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Regularity of Minimizers of Non-Isotropic Integrals 
of the Calculus of Variations (*). 

TANG QI 

A b s t r a c t .  - The regularity of the minimizers of a special type of non-isotropic variational mini- 
mization problem is studied. The particularity of the potential of energy is that it has differ- 
ent growth rate with respect to different parts of the derivatives of the function. In particular, 
the model treated in this paper can be described as 

O(Du) = la:ul': + )a~u)~+ la:ul=+ tabu_ I ,. 

By using a result of P. MARCELLINI (cf. [4]) and perturbation method, it is proved that the 
minimizer of the Dirichlet boundary value problem is a function of Wl1'r =. This result can 
also be extended to Neumann boundary value problems. 

1. - I n t r o d u c t i o n .  

For certain reinforced material, strong anisotropic behavior is exhibited. For 
example, let D = Q • [0,L] be a cylinder in R 3 with Q a bounded open piecewise C 1 
subset of R 2. Suppose that t~ is occupied by a reinforced material. Let u be the dis- 
placement function in the axial direction of the cylinder. Neglect the other deforma- 
tion factors, the potential of energy ~ can be estimated as follows: 

(1) Cl( l~lUl  2 + la2ul 2 + [a~u] 2 + lasu_ I p - 1) ~< 

<~ ~(Du) <~ C2(lalul  2 + la~ul 2 + 1~3ul 2 + la3u_ I p + 1). 

For technical reasons, we assume in the following that 

(2) 3~ > 0, such that ~(Du) - ~(]O~ui 2 + 152ui 2 + lasui 2 + la~u_ I p) is convex, 

where a3u+ = max{asu, 0}, ~3u- = m a x { - a 3 u ,  0}, 2 < p < 6. The potential of en- 
ergy of this type says that the material is linear elastic with respect to extension in 
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the axial direction. Whereas for compression along the axial direction, when the de- 
formation is relatively (note that we already work in the linearized version) small, it 
behaves linearly elastic, but it becomes much harder to deform the body in this direc- 
tion to have a relatively bigger deformation due to the reinforcement of the material 
by added fibres. For the convenience of the later discussion, we make the following 
assumptions on q~: 

(3) ~ is C2, 

(4) c~ ]bl 2 <~ ~ij(a)bibj < c4(1 + la3_ [P-2)[b]2. 

Here ~.~j = ~i aj ~. More complicated examples arise from anelasticity problems where 
the plasticity criterion is described by 

z(x) e C a.e. 

with C a complicated unbounded convex set in ~ • ~ Rsym , z the Cauchy stress tensor. We 
do not study such problems here. 

The mathematical problem is then given as follows 

In { suitable boundary conditions} 
where A is the set of all kinematically admissible functions. To avoid the possibility 
that {u e A with suitable boundary conditions} is empty, we usually suppose that the 
boundary condition is good enough so that the admissible set contains at least some 
functions from W 1, p. We will also use frequently the statement that t~ is a bounded 
regular open subset where ,,regular, stands for ~,piecewise C1,. 

We are interested in studying the minimization problems with potential of energy 
satisfying (1)-(4). Under some further assumptions on the shape and regularity of 

t~, we give the existence, approximation and regularity of the solution. 

2. - Kinemat ica l ly  admiss ible  funct ion  set and existence.  

To deal with the existence result, the first important thing is to define a good 
kinematically admissible function set on which it is hopeful to prove that a solution 
exists. By (1), it is clear that the most natural choice is 

A(tg) = {u E Hl(t~), asu_ e LP(t])}. 

We claim the following result: 

PROPOSITION 2.1. - Let A(t~) be the set given above, ~ be a bounded regular open 
subset of R s, 2 < p < 6, we have 
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(i) A(D) is a subset o f  H i ( D )  and W 1' P (D) is a subset o f  A(D). 

(ii) A((2) is a convex cone but is not a l inear space. 

(iii) For any sequence {Un} cA(D) such that the set of  their ~,natural n o r m ,  is 
bounded, i.e., 

2 

a=1 

there exists a subsequence {u,~.} and a funct ion  u in A(t~) such that 

u~  converges weeakly to u in H 1((2). 

PROOF. - (i) and (ii) are obvious. (i/i) holds due to the lower semicontinuity of con- 
vex functionals. 

Now, we show the existence and some preliminary approximation results. 

PROPOSITION 2.2. - Let (2 be a regular open subset o f  R ~, u be a funct ion  in A((2), 
then there exists a sequence {u~} in C~ ((2) such that u~ ---) u in A(t~') for  any  (2' cctZ 
i.e., 

lu~ - utA(~.>-+ O as n--+ oo 

with 

]U  n - -  UlA(D,  ) = ]In n -- UlIL2(D,) "~ I1~1 (Us  -- U)I]L2(D, ) ~- 11~2(Un --  U)IIL~(t2, ) + 

Further, i f  u Ia~ = uo and Uo is the trace of  a W ~-' P function, then there exists a se- 
quence {Un} r C"  (~) such that u,--+ u in A((2). 

PROOF. - For  the fLrst conclusion, we notify that  any function u in A(D) is a func- 
tion in H 1(~). As D is a regular open subset  of R 3, we can extend u to a neighborhood 
of t~ as a H 1 function. We use the standard mollifying sequence restricted on (2: let 
~(x) be the standard mollifier, ~ (x) = n 3 ~(nx),  u~ = ~ ,  ~ I~ w i t h ~  an extension of u. 
Noting the facts that  

( f~  ~,.). <~ f+* ~ ,  

( f ,  ~,) - ~<f_, ~, ,  

and using Jensen's  Inequality, we have the following estimates 

- s u p  its(" + - B(o, 
{fyl ~ l/n} 

which converges to zero as n tends to infinity. 
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For the second conclusion, the extension of u can be made in W 1, p, therefore we 
can have the global convergence. 

THEOREM 2.3. - Let ~ be a function satisfying (1)-(4), Uo be the trace of a W 1, p (t~) 
function on a~ which is also noted as Uo. The problem 

P In f{ j~(Du(x) )dx:  u e A ,  ulo ~ =Uo} 

admits one and only one solution. 

PROOF. - By (4), ~ is a strictly convex function on R 3, therefore, the existence and 
uniqueness are straightforward. 

3. - Regular iza t ion  of  the  problem. 

MARCELLINI has studied (cs [4]) the regularity of minimizers for the following 
kind of potential of energy: 

) ) (5) C1 iZ= 1110iulIPL~P~- 1 <<. ~(Du) <<. C2 i 1 Ila~UlIPL~ + 1 . 

He used the finite difference method in the weak form of the Euler-Lagrange equa- 
tion. The difficulty for us to use a similar approach here is that the quantities a3u+ 
and a~u_ should satisfy different growth conditions to make ~(Du) integrable and 
therefore, should be in different function spaces. Consequently, we do not know if the 
weak form of Euler-Lagrange equation holds for appropriate truncation of u nor how 
to get the right convergence when the step length of the finit difference tends to zero. 
So we have to introduce a regularized version of the problem and prove suitable con- 
vergence to apply existing theory. In this section, we are going to regularize our 
problem to satisfy (5) depending on a small parameter s, and therefore, Marcellini's 
results can be applied. In the next section, we prove that when ~-~ 0, we can get 
necessary estimates to establish the result of regularity. 

We define the following sequence of problems: 

(6) Pc I n f f I ~ ( D u ( x ) ) d x : u E W l ' P ' u l a ~ = u ~  ) 

where ~ ( D u ) =  ~(Du)+ sla~u+ I p and we have the following results: 

PROPOSITION 3.1. - When Uo is the trace of a W 1. p function on the boundary, the 
solution u~ of Problem P~ belongs to Wl~o'c ~ (t)). 
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PROOF. - First, the kinematically admissible set is nonempty because u0 is a candi- 
date. Then the existence and uniqueness of a solution are straight forward by convex 
analysis (see also Theorem 2.3). As for the regularity result that u~ ~ wll~ ~ (~9), 
cf. [4]. 

Next, we want to prove the 

PROPOSITION 3.2. - Under all the previous assumptions on ~, and suppose that t9 
is star-shaped, bounded regular open subset of R 8. Let us be a solution of P~, then as 
tends to zero, there exists a subsequence still noted as {u~} which converges weakly to 
u in H I and 

(7)  l i m  I n f P ~  = InfP ,  
~-->0 

(8) ~-~ojlim f ~P(Du~) dx = ~ ~(Du) dx, 

(9) lira f s]33u~+ ]Pdx = O. 
~-->0 J 

~J 

Moreover, u is the solution of Problem P. 

It is easy to see that 

(10) InfP~/> InfP .  

Therefore, to give a full proof of (7), we need to prove the inverse inequality of (10). 
(8) and (9) would then follow easily. Before being able to do this, we have to establish 
an approximation result and it is here we need the assumption that t~ is of particular 
form--star-shaped. 

LEMMA 3.3. - Let t~ be a star-shaped, bounded regular open subset of R ~. Let u (u~ 
resp.) be a solution of Problem P (Problem P~ resp.). For any ~ > O, there exists a 
function ue (u~o. resp.) e WI'P(~) such that 

(11) 

(12) 

and 

(13) 

lU~--UIA(~) < ~ (lU~--U~[ < ~ resp.) 

u~ l a~ = Uo (u~ l a~ = Uo resp.) 

f ~ ( D u ~ ) d x < I n f P + ~ ( f ~ ( D u ~ . : ) d x < I n f P ~ + $ r e s p . ) .  

PROOF. - We only give the proof for the case of Problem P. The proof for the Prob- 
lem Pc is exactly the same. Also to simplify the discussion, we suppose that ~9 is star- 
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shaped with respect to the origin. Let  m be a positive integer, and v,~ = u0 + w~ (x) 
where 

= 

_m____t~ w h e n x e  m + l  ' 

elsewhere. 

Then it is clear that  wme H~ (t~) A A(t~). Let  ~,~ ~< (1/2) dist (R ~ - ~; (m/(m + 1) t~), 
be the standard mollifier, 

u ~ (x) = Uo (x) + w~* ~r.~ (x). 

I t  is easy to verify that  u m (x) e W 1' P, u "~ (x) la~ = uo. Further,  by Jensen's inequality, 
we have 

f ~(Du "~ (x)) dx = f cP(Duo + (Dw~) * ~r~ (x)) dx <~ 

<<. f f ~(Duo(x) + Dwm(x - y))~rm (y)dydx <~ Sup f ~(Duo(X) + Dw,~(x - y))dx. 

By the continuity of Lebesgue integrals, letting m--~ ~ ,  we have 

l i ra  I ~(Du.~)dx <~ I ~(Du)dx. 
Q 

As lira I ~(Dum) dx >I ~ r dx is clear, we have 

lim f ~(Du~)dx = I ~(Du)dx. 
~ - - - >  ac 

Using a similar argument 
that  

as in the proof of Proposition 2.2, we can conclude 

lim lure - UlA(~) = 0. 
m ---> ~ 

For  each ~ > 0, choose m sufficiently large so that  (11) and (13) are satisfied and let 
this u TM be u~, the lemma is proved. 

REMARK 3.4. - As a matter of fact, our approximation result holds when t~ satis- 
fies the following assumptions: a) there exists a sequence of open sets {t~} such that 
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~ , c r  t), ~t~, b) t~ is the image of t~ under a one-to-one mapping ~ =  
= (~1 (xl, x2), '~2 (xl, x2), ~3 (xl, x2, x~))~ C ~ (RS), with ~---) Id in C~ as ~---> O. 

Now we accomplish the proof of Proposition 3.2: by Lemma 3.3, for any ~ > 0, 
there exists a u~e WI'P(t~) which is P admissible and 

In fP  >i f #(Du~) dx - ~. 

As 

(14) I n f P ~  > f f f 

1> InfP~ - e I  lasu~+ IPdx - 8. 
t~ 

Take the limit s--) 0 in (14), as ~ is arbitrary, we get (7). 
Next, let u~ be a solution of P~, we know that {u~} is bounded in H l(t)). Therefore, 

there exists a subsequence still noted as u~ such that 

u~--~u in HI(~)  

and we have the following estimates 

lim InfP~ = l i o  ~ ~(Du~) + el~3u~+ rPdx >I lim f ~(Du~)dx >I ~ ~(Du)dx >t In fP .  
~ - ~ 0  ' c o O  

As lira InfP~ = InfP,  u must be a solution of P for it is obviously admissible. So (8) 
~--~0 

and (9) hold automatically. 

REMARK 3.6. - The proof of Proposition 3.2 is a use of F-convergence argument. 
We do not get into more details here about the F-convergence theory, interested read- 
ers may refer to [2],[5],[6] and many others that I can not give a full  liste 
here. 

In the following, we indicate that the Euler-Lagrange equation of our problem P 
can only be satisfied by using test functions in W 1, p. For general kinematically ad- 
missible functions, it is not obvious how to prove this. 

LEMMA 3.7. - Let ~P = ~(~) be a function defined on R ~ such that 

~($ )~<M(1+i=1  ~ [~il2+ I~s+[2+ [$s-lP) ' (15) for any ~ e R ~ 
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where M > 0 and p > 1. I f  ~ is convex, then the partial derivatives of fP satisfy 

(16) 1~3(~.)1~<C 1+  = I~jl2+l~sl 2 f o r a l l ~ e R  3 s.t. ~3>0,  

(2 
(17) [~P~($)]~<C 1 + 2  [~jlz+l~.~lp f o r a l l ~ e R  ~ s.t. ~3<0,  

2 1 

(18) I~e~(~)l<C1 -= ls.~ + 1 ~ +  +1~-I  p f o r a l l ~ e R  3 a n d i = l ,  2. 

The proof of this lemma is based on the standard convex analysis. Interested read- 
ers may refer to [4]. 

PROPOSITION 3.8.-  Let ~ be a convex function of class C ~ (R 3) satisfying (15) with 
2 < p < 6. Let u be a minimizer of Problem P. Then for any function J~ e W~' ~ we 
have 

3 

(19) I ~= ~':~ (Du) ~x dx = O. 
f~ 

P R O O F .  - Use the Lebesgue Dominated Convergence Theorem and the estimates 
obtained in Lemma 3.7 in the following expression when ~b ~ W~'P: 

(20) I ~(Du + tD~, - ~(Du) dx >>- 0 for any t > 0, 

t] 

we get 

3 

f ~__ ~ (Du)Cx~dx >10. 
i 1 

o 

As -~b also satisfies the same inequality, (19) follows naturally. 

We notice that in general, for perturbations like p = ~u with ~ e Co ~, ~(x) >i 0 and 
u admissible, if we use the Lebesgue Dominated Convergence Theorem, we could 
only conclude that 

I ~ (Du) '~x, dx >I 0 
~2 

but not (10) because - ~  is not admissible a priori. 
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4 .  - R e g u l a r i t y .  

We study the problem of regularity in this section. Our result is that  if u is a sol- 
ution of Problem P then it belongs to W!~o~ ~ (t~). One of the most direct approaches to 
prove this result is to use finite difference of solutions as test  function in the weak 
form of Euler-Lagrange equation. But unfortunately, in our context, it has not yet 
been proved that  the weak form of Euler-Lagrange equation holds with truncation of 
u as test  function. However, we can use the result of regularization developed in Sec- 
tion 3 and the existing result of Marcellini to prove such regularity in our case. 

PROPOSITION 4.1. - Let  u~ be a solution of  Problem P~, then u~ satisfies 

(21) 

1 

I I c dt IA~u~I2[IDvI 2 + ~.:~(Du~ + thAihDu~)~.~%]dx 

where ~ e C~ (t~), V(x)/> 0, 0 < h < dist (supp ~, ate), A~ is the fol lowing f in i te  differ- 
ence operator: 

u = u ( x  + te ) - u ( x )  (e )j = 

h 

c is a constant independent  of  h and ~. 

PROOF. - This can be derived by following the proof in [4] with the following re- 
mark: in deriving the left hand side of the inequality, we can neglect the penelization 
term because it is a convex functional, and therefore, the constant c can be chosen in- 
dependent of s. 

PROPOSITION 4.2. - For each ~ > O, we have the following inequality: 

<<. c IDvl2[laau~[ 2 + ID3u~_ lP + elD3u~ + IP]dx. 

(23) 

PROOF. - From (21), we have 

<<. c ~ IA~u~12 {IDvI 2 + [1 + I((1 - t)O3u~ + ta3u~(x + he3))_ I p-2 + 

+ ~ ] ((1 - t) D8 ur + tO8 u~ (x + he3)) + [P - 2]lD ~ 12 } dx .  
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As 

3~u~--->a~ur in L p, as h---~0, 

(1- t )asu~(x)+ta3u~(x+he3) -~3u~(x)  in L p, as h---~0, 

we can apply Fatou's Lemma on the left hand side of (23) to get (22). 

Let V(x)= l  in B~(xo)r162 V(x)=0 in t~-B~(Xo), BR(xo)cct~ and R > r ,  
[Dv(x) I ~< c/(R - r), we have 

(24) [Ii~u~l~dx]V~ < c__ I ~(=) (R r) ~ {la~u~l~+ I~u=-I'+~la~u~+l'}dx" 
B~ (x) 

LEMMA 4.3. - Let t~ be a star-shaped bounded regular open subset, i f  u is a sol- 
ution of P, then for any ~ e C~ (~), ~ >I 0 satisfying all the above requirements, we 
have 

(25) la3ul~dx < e (la~ul ~ + la~u_ IP)dx. 

PROOF. - By hypothesis (2), we have 

lira I la~u~12 + la3u~- Ipdx >~ I I~ul~ + la~u_ I ~dx, 
e--->O 

lira [~(Du~) - ~(lasu~l 2 + la~u~_ IP)dx ~ I~(Du) - ~(la~ul ~ + la~u_ IP)dx. 
~ O J  

As lim f ~(Du~) dx = I ~(Du) dx, we have 
~ -~ 0~ Q 

(26) ~-~olim I(la~u~l ~ + lasu~_ IP)dx = f { l ~ u l  2 + lasu_lP}dx. 
Q D 

Using (9), we know that 

lira I~l~su~+ Ipdx = O. 
~ ---~ 0 

Q 

Finally, taking the limit s--. 0 in the two sides of (24), we get 

(27) [ ! I lasul6dx < c_ (la~ul 2 + I ~ - I P ) d  x. 
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THEOREM 4.4. - I f  U is a solution of P, t) is a star-shaped bounded regular open 
subset of R ~, then a3 u �9 L~oc (Q) for any 6 >1 q >I 2 and for any t~' cc D, we have 

~< dist(aQ, .c2') 2 . (Ic~aul2 + ]03u_ IP)dx. 
~? - X? 

PROOF. - For  any x �9 ~ ' ,  take R = dist (x, at~), r = R/2, choose a finite cover of ~ '  
of type B(x, R). On each ball, use (27). Add together,  it is then easy to see that  (28) 

holds. 

Till now, we showed that  if u is a solution of Problem P, then u �9 Hi(Q),  

03 u �9 L16oc. Therefore,  a3 u �9 L~c. I t  is now easy to follows Marcellini's argument  [4] to 

conclude the 

THEOREM 4.5. - I f  U is a solution of P, t) is a star-shaped bounded open regular 
subset of R ~, then u e W11o'c ~ (Q) and for every t~' cc t~, there is an increasing function 
r [0, ~ )  --~ [0, ~ )  such that 

(29) IDUlL~(~ ') ~ ~b(lal UlL~ + la2UlL~ + lasUlL ~ + 1~3 u -  ILP). 

The proof of this result  is left to interested readers.  

Acknowledgement. I would like to thank Professor  J. M. BALL for his hospitality 
during my visit to Heriot-Watt  University. This research was stimulated by discus- 
sion with BALL, TEMAM and in particular, Prof. P. MARCELLINI who visited Heriot- 

Watt  Univesity when I was there. 

R E F E R E N C E S  

[1] J. M. BALL - V. J. MIZEL, One- dimensional variational problems whose minimizers do not 
satisfy the Euler-Lagrange equations, Arch. Rat. Mech. Anal., 90 (4) (1985), pp. 325- 
388. 

[2] P. L. C)~RBONE - C. SBORDONE, Some properties of F-limits of integral functionals, Ann. 
Mat. Pura Appl., 121 (1979), pp. 1-60. 

[3] M. GIAQUINTA, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Sys- 
terns, Ann. Math. Studies, 105, Princeton University Press (1983). 

[4] P. MARCELLINI, Regularity of minimizers of integral of the calculus of variations with non 
standard growth conditions, Arch. Rat. Mech. Anal., 105 (3) (1989), pp. 267-284. 

[5] P. MARCELLINI - C. SBORDONE, Homogenization of non-uniformly elliptic operators, Appli- 
cable Anal., 8 (1978), pp. 103-113. 

[6] F. MURAT, H-convergence, Seminaize d'Analyse Fonctionnelle et Numerique, Universit~ 
d'Alger (1977-1978). 


