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Surfaces of  a Euclidean Space 
with Helical or Planar Geodesics Through a Point(*).  

YOUNG HO KIM 

O. - I n t r o d u c t i o n .  

Helical submanifolds were first introduced in [Be.A]. Helical submanifolds in a 
Euclidean space or a unit sphere have been studied by K. SAKAMOT0 [S-l], [S-5], 
[S-6], since 1982. He proved that such submanifolds are either Blaschke manifolds or 
Euclidean planes. 

On the other hand, in 1981, B.-Y. CHEN and P. VERHEYEN [Ch.B-V-1], [Ch.B-V-2], 
introduced the notion of submanifolds with geodesic normal sections and classified sur- 
faces with geodesic normal sections in a Euclidean space. They also proved that helical 
submanifolds have geodesic normal sections. Later, P. VERHEYEN IV], proved that a 
submanifold M in a Euclidean space E m of dimension m with geodesic normal sections 
are helical. So the concept of submanifolds with geodesic normal sections coincides 
with the concept of helical submanifold if the ambient space is a Euclidean space. 

In [Ho.S], S. L. HONG introduced the notion of planar geodesic immersions. Such 
immersions were later classified by J. A. LITTLE [L], and K. SAKAMOTO [S-l], inde- 
pendently, who proved that M ~ is a compact symmetric space of rank one and the sec- 
ond fundamental form is parallel. The Veronese surface can be considered as one of 
the best examples determined by the planar geodesic immersion if the ambient space 
is a 5-dimensional Euclidean space E 5. 

However, there has been no research on a submanifold M in a Euclidean space E m 
with the property that for a fixed point p in M every geodesic passing through p is a 
helix of the same curvatures or every geodesic through p is planar or a normal section 
at the point p. From this point of view, we are going to study surfaces in a Euclidean 
space which have such properties and to characterize such surfaces. 

In w 1, we introduce some fundamental definitions and concepts which are the 
necessary background for the study throughout this paper. 

In w 2, we study compact connected surfaces in a Euclidean space with helical 
geodesics through a point. If the ambient space is a 3-dimensional Euclidean space E 3 
then such surfaces are characterized as standard spheres. If the ambient manifold is a 
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4-dimensional Euclidean space E 4, then we obtain that geodesics through the point 
must be of rank 2, i.e., they are planar curves, and surfaces are characterized as stan- 
dard spheres which lie in E 3 or pointed Blaschke surfaces which fully lie in E 4 . If the 
ambient manifold is a 5-dimensional Euclidean space E 5, then geodesics of the given 
surface through the point may be of rank 4. In this case, using some fondamental 
equations obtained from the helices through the point, we set up a system of ordinary 
differential equations. By solving this system of differential equations, we have ex- 
amples of pointed Blaschke surfaces which are diffeomorphic to a real projective 
space and lies fully in E 5 . So we can characterize such surfaces as standard spheres 
which lie in E 3 or pointed Blaschke surfaces which lie fully in E 4 o r  E 5 . By means of 
this characterization, we have a new characterization of the Veronese surface, name- 
ly, a Veronese surface is characterized as a compact connected surface with constant 
Gaussian curvature and a nonumbilical point through which every geodesic is a 
helix. 

In w 3, we study a surface M in a three-dimensional Euclidean space E 3 with 
geodesic normal sections at a point p. By adopting geodesic polar coordinates about 
the base point p, geodesics are proved to depend only on the arc length and thus M is 
characterized as locally a surface of revolution around the point p. So, if M is complete 
and connected, then M is a surface of revolution if and only if there is a point p 
through which every geodesic is a normal section. 

In w 4, we study a surface M in a Euclidean space E m with planar geodesics 
through a point p. We prove that planar geodesics through a point p are normal sec- 
tions of M at p. We also prove that geodesics through p only depends on the arc length 
and thus Frenet curvatures are independent of the choice of the direction. So, we can 
precisely determine how the surface looks like in a neighborhood by means of the 
Frenet curvature of a fixed geodesic through p. We also observe that a surface in a 
Euclidean space E m with planar geodesic through p is possible to lie fully in a consid- 
erably higher dimensional Euclidean space E ~ r  m if p is an isolated flat point. 

This paper is taken a part of my doctoral dissertation at Michigan State Universi- 
ty. I wish to extend my deep appreciation to my thesis advisor Professor BANG-YEN 
C~EN for his guidance and constant encouragement in the preparation of this 
study. 

1. - S o m e  f u n d a m e n t a l  c o n c e p t s .  

Let x: M -~ M an isometric immersion of M into a Riemannian manifold/1~/. Let V 
and ~7 be the covariant differential operators of M and M respectively. Then the 
Gauss equation is given by 

(1.1) V x Y  = V x Y  + z(X, Y) 

for vector fields X and Y tangent to M, where z denotes the second fundamental form. 
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The Weingarten equation is given by 

(1.2) Vx~. = - A ~ X  + Dx ~, 

for a vector field ~ normal to M, where Ae denotes the Weingarten map associated 
with ~ and the normal connection D. A~ is related to ~ as (A~X, Y)  = (~(X, Y), $), where 
( , )  is the Riemannian metric tensor. We now assume the ambient manifold M is a. 
Euclidean space E m of dimension m. Let  R be the curvature tensor of M. Then the 
structure equations of Gauss and Codazzi are given by 

(1.3) (R(X, Y ) Z ,  W) = (~(X, W),  ~(Y, Z))  - (~(Y, W),  z(X, Z),  

(1.4) (V-xz)(Y, Z)  - (Vya)(X, Z )  = 0 

for all vector fields X, Y, Z, W tangent  to M, where Vx ~ is the covariant derivative of 
defined by 

(Vx~)(Y, Z)  = Dx~(Y,  Z )  - r  Z )  - ~(Y, V x Z ) .  

We now define the Frene t  curvatures, Frenet  curvature vectors and Frenet  frame 
of a curve y: I - ~  M parametrized by the are lengths s. Let  7' (s) = T1 (s) be the unit 
tangent  vector and put ~Cl = [[VT, T1 I]. If  K1 is identically zero on I, then y is said to be 
of rank 1. If  K1 is not identically zero, then one can define/ '2 by VT1 T1 = ~cl T2 on 11 = 
= {s e I[ K1 (s) * 0}. Set K2 = [[VT,/'2 + K1 T, [[. IlK2 is identically zero on 11, then y is said 
to be of rank 2. If  K2 is not identically zero on 11, then we define /'3 by ~7rl/'2 = 

- K1 T1 + K2 T3. Inductively, we can define T d and l~ d ----- []VT, Td + Kd - 1  Td - 1  ][ and if 
Ka = 0 identically on Ia - 1 = {s e I lK d _ 1 (s) ~ 0}, then ~, is said to be of rank d. If  y is of 
rank d, then we have a matrix equation 

VT 1 ( T 1 ,  T 2,  . . . ,  T d) -- ( T 1 ,  T2, ..., Td)A,  

o n  I d _ 1, where A is a d • d:matrix defmed by 

A = 

0 - - K  1 0 . . .  

N 1 0 -- N 2 0 O 

K 2 0 
. . .  - -  h ;  d _ 

O Kd- 1 0 

The matrix A, {T1, Te, ..., Td } and K1, ...Ka are called the Frenet  formula, Frenet  
frame and Frenet  curvatures of y respectively. Here, we recall the definition of the 
helical immersion. Let  M be a connected Riemannian manifold and x: M ~ M an iso- 
metric immersion of M into a Riemannian manifold 217/. If  the image x o y of each 
geodesic y in M has constant Frene t  curvatures which are independent on the choice 
of the geodesic y, then x is called a helical immersion.  

We now recall the definition of a normal section. Let  M b e  an n-dimensional sub- 
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manifold of a Euclidean space E m of dimension m. Let p be a point of M and t be a 
nonzero vector tangent to M at p. Let E(p; t) be the affine space generated by t and 
normal space T~ M at p. Then the dimension of E(p; t) is m - n + 1. The intersection 
of M and E(p; t) gives rise to a curve on a neighborhood of p. Such a curve is called 
the normal section of M at p in the direction of t. We say that the submanifold M has 
geodesic normal sections if every normal section is a geodesic. 

On the other hand, it is well-known that a helical immersion is ),-isotropic. We 
now recall the definition of isotropy. An isometric immersion x: M --> E m is said to be 
 -isotropic at a po in t  p if = II:(x, x)l] does not depend upon the choice of the unit 
vector X tangent to M at p. If ;( is also independent of the choice of point, then x is 
said to be constant isotropic. It is easily seen that M is ~-isotropic at p if and only if 

EA:(x,  y)Z : )~2~,(X, Y ) Z  

for every X, Y, Z ~ Tp (214), where ~ denotes the cyclic sum with respect to X, Y, Z. 
B. O'NEILL [ O n ] ,  proved that M is isotropic at p if and only if 

(1.5) (z(X, X), z(X, Y)} = 0 

for any two orthonormal vectors X and Y in Tp (M). 
Using O'Neill's idea, we can prove the following. 

LEMMA 1.1. - Let T be a symmetric tensor of type (0, r) defined on E "~. Then 
IIT(ur)ll does not depend on the choice of the unit vector u if and only if 

(1 .6)  (T(u ~), T(ur -  1, u • = 0 

for any vector u ~ which is perpendicular to u, where T(u r) = T(u, u, u, ..., u) and 
T(u ~-1, u • = T(u, u, ..., u, u • 

PROOF. - Since all the unit vectors in E ~ form a unit sphere, a vector u 
perpendicular to a unit vector u is tangent to the unit sphere. So, 

if and only if 

(T(uD, T ( u g ) =  C (constant) on the unit sphere 

• which is 

u • {T(ur), T(ur)} = 0. 

Since u is a position vector on the unit sphere, 

(T(u U, T(u ~ - 1, u • )) = 0. (Q.E.D.) 

Throughout this paper, t • always means a unit vector perpendicular to t for some 
vector t unless it is stated otherwise. 

LEMMA 1.2. - Let M be a submanifold in a Riemannian manifold M such that M is 
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isotropic at a point p in M. Then we have 

(1.7) IIz(el, el)ll 2 = <o(ei, el), a(e2, e2)> + 211~(e1, e2)ll 2 

for every pair of orthonormal vectors el and e2 tangent to M at p. 

PROOF. - Let el and e2 be orthonormal vectors tangent to M at p. Set X = 
= (e~ + e2)/V~, Y = (el - e2)/V~. Then Z and Y are orthonormal. Since M is isotropic 
at p, 

<a(el, el), a(el, el)> = <a(X, X), a(X, X)>. 

Using (1.5), we obtain (1.7). (Q.E.D.) 

For later use, we define a Blaschke manifold M1. Let p E M1 and Cut (p) be the cut 
locus of p in M1. If  for every q e Cut (p) the link Lp, q = {(d~,/ds)(q) I Y is a minimal 
geodesic from p to q} is a great sphere of UqM1, then M1 is said to be a Blaschke man- 
ifold at the point p, where UqM1 is the unit tangent space of M1 at q. If M1 is a 
Blaschke manifold at every point of M1, then M1 is said to be a Blaschke manifold. It 
is well known that M1 is a Blaschke manifold at p if and only if the Cut (p) is spherical 
(see [Be.A], p. 137). 

Throughout this paper, all the manifolds and geometric quantities are C ~ unless 
it is sated otherwise. 

2. - Surfaces in E m with property ($1)" 

Let M be a complete connected surface in E m (m I> 3) with Riemannian connection 
V. We also denote the normal connection by D and the Weingarten map associated to 
a normal vector ~ by A t and the second fundamental form by ~ as usual. 

We now define the property ('1). 

('1) There is a point p in M such that every geodesic through p, which is regarded 
as a curve in E m, is a helix of the same constant Frenet curvatures. 

Clearly, every helical immersion satisfies the property (*i). 
Suppose M has the property ('1). Since every geodesic has the constant curva- 

tures, <a(t, t), a(t, t)> does not depend on the choice of the unit vector t ~ TpM. 

LEMMA 2.1. - Let M be a surface in a Euclidean space E m (m I> 3). Suppose that M 
satisfies the property ('1). Then M is isotropic at p. 

We now prove 

THEOREM 2.2. - Let M be a complete connected surface in E 3 . Then M satisfies the 
property ('1) if and only if M is a standard sphere or a plane E 2. 
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PROOF. - Suppose that M satisfies (*1)' By Lemma 2.1 we see that  M is isotropic at 
p. In this case, p is an umbilical point. Choose a geodesic 7" through p. Suppose y is of 
rank 1. I t  is clear that  M is a plane E e in E s . Suppose that  y is of rank2.  Since every 
geodesic is a circle of the same radius and the same center, M is a standard sphere. 
Suppose that  ~" is of rank 3. We assume that y is parametrized by the arc length s. Let  
y ' ( s )=T.  Then y"(s)=~(T, T) and y " ( s ) = - A ~ ( T , T ) T + ( V ~ ) ( T , T )  since y is a 
geodesic. Since y is of rank3,  y'(s) Ay" ( s )Ay ' (O)~O,  and so T A z ( T , T ) A  
A A : ( T ,  T) T ~ 0 along y. I t  follows that T A A~(T, T) T ~ O. Since M is isotropic at p, 
(z(t, t), z(t, t . ) )  = 0, where t = T(0) and Z(0) = p. Accordingly, A:(t, t)t .k t ~, i.e., 
A:(t. t)t A t = 0. So, this case cannot occur. The converse is clear. (Q.E.D.) 

We now assume that a surface M which lies in E ~ (m >/4) is compact and suppose 
that M satisfies the proper ty  (*~). By Lemma 2.1 M is isotropic at p. The equation 
(1.7) implies that only two cases may occur: 

Case 1) z(el, e 2 ) -  0 for any orthonormal vectors el and e2. In this case, 
dim(Im~)p = 1 since M is compact, where (Imz)p = {~r(X, Y)tX, Y e  TpM} is called 
the first normal space at the point p. 

Case 2) z(el, ee) ;~ 0 for an orthonormal basis {el, e2} of TvM. In this case, 
dim (Im z)p I> 2. 

LEMY~ 2.3. - Let  M be a compact connected surface in E 4 satisfying the proper ty  
(.~). If  the dimension of the first normal space at p is one, then M is a standard sphere 
lying in E ~ . 

PROOF. - Suppose dim(Imz)p = 1, i.e., cr(e~, ee)=  0 for any orthonormal basis 
{e~, e~} of TpM. So, p is an umbilical point of M. Choose a geodesic y through p such 
that y ( 0 ) = p  and y ' ( s ) =  T. Then we have 

(2.1) y"(s) = z(T, T),  

(2.2) y"(s) = -A:(T, r )T  + (VTz)(T, T) ,  

(2.3) $(4) (s) = - (V~A)~(T, T) T - z(T, A:(T, r) T) - 2A(%~)(T, T) T § DT ((VT z)(T, T)), 

where (VTA)~,Y-- Vx(A~Y) - A D ~ Y -  A~ Vx Y for X, Y e TM and ~ ~ T i M .  
We are going to show that y is of rank 2. I t  is enough to show that (Vt a)(t, t) = 0, 

where T(0) = t. 
Suppose that  (Vt z)(t, t) ~ O. We may put  

cr(T, T) = ~1 ,~, 

where K1 is the first Frenet  curvature of y and .~ a unit normal vector field along y. As 
a mat ter  of fact ~ is in the direction of the mean curvature vector H at p. Since ~ is 

((~Trz)(T, T), ~(T, T)) = 0 along y 
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and since ~(t, t ~ ) =  0, we get  

A(~,~)(t, t) t = 0. 

On the other hand, ~c~ = (~(T, T), ~-(T, T)} = (A~(T, ~,) T, T}. Covariant differentia- 
tion of this equation along the geodesic y leads to 

((V~A)~(T, T) T, T) = 0 

because T is a geodesic. Evaluate this at p and then we have 

((VtA)~t, t) = 0 

since ~:~ ;~ 0. Since this holds for any direction, linearization and the Codazzi equation 
(1.4) give 

(VA)~ = 0. 

So, we can obtain the following: 

~'(0) = t ,  

~/'(0) = ~(t, t), 

T'(O) = -A~(t, t) t + (Vt cr)(t, t), 

T(4)(0) = -~(A~(t, t)t, t) + Dt((VT~)(T, T)).  

Since the curvatures of y are constant, (y"(0), y '(0)) = 0 and @"(0), ~,(4)(0)) = 0. 
Since y(4) (0) is a normal vector to M, y"(0) A ~,(4) (0) = 0. Thus, r is of rank 3. Since M is 
compact, this is impossible. Therefore, we have 

(Vt ~)(t, t) -- 0. 

Since the curvatures are constant, (VT ~)(T, T) = 0 along y. So, y is of rank 2. Thus 
every geodesic through p is of rank 2. Moreover, every geodesic through p is a circle 
of radius 1/tcl and centered at p - (1/tCl)~ and so M is a standard sphere S 2 (1/tc1). 

(Q.E.D.) 

Suppose dim (Ira v)p = 2. Then there is an orthonormal basis {el, e2} of TpM such 
that ~(el, e2) ~ 0. 

LEMMA 2.4. - Let  M be a surface in E ~ (m i> 4) such that M is isotropic at p, where 
dim(Im~)p = 2. Then ]lz(el, e2)ll does not depend on the choice of the orthonormal 
basis {el, e~} of TpM. 

PROOF. - Let  {X ,Y}  be an orthonormal basis of TpM. Then there exists 0 
(0 ~< 0 < 270 such that 

X = cos 0 el - sin 0 e2, 

Y = sin 0 el + cos 0 e2, 

for the orthonormal basis {el, e2} of TpM. 
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Since M is isotropic at p, z(el, e2) • z(el, e2) and 
cr(ei, el)/~ or(e2, e2) --- 0 because dim (Im z)p = 2. Since 
~(el, el) = • o-(e2, e2). If  we observe (1.7), then we obtain 

(2.4) z(el, el) q- ~(e2, e2) = 0, 

that is, the mean curvature vector H vanishes at p. Therefore, we get 

a(X, Y) = cos20a(el,  e2) + sin20z(el,  el), 

If we compute the length of z(X, Y) and make use of (1.7), then we see that 

H~(x, Y)ll = ][:(el, e2)ll. (Q.E.D.)  

In this case, we are also going to prove that every geodesic through p is of rank 2. 
Suppose (Vtz)(t, t) ;~ 0 for t e UpM. 

Le t  {el, e2} be an orthonormal basis for T,M. Consider a geodesic ]'1 such that 
]'1 (0)=  p, ]'~ (0)= (el + e2)/V~. Since ]'1 has its constant first Frenet  curvature, we 
have 

<(VT,~)(T I, T1), Z(TI, Ti)} = 0, 

where TI = d]'l/dS. Since the mean curvature vector is zero at p, we see that 

(2.5) ((Vel~)(el, el), a(e 1, el) > + 3((V~:)(el, e2), a(e,,  e2)> 

+ a((V~,:)(e2, e2), cr(ei, e2)> + <(ff~2~)(e2, ee), o'(e 1, e2) ) = 0 .  

Consider another geodesic ]'2 such that ] '2(0)= p, ] '~(0)= ( e l -  e2)/V~. Then we 
get 

((VT2z)(T2, T2), a(T2, T2)> = 0, 

where ]'~ ( s )=  T2. This implies 

(2.6) - <(Ve ~)(el, el) , ~(el, el) > + 3<(Ve o)(el, e2) , o-(el, e2) > 

- 3((Ve ~r)(e2, e2) , ~(el, e2) ) + <(Ve ~')(e2, e2) , ~(el, e2) > = 0. 

Putting, (2.5) and (2.6) together, we obtain 

(2.7) 3((Ye~z)(e~, e2), ~(e~, e2)> + ((Ve~a)(e2, e2), a(el, e2) ) = 0. 

On the other hand, since geodesic through p have the same constant curvatures, 
((Vr X, X), (Ve)(X, X, X)} is independent of the choice of the unit vector X. By 
Lemma 1.2, we have 

<(W)(X, X, X), (W)(X, X, X ~ )) = 0 

for every unit vector X tangent to M at p. So, (Va)(el, el, el) • (Vo-)(el, el, e2). Since 

a(e2, e2) • ~(el, e2). So, 
IIo(ei, el)ll = 115-(e2, e2)ll, 
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(V~)(el, el, el) • ~(el, el) we get 

(V~)(et, el, e2) • ~(el, e2). 

Therefore, (2.7) implies that  

<(V~2z)(e2, e2), z(et,  e2)) = 0. 

Since (V~ z)(e2, e2) A z(el, e2) = 0, we obtain 

(V~z)(e2, e2) = O. 

But, this contradicts (Vtz)(t, t) ~ 0 for t �9 U;M. Thus, it follows that (Vt's)(t, t) = 0 for 
every t �9 U;M, i.e., every geodesic through p is of rank 2. By using the fundamental 
theorem of eurves, we can write the immersion x: M - - ) E  4 with respect to the 
geodesic polar coordinate system (s, 0) as 

1 (cos Ks) fl (0) + 1 ( s in  Ks) f2 (0) (2.8) x(s, O) = C(O) + -~ 

where C(O) is a vector function depending upon 0, /'1 (0) and f2 (0) are orthonormal 
vectors in E 4 at p depending on 0 and K is the Frene t  curvature of each geodesic 
through p. 

Without loss of generality we may assume the point p is the origin 0 of E 4. 
Then 

1 
(2.9) 0 -- x(0, 0) = C(O) q- ~-fl (0) for all 0. 

Let  el and e2 be orthonormal vectors tangent  to M at o which generate the geodesic 
polar coordinates (s, 0). 

Since x ,  (a/as)(O, o) = f2 (0) �9 To M, 

(2.10) fe (0) = cos 0 el + sin 0 e2. 

Since (Vx, (a/as) x ,  (a/as))(o, 0) = (~2 x/Os 2)(0, o) = a(f2 (0), f~ (0)), 

(2.11) z(f2 (0), f2 (0)) -- - i f 1 (0), 

where V is the Riemannian connection in E 4. 
Combining (2.9), (2.10) and (2.11), we obtain 

�9 0) = � 8 8  r (o) + - 

= lsinKsK C0S 0e~ + 1s inKs  cos 0e2 + 

~ ( 1 -  cosKs) cos20~(el, el) + ~ ( 1 -  cos~cs) sin2Ocr(el, ee) 

since z(ei, el) -k z(e2, e2) -- 0. 



10 YOUNG HO KIM: Surfaces  of  a Euc l idean  space, etc. 

Since o-(el, el) _L o-(el, e2) , choose e 8 as ~(e,,  e,)/ l l~(e,,  el) l l  = e,)/K and e4 as 
o-(e,, e2)/ll (e,, e2)ll = e2)/K. 

If we use the coordinate system with respect to el, e2, ea and e4, then x(s, O) is of 
the form 

(2.12) x(s ,O)=(  1-~ sinks cos 0, ~1 sinks sin0, l ( 1 - c o s K s )  cos20, l ( 1 - c o s ~ s )  sin20). 

We now prove 

LEMMA 2.5. - Let M be a compact connected surface in E 4 . Suppose that M satis- 
fies ('1) and that dim (Ira ~)p is maximal. Then M is a Blaschke surface at p and M is 
diffeomorphic to a real projective space R P  2 but not isometric to R P  2 with the stan- 
dard metric. 

PROOF. - In order to prove that M is a Blaschke surface at p, it is enough to show 
that the cut-locus Cut (p) of the point p is spherical. 

We may assume that p is the origin o of E 4 . Since each geodesic through o is a cir- 
cle of radius l/K, we have to show that two distinct geodesics through o do not inter- 
sect on the open interval (0, ~/K). Suppose x(s, O) = X(So, 0o) for 0 < s, so < r~/K and 
0 < 10 - 0o I < 7:/2. By using (2.12), we can easily derive a contradiction. Thus Cut (o) 
is spherical. Cut (o) is indeed the set of all antipodal points of o with respect to each 
geodesic through o. 

According to BOTT-SAMELSON [ B o ] ,  [ S a ] ,  ( o r  7.33 Theorem of BESSE [Be.A]), we 
see that M is diffeomorphic to R P  2 . We now prove that M is not isometric to R P  2 . It 
is sufficient to show that the Gaussian curvature K cannot be constant. 

Suppose that the Gaussian curvature K is a constant > 0. Then we can easily get 
G = 1 / K  sin 2 (V~s) ,  where V = (x .  (a/ao), x ,  (8/80)). On the other hand, G can be di- 
rectly computed from (2.12) as 

G = l { s in2Ks  + 4(1 - cos Ks)2}. 
K 2 

If we compare these two equations, we have a contradiction. So, even though the sur- 
face is diffeomorphic to R P  2 it is not a standard real projective space R P  2. 

(Q.E.D.) 

Conversely, if a compact connected surface M is a standard sphere S 2 or has the 
form of (2.12), then it is easily proved that M satisfies the property ('1). 

Thus by combining Lemma 2.3, Lemma 2.5 and the statement above we can con- 
clude the following. 

THEOREM 2.6 (Classification). - Let M be a compact connected surface in E 4. Then 
M satisfies the property ('1) if and only if M is a standard sphere which lies in E ~ or a 
Blaschke surface at a point which lies in E 4 of the form (2.12). In the second case M is 
diffeomorphic to R P  2. 
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REMARK. - In the case of the Blaschke surface at the point o in the above theorem, 
we see that  the locus of the centers of geodesics through the point o is a circle with 
radius ~ whose points go around the circumference twice while points on a geodesic 
circle centered at o on M go around the geodesic circle once. On the other hand, if we 
compute the torsion of the  cut-locus Cut (o) = x (=, 0) of the point o, then we see that  
the torsion is zero and Cut(o) is indeed a circle. 

Let  us consider a compact connected surface M in E 5. We shall characterize sur- 
faces in E 5 satisfying the proper ty  (*t). 

We now suppose that  M satisfies the property ('1). As usual, we may assume the 
base point p of ('1) as the origin o of E 5. Then the immersion x: M - - * E  5 can be ex- 
pressed in terms of the geodesic polar coordinates (s, 0) as 

(2.13) x(s, O) = rl(cosfis  - 1)6(0) + r~ sinflsf2(O) + re(costs  - 1)f3(0) + re sin~sf4(O), 

where r~ and r2 are nonnegative numbers,/~ and 6 are some positive constants and 
fl(0), fz(0), f3(O), and f4(O) are orthonormat vectors in ToE 5 depending on 0. 

Without loss of generality, we may assume 

(2.14) fl (0) = (1, O, O, O, 0), f2 (0) = (0, 1, O, O, 0), 

f3 (0) = (0, 0, 1, 0, 0), f i  (o) = (o, 0, 0, 1, 0) ,  

Let  f5 (0) be a unit vector in ToE 5 such that {fl (0), f2 (0), f8 (0), f4 (0), f5 (0)} forms an 
orthonormal basis for ToE 5. Automatically we may set 

(2.15) f~ (0) = (0, O, O, O, 1). 

Differentiating (2.13) with respect  to s for a f~xed 0, we obtain 

(2.16) x .  (a/as)  = - r i f t  sinflsf1(o) + rift cosflsf2(o) - r2~ sin ~sfs(o) + re~ cos~sf4(o). 

Set 

(2.17) e(o) = x , (a /~s ) (O ,  o) = r l J 2 ( o )  + r2~f4(o), 

which implies 

(2.18) 

Let  

(rL~) 2 t (r2~) 2 = 1. 

el = e(O) = riffle(O) + r2~f4 (0) = (0, rl~, O, r2~ , O) 

and 

e 2 = e  = r l  +re~ f4  ~ �9 
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Then e(0) can be expressed as 

(2.19) e(0) = cos 0 el + sin 0 e~. 

For  a fixed 0, x(s, O) is a geodesic and thus (a2x/as 2, ax/aO) = o, which gives 

(2.20) r~(~; (o), 5(0)) + r~6{f~ (o), r4(o)} + 

+(  - rl~8(r; (o), 5(0)) + r~r2~(r~ (o), 5 (o))) costs 

- ( - r~ 6(r~ (o), r~ (o)} + r~ r26(~; (o), t'4 (o))) cos 6s 

-r~r28(f{ (0), 5 (0)}sinSs + rlr26(f{ (0), 5(0)) sin6s 

rlr~ 
2 (fl - ~)((fl' (0), f4 (0)} + (f2' (0), 5 (0))) cos (fl + 6) s 

r l  r2 
+ ~ (~ + ~)((~; (o), r4 (o)) - (f2' (o), 5 (o))) cos (Z - ~) s 

rlr2 
+ ~ -  (p - 6)((f~' (0), 5 (0)} - (f~ (0), fa (0)}) sin (8 + 6) s 

r l  r2 
+ - ~ -  (8 + 6)((f~' (0), 5 (0)) + (g  (0), f4 (0)}) sin (8 - 6) s = 0. 

LEMMA 2.7. - 8 ~ 6 provided the geodesics through o are of rank 4. 

PROOF. - Suppose 8 = 6. Let  K1, ~2 and K3 be the first, second and third Frene t  cur- 
vatures of the geodesic x(s, O) for a fLxed 0 respectively. Then 

~ = ( a 2 x ( 0 a s  2 , o), ~2---x-X(o,o)}=(r~+r~)84.as 2 

Since ((ax/Os)(O, o), (ax/as)(O, 0)} = 1, we obtain 

(r~ + r~ )8  2 = 1 ,  

that is, f12 = 1/(r~ + r~). Therefore, h: 1 = ~. 
On the other hand, the curvatures Ki's and the frequencies 8 and 6 have the follow- 

ing relations: 

~1 + ~ + ~ = 8 2 +  62 = 2,~ 2 , 

Since K1 = 8, K~ = 82. The first equation gives K2 = 0. This contradicts the fact that  
x(s, O) is of rank 4. Thus, we have 8 ~ ~. (Q.E.D.) 

LEMMA 2.8. - For  very 0, the geodesic x(s, O) is periodic. 
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PROOF. - If  x(s, O) is of rank 2, then this is obvious. We now assume that  x(s, O) is 
of rank 4. Suppose x(s, O) is not periodic. Then fl and ~ are independent over the ratio- 
nal numbers, that  is x(s, O) = Sl ( r l )  • $2(r2), a torus denoted by T, where x(s, 6) is 
the closure of x(s, O) in E 5 . Certainly, T is contained in x(M). But T does not satisfies 
the property  (*~). Thus x(s, O) must  be periodic for every 0. (Q.E.D.) 

We now suppose that  rl ~ 0 and re ~ 0, that is, every geodesic through o is of 
rank 4. Combining (2.20), Lemma 2.7 and Lemma 2.8, we obtain 

(2.21) {f~ (0), f2 (0)) = (f~ (0) ,  f8 (0)) = (fl' (0), f4 (0) )  = 

= (f2' (0), f3 (0)) ----- (f2' (0), f4 (0)) = (f3 t (0), f4 (0)) = 0  

for all O. So we have the following system of differential equations: 

(2.22) ~' (0) = 2~ (0) f5 (0), 

for i = 1, 2, 3 and 4, in other words, 

f;(o) 1 
f~ (0) i 

f~ (0)] 

f~ (0) 

f~ (0) 

0 

0 

= 0 

0 

- ~ (o) 

4 

f,' (o) = - E ~ ( o )  f~(o) 5 
i = l  

0 0 0 )~1 (0)" 

0 0 0 ~2 (o) 

0 0 0 ~a (o) 

0 0 0 ~4 (o) 

--  )t 2 (0) - -  ~3 (0) --  )~4 (0) 0 

where the ~ 's  are periodic functions with period 2r:. 

•(o)1 
fl (o) l 
f~ (o) l,  
f4' (0) I 
fs' (o)J 

Differentiating (2.17) with respect to 0 and making use of (2.19) and (2.22), we 
get 

(2.23) (r1~)~2 (0) + r 2 r (0)) f5 (0) = -- sill 0 el + cos  0 e2,  

from which, we obtain that  rlfl~2(O)+re~24(O)=_+1 and we may assume that  
rlfl2~(O) + r2~4(0)= 1. I f  we differentiate (2.23) twice and use (2.22), then we 
obtain 

f/' (0 ~ 5~ J + f s ( O ) = O -  

Since fs(O) = (0, O, O, O, 1) and f5(=/2) = - el = (0, - r i f t ,  O, -r2~,  0), we have 

(2.24) t'5(0) = (0, - r i f t  sinO, O, -r2~sinO, cosO). 

Since /'1' (0) = 2i (0) f~ (0) (1 ~< i < 4), fl (0) = (1, O, O, O, 0), f2 (0) = (0, 1, O, O, 0), f3 (0) 
= (0, O, 1, O, O) and f4 (0) = (0, O, O, 1, 0), we get  

(2.25) fl(O) = 1, - r i b  ,~l(t) sintdt ,  O, -r2~ )~,(t) s intdt ,  )t~(t) eos td t  , 
o o o 
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(2.26) f2(O) = 

(2.27) fs(O) = 

(2.28) 1"4 (0) = 

[ s ~ s o ; O, -r~fl  )`2(t) s in td t  + 1, O, - re~  )`e(t) s intdt ,  )`2(t) cos td t  
0 0 0 

fo o f ) 
0, - r i f t  )`s(t) s intdt ,  1, - h ~  )`3(t) s intdt ,  )`a(t) cos td t  , 

0 0 0 

fo fo fo 0, - r U ?  )`4(t) s intdt ,  O, - r2~  )`4(t) s in td t  + 1, )`4(t) 
0 0 0 

Now let us compute  )`1(0). Since <fl(0), fs(0)> = 0 for all 0, (2.24) 
imply 

cos t dr).  

and (2.25) 

I t  follows tha t  

0 0 

sin 01 )`1 (t) sin t dt + cos 0 / ),1 (t) cos t dt = 0 
0 0 

because  (rift)2 + (r2~) 2= 1. By  differentiat ing this, we  obtain 

0 0 

)`1 (0) = - cos 0 / s (t) sin t dt + sin 0 / )`1 (t) cos t dr, 
0 0 

which gives )`~ (0) = 0 for all 0, tha t  is )`1 is a constant .  In fact, )`1 (0) = 0 for  all 0. Thus,  
#'1 (0) is complete ly  de te rmined  

#'1 (0) = (1, 0, 0, 0, 0). 

Similarly, we  can compute  ~2, ~s and )`4: 

)`2(0) = r l~ ,  ,~8(0) = 0,  )`4(0) = r2~ for all 0. 

Consequent ly  ( 2 . 2 5 ) -  (2.28) are  precisely de te rmined  as follows: 

fl (o) = (1, 0, 0, 0, 0), 

f2 (0) = (O, 1 - (rift) 2 (1 - cos 0), 0, - r l  r2fl~(1 - cos 0), rift sin0),  

t" 3 (0) = (0, 0, 1, O, 0), 

f4 (0) = (1, - - r  1 r2fl~(1 - cos 0), 0, 1 - (r2~) 2 (1 - cos 0), r2~ sin0). 

0 0 0 

('fl~) 2 s in01  )`1 ( t ) s i n  t d t  + (r2 ~)2 s i n 0 1  )`1 ( t ) s i n  t d t  + cos0  I ) `  1 ( t ) c o s t d t = O .  
0 0 0 
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These, together with (2.24), show that  the immersion x has the representation 

(2.29) 

x(s, O) = (rl(cos Es - 1), r 1 sines - rlE(1 - cos O)(r~ E sines + r ~  sin ~s), 

re(cos 3s - 1), re sin ~s - re~(1 - cos O)(r~E sin Es + r ~  sin 3s), 

(r12E sin Es + r ~  sin ~s) sin 0). 

In this case, each geodesic through o is periodic with period L = 27qg/E = 2=q/~ for 
some integers p and q. Using a similar argument to that  in Lemma 2.5, we see that  
the cut-locus, Cut (o), of the point o is spherical and thus the surface M is a Blaschke 
manifold at o which is diffeomorphic to R P  e. Thus, we have 

PROPOSITION 2.9. - Le t  M be a compact connected surface in E 5 with the property 
('1) relative to the origin o. I f  every geodesic through the point o is of rank 4, then M 
is a Blaschke manifold at o which is diffeomorphic to R P  2 and has the form 
(2.29). 

We now suppose that  x(s, O) is of rank 2 for every 0. Then the immersion x can be 
written with respect to the geodesic polar coordinate (s, 0) as 

1 1 sin Ks f2 (0) (2.30) x(s, O) = -~ (cos Ks - 1)/'1 (0) + ~ , 

where K is the Frenet  curvature of the planar geodesic x(s, O) for every 0 and f, (0) and 
t'2(0) are orthonormal vectors in E 5 at the point o. From (1.33) we obtain 

(2.31) x .  (a/as)(0, o) = t'2(0) �9 ToM 

and 

(2.32) (Vx.(a/as)x.(a/as))(O, O) = - -  ~ 2 x  (0,  O) = r  f 2 (0 ) )  = - -  K f l ( 0 ) ,  
~S 2 

where V is the Riemannian connection in E 5. 
Let  {el, e2} be an orthonormal basis of ToM such that  

(2.33) f2 (0) = cos 0 el + sin 0 e2. 

Suppose that  dim(Ira z)o = 1, that  is, the point o is an umbilical point of M. In this 
case, every geodesic through o is a circle of radius 1/K and centered at - ( 1 / K ) H .  
Thus, M is a standard sphere $2(1/K) which lies in E 3. 

Suppose that  dim (Ira Z)o = 2. In this case, exactly the same proof used to derive 
(2.12) is applied and thus the immersion x is of the form 

(2.34) x(s, 0) = 1 (sin Ks cos 0, sin Ks sin 0, (1 - cos Ks) cos 20, (1 - cos Ks) sin 20, 0) 

for a suitable choice of Euclidean coordinates in E 5. Clearly, M lies in E 4. 
We now assume that  dim(Im a)o = 3, that  is, the dimension of the first normal 
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space at the point o is maximal. Then 

~(el, el) A ~(el, e2) A z(e2, e2) ;~ O. 

Let  

z(el, el) ~(el, e2) e5 
(2.35) e3= K ' e 4 = - - a  and e s - [ ] e s I I  ' 

where 

g(z(el, el), z(e2, e2)) 
a = lie(el, e2)ll and ~5 = ~(e2, e2) - ~ ( e l ,  e l ) .  

Set b = I[es[[. Then we have from Lemma 1.2 that  

(K 2 - 2a 2)~ 
(2.36) b 2 + - K ~ . 

K 2 

Using (2.31), (2.32), (2.35) and (2.36), we can write the immersion x in the 
form 

(2.37) x(s, 0) = sin Ks cos 0, ~ sin Ks sin O, (1 - cos Ks) ~c - ~ sin s 0 , 

~ ( 1 -  cosKs) sin20, ~ ( 1 -  cosKs) sin20) 

for a suitable choice of the coordinates with respect  to el, e2, e~, e4 and e5 described as 
above. 

Considering the cut-locus Cut (o) of the point o in both the cases that  dim (Im ~)o = 2 
and dim(Ira ~)o = 3, we see that  M is a Blaschke surface at o. 

Consequently, if the immersion x has the form (2.29), (2.34) and (2.37) or x is a 
s tandard imbedding of S 2 (l/K) into E ~, then it is easily checked that  the surface M 
satisfies the proper ty  ('1). 

Thus we can classify surfaces in E 5 satisfying the proper ty  ('1). 

THEOREM 2.10 (Classification). - Le t  M be a compact connected surface in E ~. 
Then M satisfies the proper ty  ('1) if and only if M is a s tandard sphere in E 3 or a 
Blaschke surface at a point of the form (2.34) which lies in E 4 or a Blaschke surface at 
a point of the form (2.37) which lies in E 5 or a Blaschke surface at a point of the form 
(2.29) which lies in E 5. All such Blaschke surfaces are diffeomorphic to RP 2 . 

REMARK. - Let  M be a compact connected surface in E ~ (m i> 5). Since the 
dimension of the first normal space at a point is at most 3, we can conclude that  M 
satisfies the proper ty  ('1) and the geodesic are planar if and only i f M  lies in E 5 and M 
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is one of four spaces stated in Theorem 2.10 except the case of a Blaschke surface of 
the form (2.29). 

On the other hand, the Veronese surface certainly satisfies the property ( $ 1 ) "  So 
the following question naturally arises. What is the characterization of the Veronese 
surface in terms of the property ('1)? Since the Veronese surface is fully immersed in 
E 5, that is, the Veronese surface cannot lie in a hyperplane of E 5 , and since every 
geodesic in the Veronese surface is planar, we must think of the immersion which has 
the form (2.37). 

We are going to use the theory of submanifolds of finite type introduced and 
mainly developed by B. Y. CHEN [Ch.B-3]. We recall some fundamental definitions 
and properties. 

Let M be a compact orientable Riemannian manifold with Riemannian connection 
V and 3 the Laplacian operator of M acting on C ~ (M) where 

z 

for an orthonormal basis {El} of TM. We define an inner product (,) on C ~ (M) 
by 

(f, g) = I fg dV, 
M 

where dV is the volume element of M. Then/1 is a self-adjoint elliptic operator with 
respect to (,) and it has an infinite, discrete sequence of eigenvalues: 

0 = ~0 < ~i <~ ~2 <: ... < ~k < .~ ~ -}- O0 . 

Let Vk = { f e  C~(M)IAf = ;~kf} be the eigenspace of 3 with eigenvalue ~k. Then 

Vk is dense in C ~ (M) in the L 2-sense. Denote by Ok Vk the completion of ~ Vk. 
k = O  k = O  

We have 

C (M) = 6 k G .  

For each function f e  C ~ (M), let f~ be the projection o f f  onto the subspace Vt 
(t = 0, 1, 2, ...). Then we have the spectral decomposition 

f =  ~ ft (in tre L2-sense). 
t = 0  

Because V0 is 1-dimensional, for any non-constant function f e  C ~ (/143, there is a 
positive integer p i> 1 such that fp ~ 0 and 

f - ~ =  E f t ,  
t>.p 

where foe  Vo is a constant. If there are infinitely many ft's which are nonzero, we put 
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q = + cr Otherwise, there is an integer q, q >~ p, such that  fq # 0 and 

q 

f - f o  = E f t .  
t=p 

If  we allow q to be + ~ ,  we have the decomposition as above for any 
f e C | (M). 

For  an isometric immersion x: M --> E m of a compact Riemannian manifold M into 
E ~, we put 

X ---- ( X l ,  X2,  . . . ,  Xm) , 

where xA is the A-th Euclidean coordinate function of M in E ~ . For  each XA, we have 
the spectral decomposition 

qA 

XA -- (XA)O = ~ (XA)t, A = 1, 3, ..., m. 
t=p• 

For each isometric immersion x: M - - ) E  m, we put 

p = p(x)  = infd {PA},  q = q(x) = SUpA {qd}" 

where A ranges among all A such that  XA -- (XA)o # O. I t  is easy to see that  p is an inte- 
ger >/1 and q is either an integer I> p or ~ .  Moreover, p and q are independent of the 
choice of the Euclidean coordinate system in E ~. Thus p and q are well-defined. Con- 
sequently, for each isometric immersion x: M---) E ~ of a compact Riemannian mani- 
fold, we have a pair [p, q] associated with M. We call the pair [p, q] the order of  the 

submani fo ld  M.  If  we use the spectral decomposition of the coordinate functions of 
the immersion x: M - - - ) E  m, 

q 

(2.38) x = Xo + ~ x t .  
t = p  

DEFINITION. - A compact submanifold M in E m is said to be of f in i te ,  type if q is 
finite. Otherwise M is of in f in i te  type. 

DEFINITION. - A compact submanifold M is said to be of k-type (k = 1, 2, 3, ...) if 
there are exactly k nonzero xt's (t >I 1) in the decomposition (2.38). 

We can restate Takahashi ' s  Theorem in terms of 1-type: 

LE~MA 2.11 (TAKAHASHI [Tk] and CHEN [Ch.B-3]). - Let  x: M -* E "~ be an isomet- 
ric immersion Of a compact Riemannian manifold M into E ~ . Then x is of 1-type if and 
only if M is a minimal submanifold of a hypersphere of E TM. 

B.-Y. CHEN gave the following characterization of submanifolds of f'mite 

type. 
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LEMMA 2.12 (CHEN [Ch.B-2]). - Le t  x: M--)E m be an isometric immersion of a 
compact Riemannian manifold M into E ~. Then 

(i) M is of finite-type if and only if there  is a non-trivial polynomial Q such 
that  

Q(~) H = 0 .  

(ii) I f  M is of finite type, then there  is a unique monic polynomial P of least de- 
gree such 

P(fl)H=O. 

(iii) I f  M is of finite type, then M is of k-type if and only if deg P = k. 

Now, coming back to the problem. We shall compute the Gaussian curvature K 
and find a condition which givefi constant Gaussian curvature. Fur thermore ,  we shall 
characterize the Veronese surface by examining the surface with constant Gaussian 
curvature. 

F rom (2.37) we get 

x ,  (a/as)O, o) 

( 1 b ) = cos Ks cos 0, cos Ks sin 0, -~ sin Ks K ~-- sin 2 0 , ~ sin Ks sin 20, ~ sin Ks sin 2 0 

and 

1 1 - 2 a 2  (1 - cosKs) sin20, x ,  (O/aO)(s, 0) = - ~ sin K sin 0, ~- sin Ks cos 0, Ka 

2a (1-- COSKS) COS20, ~ (1 - -  COSKS) Sin20) 
K2 

Then the induced first fundamental form g~j is derived as 

gn = (x ,  (a/as),  x ,  (a/as)} = 1, g12 = g21 = ( x ,  (alas), x ,  (a/ao)) = o, 

g22 = ( x ,  (a/a0), x (a/a0)} = i sin 2 Ks + 4a2  (1 - cos Ks) 2 
* K2 K 4 " 

Thus the line element d~ 2 of M in E 5 has the form 
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So the Gaussian curvature K is given by 

1 ~ V ~  (2.39) K = 
aS 2 ' 

where 

G = g22 = 1 sin 2 ~s + 4a2  (1 - cos Ks) 2 
K 2 h: 4 " 

Suppose that the Gaussian curvature K is a constant. Then (2.39) is equivalent to 

~.~z (~.)~ 
~s 2 ~ s  + 4KG 2 = 0. 

By a straightforward and long computation, we have 

) 2 {  
96a 4 3 {4a2 1 +4K 

K6 2K2 \ ~2 
1 0a2)2  2a4 1(4a2 )2} 

~ + - ~  + ~8 s~ 4 - ~ - - 1  

+I10~ ~ 0o~1 ~ 1)(7 ~)}cos~ 
l - - 5 - ~  + ~4 It 7 )  + 4a2 

- ~ (  4a2 

7 

+I4~{ 4a2 1/{ 1 + 6 a 2 / { K  - 1 / - - - + 3 2 a 2  128a----~2Kl cos 2Ks 

+4~176 )( ~) 1(4o~ )~(K) 
K 4 - ~ - 1  3 - - ~ -  cos3Ks+ ~ - ~ - 1  ~ - 1  c o s 4 K s = 0 .  

Since 1, cos Ks, cos 2~s, cos 3Ks and cos 4Ks are linearly independent, we get 

K =  ~_~_. 4 

Thus we have 

PROPOSITION 2.13. - Let  M be a compact connexted surface in E 5 satisfying ('1) 
whose immersion is given by (2.37). Then the Gaussian curvature K is constant if and 
only if K = 4a 2 . In this case, the Gaussian curvature K = K2/4 = a 2 . 

In such a case, the induced metric (gij) looks like 

(2.40) (gij) - - - -  sin 2 Ks + (1 - cos Ks) 2 " 
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Using this induced metric, we can compute the Christoffel symbols Fihj: 

1 a (log G) = 1 /~1 = 0,  F211 = 0, /'~e -- 2 aS -- ~- sin KS, 

�9 1 a ( log  G )  = 1 F~2 = 0 ,  F~2 = 0 ,  I'~2 - 2 as  - ~- s in Ks,  

where G = (1/K 2) sin 2 Ks + (1/K2)(1 - cos Ks) ~ . 

LEMMA 2.14. - Let  M be a compact connected surface in E 5 satisfying the property 
('1) whose immersion has the form (2.37). I f  the Gaussian curvature is constant, then 
the Laplacian operator A is given by 

( a 2 1 a 2 ) 1 8 ( l o g G) ~ s  (2.41) ~ =  - - -  + , 
as 2 G 7-~ 2 as 

where G = ( 1 / ~ ) s i n  2 Ks + (1/K2)(1 - cos Ks) ~. 

I t  is well-known that  

= - 2H, 

where H is the mean curvature vector field of M. Using this equation and computing 
H where AH by means of (2.41), we obtain the following 

3 e H : i f / -  ~K = 0 .  

According to Lemma 2.12, M is of 1-type and hence M is a minimal submanifold of a 
hypersphere of E 5. 

On the other hand, we can easily check that  the Gaussian curvature K cannot 
be constant if the immersion has the forms (2.29) or (2.34) by computing K = 

- (llV )((a v )las ). 
So if we apply Calabi's Theorem [C], we conclude 

THEOREM 2.15 (Characterization of a Veronese surface). - Let  M be a compact con- 
nected surface in E 5. Then M is a Veronese surface if and only if M has a constant 
Gaussian curvature and there is a point p which is not umbilical such that  every 
geodesic through p is a helix of the same curvature. 

In this case, x is the first s tandard imbedding RP 2 into E 5 and the second stan- 
dard immersion of 2-sphere into S 4. 

3. - Charac te r iza t ion  of  surfaces of  r e v o l u t i o n  in  a 3 - d i m e n s i o n a l  E u c l i d e a n  
space. 

Let  M be a surface in E 3 . We now define (*2). 
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There is a point p in M such that  every geodesic through p is a normal section 
of M at p. 

Suppose M has the property (*2). Let  7 be a geodesic parametrized by the arc 
length s and let 7(0) = p. Then we have 

Y'(s) = T, 

y"(s) = z(T, T), 

7"(s) = -A~(T, T) T + (Vr z)(T, T). 

Since 7 is a normal section at p in the direction t = T(O), A~(t, t) t A t = 0, that  is, 

(~(t, t), ~(t, t I))  = 0. 

Since this is true for any orthonormal vectors t and t ~ tangent  to M at p, M is isotrop- 
ic at p and p is indeed an umbilical point since the ambient manifold is E 3 . Since 7 is a 
plane curve, 7' (s) A r"(s) A 7"(s) = 0 for all s e Dora 7. So we can obtain 

T A A~(T, T) T A ~(T, T) = O, 

which implies 

(3.1) 

along ~,. 

(~(T, T), z(T, T • = 0 

Without loss of generality, we may assume p as the origin o of E ~. Since every 
geodesic through o is planar, we can express the immersion x: M--~ E 8 locally on a 
neighborhood U of o in terms of geodesic polar coordinates (s, 0) as 

(3.2) x(s, O) = (h(s, o) cos 0, h(s, 0) sin 0, k(s, 0)) 

for a suitable choice of Euclidean coordinates of E ~ where h and k are differentiable 
functions satisfying h(0, 0) = k(0, 0) = 0. 

Differentiating (3.2) with respect to s and 0, we obtain two orthogonal vector 
fields tangent  to M on U 

(3.3) x .  

where x ,  (a/~s)(O, 0) = (cos 0, sin 0, 0). 
For  a fixed 0, x(s, 0) is a geodesic and we thus have 

N 

a ah ak ( ~ ) = ( ~ cos O, ~ sin O, ~ ) , 

( ~  ~ O + ~ c o ~ O ~ )  cos 0 - h sin 0, a--0 - ~  ' 

= 1 .  
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We may put  

ah 
(3.5) 

as 

for a smooth function 

sin f(0,  0) = 0. 

2k 
- cos f(s, 0), as - sin f(s,  0), 

f(s,O) defined on U satisfying cos f(0,  0) = 1 and 

LEMMA 3.1. - (8/80)(•(S, 0)) 2=  0 on the neighborhood U, where K(s, 0) is the 

Frene t  curvature of the geodesic x(s, 0) for a fixed 0. 

P R O O F .  - Let  7 be a geodesic such that  y(s)= x(s, 0) for some 0. Then we 

have 

(~(s, 0)) 2 = (~(T, T), o(T, T)), 

where T(s) = x .  (8/as)(s, 0). We now compute (8/as)Oc(s, 0)) 2 : 

1 a (z(T, T), z(T, T)) = (n~/aoz(a/as, a/as), z(a/as,  a/as)} 
2 ao 

= ((~/~o ~)(alas, a/as), ~(alas, a/as)} + 2(~(v~/~0 a/as, a/as), ~(alOs, a/as)) 

= (~(Va/a~ a/50, 8/8s), z(a/as,  a/as)} (because of the Codazzi equation and (3.1)) 

= (Da/a~ a(a/ao, a/as), z(a/as,  a/as)) - (z(Va/a~ 8/50, a/as), z(a/as,  a/as)) 

= A (~(alao, a/as), ~(Olas, a/as)}-  (~(alao, a/as), (~/~s~)(a/as, a/as)) 
as 

-(~(%~a/as, S/as), ~(alas, a/as)) 

= - (z(a/ao, a/as), (va/~s z)(a/as, a/as)} (because of (3.1)). 

Le t  z(a/ao, a / a s ) = f ~ ( s ) N  and let a(a/as, a /as )= gl(S)N, where N is the unit 
vector field normal to M along y and f~ and g~ are some smooth functions defined 

along y 

(Va/~ ~)(a/as, a/as) = g; (s) N + g~ (s) aN 
aS " 

(3.1) leads to f l ( s )g l ( s )=  0 for all s. 
I f  g~ (0) # 0, then there  exists an interval I contained in Dam y such that  gl (s) ~ 0 

for s ~ I. So fl  ( s )=  0 on I. Thus we have 

(~(alao, a/as), (~ /~  ~)(alas, a/as)} = f~ (s) g; (s) = o on I .  

Suppose that  g~(0) = 0. Le t  So = inf{s]gl(s) ~ 0}. I f  So = 0, then g~(s) ~ 0 for s > 0 
and thus fl  (s) = 0 for s > 0. So, j~ (s) g; (s) = 0 for s > 0. By continuity, f~ (s) g; (s) = 0 
for s 1> 0. I f  So > 0, then gl (s) = 0 for s < So. Thus f~ (s) g; (s) = 0 for s < so. 

I f  there  is some s ~ Dam y such that  g~ (s) = 0, then we keep doing this argument  
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and thus we get (a/ao)(K(s, 0)) 2 = 0 for s e Dora 7. Since this is true for every 0, we 
have 

a/as),  (a/as, a/as)) = o 

on U. In other words, the curvature K(s, 0) is independent of the choice of 0. 

LEMMA 3.2. - The functions h and k are independent of the choice of 0. 

PROOF. - Differentiating (3.3) with respect to s, we get 

a2x _ { a2h 
(3.6) as ~ [ -Us  e 

cos 0, ~ a2 h sin 0, - -  a2 k / 
as 2 as e ] " 

Thus the curvature K(s, 0) satisfies 

(8.7) Oc(s ,O))2=(~s)  2 �9 

On the other hand, (3.1) gives 

(3.8) 
as 2 '  a0 Ts  =O,  

which implies 

(3.9) Of Of _ O. 
aO as 

By Lemma 3.1, the curvatures do not depend on 0 and so we choose a geodesic 
x(s, O) for some 0 and examine its curvature. 

Suppose that  K(0, 0) = 0. Let  so = inf {s I K(s, 0) ~ 0}. I f  sl = O, then K(s, 0) ~ 0 for 
s > 0. (3.7) and (3.9) imply af/00 = O for s > 0. By continuity, af/ao = 0 for s i> 0. If  
sl > 0 (possibly + ~),  then K(s, 0) = O for 0 ~< s < Sl. Then the inside of the geodesic 
circle S1 centered at o with radius s~ lies in E 2 . In this case, h and k are clearly inde- 
pendent of the choice of 0. 

Suppose that  K(0, 0) ~ 0. Then we can choose a sufficiently small neighborhood of 
o where K(s, 0);~ 0. Evidently af/as ~ 0 and thus af/ao = o on this neighborhood. 
Developing this argument  continuously if •(s, 0) = 0 for some s # 0, we see that  h and 
k are independent of the choice of 0 in the neighborhood U because h(0, 0)= k(0, 0)= 0. 

Since the functions h and k only depend on the arc length s, (3.2) defines a surface 
of revolution around the point o. 

ConVersely, a meridian of a surface of revolution is always a geodesic and all the 
normal sections at the point o are geodesics through o if M is locally a surface of revo- 
lution with axis of symmetry  passing through o. Thus we have 
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THEOREM 3.3 (Local characterization). - Let  M be a surface in E ~ . Then M is local- 
ly a surface of revolution with vertex p (around a neighborhood of p) if and only if 
every geodesic through p is a normal section of M at p. 

THEOREM 3.4 (Global characterization). - Let  M be a complete connected surface 
in E 3 . Then M is a surface of revolution if and only if there is a point p in M such that  
every geodesic through p is a normal section of M at p. 

4. - Surfaces of  a Euclidean space with planar geodesic through a point. 

Let  M be a surface in E "~ (m I> 3). We define the property (.s). 

(,~) There is a point p in M such that  every geodesic through p is planar. 

LEMMA 4.1. - Let  M be a surface in E m and let y be a geodesic in M through p. I f  y 
is a planar curve, then 7 is a normal section of M at p. 

PROOF. - Let us assume that  7 is parametrized by the arc length s and let ~'(0) : p. 
Then we have 

y'(s) = T, 

y"(s) = ~(T, T), 

y"(s) = -A:(T, ~)T + (VTz)(T, T). 

Since y is a plane curve, y ' (s)A y"(s)A y '(s)= 0 along y. Thus we get 

T A ~(T, T) A ( - A~(T, r> T + (Vr ~)(T, T)) = 0, 

which implies 

(4.1) 

and 

(4.2) 

T/kAy(T, T)T = 0 

z(T, T) A (VT~)(T, T) = O. 

Suppose first that  ~(t, t) ~ 0, where t = T(0). We can choose a neighborhood U of p 
such that  ~ ( u , u ) ~ 0  for any nonzero vector u~TqM,  q c U .  So y lies in p +  
+ Span {t, O(t, t), (Vt ~)(t, t)} and hence • is a normal section at p. 

Suppose ~(t, t) = 0. I t  is enough to consider or(t, t) = 0 and ~(T, T) ;~ 0 for s > 0. 
Let  N be a normal vector field to M which is parallel to ~(T, T) along y for s > 0. 
Then we can choose a vector field T • which is tangent  to M along y and perpendicular 
to the plane H spanned by {T(s), N(s)} (s > 0). Extend T • (s) up to the point p, which 
will be denoted by the same notation T • Then {t, T • (0)} is an orthonormal basis for 
Tp M and T ~ (0) is perpendicular to the p lane / / .  N(0) is thus a normal vector to M at 
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p. Consequently, r lies in p + Span {t, N(0)} and hence y is a normal section at p in the 
direction t. (Q.E.D.) 

Making use of this lemma, we see that  the property (*2) is equivalent to the prop- 
erty (*8) if the ambient manifold is a 3-dimensional Euclidean space E 3. 

Thus we have 

THEOREM 4.2. - Let  M be a surface in E 3 . Then, M satisfies the property (*3) if and 
only if M is locally a surface of revolution. 

COROLLARY 4.3. - Let  M be a complete connected surface in E 3 . Then M satisfies 
the property (*8) if and only if M is a surface of revolution. 

We now suppose that  a surface M in E "~ satisfies the property (*3). By virtue of 
(4.1), we get 

(4.3) (~(T, T), ~(T, T • = 0, 

where ~ ' ( s )=  T, y being a geodesic through p. In particular, (z(t, t), z(t, t• = 0, 
t = T(0). I t  is true for any unit vector t in Tp M and thus M is isotropic at p. So we may 
use Lemma 1.2 later. 

Let  (s, 0) be the geodesic polar coordinate system about p. We may assume that  p 
is the origin o of E m . Let  expo (s e(0)) = x(s, 0), where e(0) = cos 0 el + sin 0e2 for some 
orthonormal basis { e l ,  e2} for ToM which is associated with the geodesic polar coordi- 
nates (s, 0). 

LEMMA 4.4. - Let  M be a surface in E m with the property (*3). Then 

a 
(4.4) -~  (~(s, 0)) 2 = 0, 

where K(s, 0) is the Frenet  curvature of x(s, 0). In other words, the curvature of each 
geodesic through o does not depend on 0. 

This lemma can be proved similarly to Lemma 3.1. 

Since every geodesic through o is a plane curve and it is a normal section at o, we 
may represent the immersion x: M ~ E  "~ locally as 

(4.5) x(s, O) = h(s, 0) cos 0 el + h(s, O) sin 0 e2 + k(s, O)N(O), 

where N(O) is a unit vector normal to M at o which may depend on 0 and h and k are 
some smooth functions satisfying h(0, 0) = k(0, 0) = 0 for all 0. 

LEMMA 4.5. - The functions h and k described as above do not depend on 0. 

PROOF. - Since (s, 0) is the geodesic polar coordinate system, we have the follow- 
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ing orthogonal vector fields tangent to M about o: 

(4.6) x ,  ~ = 3--s cos 0 el + ~ sin 0 e2 N(O), 

(4.7) x ,  -~  = ~ c o s 0 - h s i n 0  e l+  - ~ s i n 0 + h c o s 0  e 2 + - ~ N ( 0 ) + k N ~ ( 0 ) .  

Since ( x .  (~/3s), x ,  (a/~s)} = 1, we get 

from which, we may put 

( h/2 ( k)2 
~ss] + ~ s  = 1 ,  

3h 3k 
(4.8) as - cos f(s ,  0), as - sin f(s ,  0), 

where f is a smooth function defined on a neighborhood of o. Since x .  (3/as)(0, 0) = 
= cos 0 el + sin 0 e2, cos f(0, 0) = 1 and sin f(0, 0) = 0. Using (4.7) and (4.8), the curvature 

is represented as 

(4.9) (•(s, 0)) 2 = ( $ f  / 2 
a s  / " 

On the other hand, (4.3) implies 

as 2' 3o ~ 

which yields 

= 0 ,  

(4.1o) a f  3 f  _ 0. 
as 30 

The rest of the proof is exactly same as that of Lemma 3.2. (Q.E.D.) 

We assume that a surface M lies in E 4 satisfying the property (*3) where the base 
point p in the property (*3) is not an isolated flat point. An isolated flat point p means 
a point such that the curvature of every geodesic through p vanishes only at p in some 
neighborhood of p. The curvature tensor R obviously vanishes at flat points. We also 
assume that the point p as the origin o of E 4. Let {el, e2} be an orthonormal basis of 
ToM. 

Suppose first that dim (Im r ~< 1. In this case, by considering Lemma 1.2, we see 
that o is an umbilical point of M. If dim(Imz)o = 1, then by choosing an appropriate 
Euclidean coordinate system of E 4 the immersion x: M---) E 4 can be locally expressed 
in terms of the geodesic polar coordinate system as 

x(s, 0) = (h(s) cos 0, h(s) sin 0, k(s), O) 
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for some smooth functions h and k of the arc length s due to Lemma 4.4, where (s, 0) 
is the system of geodesic polar coordinates related to {el, e2}. Thus M is locally a sur- 
face of revolution about o with axis of symmetry  in the direction of the mean curva- 
ture vector at o. 

Suppose that  dim(Ira 0)~ = 0. Since o is not an isOlated flat point, there exists a 
neighborhood of o which is contained in a plane E 2 and this is a special case of above 
surface of revolution. 

We now suppose dim (Im 0)~ -- 2. As we showed in Lemma 2.4, the mean curvature 
vector H vanishes at o and ]]~(t, t• does not depend on the choice of orthonormal 
vectors t and t ~ tangent  to M at o. Choose two unit vectors N 1 and N2 normal to M at 
o such that  

~(el el) z(et , e2) 
(4.11) N1 - and N2 = - - ,  

K(0) K(0) 

where •(0) is the Frenet  curvature at o. Since the functions h and k in (4.5) are inde- 
pendent of the choice of 0, (4.5) can be reduced to 

(4.12) x(s, 0) = h(s) cos 0 el + h(S) sin 0 e2 + k(s)N(O). 

As we did before, computing the length of x .  (~/as) by using (4.12), we may 
put 

(4.13) h '(s) = cos f (s) ,  k '(s) = sin f(s) 

for some smooth function f satisfying f(0) = 0. 
On the other hand, we obtain from (4.12) 

k"(O) = ~(a/~s, a/as)(O, o) 

= ~(cosOel + sinOe2, cosOel + sinOe2) = K(0) cos20N~ + K(0) sin20N2. 

Since k"(0) = (cos f(0)) f '  (0) = f '  (0) -- +- ~(0), 

(4.14) N(O) = +_ (cos20N1 + sin20N2). 

Thus, for a suitable choice of Euclidean coordinates of E 4 associated with el, e2, N~ 
and N2, the immersion x is locally determined by 

(4.15) x(s, O) 

= cos 0 cos f(t) dr, sin 0 cos f(t) dr, • cos 20 sin f(t) tit, • sin20 sin f(t) dt , 
0 0 0 0 

8 

where f(s) = + ~ ~:(t)dt and ~ is the Frenet  curvature of geodesics through o. 

If  a surface ~ M has the form (4.15), it is easily checked that  M satisfies (*3)- 
Thus we conclude 
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THEOREM 4.6. - Let  M be a surface in E 4 without isolated flat points. Then M sat- 
isfies the proper ty  (,s) if and only if M is locally a surface of revolution which lies in 
E ~ or a surface that locally has the form (4.15). 

COROLLARY 4.7. - Let  M be a complete connected surface ~i thout  isolated flat 
point in E 4 . Then M satisfies the proper ty  (.a) ff and only if M is a surface of revolu- 
tion which lies in E 3 or a surface is globally of the form (4.15). 

We now consider a surface M which lies in E ~ satisfying the proper ty  ('3). Again, 
we assume the base point in the proper ty  (*3) is the origin o r E  5 , where o is not an iso- 
lated flat point. 

If  dim (Ira ~)o ~< 2, then M is locally a surface of revolution in E 3 or M is a surface 
with local representation about o of the form (4.15) which lies in E 4 by the exact same 
argument. 

Suppose dim(Ira ~)o = 3. Then 

~(el, e~) A ~(el, e2) A z(e2, e2) ~ O. 

Choose three orthonormal normal vectors to M at o: 

(4.16) N1 = ~(0) ' N2 - a ' N3 - 

where a = II~(el, e2)H and N8 = ~(e2, e2) - <~(el, el), N1 > Yl .  If  we compute the sec- 
ond fundamental form at o as we did to derive (4.14), then we obtain 

( K(0)2- 2b2 ) 
~(~/aS, a /a s ) (O ,  0) = K(o) cos2o -~) N 1 + a sin2ON2 + b sineON3, 

where b = 1[~'3 II- Using this equation and (4.5), we can find N(O): 

( N(O) = + cos20 - K--~sin20N2 • K---~sin20N3. 

Thus locally the immersion x: M -~ E 5 may be writ ten in terms of a suitable choice of 
Euclidean coordinates of E 5 as 

(4.17) x(s, 0)= cos0 cosf(t)dt,  sin0 cosf(t)dt,  +- cose0 sinf( t)dt ,  
o o ~(0)2 

) o s j __ - -  sin 20 sin f( t)  d t , +  sin 20 sin f(t) dt , 
to(O) o 

8 

where f(s) = +- I ~c(t) dt and K is the Frenet  curvature of geodesic through O. 
o 
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Conversely, if a surface M has the form (4.17), then we can easily see that  M satis- 
fies the property (*8). 

THEOREM 4.8. - Let  M be a surface in E 5 without isolated flat points. Then M sat- 
isfies the property (*8) if and only if M is locally a surface of revolution in E s or a sur- 
face in E 4 which has a local representation of the form (4.15) or a surface of the form 
(4.17) which fully lies in E 5 . 

Let  M be a surface in E ~. Since the dimension of the first normal space at o is at 
most three, we obtain the following theorem. 

THEOREM 4.9. - Let  M be a surface in E ~ (m/> 3) without isolated flat points. 
Then M satisfies the property (*8) if and only if M lies locally in E ~ and M is one of the 
three model spaces described in Theorem 4.8. 

From now on we study a surface M in E ~ satisfying the property (*3) whose base 
point o, say the origin of E ~, is an isolated fiat point. 

We now assume that  M is an analytic surface in E ~. 
We first define the degree of an isolated flat point. 
Let  p be an isolated flat point of a Riemannian manifold. Then for every geodesic 3, 

parametrized by the arc length s through p = ],(0), its curvature Kr(s) satisfies 
(n) c0 0}. Ky(0) = 0 and r  0 for sufficiently small s. Let  d ( p ) -  inf{n e Z+ ~r , ) 

Then d(p) is well-defined integer t> 1. 

DEFINITION. - d(p) is called the degree of the isolate flat point p. 

Suppose that  the analytic surface M in E ~ satisfies the property (*3) and that  the 
base point in the property (*8) is an isolated flat point. We also assume that  the base 
point is the origin o of E ~. 

According to (4.5) and Lemma 4.5, the immersion x: M--~ E " is locally represent- 
ed in terms of geodesic polar coordinates (s, 0) about o: 

(4.18) x(s, 0) = h(s)e(O) + k(s)N(O), 

where h and k are analytic functions of s such that  h(0) = k(0) = 0, h'(s) = cos f(s), 
8 

k'  (s) = sin f(s), f(s) = +_ I lc(t) dt, e(0) = cos 0 el + sin 0 e2 and N(O) is a unit vector nor- 
0 

real to M at o depending on 0. 
For  r /> 2, the r-th derivatives of h and k are: 

h(r)(s) = - (sin f(s)) f(r-1)(s) + 01( f ' ,  f " ,  .... f(,r 2)) 

and 

k (r) (s) = (cos f(s)) f ( r -  1)(s) + 02 ( f ' ,  f " ,  ..., f ( r  - 2 ) ) ,  
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where O i ( f ' , f " ,  ...,f(~--2)) ( i = 1 , 2 )  are certain polynomials with respect to 
f , ,  f , , ,  ..., f ( r - 2 ) .  Since o is an isolated flat point and since the curvature of each 
geodesic through o is independent of the choice of 0, there is an integer p (> 1) such 
that  K(0)= K'(0)= ... = K(P-2)(0)= 0 and K(P-1)(0)~ 0, that  is, the degree of o is 
p -  1. Since •(s)= -+f'(s), we see that  

h (~) (0) = 0 

and 

In other words, 

(4.19) 

and 

k (r) (0) = 0 

(4.20) 

for any r i> 2, 

(O ~< r ~< p - 1), k (p) (0) ;~ O. 

a r x  
- - ( 0 ,  0) = 0 (2 ~< r ~< p - 1) 
as r 

a p X C0, 0) = k (p) (0) N(O) = h; (p - 1) (0) N(O) ;~ O. 
as p 

We now define the r-th (r I> 1) covariant derivative of ~ by 

(W~)(x1,  x2 ,  ..., x ~ , 2 )  

r+2  
= Dx , ( (V v - I r  ..., Xr+2)) - E (~r-1~)(X2, ..., V x X i ,  ..., Xr+2). 

i=2  

Then y r z  is a normal bundle valued tensor of type (0, r + 2). Moreover, it can be 
proved that  

(4.21) (V~)(X1, X2, X3, . . . ,  X r + 2 )  - (vro ')(X2,  X l ,  X3 . . . ,  X r + 2 )  

r+2  
= RN(X~,  X2)((W-2~)(X3 . . . .  , Xr+2)) + F, (W-2~)(X~,  ..., R(X~, X~)X~, ..., X~+~) 

i=3  

for r i> 2, where X1, X2, X3, ..., Xr+ 2 are vector fields tnagent  to M, R N the normal 
curvature tensor, R the curvature tensor of M and ~o~ = z. 

On the other hand, for r ~ Z + ,  

ar x 

as r 
(o, 0) = (Yrz) ( t r*2) ,  

where t -- e(0) = cos0el + sin0e2 and (vra)(tr+2) = (Vra)(t, t, t, ..., t). Then we can 
easily prove 
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LEMMA 4.10. - If  (vr~)(tr+2) = 0 (0 ~< r ~< p - 1) and (VP~)(t p+2) # 0 for all t in 

ToM then V-Pz is symmetric and V~z = 0 at the point o for 0 -< r ~< p - 1. 

and 

Thus if the point o is an isolated flat point of degree p - 1, then we have 

a t  the point o. 
Denote by 

W a = 0  ( 0 ~ < r ~ p - 1 )  

Vrz is symmetric 

(Vra)(e~, e j) = (Vr~)(ell, e12,..., eli, e21, e22, ...e2j), 

where i + j  = r + 2 and elh = el, e2k--e2 for all h = 1,2, . . . , i  and k = 1,2,3, .... j .  
Since the curvature K is independent of the choice of the geodesic through o, we 
get 

]I(W~)(eF§ = II(W~)(e(O)F+~)il for all O. 

So we obtain the following equation 

p+l p + 2  
--r__~l( r ) cOS2(p+2-r)0 Sin2rOI](~P~)(eP+2)]] 2 

- ,  
cosZ(P+2)-~-*O sm O((V z)(el , e2), (V -pz)(elp+~-*, e2)}=O, 

r<s\ r 

which yields 

(4.22) (P;2),,(V'~)(ep+2),,2=(pq2)l[(V'~)(e~+2-q. eq)H2 

+2  2 (P+21(p+21<(Wz)(e~+Z-~,e;),(Wz)(er+2-*,e~)} 
r<s<~2q[ r ]\ s 1 

for r = 2 q  (qi>1)  and 

E [p+2~[p+2~''~p \~ p + 2 - r  rx , e2), (VP~)(ePl +Z-~, e~)) = O (4.23) r<._~2q-:~, r } /  s )~v :~e~ 

f o r r = 2 q - 1  (qt>1).  
On the other hand, the maximal dimension of {(VP ~)(%, %, ..., %+2) t% = el or e2} 

is p + 3 .  
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From (4.20), we see that  

(4.24) N(O) = 1 (~pz)(e(o)~+2) II(v  2)H2 

II(Vpr + 2)lie r cosP+e-r 0 sin r 0. (VP~)(e~ +2-~, e2 ). 

Thus, if o is an isolated flat point of degree p - 1, then M is locally contained in at 
most (p + 5)-dimensional Euclidean space pP + 5 and in this case the second fundamen- 
tal form ~ satisfies (4.22) and (4.23) and the immersion x: M - + E  ~ becomes 

x(s, 0) = h(s) cos 0 el + h(s) sin 0 ee + k(s)N(O),  

where h and k are analytic functions such that  h(~)(0)= 0 for all r I> 2, k (~) (0)= 0 
(0 ~< r ~< p - 1), k(P)(0) ;~ 0 and N(O) is given by (4.24). 

Thus we have 

THEOREM 4.11. - I f  a surface M in E ~ satisfies the property (*3) whose base point, 
say the origin o o r E  ~, is an isolated flat point of degree p - 1, then M locally lies in at 
most (p + 5)-dimensional Euclidean space E p + 5 about o and is of the form: 

/ ( f )  (4.25) x(s, O) --- cos f ( t ) d t  (eosOel + sinOe2) + sin f ( t ) d t  N(O), 
0 

8 

where N(O) is of the form (4.24), f ( s )  = +- ~ K(t) dt and ~c(s) is the Prenet  curvature of 
geodesics through o. 0 

J 

Combining Theorem 4.9 and Theorem 4.11, we can classify analytic surfaces in E m 
satisfying the property (*3)- 

THEOREM 4.12 (Classification). - Let  M be an analytic surface in E m . I f  M satisfies 
the property (*3), then M is one of the following: 

(1) M is locally a surface of revolution about o which lies in E 3, 

(2) M is a surface of the form (4.15) about o which fully lies in E 4, 

(3) M is a surface of the form (4.17) about o which fully lies in E 4, 

(4) M is a surface of the form (4.25) about o which lies in E p § 5, where the 
degree of the isolate flat point o is p - 1. 

REMARK. - According to K. SAK~0TO [S-1], and J. A. LITTLE [L], a surface in a 
Euclidean space E m with planar geodesics must be an open portion of a plane E 2, a 
standard sphere S 2 or a real projective space R P  ~ . So M must  lie in a 5-dimensional 



34 YOUNG HO KIM: Surfaces of a Euclidean space, etc. 

Euclidean space E ~ . However, a surface M in E m (m i> 3) satisfying the proper ty  (*3) 
may lie fully in a higher dimensional Euclidean space depending on the degree of the 
isolate fiat point if the base point in the proper ty  (,~) is an isolated fiat point. 
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