""** and

hence u € C%“®*9 by Morrey’s imbedding theorem [4, Theorem 7.17].
Another case in which % is known to be continuous is when F(f) = t™ for some
m = 2 (or, equivalently, f(t) = mt™ %) and

__F@ 96 @ gm0 2)
‘ v 3

Then [2, Theorem 6.2] tells us that u e C%*(Q,) for any « e (0,1) and some open set
Qo with Q — £y having zero (n — ¢)-dimensional Hausdorff measure for some
g > m. It follows that we can prove a gradient for any small enough ball centered at a
point of Q.

We note here that our results do not include the obvious extension to systems of
the minimal surface equation, that is, the case F(t) = (1 +t2)/2 and therefore f'(t) =
=(1+t%"2 For the single equation

LU Dgu™.

D, ((1+ |Du|® 2% Dyu) = 0,

an interior gradient bound in more than two dimensions was first. proved by
BowMmsiERI, DE GIorar and MIrRaNDA [1], and this estimate formed the basis of Simon’s
approach in [11].

We also point out that when G and g are independent of » and F(t) =t™, m > 1,
our gradient bounds can be inferred from the C»* estimates of TOLKSDORF [12] (ef.
[2, Theorem 7.11). ‘

On the other hand, our results apply to functions that grow faster than any poly-
noodial, as we now show.

ExamMpPLE 3. — Suppose
f&y =texpt’, |G|+ |gz| + |G| + g <6

for some 6 e (0,1) and all ¢ > 1. Suppose also that there is a decreasing function ¢ with
e(1) =1, «(x) =0 such that

|B| < 6,e(v) exp (v%).
We can the use Lemma 2.1 (in the form discussed at the end of Section 2) with

g) w:n+6
’ n+2

_w:'Ul/Z, : A:_,UZO—I—leXp(tG)’ )\:t26+wexp( ,

n
n+2t

ﬁ = C(G, n)’ 181 = C(ey n)(el + 02)
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and 7, sufficiently large to conclude that
sup v < c((6; + 62) ¢, 0, 7, Bo) [1 + p'”fv(vl ~@)® 22 exp (v vde|.

Now we note that (»! =) *2/2 =42 and exp (v°) < cDu-A for v sufficiently large.
Since () = 0, we can apply Lemma 1.3B to obtain a bound for sup v in terms of (6; +
+ 8) e, 6, 1, B2, and M /p. Note that we take ¢(v) = 1 if a modulus of continuity is known
for u or if we assume the one-sided smallness condition (1.18).

ExamMPLE 4. — Suppose now that
fOy=expt?, G|+ gl + (G| + |o.] <0,
and that
[B] < 6,s(v)v?exp (v?).

Now Lemma 2.1 applies with

w = v"?, )\=v5exp(n:®_27)2), A = 2v°exp (v°),

8=5, B =Cn)b +6).

Thus the estimate on v is reduced to an integral estimate on Du-A. It’s not hard to
see that the corresponding % is not integrable in this case, so now interior estimates
for v depend on the Lipschitz norm of the boundary values.

Acknowledgements. Portions of the research for this paper were carried out
while the author was on Faculty Improvement Leave at the Centre for Mathematical
Analysis at the Australian National University. The author is grateful to both Iowa
State and the Centre for financial support and to NEIL TRUDINGER and JOHN
HurcHINSON for useful discussions.

REFERENCES

{1] E. BoMBIERI - E. DE GIORGI - M. MIRANDA, Una maggiorazione a priovi relativa alle iper-
surfici mimimali non parometriche, Arch. Rational Mech. Anal., 32(1969), pp. 255-267.

(2] N. Fusco - J. HUTCHINSON, Partial reqularity for minimisers of certain functionals having
non quadratic growth, Ann. Mat. Pura Appl., 155 (1989), pp. 1-24.

[8] M. GIAQUINTA, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic
Equations, Ann. Math. Study, 105, Princeton University Press, Princeton, N.J.
(1983).

f4] D. GiLBARG - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order,
2nd ed., Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1983).



120 G. M. LIEBERMAN: Gradient estimates for a class of elliptic systems

[6] O. A. LADYZHENSKAYA - N. N. URAL'TSEVA, Linear and Quasinlinear Elliptic Equations,
Izdat. «Nauka», Moscow (1964) (Russian). English translation: Academic Press, New York
(1968).

(6] G. M. LiEBERMAN, The conormal derivative problem for elliptic equations of variational
type, J. Diff. Eqs., 49 (1983), pp. 218-257.

[7] G. M. LIEBERMAN, The conormal derivative problem for mon-umiformly parabolic equa-
tions, Indiana Univ. Math. J., 32 (1988), pp. 23-72.

[8] M. MEIER, Boundedness and integrability properties of weak solutions of quasilinear ellip-
tic systems, J. Reine Angew. Math., 333 (1982), pp. 191-220.

[9] J. H. MicHAEL - L. M. S1MON, Sobolev and mean-value inequalities on generalized sub-
manifolds of R*, Comm. Pure Appl. Math., 26 (1973), pp. 361-379.

[10] J. MosER, A new proof of de Giorgi’s theovem concerning the regularity problem for elliptic
differential equations, Comm. Pure Appl. Math,, 13 (1960), pp. 457-468.

[11] L. M. SiMoN, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ.
Math. J., 25 (1976), pp. 827-855.

[12] P. TOLRSDORF, Everywhere-regularity for some quasilinear systems with o lack of elliptici-
ty, Ann. Mat. Pura Appl, 134 (1983), pp. 241-266.

[18] L. UHLENBECK, Regularity for a class of non-linear elliptic systems, Acta Math., 138
1977), pp. 219-240.




