
Annali di Matematica pura ed applicata 
(IV), Vol. CLXIV (1993), pp. 103-120 

Gradient Estimates for a Class of Elliptic Systems (*). 

GARY M. LIEBERMAN 

Summary. - Gradient bounds are proved for solutions to a class of second order elliptic systems 
in divergence form. The main condition on this class is a generalization of the assumption 
that the system be the Euler-Lagrange system of equations for a functional depending only 
on the modulus of the gradient of the solution. 

O. - I n t r o d u c t i o n .  

In this work, we consider solutions of certain second order  elliptic systems of the 
form 

(0.1) D~ (A~(x, u, Du)) + Bi (x, u, Du) = 0 in 

for some domain ~ in R n, n > 1, where we use the summation convention with Greek 
indices going from 1 to n and Latin indices going from 1 to N. To describe our basic 
additional structure,  let (G~Z),(gij) be positive define matrices on ~9 •  N and 
set 

v = (G ~ (x, z) gij (x, z) p~p~)l/2. 

(Here  we use z = (z i) and p = (p~) as dummy variables for u and Du, respectively.) 
Our main assumption will be that  there  is a scalar function F on ~ • R N •  R ~ 
satisfying 

A~ (x, z, p) = ~F(v)/ap~ 

and additional conditions described below. When F(v) = v m for some m t> 2 and B = 

= - aF(v)/az,  such systems were studied by Fusco  and HUTCHINSON [2] as generaliza- 
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tions of the variational problem associated with the functional J defined by 

J[z] = I IDul'~dx' 

which is fairly well-understood (see, e.g. [3, Sect. VI.4] and [13]). 
An important distinction between the results for v of the form given here and 

v = IDul (with F(v) = v ~, m > 1 in both cases) is the nature of the regularity results. 
In the first case, only partial regularity has been proved, i.e. there is an open dense 
set t)0 r t~ such that any weak solution of (0.1) is in C 1' z (t)0) for some ~ > 0 (and t~o may 
depend on the solution). In the second case Do = t~. Moreover, TOLKSDORF [12] has 
shown everywhere regularity if G and g are independent of z. 

Here we prove a gradient bound for solutions of (0.1) under more general hy- 
potheses. Because of the nature of our estimates, it will not always be clear whether 
we are proving directly that the solutions are Lipschitz but that point is not our 
present interest. We will, however, reproduce both partial and everywhere regulari- 
ty results. 

Our approach is a modification of the Moser iteration scheme [10] along the lines of 
Simon's interior gradient estimatesfor single equations [11]. We begin by proving a 
gradient bound for constant G and g in Section 1. This special case will demonstrate 
the relevant new ideas, which will then be applied to the general case in Section 2. 
Examples appear in Section 3. 

Some results on bounds for the solution are given in [8] under related structure 
conditions. 

1. - Grad ient  e s t i m a t e s  for  c o n s t a n t  G and  q. 

When the matrices G and g are constant, various simplifications arise which make 
our calculations more transparent. We define the function f by f(t) = F'(t)/t and note 
that our system can be written as 

(1.1) D~(f(v) G"ZgijD~u j) + Bi(x, u, Du) = O. 

From now on, we suppress the arguments o f f  and B (which are always assumed to be 
v and (x, u, Du), respectively) and of their derivatives. If fi u, and B are smooth 
enough we can differentiate (1.1) with respect to x ~, thus obtaining 

0 = D~(f '  G~ZgijD~uJD~v +fG~PgijD6~u j) + D~Bi. 

Next we multiply by G ~ (D~ ui /v)~ for some ~ ~ L ~ • W 1.2 with compact support in 
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D, sum over ~, and integrate the expression involving D~ by parts. It then follows 

that 

0 = J v -~f '  G~ZG~gijDzuJD=u!D~v~dx + 

+ f v - l f G ~ G ~ g i j D ~ u J D : ~ u J D ~ u i  ~dx + 

+ I v - i f ,  G~ZG~gijDzuJD~uiD~vD ~ ~dx + 

+ I v -~fG~ZG~gijD~uJD~uiD: ~dx - 

- I v - e f t  G~ZG~gijDzuJD~uiD~vD~v~d x _ 
D 

- f v -~fG~ZG~gijD~uJD~uiD:v[dx - 

- f v -1  G~D~u i (SBi/SpJ) D~uJ~dx _ 
o 

- I v - 1 G ~ De u i [(SBi/Sz i) D~ u j + (aB i /x  3)] ~ dx.  
t) 

To proceed, we introduce some notation: 

C~) = v-2G:ZG*~g~jDvu~D=u ~, 

G ~  = v -2G~G~gi jDzuJD~u~,  

B S = - G~D~uJ(~Bi/apJ) ,  

F~= vf' ~ ~ + fG~z, 

-B = - G ~ D~ ui  [(SBi/Sz J) D~ u j + (SBi /Sx  ~)], 

and we observe that 

D~v = v-lG~'~gijD=u~DzuJ. 

Our integral identity then becomes 

(1.2) 0 =  f v f e ~ d x  + ~ ( f ' G ~ Z - v - i F : Z ) D ~ v D z v ~ d x  + 
Q 

r f - 1 a~" i + J F ~ D ~ v d x  + J(v Bi D ~ u  + v-~-B)~dx.  
D 

Let us note here an important distinction between the case of a single equation (as 
in [11]) and the case of a system of equations. Writing (gij) for the inverse matrix to 
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(gij), we see that  there are tensors E and F, satisfying 

~ ~, ~ij ~ ~> 0 

for all matrices ~, such that  

v f ~  + ( f '  G ~ - v -~F~)D~vD~v = E ~ F ~ g i ~ D ~ . u ~ D ~ u  j. 

This quantity is clearly nonnegative if N = 1, but in the present case its nonnegativi- 
ty  is not clear even if G and g are identity matrices. 

Next we choose ~ = (v - z)+ Z(v) 72 for some z > 0, nonnegative C ~ increasing func- 
tion Z, and V ~ C O, ~ (~9) with compact support to be further specified. In this way we 

infer that  

0 = IfvC~(v - z)+ z~2dx + 
t~ 

+ f { f '  G ~ _ 
t~ 

v -~F~'~}D~vD~v(v - ~)+ zv2dx + IF~ZD~vDzv{z + (v - z)+ Z'} ~ 2dx + 

Now the matrix F will be nonnegative definite if 

(1.3) vf '  + f >1 O, 

in which case we can estimate the fourth integral in this equation via Cauchy's 

inequality. 
Hence for any 0 e (0, 1) we have 

0 >1 I fve~ (v - z)+ Zrt 2 dx + I { f '  G~z - v -1F~Z} Do v D z v(v - z)+ Z~ 2 dx + 
t) t~ 

+ I F=Z{Z + (v - ~)+ X ' -  OK} D=vDzvw72dx - 0-1 f F~ZD~vDz v(v - ~)2+ z d  x _ 
D 

Bi D~ u (v - ~) + ~ 2  dx + I v Z~72 + I v  1 ~ ~ -1-B(v_ ~)§ dx .  

Next we note that  v2C~ >I G:ZD:vD~v,  vec~ >I cl ID2ul 2 for some C 1 depending 
only on the minimum eigenvalues of the G and g matrices. As it stands, we can't con- 
trol the terms involving Dv, so we strengthen (1.3) to 

(1.4) v/'+ > o 
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for some ~ e [0, 1). Then 

{ f '  G ~ - v -~F~Z} D=vD~v(v - O+ >>- 
(1 + 

['r G~zD~vDzv(v _ ~)+ - 
2v 

1 + tt v-~F~ZD~vDzv(v - z)+ >i - - -  
2 

and so, recalling that 7'/> 0, 

1 + 
t~ f vC~(v  - ~)+ 

2 
1 2 ~F~ZD~vDzv'  

0 > ~ - -  
(1 ~) 

(1,, _ )IF~ZD~vD~vz~2dx - [ f v e 2 ( v -  ~)+zv~dx + -5(1 - ~) 0 
2 ~ 

d 

-o-~ f I~ZD~vD~vv2xdx + f - zv2dx + f v - ~ - B ( v -  z)+ Zrj2dx. 

We now choose 0 e (0, (1/2)(1 - ~ ) )  and estimate the integral involving B/~ via 
Cauchy's inequality. Then we set 

Ao = v2(f ')+ + vf, C 2 =fvC~, ~ = v - l fG~ZD~vDzv ,  dg. = v d x ,  

and we write ,K for the maximum eigenvalue of the matrix vF. If also 

(1.5) i /f+ -< 

we obtain from routine calculations, and the observation that (1.4) implies F i> 
I> c(~)fG, that 

for some constant c2 determined by c~ and ~. This inequality is an energy inequality 
analogous to [11, (2.11)] or [6, Lemma 4.1], which is a key to our gradient bound. Note 
that the estimate does not depend on an upper bound for (v - ~) X'/Z because our cal- 
culations correspond to the case ai = 0 in [11]. 

Another important tool is a suitable Sobolev inequality, which we give in terms of 
the matrix ~. defined by 

I~Z - ~ij [Du[-2D~uiD~uJ ~, fl <~ n ,  

~ = [ ~  a = n + 1 or,~ = n + 1 

and the vector :~ given by 

PC~ = ~,z,i, Du I -SD~uiDi~u ~ -  [Du1-1Dui ]D~u i / IDu i  

Writing ~ for the operator with components ~ = ~ D ~  and setting d~ = IDuldx,  we 
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see that t r y  = n and 

i 3h d~ = I h:)cdfi 

for any h e CI(t~) with compact support. If h also vanishes wherever IDul < 1 (or if 
we modify y, ~ ,  ~, d~, appropriately there), we combine Michael and Simon's Sobolev 
inequality [9, (1.3)] with the argument in [6, Lemma 1.3] to see that 

\~ l t ~ 

A straightforward calculation shows that, for 20 = vf, we have 

] cl e2, v- 2o l vl 
Then the proof of[11, Lemma 1] allows us to estimate the supremum of v over a ball in 
~9 in terms of integral norm of v over a larger ball provided the structure 
condition 

2o (1 + (v2~/;to) 2) y ~< 20 G, 

holds and (A0/~o)(~+2)/2/A behaves like a rational function near infinity. (A more pre- 
cise statement of this property will be given below.) In fact we can replace ;to by any 
smaller function ~, A0 by any larger function A and v by an increasing function w of v 
provided w, 2, A are suitably connected. (The case of general w, 2, A for single equa- 
tions is the one given in [11].) Setting ~ = {x ~ t~: v(x) > z}, we have as our first part 
of the estimate the following result. 

LEMMA 1.1. - Let ~o > 1 be a constant and let w, )~, A be C 1 increasing function on 
[z0, ~)  with 

(1.6a) A(t) >i t2(f '(t))+ + tf(t), 

(1.6b) ~(t)(1 + (tX(t)/2(t)) 2) <~ tf(t), 

Suppose there are nonnegative constants t~ < 1, fl, ~1, ~2 such that 

(1.7) w ~ (A/~) (~ + 2)/2/A is increasing, 

(1.8) tf'(t) + ~f(t) >i 0 for  t >t ~:o, 

(1.9) IBp If(v) -1 + v -1-~ << fl~A(v) wherever v >I "to, 

(1.10) G ~ I , g ~ I ;  IGI <~2, Igl <<-~2. 

Then for any ~ > O, and xo ~ t~ such that the ball B(xo, ~) r t~, there is a constant 
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C1 (n, fl, HI,~, H2, t ~) such that 

7" (n+2)/2~ / ~ 2  
(1.11) sup ( 1 -  ~ ) +  ~ , v )  ~ C 1 ~  -n  f w(v)2(A/)o(n+2)/2vdx 

B(xo, p/e) B(xo, ~) n ~ 

for any z >I ~o and any W 2' 2f3 W 1, ~ solution u o f  (0,1). �9 

We note that the normalization of the minimum eigenvalues of G and g in (1.9) 
guarantees that I Du] > 1 wherever v > ~0, as required by our Sobolev inequality. 
Moreover, in this case, (1.7) is the only monotonicity condition we need because of the 
special form of our energy inequality. 

For our next estimates, we introduce the shorthand notation D u . A  to denote 
D:u Ar If we assume now that 

(1.12) (A/),) (~ + 2)/2 v <~ Ha w'~ D u . A  

for nonnegative constants Ha, H4, we reduce the estimate of sup w to one on 

f wqDu 'A  dx, 

which we estimate by adjusting the proof of [11, Lemma 2] along the lines of [6, Lem- 
ma 4.3] (see also [7, p. 41]). 

LEMMA 1.2. - Suppose that in addition to the hypotheses on w, ~, A, f, B, G, g in 
Lemma 1.1, that there are a positive constant H~ and a positive decreasing function 
such that 

(1.13a) IA l (w') 2 <~ Hs vf(v) , 

(1.13b) wlA] <<. H~/2Du.A, 

(1.13c) va If'l + v2f  <<- HsDu'A, 

(1.13d) Av <~ ew2 Du" A . 

Fix Xo, p in Lemma 1 and set ~ = osc u. Then for any q > O, there are constants 
B(xo, p) 

C2(n, H, m, q) and C~ (n, H, ~, HI,~, ~2, Hs) such that i f  ~ is so large that 

C2Z5 (H~ ~)2 ~(~1) < 1, (1.14) 

and i f  ~ >I Vo, then 

(1.15) I 
B(x0, p/2) n D: 

w q D u ' A d x  <~ C3 [w(vl) + a/p]q f D u ' A d x .  
B(xo, ~) N t): 

The final estimate, on the integral of Du .A, is slightly delicate. If we assume that 
u = ~ on at2 for a known Lipschitz function ~, we have a simple estimate in terms of 
$2':= {xet) :  IDul >v}. 
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LEMMA 1.3 A. - I f  u = ~ on ate, and i f  there are constants f16 ~ [0, 1), f17 > 0, ~ > 0 
and an increasing func t ion  ~ such that 

(1.16a) (u i - ~ i ) B  i <~ f l6Du'A 

(1.16b) D u . A  >>. ]Du[~b([Du[), ]A I ~<flT~b([Du]) 

on t~'~ and i f  ]D~] <<. ~, then 

]~l (  sup { ( u i - ~ i ) B i - D u ' A  + D~'A}+ + f i T ~  ~ " ~ Du 'Adx<~ (1-fl~)2 [l~t<~ (1.17) 

P R O O F .  - Multiply (0.1) by u s -  ~i, sum on i, and integrate by parts to see 
that 

I { D u . A - ( u i - ? ~ ) B i } d x =  I { ( u i - ~ i ) B i - D u ' A } d x +  I D ' ~ . A d x +  I D ,9 .Adx .  
~2 ; s - ~2" ~" ~ - ~2" 

If we write 2: for the supremum on the right hand side of (1.17), then (1.16a) and 
(1.16b) give, for any z > 0, 

( 1  - 86) I D u ' A d x  ~ ]s + f17 f ]D~]~(]Du])dx <~ ]t~]~ + f ~lDul~(lDu])dx + 

The desired conclusion follows from this inequality by taking ~ = (1 -/~6)/2 and re- 
arranging the resulting inequality. �9 

In particular, if L ~ bounds for u and ? are known and if A the form assumed in 
this paper, then a bound on the integral of D u . A  is guaranteed if I B I = 
= o ( IDu lF ' ( IDu l )  ). 

So far our estimates have been purely local in nature. To derive a local estimate 
for the integral of D u . A  requires some additional hypotheses, which do not appear in 
the scalar case. (In fact SIMON[ll] showed that  the hypotheses IBI = O(Du.A),  
]Du I Inl = O(Du .n )  as IDul ----) ~ suffice in the scalar case.) 

LEMMA 1.3 B. - Suppose there are constants ~6 ~ [0, 1),/~7 > 0 and an increasing 
funct ion  ~b such that (1.16b) and 

(1.18) uiB~ <~ ~6Du .A 

hold on t)':. Define h and ft by 

(1.19) h(t) ~ o h(t) = t,  h(t) -- 1/{th(1/t)} 
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and suppose h is integrable near zero. i f  l u ] <- M in B(xo, 2p) c t~, then there are con- 
stants C5 determined by n, f16, ~ ,  ,~, and M/~ and C~ determined by n and fl~ such 
that 

(1.20) Du.Adx <~ C s~ ~ + C6~ ~ sup { u i B i  - Du.A}+ + -~iAI  . 
IDu] < r 

~ N B(xo, p) x e B~ 

PROOF. - Now we multiply (0.1) by 7(1 - ]x]9/R2)u i, with R = 2~ and V a smooth 
nonnegative function satisfying r~(t)= 0 for t ~< 0 to be further specified. We then 
have 

I v[Du 'A-u iBi]dx= I v{uiB~-DuA}dx-f v' -~ u~A~dx- x= " f ~' -~ 

Now we use our structure conditions to see that  

-~' -~u*A# <- ~ Iv'[ ) Z~vlDui+(iDul) + ~7 IV'l Me 

for any ~ > 0, so, assuming r~ ~< 1, we have 

r 

(1.21) (1 - f16 - ~flT ) l ~T Du ' A dx <<- 
J 

g~_' 

<-IB~J sup ({uiBi - Du'A}+ 
IDu] <;,XEBR 

r 
+ sup M]AJl}D~Idx+ 

IDul < J 
x e B~ B~ 

Now we observe that  

R 
r 2 f lOvld~=c(n) f lv,(X_ _~) I r'~ -~dr 

BR 0 

R 
r 2 r 

<~ c(n)R'~-l f l r[ ( 1 -  - ~  ) l -~-~dr. 
o 

If  r~ is monotone (and hence increasing), then 

ig 

r 2 r 

o 

R 1 

= ~' 1 - ~ ) - ~ a r = - ~  ~'(s)ds= 2 
o o 

- - < ~ 1 .  
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Therefore 

• IDv I dx <~ c(n) R ~- 1 

B~ 

It remains only to estimate the last integral in (1.21). To this end, we introduce a 
constant H (to be further specified) and consider the initial value problem 

M ('~'(t) M ) = H ,  ~(0)=0 I '(t)l 

Because the differential equation here can be written as 

(1.22) h(H/v~)- I n'] M 
Rs '  

it follows that V is given implicitly by 

e~(t)/H 

I dz _ R~ t 
(1.23) zh(1/z) M 

o 

(note that ~ must be increasing, so ~' I> 0). Since h is integrable, the initial value 
problem has a solution. 

Now we choose ~ = (1 - f16)/2f17 and then H so that the function V given by (1.23) 
has the value 1 when t = 3/4, and define r~ by (1.23) for 0 ~< t ~< 3/4, v(t) = 0 for t < 0, 
v(t) = 1 for t ~> 3/4. To see that this V is Lipschitz, we need only check that 
lira inf v'(t) is finite. By virtue of (1.22), it suffices to show that lira h(t) is nonzero be- 

t---~ 0 + t .__~ 0 + 

cause v ' ( t )= RH/M~t(v~/H)o Simple calculations show that 

d{th(1/t)}/dt = h(1/t) - h'(1/t)/t, 

h(s) - sh'(s) = h(s) 2 r + h(s) ~'(h(s))] I> 0 

and hence h is decreasing. Since Tt is nonnegative and somewhere positive, h(0 +) 
must be positive. 

After noting that V(1- Ixl2/R ~) = 1 on B~, we see that 

I <~ 2 Du .Adx  ~_~61Bpi sup { u i B i - D u ' A }  + I]gu[ < 
~'~ A B e x ~ Ba 

+ 1__~6 C(n ) ,~ M 
_ 

sup IAI +1--~6~7 IB~IH. 
IDul < ~ 

x e B  R 

Finally I Du.Adx<<. f D u ' A d x + c ( n ) ~  sup Du'A. �9 

Clearly h is integrable if ~ grows no faster than polynomially. For example, if 
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~(t) = t ~, m t> 0, then h(t)= t ~/(m+~) and h(t)= t -m/(m+l). Additionally if ~ ( t ) =  
= (exp tk)/t for some k > 0, then h(t) = (lnt) ~/k so h = {1/( - lnt) 1/k t}, which is integrable 
at zero if and only if k < 1. 

2. - N o n c o n s t a n t  G a n d  q. 

When the matrices G and g depend on x and z, the argument of the previous sec- 
tion remain applicable upon taking proper account of the terms arising from the 
derivatives of these matrices. The details must be suitably modified but the results 
can be given the same general form as before. 

The major difference is in the derivation of the energy inequality. If we note that 
now 

and define 

(2.1a) 

D~v = v -~ G~ZgijD=u~DzuJ + v -1D~(G~gi j )D~uiDzuJ  

~ = G~ZDz(GO'~gij)D~uJD~ui(v-2f _ v - i f , )  + 

+G~ZDz(G~)gijD~u JD~u~(v-i f , )  _ v-2fD~(G~Zgij)DzuJD~uiGZ~, 

(2.1b) ~ = G~gijD~(g~ ) D~u j + D~.(G ~gij) D~ uJG ~/~, 

(2.1c) ~ =  v- l fD~(G~gi j )D~uJD~uiG ~, 

(2.1d) f = v- l fD~(G~gij)D~(G~OD~uJD~ui ,  

w e  obtain (1.2) with the additional integrals 

D 0 D 

on the right hand side. After taking ~ = (v - z)+ ;~2 as before, we estin3ate the first 
three of these new integrals via Cauchy's inequality. Because of the ~'O, ~ term, we 
must assume of Z that there is a constant c z such that 

0 <<. z'(t)(t - ~:)/;dt) <~ c z 

for t > ~. If  we also assume in addition to (1.4), (1.5) that 

(2.2a) VI~I 2 <~fl~Alf, 1~12f<~fl2A1 v, I~12 <~fl~A~vf, 

(2.2b) f < fl~A~, 
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for some function A1 I> Ao, then our energy inequality has the form 

(2.3) J [C2  ( 1 - v ) + +  g] Zv2dt~ <~ c1(fl2~' n)(1 + cz)~I [fl~Alv2+~lD~7'2]Zdtz" 

Before stating the new version of Lemma 1, let us note that when G and g are in- 
dependent of z, conditions (2.2) hold for i l  = A0, while if G and g depend on z, then 
AI = veAo. This observation will be crucial for our examples. We also note that the ap- 
pearance of c X in (2.3) entails the use of all the monotonicity conditions of[11]. 

LEMMA 2.1. - Let vo be a positive constant and let w, A,A be C 1 increasing func- 
tions on [vo, ~)  satisfying (1.6). Suppose there are nonnegative constants 
t~ < 1, ~, ill, f12 with ~oflz > 1 such that (1.7)-(1.10) are satisfied and also, for  (, ~, ~, f 
defined by (2.1), we have 

(2.4) v]~.] 2 <<.fl~Af, ]v]2f<~fl~Av, ]-~]2~Avf, f <<.[3~A, 

for  v > Zo, and 

(2.5) t -~ (A(t)/~(t)) (~ + 2)/2 /A(t) , t -~w(t) are decreasing. 

Then for  any p > 0 and xo ~ t~ with B(xo, ~) c t), there is a constant C1 (n, ~, ~ ~, ~2 , ~) 
such that (1.11) is valid for  any ~ ~o and any W 2 ' 2 N W  1'~ solution u of  
(0.1). " 

The integral estimate on w q D u . A  is also a little trickier in this case. 

LEMMA 2.2. - Suppose in addition to the hypotheses on co, 2, A, fi B, g, G in Lem- 
ma 2.1 that there are a positive constant ~5 and a positive decreasing function ~ such 
that (1.13) holds and that 

(2.6) IGI Ig~l + Igl IG~I ~<fls. 

Fix Xo, p as in L e m m a  2.1 and set ~ = osc u. Then for any q > O, there are positive 
B(xo, p) 

constants C2(n, fl, ~, q) and Ca(n, fl, t~, fll~, fl2, fls, fls~) such that i f  zl is so large 
that 

(2.7) C2[fls(fllz)2s(~l) + sup {Igl IG~I + Igzl IVl}] <~ 1 
B(zo, p) 

and i f  .~ >>. Zo, then (1.15) holds. 

PROOF. - As in the references listed before Lemma 1.2, we integrate the 
integral 

I (w q - w(v)q)+ )Tq D~ u i A~ dx 
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by parts. We find rather easily that 

I (w~7) q D u . A  dx Du  .A dx + 

+4~8~ I wqvq IAIdx + c(~2)~ sup {Ig 
B(xo, p) 

IG,I + Ig~ I IGI}](w~7) qDu'Adx 
I2 

for z 1> Vl. The last two integrals arise from the additional terms generated from 
D~(A~) (written as divA in[6] and [7]), which have the form fDc,[G~Zgij]DzuJ(ui-  
- m i) ~Tq[w q - w(z)q]+, where m i = inf u i. The integral o f w q v  q IAI is estimated via 

B(xo, ~) 

(1.13b) and Young's inequality while the last integral is controlled by using (2.7) to 
guarantee that the expression multiplying it is sufficiently small. [] 

The estimates on the integral of D u . A  in Lemmas 1.3A and 1.3B apply without 
change to the general case of nonconstant G and g. 

The estimates in Lemmata 2.1 and 2.2 apply to equations in which B is not differ- 
entiable. We suppose (cf. [6, p. 220]) that B = E + E '  with E differentiable with re- 
spect to x, z, p. The proofs of the lemmata are only changed in the derivation of the 
energy estimate. First we redefine the quantities B y  and B, by replacing B by E in 
their definitions. Then we integrate by parts: 

I G ~ (DE u i/v) ~D~Ei' dx = - I D~ [G ~ (D~ ui/v)  ~] Ei' dx .  

We expand this derivative and then estimate the terms as we did for Lemma 2.1. 
The conditions on E '  are similar to (2.2), namely, 

v ~ , [v -2G~D~ i , 2 u E~ ] <~ Z~df, 

f ~, [ f - lG~ZEi ' ]  2 < ~ A v ,  
a, fl, i 

~. [v -1G~DzuiE, ]e  <~ B~Avf ,  
o; 

v -1D~(G~)D~uiEi '  <~ fl~A. 

More simply, if we suppose that 

(2.8) IE 'I  2 ~< fl~Afv, 
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then, except for a factor determined by ~2, the first three inequalities above are satis- 
fied; the final one will be satisfied if we assume that 

(2.9) t Gx I + I G~ I [Dul <~ fll (A/fv) ~/2. 

Of course when G, = 0, this inequality follows if I G~ I ~< ill. 
The statements of Lemmata 2.1 and 2.2 under the decomposition B = E + E'  with 

(2.8) and (2.9) holding are omitted. 
We close this section by obtaining an integral bound on Du .A under slightly dif- 

ferent hypotheses than in Lemmata 1.3A and 1.3B. 

LEMMA 2.3. - Suppose that B = - ~F(v)/Oz and that there is a constant m such 
that tF'(t) <~ mF(t). I f  u = ~ on ~ for  some Lipschitz  func t ion  ~, then 

(2.10) I D u . A d x  <<. m f F(v(?))dx.  

PROOF. - The hypothesis on B guarantees that u minimizes the integral 

i F(v) dx 
~Q 

over all functions agreeing with u on a~2. Hence 

I r(v(u))dx 
Q 

Now the hypothesis on F says that t2f(t) <~ mF(t). But 

D u ' A  = v(u)2f(v(u)). " 

Note that Lemma 2.3 requires more of F than Lemmata 1.3A and 1.3B. On the 
other hand, if B = - aF (v ) / az ,  then 

B = D~ (G ~Zg~j) D~ u~Dj f (v ) ,  

which is O(Du.A)  as IDul - ,  ~ if G or g depends on z. Hence Lemma 2.3 is not a con- 
sequence of the results in Section 1. 

3. - E x a m p l e s .  

We now demonstrate our estimate with some examples. 

EXAMPLE 1. - Suppose f (defined by f( t)  = F'(t) / t)  satisfies 

01 < t f ' / f  < - 02 
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for  some  cons tan t s  02 i> 0~ > - 1. Suppose  also t ha t  

IBI <~ o 3 f ( I D u l ) l D u l  . 

I f  G and g a re  i ndependen t  of z with 

we can use  L e m m a  2.1, wi th  

= vf ,  A = c(02)vf, w = (vf)  1/2 , 

t~ = m a x  { - 01, 1 /2} ,  82 = c(n, 82) 0~, 

Hence  

8 = max {2, 02}, 

~ o = 1 .  

L e m m a  2.2 wi th  

A = c(02)  e2 (v)2v4f, 

q = (n + 4 ) /2 ,  8~ = c(/~2), 

= ~ ,  zl = c(n,  O1, 02, 03p, 82, M / ~ )  

and w, 8,/z,  82, zo as before ,  and then  L e m m a  1.3B with 86 = 1/2, 87 = c(fl2), and z = 

= c(03 ~, M / r ,  D. I t  follows t h a t  sup I D u l  <~ c(n, 01, 02, 08 ~, ~2, M/,z, ~). 

EXAMPLE 2. - Suppose  f is as in E x a m p l e  1 and t h a t  

IBI <- o~f(IDul)(1 + IDul2), 

IG~I + Ig~l < o~, IG~I + Ig~l ~ o~. 

I f  03 is sufficiently small  (depending  on n, 01, 0~, 04~, Be)) we can imi ta te  E x a m p l e  1 

11 (~ § 2)/2 I sup  vf(v) 1 - -~/+ <~ c(01, 02, Os~, f12)~ -~ D u . A d x .  
B(xo, p/4) 

~(xo, ~/2) n ~ 

This in tegra l  is e s t ima ted  via L e m m a  1.3. F i r s t  we  note  that ,  in this case, we can ar-  

r a n g e  f16 = 1/2  b y  choosing ~o = 203M = 2(03p)(M/~). Then  we can t ake  ~b(t) = tf(t) and 
H = c(fl2)(M/~) 2 f ( M / p ) .  I t  follows t h a t  

sup I n u V ( I n u l )  <. c(02, 02, 03p, fl2)[1 + (M/~)2f (M/~)] .  

More  genera l ly ,  if these  is a dec reas ing  funct ion ~1 with ~1 ( ~ )  = 0 such t ha t  

IBI <~ 0 3 e l ( I D u i ) f ( I n u l ) ( I D u [  2 + 1), 

we can use  L e m m a  2.1 wi th  

= vf,  A = C(02)v2f ,  w = v ,  fl = c(02), ,~ = m a x  { - 0 2 ,  1 /2} ,  

82 = c(n, 82) 03, Zo = 1, 
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with ~1. More generally we see with these s tructure conditions Lemmata  2.1, 2.2 and 
1.3B apply if 03 osc u is sufficiently small. Such is the case provided u is continuous 

B(2,~) 
at x0, and p is chosen sufficiently small. Continuity at an arbi t rary  point x0 can 
be obtained if the one-sided smallness condition (1.18) is satisfied and 
lira inf t 2 - ~ - ~f(t) > 0 for some ~ > 0 because then (by Lemma 1.3B) u e W 1' n +~ and 

hence u e C o, 4(n + ~) by Morrey's  imbedding theorem [4, Theorem 7.17]. 
Another case in which u is known to be continuous is when F(t) = t m for some 

m i> 2 (or, equivalently, f ( t )  = m t  "~ -2) and 

F'(v)  a G ~ ( x ,  z )gk~(x ,  z) 
= D ~ u k D z u  ~.  Bi v az ~ 

Then [2, Theorem 6.2] tells us that  u e C o, ~ (t)o) for any ~ E (0, 1) and some open set 
t~ 0 r  with t ) -  t~0 having zero ( n -  q)-dimensional Hausdorff  measure for some 
q > m. I t  follows that  we can prove a gradient for any small enough ball centered at a 
point of t)o. 

We note here  that  our results do not include the obvious extension to systems of 
the minimal surface equation, that  is, the case F(t) = (1 + t2) 1/2 and therefore  f ' ( t )  = 
= (1 + t2) -1/2. For  the single equation 

D~((1 + I D u ] 2 ) - l / 2 ~ D ~ u )  = O, 

an interior gradient bound in more than two dimensions was first proved by 
BOMBIERI, DE GIORG~ and MIRANDA [1], and this estimate formed the basis of Simon's 
approach in [11]. 

We also point out that  when G and g are independent of u and F(t) = t ~, m > 1, 
our gradient bounds can be inferred from the C 1' ~ estimates of TOLKSDORF [12] (cf. 
[2, Theorem 7.1]). 

On the other  hand, our results apply to functions that  grow faster  than any poly- 
nobial, as we now show. 

EXAMPLE 3. - Suppose 

f ( t ) = t - 2 e x p t  ~ [Gx[ + [gxl + ]G~] + [g~[ ~<01 

for some 0 e (0, 1) and all t > 1. Suppose also that  there  is a decreasing function ~ with 

~(1) = 1, ~ ( ~ ) =  0 such that  

IBI <<. 02~(v)exp(v~ 

We can the use Lemma 2.1 (in the form discussed at the end of Section 2) with 

w = v  1/2, A = v 2 ~ 1 7 6  Z = t  exp t , o J -  n + 2 '  

~ = c ( O , n ) ,  ,21 =c(O, n)(ol + 02) 
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and Vo sufficiently large to conclude that  

sup v <<. c((Ol + 02)~, 0, n, ~2)[1 + ,~-n l v(vl-~ + 2)/2exp(v~ ] �9 

Now we note that  (v l -~)  (n+~)/2 = v -2, and exp(v ~) ~< cDu.A for v sufficiently large. 
Since s (~ )  = 0, we can apply Lemma 1.3B to obtain a bound for sup v in terms of (6~ + 
+ 02)~, 0, n, fie, and M/p. Note that  we take z(v) -= I if a modulus of continuity is known 
for u or if we assume the one-sided smallness condition (1.18). 

EXAMPLE 4 .  - Suppose now that  

f ( t ) = e x p t  2, IGxl + [gxl + {V~l + Ig~l <~o, 

and that  

]B I <<. 02~(v)v2exp(v2). 

Now Lemma 2.1 applies with 

w = v n/2, )~ = v~eXP( n ~ V 2  ), A=2vSexp(vS) ,  

= 5, 91 = C(n)(01 + 02)- 

Thus the estimate on v is reduced to an integral estimate on Du.A. It 's not hard to 
see that  the corresponding h is not integrable in this case, so now interior estimates 
for v depend on the Lipschitz norm of the boundary values. 

Acknowledgements. Portions of the research for this paper were carried out 
while the author was on Faculty Improvement Leave at the Centre for Mathematical 
Analysis at the Australian National University. The author is grateful to both Iowa 
State and the Centre for financial support and to NEIL TRUDINGER and JOHN 
HUTCHINSON for useful discussions. 

R E F E R E N C E S  

[1 ]  E. BOMBIERI - E. DE GIORGI - M. M I R A N D A ,  Una maggiorazione a priori relativa alle iper- 
surfici minimali non parametriche, Arch. Rational Mech. Anal., 32(1969), pp. 255-267. 

[2] N. Fusco - J. HUTCHINSON, Partial regularity for minimisers of certain functionals having 
non quadratic growth, Ann. Mat. Pura Appl., 155 (1989), pp. 1-24. 

[3] M. GIAQUINTA, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic 
Equations, Ann. Math. Study, 105, Princeton University Press, Princeton, N.J. 
(1983). 

[4] D. GILBARG - N. S. T R U D I N G E R ,  Elliptic Partial Differential Equations of Second Order, 
2nd ed., Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1983). 



120 G . M .  LIEBERMAN: Gradient estimates for a class of elliptic systems 

[5] O. A. LADYZHENSKAYA - N. N. URAL~TSEVA, Linear and Quasinlinear Elliptic Equations, 
Izdat. ,,Nauka~, Moscow (1964) (Russian). English translation: Academic Press, New York 
(1968). 

[6] G. M. LIEBERMAN, The cono~Tnal derivative problem for elliptic equations of variational 
type, J. Diff. Eqs., 49 (1983), pp. 218-257. 

[7] G. M. LIEBERMAN, The conormal derivative problem for non-uniformly parabolic equa- 
tions, Indiana Univ. Math. J., 32 (1988), pp. 23-72. 

[8] M. MEIER, Boundedness and integrability properties of weak solutions of quasilinear ellip- 
tic systems, J. Reine Angew. Math., 333 (1982), pp. 191-220. 

[9] J. H. MICHAEL - L. M. SIMON, Sobolev and mean-value inequalities on generalized sub- 
manifolds of R n, Comm. Pure Appl. Math., 26 (1973), pp. 361-379. 

[10] J. MOSER, A new proof of de Giorgi's theorem concerning the regularity problem for elliptic 
differential equations, Comm. Pure Appl. Math., 18 (1960), pp. 457-468. 

[11] L. M. SIMON, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. 
Math. J., 25 (1976), pp. 827-855. 

[12] P. TOLKSDORF, Everywhere-regularity for some quasilinear systems with a lack of elliptici- 
ty, Ann. Mat. Pura Appl., 134 (1983), pp. 241-266. 

[13] L. UHLENBECK, Regularity for a class of non-linear elliptic systems, Acta Math., 138 
(1977), pp. 219-240. 


