Some Observations on Cohomologically P-Ample Bundles (*) (**).

Luca Migliorini

Sunto. – Usando un recente risultato di Deligne e Illusie si prova un teorema di annullamento per la coomologia di un fibrato coomologicamente p-ampio. Si studiano le proprietà dei gruppi di coomologia dei fibrati vettoriali nel caso in cui il morfismo di Frobenius si estenda a un sollevamento della varietà su $W_2(k)$, anello dei vettori di Witt di lunghezza 2 del campo. Si studiano, infine, a titolo di esempio, i fibrati coomologicamente p-ampi su P^d .

0. - Introduction.

On of the main features of characteristic p geometry is the existence of the Frobenius morphism; in particular, using this morphism, one can define an operation on vector bundles and, more generally, on coherent sheaves.

One possible description of this operation is the following: if the bundle E on the variety X is given, with respect to an affine open covering $\mathbb{1} = \{U_i\}$ by transition functions $g_{ij} \in GL(\mathcal{O}_X(U_i \cap U_j))$, the bundle $E^{(p)}$ associated to it is defined by the new transition functions $g_{ij}' \in GL(\mathcal{O}_X(U_i \cap U_j))$ obtained raising all the entries of the matrices to the p-th power (the point being that the map $(a_{ij}) \to (a_{ij}^p)$ is a representation of GL(n,k) if $\operatorname{char} k = p$).

This operation permits the introduction of two generalizations of the notion of ampleness of a vector bundle, namely *p-ampleness and cohomological p-ampleness* (see § 1 for definitions).

In this paper we show how a recent result of Deligne and Illusie ([4]) can be used to study these notions, especially cohomological p-ampleness, in the case that the variety X can be lifted over $W_2(k)$, the ring of Witt vectors of length 2 of the field k.

The content of the paper is:

in § 1 we give the definitions relevant to the paper and recall some of the properties of the objects which are being considered;

in § 2 we recall the main theorem of the already quoted paper of Deligne and

^(*) Entrata in Redazione il 13 febbraio 1990, versione riveduta il 26 ottobre 1990. Indirizzo dell'A.: Dipartimento di Matematica Applicata «G. Sansone», Università degli Studi di Firenze, Via S. Marta 3, 50139 Firenze.

^(**) Partially supported by the MRST 40% and 60% funds.

ILLUSIE ([4]) and we prove a very strong vanishing theorem for cohomologically *p*-ample vector bundles; as a corollary we get a «Weak Lefschetz Theorem» for codimension 2 zero-loci of sections of such bundles;

in § 3 we find strong consequences of the hypothesis that the Frobenius morphism extends to a morphism of a lifting of X to $W_2(k)$.

in § 4 we consider, as an example, cohomologically p-ample bundles on $X = \mathbf{P}_{F_p}^d$. In this case one can easily compute $F_* \mathcal{O}_X$ (F being the Frobenius morphism) and thus the map $H^i(X, E) \to H^i(X, E^{(p)})$ is quite easy to understand. An argument using Beilinson's theorem about coherent sheaves on \mathbf{P}^d ([2]) allows us to give a resolution of a cohomologically p-ample bundle and a characterization of cohomologically p-ample bundles on \mathbf{P}^d .

I thank Prof. V. Ancona for suggesting how to improve the results in § 4 and Prof. F. Gherardelli for reading a preliminary version of this work.

1. - Terminology and basic properties of p-ample and cohomologically p-ample bundles.

Let X be a smooth projective scheme over an algebraically closed field k of positive characteristic p.

Let $X' = X \times_{\operatorname{Spec}(k)} \operatorname{Spec}(k)$ where k is acted on by itself by the p-th power map. In others words, X' is the scheme (X, \mathcal{O}_X) but the k-algebra structure of $\mathcal{O}_{X'}$ is given by multiplication with the p-th roots of the elements of k.

Let $F: X \to X'$ be the k-linear Frobenius, i.e. F is the identity map on the underlying topological space of X and the p-th power map on the structure sheaf.

DEFINITION 1. – Let E be a vector bundle on X. We define $E^{(p)}$ to be the vector bundle F^*E' , E' being the vector bundle on X' obtained from E by change of base. We will denote $E^{(p^n)}$ the bundle obtained applying this operation n times, i.e. $E^{(p^n)} = (E^{(p^{n-1})})^{(p)}$.

DEFINITION 2 (cfr. [7]). – A vector bundle E on X is said to be p-ample if, given any coherent sheaf \mathcal{F} on X, there exists an integer N such that:

 $E^{(p^n)} \otimes \mathcal{F}$ is generated by global sections $\forall n \geq N$.

DEFINITION 3 (cfr. [8]). – A vector bundle E on X is said to be cohomologically p-ample if, given any coherent sheaf \mathcal{F} on X, there exists an integer N such that:

$$H^i(X, E^{(p^n)} \otimes \mathcal{F}) = 0 \quad \forall i > 0 \ \forall n \ge N.$$

REMARKS. – 1) The definition of the operation $E \to E^{(p)}$ given here agrees with the one given in the introduction.

- 2) If rank E = 1, $E^{(p^n)} = E^{\otimes p^n}$, hence E is ample $\Leftrightarrow E$ is p-ample $\Leftrightarrow E$ is cohomologically p-ample.
- 3) The functor:

$$(\cdot)^{(p^n)}$$
: {Vector bundles on X } \rightarrow {Vector bundles on X }

is, under our assumptions, exact.

Thus extensions of ample line bundles provide examples of cohomologically p-ample bundles.

4) If E is p-ample, $E^{(p^n)}$ is, for $n \gg 0$, a quotient of a direct sum of ample line bundles. Again by exactness it follows that for any coherent sheaf \mathcal{F}

$$H^d(X, E^{(p^n)} \otimes \mathcal{F}) = 0$$
 for $n \gg 0$, $d = \text{dimension of } X$.

5) In general

E is cohomologically p-ample $\Rightarrow E$ is p-ample $\Rightarrow E$ is ample

but the reverse implications are false.

- 6) If $\dim X = 1$ ampleness, p-ampleness and cohomological p-ampleness coincide.
- 7) If $\dim X = 2$ and rank E = 2, it is quite easy to see, using Riemann Roch theorem, that

E is cohomologically p-ample
$$\Leftrightarrow c_1^2(E) - 2c_2(E) > 0$$

while this is not, in general, a positive polynomial for ample vector bundles (cfr. Fulton [5, Chap. 12]).

8) One can give a definition of cohomological k-p-ampleness as follows (cfr. [12]):

DEFINITION 3'. – A vector bundle E on X is said to be cohomologically k-p-ample if, given any coherent sheaf \mathcal{F} on X, there exists an integer N such that:

$$H^i(X, E^{(p^n)} \otimes \mathcal{F}) = 0 \quad \forall i > k, \quad \forall n \ge N.$$

In the sequel of this paper we will prove, or rather observe, that cohomologically p-ample bundles have very strong vanishing properties on schemes which can be lifted to smooth schemes over $W_2(k)$.

Examples of such liftable schemes are reductions at a generic prime p of smooth schemes over a field of characteristic 0.

2. - A strong vanishing theorem for cohomologically p-ample bundles.

Recall that, given a perfect field k of characteristic p, $W_2(k)$ is the unique, up to isomorphism, ring which is flat over $\mathbf{Z}/p^2\mathbf{Z}$ and such that $W_2(k)/pW_2(k)$ is isomorphic to k.

In their beautiful paper ([4]) Deligne and Illusie prove the degeneration of the Hodge to de Rham spectral sequence at E_1 for schemes (whose dimension is smaller then the characteristic) liftable over $W_2(k)$.

This enables them, among other things, to give an algebraic proof of the Kodaira-Akizuki-Nakano vanishing theorem. We will now recall some of their results and observe that the same arguments give a strong vanishing theorem for cohomologically *p*-ample bundles:

Theorem ([4, p. 250]). – If X is a smooth proper scheme over a perfect field k of characteristic p, to every smooth scheme

$$\tilde{X} \to \operatorname{Spec}(W_2(k))$$
,

such that

$$\tilde{X} \times_{\operatorname{Spec}(W_2(k))} \operatorname{Spec}(k) \simeq X$$
,

there corresponds an isomorphism in the derived category D(X') of coherent sheaves on X',

$$\Phi_{\tilde{X}} \colon \bigoplus_{i < p} \Omega^i_{X'/k}[-i] \to \tau_{< p} F_* \Omega^{\bullet}_{X/k},$$

where

- $\Omega_{X'/k}^i = \Lambda^i \Omega_{X'/k}^1$ is the sheaf of differential forms on X', of degree i;
- $F_* \Omega_{X/k}^{\bullet}$ is the direct image by Frobenius of the de Rham complex $(\Omega_{X/k}^{\bullet}, d)$ of X; $F_* \Omega_{X/k}^{\bullet}$ is a complex of $\mathcal{O}_{X'}$ -modules, i.e. d is $\mathcal{O}_{X'}$ -linear, since $d(f^p \omega) = f^p d\omega$;
 - $\tau_{< p}$ indicates truncation of a complex at p, i.e.

$$\tau_{<\,p}F_*\Omega_{X/k}^{ullet} =$$

$$=0\rightarrow F_*\mathcal{O}_{X/k}\rightarrow F_*\Omega^1_{X/k}\rightarrow\ldots\rightarrow F_*\Omega^{p-2}_{X/k}\rightarrow\operatorname{Ker}\left\{d\colon F_*\Omega^{p-1}_{X/k}\rightarrow F_*\Omega^p_{X/k}\right\}\rightarrow 0\;;$$

- [- i] denotes the *i*-th shift of a complex.

Isomorphism in the derived category just means that $\Phi_{\bar{X}}$ is not a «real» morphism of complexes, but there exists a third complex of sheaves on X', K^{\bullet} , and quasi-isomorphisms Ψ and Ξ :

$$\bigoplus_{i < p} \varOmega^i_{X'/k}[-i] \xrightarrow{\Psi} K^{\bullet} \xleftarrow{\mathcal{Z}} \tau_{< p} F_* \varOmega^{\bullet}_{X/k}.$$

In this case K^{\bullet} is the single complex of the sheafified Čech double complex associated to an affine covering. (For basic facts about derived categories, cfr. GRIVEL [6] and the very clear short introduction by BOREL [3, pp. 97-112]).

Let \tilde{X} be a lifting of X to $W_2(k)$; it results from well known examples of Igusa, Mumford, Serre that \tilde{X} may not exist.

In the (rare) case that the Frobenius morphism $F: X \to X'$ lifts to a morphism

$$\widetilde{F}: \widetilde{X} \to \widetilde{X}'$$

 (\tilde{X}') is deduced from \tilde{X} in much the same way as X' is deduced from X: by functoriality $W_2(k)$ inherits the Frobenius morphism of k) the results can be considerably sharpened. In fact in this case the arrow in the derived category is induced by a real morphism of complexes which is constructed as follows (this goes back to MAZUR [9]):

For simplicity assume that X is defined over F_p .

Let $\{\operatorname{Spec}(\widetilde{A}_{\alpha})\}\$ be an affine covering of \widetilde{X} : \widetilde{A}_{α} are $\mathbb{Z}/p^2\mathbb{Z}$ -algebras.

Let A_{α} be their reductions mod. $p: \{ \operatorname{Spec}(A_{\alpha}) \}$ is an affine covering of X.

 \tilde{F} is then given by

$$\widetilde{F}_{\alpha}(s) = s^p + pu(s).$$

Where u(s) is a well defined element in A_{α} .

Denote

$$\partial s = s^{p-1} ds + du(\tilde{s}), \quad s \in A_{\alpha},$$

where \tilde{s} is a lifting of s to \tilde{A}_{α} and $\delta s \in \Omega^1_{A_{\alpha}}$ is independent of the choice of \tilde{s} . Since $\delta(st) = s^p \delta t + t^p \delta s$ and $d(\delta s) = 0$ the map Φ sending

 $s_0 ds_1 \wedge \ldots \wedge ds_k \rightarrow s_0^p \delta s_1 \wedge \ldots \wedge \delta s_k = s_0^p s_1^{p-1} \ldots s_k^{p-1} ds_1 \wedge \ldots \wedge ds_k + (\text{exact form}),$

defines a quasi-isomorphism

$$\Phi_{\bar{X}} : \bigoplus_{i=0}^d \Omega^i_{X'/k}[-i] \to F_* \Omega^{ullet}_{X/k}.$$

In this case no truncation is required.

REMARK. – In general the obstruction to lift F to a morphism on \tilde{X} is a class in $H^1(H', \Theta_{X'/k} \otimes F_X \mathcal{O}_X)$, $\Theta_{X'/k}$ being the tangent sheaf of X'.

THEOREM. – Let X be a smooth projective scheme over k liftable over $W_2(k)$. Assume dim X < p, and let E be a cohomologically p-ample bundle. Then

$$H^i(X, \Omega^j_{X/k} \otimes E) = 0$$
 for $i + j > \dim X$.

PROOF. - We repeat the argument given by DELIGNE and ILLUSIE for a line bundle (cfr. [4, p. 258]). We prove that, for any vector bundle G,

$$H^{i}(X,\Omega^{j}_{X/k}\otimes G^{(p)})=0,$$

for
$$i+j > \dim X$$
 implies $H^i(X, \Omega^j_{X/k} \otimes G) = 0$, for $i+j > \dim X$

and conclude by descending induction on the Frobenius operation, and the assumption

$$H^{i}(X, \Omega^{j}_{X/k} \otimes E^{(p^{n})}) = 0$$
, for $n > 0$ and $i > 0$.

The projection formula gives

$$0 = H^{i}(X, \Omega_{X/k}^{j} \otimes G^{(p)}) = H^{i}(X', F_{*}\Omega_{X/k}^{j} \otimes G'), \quad \text{for } i + j > \dim X$$

(recall that the Frobenius morphism is affine).

 $(F_*\Omega_{X/k}^{\bullet}\otimes G',\,d\otimes 1)$ is an $\mathcal{O}_{X'}$ -linear complex of sheaves and $H^i(X',\,F_*\Omega_{X/k}^j\otimes G')$ is the E_1^{ji} term of a hypercohomology spectral sequence abutting to

$$\boldsymbol{H}^{i+j}(X',\,F_*\Omega^{\bullet}_{X/k}\otimes G')=\boldsymbol{H}^{i+j}(X',\,\oplus\Omega^l_{X'/k}[-l]\otimes G')=\bigoplus_l H^{i+j-l}(X',\,\Omega^l_{X'/k}\otimes G')\,,$$

by the theorem of Deligne and Illusie.

So $H^i(X', \Omega^j_{X'/k} \otimes G') = 0$ for $i + j > \dim X$ and $H^i(X, \Omega^j_{X/k} \otimes G) = 0$ for $i + j > \dim X$ by base change.

Remarks. - 1) The same argument gives the following:

THEOREM. – Let X be a smooth projective scheme over k liftable over $W_2(k)$. Assume dim X < p, and let E be a cohomologically k-p-ample bundle. Then

$$H^i(X,\,\Omega^j_{X/k}\otimes E)=0\,,\quad \ for\ i+j>\dim X+k\,.$$

2) The Kodaira-Akizuki-Nakano vanishing theorem gives

$$H^i(X,\,\Omega^j_{X/k}\otimes E)=0\,,\qquad \text{for }\,i+j\geqslant \dim X+\operatorname{rank} E\,.$$

Thus cohomologically p-ample bundles have much stronger vanishing properties.

Usually vanishing properties of bundles are reflected in «topological restrictions» of the zero-loci of their sections; however we can prove a result of this kind only in the case that rank E=2.

The reason is that it is unclear, at least to the author, how cohomological *p*-ampleness behaves with respect to linear algebra operations, in particular to exterior powers.

THEOREM. – Let X be a smooth projective scheme over k liftable over $W_2(k)$. Assume dim X < p, and let E be a cohomologically p-ample bundle of rank 2. Let s be a section of E whose zero-locus is a smooth irreducible codimension 2 subscheme Y of X and assume that also Y is liftable to a scheme over $\operatorname{Spec}(W_2(k))$.

Then the restriction maps

$$H_{DR}^n(X/k) \rightarrow H_{DR}^n(Y/k)$$
,

are isomorphisms if $n < \dim Y$ and injective if $n = \dim Y$.

(Recall that $H^n_{DR}(X/k)$ is the n-th hypercohomology group of the k-linear de Rham complex $(\Omega^{\bullet}_{X/k}, d)$.)

Proof. – Note first that restriction of a cohomologically p-ample vector bundle to a subscheme is still cohomologically p-ample.

 $\Lambda^2 E = \det E$ is an ample line bundle (a weak Lefschetz theorem without the assumption on the codimension would be proved if one knew that E cohomologically p-ample $\Rightarrow \Lambda^i E$ cohomologically p-ample $\forall i$).

Consider now the Koszul complex of Y tensorized by $\Omega^i_{X/k}$:

$$0 \to \Lambda^2 E^{\vee} \otimes \Omega^i_{X/k} \to E^{\vee} \otimes \Omega^i_{X/k} \to \Omega^i_{X/k} \to \Omega^i_{X/k+Y} \to 0$$

to conclude, applying the vanishing theorem just proved and Serre duality, that

$$H^k(X, \Omega^i_{X/k}) \to H^k(Y, \Omega^i_{X/k|Y}),$$

is an isomorphism if $i + k < \dim Y$ and injective if $i + k = \dim Y$.

Consider now the adjunction exact sequence

$$0 \to E_{|Y}^{\vee} \to \Omega^1_{X/k|Y} \to \Omega^1_{Y/k} \to 0$$

and its consequences

$$0 \to F_i \to \Omega^i_{X/k|Y} \to \Omega^i_{Y/k} \to 0$$

$$0 \to \Omega_{Y/k}^{i-2} \otimes \Lambda^2 E_{|Y}^{\vee} \to F_i \to \Omega_{Y/k}^{i-1} \otimes E_{|Y}^{\vee} \to 0$$
.

By induction, and using the vanishing theorem for $E_{|Y}$ and $\Lambda^2 E_{|Y}$, we get

$$H^k(Y,\,\Omega^i_{X/k|Y}) \to H^k(Y,\,\Omega^i_{Y/k})$$

is an isomorphism if $i + k < \dim Y$ and injective if $i + k = \dim Y$.

Thus, combining the two statements

$$H^k(X, \Omega^i_{X/k}) \to H^k(Y, \Omega^i_{Y/k}),$$

is an isomorphism if $i + k < \dim Y$ and injective if $i + k = \dim Y$.

Using the degeneration at E_1 of the Hodge to de Rham spectral sequences for X and Y, which is another consequence of the theorem of Deligne and Illusie,

$$H_{DR}^n(X/k) = \bigoplus_{i+j=n} H^i(X, \Omega_{X/k}^j),$$

$$H_{DR}^n(Y/k) = \bigoplus_{i+j=n} H^i(Y, \Omega_{Y/k}^j),$$

we get the result.

REMARKS. - 1) Compare this result with the Lefschetz theorem for zero-loci of sections of an ample vector bundle (cfr. for instance [1, pp. 306-307]).

2) The topological restrictions just found are the same verified by a codimension 2 complete intersection in X.

3. - Case that the Frobenius morphism lifts.

Suppose now that the Frobenius morphism F extends to \tilde{F} : $\tilde{X} \to \tilde{X}$. Then one has the quasi-isomorphism

$$\Phi_{\bar{X}}: \bigoplus_{i=0}^d \Omega^i_{X'/k}[-i] \to F_* \Omega^{\bullet}_{X/k},$$

constructed in § 2.

Consider the following diagram:

The maps $\Phi_{\tilde{X}} \otimes 1$ are induced by the morphism $\Phi_{\tilde{X}}$.

The pairing \cup is given by cup product and is, by the Serre duality theorem, a perfect pairing.

The other horizontal pairing $\widetilde{\cup}$ is also a perfect pairing: in fact $F_*\Omega^{d-j}_{X/k}$ is dual to $F_*\Omega^j_{X/k}$ with values in $\Omega^d_{X'/k}$ and the pairing

$$F_* \Omega_{X/k}^{d-j} \times F_* \Omega_{X/k}^j \rightarrow \Omega_{X'/k}^d$$

is given by

$$F_* \Omega_{X/k}^{d-j} imes F_* \Omega_{X/k}^j \xrightarrow{\Lambda} F_* \Omega_{X/k}^d \xrightarrow{p} rac{F_* \Omega_{X/k}^d}{dF_* \Omega_{X/k}^{d-1}} \xrightarrow{C} \Omega_{X'/k}^d,$$

where

 \wedge is the wedge product,

p is the canonical projection,

C is the Cartier isomorphism.

Let's quickly recall the definition of this latter:

Let $\mathcal{H}^i F_* \Omega^{\bullet}_{X/k}$ denote the cohomology sheaves of the complex $(F_* \Omega^{\bullet}_{X/k}, d)$. Observe that cup product makes $\bigoplus_{i=0}^{d} \mathcal{H}^i F_* \Omega^{\bullet}_{X/k}$ into an $\mathcal{O}_{X'}$ -graded algebra: then C is the unique morphism of $\mathcal{O}_{X'}$ -graded algebras

$$C: \bigoplus_{i=0}^{d} \mathcal{K}^{i} F_{*} \Omega_{X/k}^{\bullet} \to \bigoplus_{i=0}^{d} \Omega_{X'/k}^{i}$$

(i.e. $C(\omega_1 \wedge \omega_2) = C(\omega_1) \wedge C(\omega_2)$ and $C(f^p \omega) = fC(\omega)$, such that $C(s^{p-1}ds) = ds$.

It turns out that C is an isomorphism as one can easily check in the case \mathcal{O}_X is a polynomial ring, to which one is reduced by étale localization.

One can proceed similarly to prove that

$$F_* \Omega_{X/k}^{d-j} \times F_* \Omega_{X/k}^j \rightarrow \Omega_{X'/k}^d$$
,

is a perfect pairing.

Using the explicit description of $\Phi_{\bar{X}}$ given in § 2 and these properties of the Cartier isomorphism it is easy to check commutativity of the diagram.

From this we easily conclude:

Proposition. – If the Frobenius morphism extends to some lifting \tilde{X} of X, for any vector bundle E on X

$$\dim_k H^i(X, \Omega^j_{X/k} \otimes E) \leq \dim_k H^i(X, \Omega^j_{X/k} \otimes E^{(p)}).$$

PROOF. - By base change and Leray spectral sequence it is enough to prove that the maps

$$\Phi_{\vec{X}} \otimes 1$$
: $H^i(X', \Omega^j_{X'/k} \otimes E') \to H^i(X', F_* \Omega^j_{X/k} \otimes E')$,

are injective for all i and j.

Suppose

$$a \in H^i(X', \Omega^j_{X'/k} \otimes E'), \quad a \neq 0, \quad \Phi_{\tilde{X}} \otimes 1(a) = 0,$$

since the pairing \cup is perfect, there exists an element $\widetilde{a} \in H^{d-i}(X', \Omega_{X'/k}^{d-j} \otimes (E')^{\vee})$ such that $a \cup \widetilde{a} \neq 0$.

But this contradicts $\Phi_{\tilde{X}} \otimes 1(a) \stackrel{\sim}{\cup} \Phi_{\tilde{X}} \otimes 1(\tilde{a}) = 0$.

Thus, if Frobenius lifts and E is a p-ample vector bundle,

$$H^d(X, \Omega^j_{X/k} \otimes E) = 0, \quad d = \dim X, \quad \forall j,$$

by the Remark 3 of § 1.

If E is a cohomologically p-ample vector bundle we get the very strong:

$$H^{i}(X, \Omega^{j}_{X/k} \otimes E) = 0, \quad \forall i > 0, \quad \forall j$$

and, more generally, if E is cohomologically k-p-ample,

$$H^{i}(X, \Omega^{j}_{X/k} \otimes E) = 0, \quad \forall i > k, \quad \forall j.$$

COROLLARY. – No projective smooth scheme of dimension greater than 1, liftable over $W_2(k)$, has cohomologically p-ample cotangent bundle.

PROOF. – Suppose X satisfies the hypothesis and $\Omega^1_{X/k}$ is cohomologically p-ample:

$$\dim H^{1}(X', \Theta_{X'/k} \otimes F_{*} \mathcal{O}_{X}) = \dim H^{1}(X, \Theta_{X/k}^{(p)}) = \dim H^{d-1}(X, (\Omega_{X/k}^{1})^{(p)} \otimes \Omega_{X/k}^{d}) = 0$$

by the vanishing theorem for cohomologically p-ample bundles in § 2.

Thus there is no obstruction to lift Frobenius.

But $\Omega^d_{X/k} = \Lambda^d \Omega^1_{X/k}$ is ample and $\dim H^d(X, (\Omega^d_{X/k})^{(p)}) = 0$ for $n \gg 0$; $\dim H^d(X, \Omega^d_{X/k}) = 1$ because X is complete and we get a contradiction with the proposition just proved.

Remark. – One can observe that a projective scheme cannot have cohomologically p-ample tangent bundle as well, using Mori's solution to Hartshorne conjecture ([10]).

A very similar argument gives the following:

COROLLARY. – Suppose that X is projective, no multiple of the canonical bundle $K_X = \Omega^d_{X/k}$ is trivial and there is a non zero plurigenus, i.e. $H^0(X, K_X^{\otimes m}) \neq 0$ for some m. Then the Frobenius morphism cannot be extended to any lifting of X to $W_2(k)$.

PROOF. - Observe first that $H^0(X, K_X^{\otimes -n}) = 0 \ \forall n$.

In fact if $s \in H^0(X, K_X^{\otimes -n})$ and $t \in H^0(X, K_X^{\otimes m})$, $s^m t^n \in H^0(X, \mathcal{O}_X)$ is a non zero, and thus never vanishing, section. This implies that s and t don't vanish at any point, and give trivialization of $K_X^{\otimes -n}$ and $K_X^{\otimes m}$ respectively, against the hypothesis.

If Frobenius lifted we would have

$$1 = \dim H^d(X, K_{X/k}) \le \dim H^d(X, K_X^{\otimes p}) = \dim H^d(X, K_X^{\otimes 1-p}) = 0.$$

So, if k(X) denotes the Kodaira dimension of X, and the Frobenius morphism lifts, $k(X) = -\infty$ or k(X) = 0.

Actually, the few examples known to the author of schemes for which Frobenius lifts are rational.

Such are, for instance, besides the obvious $P_k^{d_1} \times P_k^{d_2} \times ... \times P_k^{d_r}$, the Hirzebruch surfaces Σ_n , defined in $P_k^2 \times P_k^1$ with bihomogeneous coordinates $(X_0, X_1, X_2)(Y_0, Y_1)$ by the equation $X_1 Y_0^n - X_2 Y_1^n = 0$.

In the case of surfaces the corollary rules out the possibility that Frobenius can be lifted if the surface is of general type or elliptic.

4. - An example: cohomologically p-ample vector bundles on P_F^d .

Note. – In this section we will purposely forget to indicate changes of base to keep notation simple.

Of course this is one of the few cases in which the Frobenius morphism lifts:

Furthermore, $F_* \mathcal{O}_{P^d}$ can be computed directly:

$$F_* \mathcal{O}_{P^d} = \mathcal{O}_{P^d} \oplus \mathcal{O}_{P^d} (-1)^{\oplus \phi_1(p, d)} \oplus \ldots \oplus \mathcal{O}_{P^d} (-d)^{\oplus \phi_d(p, d)},$$

where $\phi_1(p, d), \ldots, \phi_d(p, d)$ are numerical functions which we are not interested in. Thus

$$H^{i}(X, E^{(p)}) = H^{i}(X, E) \oplus H^{i}(X, E(-1))^{\oplus \phi_{i}(p, d)} \oplus \ldots \oplus H^{i}(X, E(-d))^{\oplus \phi_{d}(p, d)}.$$

Therefore if E is cohomologically p-ample

$$H^i(X, E(-k)) = 0 \quad \forall i \ge 0, \quad \forall k \le d.$$

Example: $-\theta_{pd}(1)$ is cohomologically p-ample: just use the sequence

$$0 \to \mathcal{O}_{P^d}(1) \to \mathcal{O}_{P^d}(2)^{\oplus d+1} \to \mathcal{O}_{P^d}(1) \to 0$$

and exactness of $(\cdot)^{(p^n)}$.

To verify cohomological p-ampleness it is enough to prove that

$$H^{i}(\mathbf{P}^{d}, (\Theta_{P^{d}}(1))^{(p^{n})} \otimes \mathcal{O}_{P^{d}}(-k)) = 0, \quad \forall i \geq 0, \quad \forall k, \quad \forall n \gg 0,$$

since any sheaf can be resolved by line bundles. Thus it is enough to take $p^n \ge k$, and the exact sequence

$$0 \to \mathcal{O}_{P^d}(p^n - k) \to \mathcal{O}_{P^d}(2p^n - k)^{\oplus d+1} \to (\mathcal{O}_{P^d}(1))^{(p^n)} \otimes \mathcal{O}_{P^d}(-k) \to 0.$$

gives the vanishing of the higher cohomology groups.

REMARK. – If E is cohomologically p-ample $H^i(P^d, \Omega^j_{P^d/k} \otimes E) = 0 \ \forall i > 0, \ \forall j$ so that the dimension of the only nonzero group $H^0(P^d, \Omega^j_{P^d/k} \otimes E)$ can be computed by the Riemann Roch formula:

$$H^0(\mathbf{P}^d, \Omega^j_{\mathbf{P}^d/k} \otimes E) = ch(E \otimes \Omega^j_{\mathbf{P}^d/k}) Td(\Theta_{\mathbf{P}^d}).$$

Recall now the following theorem of Beilinson ([2]):

100

For any coherent sheaf \mathcal{F} on \mathbf{P}^d there exists a complex \mathbf{F}^{\bullet} of locally free sheaves on \mathbf{P}^d such that:

a)
$$\mathcal{H}^k(F^{\bullet}) = \begin{cases} \mathcal{F} & \text{if } k = 0, \\ 0 & \text{if } k \neq 0, \end{cases}$$

$$b) \ F^k = \bigoplus_{i+j=k} H^i(\boldsymbol{P}^d, \ \mathcal{F} \otimes \Omega_{\boldsymbol{P}^d}^{-j}(-j)) \otimes \mathcal{O}_{\boldsymbol{P}^d}(j) \, .$$

Using this theorem we get the following:

PROPOSITION. - Let E be a vector bundle on \mathbf{P}^d such that

$$H^{i}(\mathbf{P}^{d}, E(k)) = 0$$
 for $k \ge -d - 1$ and $i > 0$

and

$$H^i(\mathbf{P}^d, E \otimes \Omega^j_{\mathbf{P}^d}) = 0$$
 for $i > 0$ and any j ,

then E has a resolution

$$0 \to \mathcal{O}_{P^d}^{\oplus n_{d,0}} \to \bigoplus_{i=1}^d \mathcal{O}_{P^d}^{\oplus n_{d-1,i}}(i) \to \ldots \to \bigoplus_{i=1}^d \mathcal{O}_{P^d}^{\oplus n_{0,i}}(i) \to E \to 0$$

where

$$n_{i,j} = \dim H^{d-i-j}(\mathbf{P}^d, E \otimes \Omega_{\mathbf{P}^d}^{d-j}(-j))$$

in particular E is cohomologically p-ample.

PROOF. - Let's first prove the following: Under our assumptions

$$H^i(\mathbf{P}^d, E \otimes \Omega^j_{\mathbb{P}^d}(k)) = 0$$
 for $i \ge j+1$ and $k \ge -d+j-1$.

Consider the so called Euler sequences

$$0 \to \Omega^j_{P^d} \to \Lambda^j V \otimes \mathcal{O}_{P^d}(-j) \to \Omega^{j-1}_{P^d} \to 0 \quad \text{ for } j \geqslant 1, \quad V = H^0(\boldsymbol{P}^d, \mathcal{O}_{P^d}(1))$$

and tensor with E(k).

The long exact cohomology sequence of the first Euler sequence

$$0 \to \Omega^1_{Pd} \otimes E(k) \to E(k-1) \otimes V \to E(k) \to 0$$

gives

$$\ldots \to H^{i-1}(\boldsymbol{P}^d,\,E(k)) \to H^i(\boldsymbol{P}^d,\,\Omega^1_{P^d}\otimes E(k)) \to H^i(\boldsymbol{P}^d,\,E(k-1))\otimes V \to \ldots$$

and our assumptions imply

$$H^i(\mathbf{P}^d, \Omega^1_{\mathbf{P}^d} \otimes E(k)) = 0$$
 for $i \ge 2, k \ge -d$.

Assume now that

$$H^{i}(\mathbf{P}^{d}, \Omega_{\mathbf{P}^{d}}^{j-1} \otimes E(k)) = 0$$
 for $i \ge j$, $k \ge -d+j-2$

and take the long exact cohomology sequence associated to

$$0 \to \Omega^{j}_{P^d} \otimes E(k) \to \Lambda^j V \otimes E(k-j) \to \Omega^{j-1}_{P^d} \otimes E(k) \to 0$$

to conclude the induction.

Thus, in particular,

$$H^i(\mathbf{P}^d, \Omega^j_{\mathbf{P}^d}(j) \otimes E(-d)) = 0$$
, for $i \ge j+1$

and the complex F^{\bullet} associated to E(-d) is zero in strictly positive degrees, that is F^{\bullet} gives a left resolution of E(-d).

We also have that the only piece in F^{\bullet} with $\mathcal{O}_{P^d}(-d)$ is in F^{-d} since

$$H^{i}(\mathbf{P}^{d}, \Omega_{\mathbf{P}^{d}}^{d}(d) \otimes E(-d)) = H^{i}(\mathbf{P}^{d}, \Omega_{\mathbf{P}^{d}}^{d} \otimes E) = 0, \quad \text{for } i > 0.$$

Thus $F^{\bullet}(d)$ is a resolution of E of the form

$$0 \to \mathcal{O}_{P^d}^{\oplus n_{d,0}} \to \bigoplus_{i=1}^d \mathcal{O}_{P^d}^{\oplus n_{d-1,i}}(i) \to \dots \to \bigoplus_{i=1}^d \mathcal{O}_{P^d}^{\oplus n_{0,i}}(i) \to E \to 0.$$

It is elementary to show that such E is cohomologically p-ample.

Since, on the other hand, cohomologically *p*-ample bundles satisfy the assumptions of the proposition, as observed at the beginning of this section, we have

COROLLARY. – A vector bundle E on \mathbf{P}^d is cohomologically p-ample if and only if

$$H^{i}(\mathbf{P}^{d}, E(k)) = 0$$
 for $i > 0, k \ge -d - 1$

and

$$H^i(\mathbf{P}^d, \Omega^{j_d} \otimes E) = 0$$
 for $i > 0$. $\forall i$.

REFERENCES

- [1] E. Arbarello M. Cornalba J. Harris Ph. Griffiths, Geometry of Algebraic Curves, Grundl. Math. Wiss., 267, Springer-Verlag (1984).
- [2] A. Beilinson, Coherent sheaves on P^n and a problem of linear algebra, Funct. Anal. Appl., 12 (1978), pp. 214-216.
- [3] A. Borel, Sheaf theoretic intersection cohomology, in Intersection Cohomology, PM 50, Birkhauser (1984).
- [4] P. DELIGNE L. ILLUSIE, Relèvements mod p² et décomposition du complexe de de Rham, Invent. Math., 89 (1987), pp. 247-270.

- [5] W. Fulton, Intersection Theory, Ergeb. Math., 2 Springer-Verlag (1984).
- [6] P. P. GRIVEL, Categories derivées et foncteurs derivées, in Algebraic D-modules, Persp. Math., 2, Academic Press (1986).
- [7] R. HARTSHORNE, Ample vector bundles, Publ. Math. IHES, 29 (1966), pp. 63-94.
- [8] S. Kleiman, Ample vector bundles on algebraic surfaces, P.A.M.S., 21, n. 3 (1969), pp. 673-676.
- [9] B. MAZUR, Frobenius and the Hodge filtration (estimates), Ann. Math., 98 (1973), pp. 58-95.
- [10] S. Mori, Projective manifolds with ample tangent bundle, Ann. Math., 110 (1979), pp. 593-606.
- [11] J. OESTERLÉ, Dégénérescence de la suite spectrale de Hodge vers de Rham, Sém. Bourbaki, 673
- [12] B. Shiffman A. J. Sommese, Vanishing theorems on complex manifolds, PM 56, Birkhauser (1985).