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Summary. - We present a new approach to the Morse theory which is based on a generalization 
of the Conley index to non locally compact spaces. The variant of the Morse theory which we 
obtain seems suitable for the applications to nonlinear functionals analysis. Some applica- 
tions are given here; they mainly concern the study of periodic solutions of second order 
Hamiltonian systems. Other applications are in some quoted papers. 

Introduction. 

In the first four sections of this paper we present a new approach to the Conley-in- 
dex theory to non locally-compact spaces (cf. also [B1] and [B2]). The definitions and 
the theorems are carried out in a fairly large generality as far as this generality does 
not complicate too much the theory. 

We have worked in a metric space and we have not imposed any compactness assump- 
tion to the flow even if in the applications a reacher structure needs to be added. 

We have chosen this approach because we think that this level of generality helps 
to understand the underlying structure and also allows to compare this theory with 
other versions of the Conley index theory in infinite dimensional spaces (cf. the com- 
parison with Rybakowsky [RY] in section 3). 

Moreover it is possible that the study of this structure without any compactness 
will help the analysis of the critical points at infinity in the sense of Bahri (cf. 
e.g. [BA] and its references). 

In the following sections we are interested to the study of critical points of a C I- 
functional defined on a Banach space (or more in general on a Finsler manifold). 

In this framework we are able to write the analogous of the Morse inequalities for 
C l-functionals whose critical points may not be isolated. 

To do this we introduce the concept of C-Morse covering (cf. Def. 5.11, Th. 5.12 
and Th. 5.14). 

(*) Entrato in Redazione il 26 settembre 1988. 
Indirizzo dell'A.: Istituto di Matematica Applieata ((U. Dinb), via Bonanno 25/B, 56100 - Pisa 

(Italia). 
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In section 6 we consider the study of C2-functionals on a Hilbert manifold 
equipped with a Riemannian structure. 

At this level the theory becomes comparable with the classical Morse theory. Thus if 
the functional is a Morse functional (i.e. all the critical points o f f  are nondegenerate) we 
obtain the same results of the Morse theory. If the functional has only isolated, but possi- 
ble degenerate critical points then we get the results of the Gromoll Meyer theory ([GM], 
cf. also [CH1]). However our theory does not suppose ,,a priori,~ that the critical points are 
isolated, since also in this case it is possible to use the concept of ~-Morse covering. This 
fact will be very usefull in the applications of the three following sections. 

In Section 7 we present some existence theorem for C 1-functionals. Some of these the- 
orems can be obtained via minimax methods (cf. e.g. JR1]). However the use of the Morse 
theory gives an extra information which may be essential in some cases. For example we 
refer to [BF1], [BF3] and [BG] where Theorem 7.5 and Corollary 7.9 are the main tools in 
solving the problems studied there. 

In Section 7 we consider also an elliptic equation for which an existence result is ob- 
tained in a relatively way (Th. 7.14). We consider this equation as an example for which 
the Morse theory works better than the minimax theory (of corse we do not mean that the 
Morse theroy works always better than the minimax theory: it depends on the problem!). 

In Section 8 we apply this theory to equivariant functionals. In this case, the most 
natural thing to do would be to adapt the equivariant Morse theory (cf. e.g. [BO1] and 
[PAC] for the nonvariational case) to our theory. This fact would not present  particu- 
lar difficulty. 

Instead we exploited the equlvariance of the functional in a simper way using only the 
theory developed in the previous sections. We did this for two reasons: the first is to keep 
the paper to a simpler level and to avoid technicalities when it is possible. The second is 
that this level is sufficient to the applications we considered in the following. 

The last four sections are devoted to the applications of the Morse theory to the 
study of periodic solutions of second order conservative systems. 

In sections 7 and 8 we define the Maslov index and the twisting number in such a 
may tha t  it can be easily related to the Morse index of our theory. The results of this 
sections are the ,,easiest translatiom~ in our theory of ideas already existing (cf. e.g. 
[B02], [COZ1], [COZ2], [EK], [EKH] and their references). The existence of periodic 
solutions and their relation to the twisting number is investigated in the last two sec- 
tions (cf. also [B4]). 

1. - The general ized  Conley  index.  

Let M be a metric space on which a flow ~ is defined i.e. a (continuous) 
map 

~7: R • M--> M 

such that v(0, x) = x and V(tl, v(te, x)) = V(tl + t~, x); (tl, t2 �9 R, x �9 M). When no ambi- 
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guity is possible we will write x. t) instead of ~(t, x). If X is any subset of M and T a 
positive constant we set 

(1.1) Gr(X)=Gr(X,~)={xeMIX'[-T,T]cX}=t~[nr,~(t,X') 

where X denotes the closure of X. 
Also we set 

2=2(~) = {X�9 is open and 3 T > 0  s.t .  Gr (x ,v )  cX} 

DEF. 1.1. - A pair of closed subset of X, (N, No) with No c N is called index pair 
if 

(i) 3T �9 R+: GT(N-No) c int(N-No); 

(ii) No is positively invariant with 
x.[0, t] cN~x.[O,t] cNo); 

respect to N (i.e. x�9 and 

(iii) No is an exit set for N (i.e. x �9 N and x. [0, t] r N ~ 3t* �9 [0, t] such that 
x. t* �9 

We say that (N, No) is an index pair for X �9 2 if 

(iv) N-No cX and there exists T >  0 such that G~'(X)cN-No. 
Now it is necessary to recall some concepts from the homotopy theory. 

If X is a topological space and A is a closed subset then X/A denotes the spaces ob- 
tained by X identifing all the points of A. 

Two spaces X/A and Y/B are called homotopic equivalent if there are maps 
~: X/A ~ Y/B and ~: Y/B --> X/A such that ~([A]) = [B]; ~([B]) = [A] and such that ~ o 
and ~ o ~ are homotopic to the identity by homotopies which leave the points [A] and 
[B] fixed respectively. 

The class of all spaces homotopically equivalent to X/A is called homotopy type of 
X/A and denote by [X/A]. 

The homotopy type of X/X is denoted by 0; if X is a contractible space, the homo- 
topy type of X/~ is denoted by 1. Moreover, by convenction, we set r = 0. 

DEF. 1.2. - For X �9 2, the homotopy index of X is the homotopy type of an index 
pair (N, No) relative to X; in formula we write 

h(X) = h(X, rj) = [N/N0]. 

We shall call h(X) the (generalised) Conley index of X. 
The definition 1.2 makes sense ff we prove that 

(1.2) 

(a) V X �9 ~ there exists an index pair (N, No) for X 

(b) thenif (N,[N/No]NO) and= [N/No]. (/~'/Vo) are two index pairs relative to X, 
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In order to prove (1.2) some work is necessary. First, we need an other notation; for 
T > 0 we set 

(1.3) FT(X) = IF(X, ~) = {X e GT(x, r~)[x. [0, T], 8X r 0}. 

We need now a technical lemma: 

LEMMA 1.3. - Suppose that X, Y e 2;; then 

(i) X c Y--~ GT (x) c GT (y) for every T >  0; 

(ii) T~ > T~> O~Gr~(X) c Gr~(X); 

(iii) GT'+T~(x) = GT~(GT~(X)); (iv) if GT(x) c J( then G2r(X) c in t  [GT(X)]; 

(v) GT(X) is closed; 

(vi) if X e 2: then G T(X) and v(t, X ) e  2:; 

(vii) F r (X) r 8G T (X). 

PROOF. - (i), (ii) and (iii) follow easily from the definition of GT(x). 

(iv) In order to prove (iv) we argue indirectly and we suppose that there exists 
y e G2T(X) n aGT(X). Then there exists a sequence y~- .  y such that y~. [ -T ,  T] r 
This implies that there exist times tn e [ -T ,  T] such that y~. t~ r X; we can extract a 
sequence tn such that t~ ~ t, so we have that y~. t n ~  y" t e 8X. Since y e G 2T (X), y.  [ -  
- 2 T ,  2T] c X  and so y . t  e Gr(X) (since Itl-<T). 

And this contradicts our assumption that GT(X)n a X e  O. 

(v) GT(X) is closed because by (1.1) it is the intersection of a family of closed 
sets. 

(vi) G ~ ( X ) e Z  by (iv) and (v). ~ ( t ,X)eZ  by the continuity of r~. 

(vii) Let {x~} eFT(x)  with x~-->5. Then there exists tne[0,  T] such that 
Xn't~ e 8X. Let t~[ be a subsequence of tn converging to some t e [0, T]; then 
x~- t" ~ 5- t e aX. Therefore ~ e F T (X). 

(viii) Let x e FT(X); then 3t e [0, T] such that x. t e aX; thus there exists a se- 
quence y~ e X c (X c denotes the complement of X in M) converging to x.t .  This implies 
that y n ( - t ) o  x. But y~(- t )  ~ G r ( ~ ,  therefore x e aGr(~'). [] 

Now we can prove (1.1) (a). 

THEOREM 1.4. - (Existence of index pairs). Let X e 2: and let T be a large enough 
that G~ (X) r int(X). Then 

(Gr(z), Fr (x)) 

is an index pair for X. 
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PROOF. - B y  Lemma 1.3 (vi), (vii), Gr(X) and/'~(X) are closed. We have to check 
points (i), (ii) and (iii) of Def. 1.2. 

(i) By Lemma 1.2 (viii), int (G T (X) - F r (X)) = G T (X); so the conclusion follows 
by Lemma 1.3 (iv). 

(ii) Let x �9 and suppose that 

(1.4) x. [0, t] c GT(X) 

we want to prove that x-[0, t] r162 Suppose that this fact is not true; then there 
exists t �9 [0, t] such that x .t ~/'T(X). 

Now set 

t* = inf{~ �9 [0, t]lx.~ r FT(x)}. 

Clearly t* �9 [0, t) and 

(a) x.t* eFT(X) since FT(x) is closed by Lemma 1.3 (vii); 
(1.5) 

(b) x(t*+~n)~FT(X) (with q~>0 and eno0) .  

If we set y=  x. t*,  by (1.5) and the definition of FT(x), we have 

y.[O,T]~aX ~=O, y . [ ~ , T ] n a X = O .  

From the above formulas we have that 

(1.6) y �9 aX. 

On the other hand, by (1.4), y �9 GT(X) and since Gr(X) c X, y �9 X; this fact contra- 
dicts (1.6) since X is open. 

(iii) It is trivial. �9 

THEOREM 1.5. - (Equivalence of index pairs). Let (N, No) and (N, N'0) be two index 
pairs such that exists T > 0 such that 

GT ( N -  No) c N - N  0 and GT ( N -  No) c N -  N o. 

Then [N/No] = [N/N0]. 

REMARK. - The Proof of Theorem 1.5 is essentially contained in Salamon 
[S]. 

He gave a short and elegant Proof of Conley's theorem of equivalence of index 
pairs (in the compact case). Salamon's Proof can be adapted to our case. 

SKETCH Of THE PROOF OF TH. 1.5. - W e  can suppose that GT(N - No) r int (N - N0) 
and that GT(N-No) �9 i n t (N-N0) ;  if not it is enough to replace T by 2T and use 
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Lemma 1.2 (iv). Now let f :  N1/No~ N/No be defined as follows 

l[x . 3T] if x. [0, 2T] c N1 - No and x. [T, 3T] c Yl  - N0 

f([x]) = [[No ] otherwise 

the function f is continuous (for details of the proof see [S] Lemma 4.7). In an analo- 
gous way we can define a map f :  N/No • IT, +~)---)N/No. 

We have to prove that f o f a n d f o f  are homotopic to the identity in N/No and N/-~0 
respectively. 

For t e [0, T] define the map h: [0. T] x N/No---> N/No as follows 

I[x . 6t] if x. [0, 6t] c Y 1 - N O 
h(t, [x]) = [[No] otherwise. 

It is easy to show that h is continuous and that 

h(T, [x]) = f o f  and h(0, [x]) = IdN/go. 

In the some way it is possible to construct a homotopy h: [0, T] x 
x Y/No   /Yo. " 

COROLLARY 1.6. - If (N, No) and (N, No) are two index pairs for X, then IN, No] = 
= IN, No]. In particular (1.1) (b) holds. 

PROOF. - If (N, N0) and (N, No) are two index pairs for X, we have 

by definition 1.1 and 

GT ( N -  No) c GT (X) r N -  No 

GT ( N -  No) r GT (X) c N -  No. 

The conclusion follows from theorem 1.5. �9 

So at this point h(X) is well defined. An other consequence of theorem 1.5 is the 
following Corollary: 

COROLLARY 1 . 7 .  - Let X, Y e ~  and suppose that 3T->0 such that 

(1.7) GT (X) c Y and GT (y) c X.  

Then h(X) = h(Y). 

PROOF. - Let (N, No) and (N, No) be two index pairs for X and Y respectively. 
Then 

(1.9) GT(N-No) r Gr(x)  r Y by Definition 1.1 and (1.7). 
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Since (N, N0) is an index pair for Y, 3T1 > 0 such that 

GTI(Y) E int (N1 -N0) .  

Therefore by the above formula, (1.9) and Lemma 1.2 (iii), we have that 

GT+rl(N-No) c ~ T - N  0. 

For the some reason there exists T2 > 0 such that 

GrI+r2(N- N0) o N - N o .  

Thus by theorem 1.5 (replacing T with T+max(T1,Tz))  the conclusion fol- 
lows. [] 

COROLLARY 1.8. - For every T >  0 h(GT(X))= h(X). 

PROOF. - Trivial. [] 

COROLLARY 1.9. - If ther is T >  0 such that GT(X)= ~, then h(X)= 0. 
Notice that Corollary 1.9 cannot be inverted as the following example 

shows. 

EXAMPLE 1.10. - Take 

M = R; v(t, x) = x - t; X = [0, + ~) 

Then h(X)= 0 but GT(X)~ �9 for every T > 0. 
However there is a good test to see if the index of a set is 0. 
THEOREM 1.11. - Suppose that X e 2  and that 

(1.10) for every x e X, there is t > 0 such that x. t ~ X. Then h(X)= 0 

We need some lemmas to prove Theorem 1.11. 

LEMMA 1.12. - Suppose that (N, No) is an index pair and that ~ is a positive con- 
stant such that 

(1.11) x. [0, z] c N - N o .  

Then there exists an open neighborhood V of x such that for every y e V c~ N, 

y- [0, ~] o N - N o .  

PROOF. - We argue indirectly and suppose that the conclusion of the lemma is not 
true. Then exists a sequence x n - - > x ( x ~ e N - N o )  and a sequence the [0, z] such 
that 

x , . t ~ N - N o .  
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We set 

tn = sup {t e [0, tn] such that  Xn" [0, t] r N} 

t~ is a bounded sequence; so we can suppose that  it is convergent  to some t e [0, z]. By  
our construction, x~- t~ e No; so x. t e No since No is closed. This last s ta tement  contra- 
dicts (1.11); so the lemma is proved. �9 

LEMMA 1.13. - Let  (N, No) = (GT(X);FT(X)) be an index pair for X (cf. Th. 1.4). 
We set 

U = {x e Nl3t  e [0, 2T] such that  x.  t e N c} 

where  N c denotes M -  N. 
Then U satisfies the following properties: 

(i) U is relatively open in N; 

(ii) given two positive constant tl < t2 such that  

x- ti e U and x. [0, ti] r N (i = 1, 2) 

then for every  t e [tl, t2], x. t e U; 

(iii) No r U; 

(iv) (U, No) is an index pair and [U/No] = 0. 

PROOF. - (i) and (ii) are easy to check. 
In order to prove (iii) we argue indirectly and suppose that  there  is x e No such 

that  x- [0, 2T] c N. Since No is positively invariant with respect  to N, x.  [0, 2T] c N 0 .  
Then ff we set  y = x. T, it follows that y e No and y e G T (N) .  Since G T (N) c N by 
Lemma 1.3 (iii) and (iv) and No c aN, by Lemma 1.3 (vii), we have obtained a 
contradiction. 

Now let us prove (iv). Fi rs t  observe that  No r U by (iii). (i) of Def. 1.1 is satisfied 
since U - No = U and G 2T (U) = ~ c i n t  (U). 

To check (ii), it is enough to observe that  U c N. (iii) follows directly by  the defini- 
tion of U. So (U, No) is an index pair. 

[U/No] = h ( U ) =  0 by Corollary (1.9). [] 

PROOF OF TH. 1.11. - Le t  N, No and U as in Lemma 1.13. For  every  x e N ,  we 
choose a t (x )> 0 such that  

x. [0, t(x)] c N and x. t(x) e U. 

This is possible by (1.10) and Lemma 1.13 (iii). I f  x e U we choose t(x) = 0. Also if 
x ~ U, we can choose t(x) such that t(x) ~ No. 

Now for x e N - No, let V~ be an open neighborhood of N (open in the topology of 
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N) such that 

(1.12) for every y e V~, y .  [0, t(x)] r N and y .  t(x) �9 U. 

This is possible by our choice of t(x), Lemma 1.12 and Lemma 1.13 (i). 
For x e No, setV~ = U. Thus {V~}~N is an open cover of N (open in the relative 

topology of N). 
Let {Vi )~I be a locally finte rifiniment of {V~}~N which exists since N is a metric 

space. 
Observe that, by our construction, for every i �9 I, there exists ti---0 such 

that 

(1.13) v(ti, V~) r U and 7([0, t~], V~) c N. 

Now let {~i(x)}i~1 be a partition of the unity relative to {Vi}i~i i.e. a set of function 
~i: N --. R whose support is wV~ and ~ ~i (x) = 1 for every x �9 N. Such partition exists 

ir 
since N is a metric space. 

Now set 

~(x) = E fli (x) ti. 
ieI 

Clearly z(x) is a continuous function. We claim that 

(1.14) x-z(x) �9 U. 

In order to see this, fix 5 �9 N and set 

t 1 (5) - - -  min {ti I-2"ti �9 Vi}; te (2) = max {ti IT" ti �9 Vi}. 

By (1.13), v ( t i , 5 ) � 9  U ( i= 1,2) and v([0, tl],X-) oN.  
Therefore (1.14) follows from Lemma 1.13 (ii). 
Moreover observe that by our construction 

(1.15) z(x) = 0 for every x �9 No. 

Now consider the maph: [0, 1] •  U defined by 

h(s, x)  = ~(s . t (x) ,  x)  

h is an homotopy equivalence between N and U, and by (1.15) it is also an homotopy 
equivalence between N/No and U/No. 

Therefore, by Lemma 1.13 (iv) 

h(X) = [N/NoJ = [U/N0] = 0. " 

REMARK 1.14. - Now, few words to compare the Conley index with our 
generalization. 

A closed set X is called by Conley [C] an isolating neighborhood if I(X) �9 ~: where 
I(X) = (x �9 X: x .R c X} or, using our notation, I(X) = N GT(X). 

t>=0 
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Let 2 be the family of isolating neighborhoods in M; then if M is compact 2 = 2. If 
M is not compact, in general, Z ~ 2 .  So, in our approach it was necessary to restrict 
the class of sets X for which to define index pairs (and introduce the operator 
Gr(.)). 

Now, observe that the relationship (1.7) gives an equivalence relation on 2 (which 
we will denote by ~). 

Corollary 2.4 states that the index is constant on each equivalence class of ~.  If M 
is compact, then X ~ Y if and only ff I(X) = I(Y) (the easy proof of this left to the 
reader). 

So, when M is compact, h depends only on the maximal invariant set I(X) con- 
tained in X; therefore it is an index of isolated invariant sets. Example 1.10 shows 
that this is not the case when the compactness is not assumed (in fact h(X) = 1 but 
I(X) = ~). Concluding, the Conley index is an index of isolated invariant sets; our 
generalization is an index of a class of open sets 2 which has been chosen in order that 
the main properties of the Conley theory can be preserved. 

EXAMPLE 1.15. - Let M = E be an Hilbert space and let L be a bounded normal in- 
vertible operator whose spectrum is far from the imaginary axis. 

We consider the flow V defined by the differential equation 

(1.16) 2 = L x .  

We want to compute h(X, ~) where X is a bounded open neighborhood of 0. By our as- 
sumption E can be splitted as follows 

(1.17) E = E + <~E-  

where E + and E -  are two mutually ortogonal subspaces such that exists a constant 

(1.18) 
(Lx ,  >= :t[xll w + E + 

(Lx ,  -  11 112 W e E - .  

According to the splitting (1.17), (1.16) can be written as follows 

~c+=L+x +, 5c-=L x 

where x = x + + x -  with x e E and L +- = LIE+:. 

Now, if Y is any other bounded open neighborhood of 0, by (1.18), it is easy to 
check that X, Y e 2(v) and that (1.7) is satisfied. Then h(X) = h(Y). In particular we 
can take 

Y = (BR (~ E +) x (BR n E - )  

where BR is the open ball of radious R. 
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It is easy to check that 

(Y, (BRnE  +) x a(BRnE-)) 

is an index pair and that it is homotopically equivalent to 

Also we have 

B R n E -  

O(B R n E-)  

So concluding, we have 

(BR n E - ,  ~(BR n E- ) ) .  

I[S N,*] if d i m E - = N  

[[S ~, *] = 0 if E -  is infinite dimensional. 

h(X) = h(Y) = IS N, *] 

where N is dim E -  and remembering that [S =, *] = [*, *] = O. 

2. - Stability and homotopy invariance of  the generalised Conley index. 

The stability and homotopy invariance of the Conley index is a very important 
tool in the applications. However, in this paper, we consider only applications rela- 
tive to variational systems (cf. section 5) where a much richer structure is exploited. 
In the case of variational systems the stability of the index is much easier to prove 
and independent proof of it will be given in Th. 5.16. Nevertheless we think that the 
stability of the index is so important that a general proof is worth to be presented at 
the level of generality of section 1. In the compact case the homotopy invariance of 
the index (or ,continuation property,) has been investigated by Conley himself and 
others ([CO], [CHU], [SA]). 

We start with some notation: 

5:(M) = {X c MIX is open} 

and 

dH (X, Y) = sup d(x, Y) + sup d(y, X). 
xeX y~Y 

If M is bounded, then dH is the Housdorff metric between X and Y; in general, howev- 
er, the function dH can take the value + ~. 

We need also the following notation 

X~Y.~.Ne(X) cY ,  XEY<:> 3~> 0 s.t. Xr~Y. 
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We set 

2o = 20 (v) = {X e 3"(M){-~T, 6 > 0 s.t. G T (N~ (X)) t-X, and 

V(., T)IN~(X ) is uniformly continuous}. 

Clearly So r 2. 

THEOREM 2.1. - Let X e 2 o (V) and let ~ be a flow such that 

d(~(t, x), 77(t, x)) <= ~ V te  [ -T ,  T], Vx e X 

where ~ and t are suitable positive constants, which depend on X and v. Then 

(i) X e 20 (77) 

(ii) h(X, 77) = h(X, ~7). 

Before proving Theorem 2.1 we will see two important consequences of this 
theorem. 

COROLLARY 2.2. - Let X, V, { be as in Theorem 2.1 and let X be an open set such 
that 

(2.1) dH(X, ff~) < ~1 

where ~1 is a positive distance depending on X, v, ~ but not on fir. 
Then 

(i) 2 e 20 (}) 

(~) h(2, ~) = h(X, ~). 

PROOF. - By Th. 2.1 (i), there exist T, 61,62 > 0 such that 

~2 
GT (Nel (X), ~7) Z X.  

Now choose ~1 > 0 smaller then rain(61/2, 62/2). Then by (2.1) 

(2.2) Gr (N~I (X), ~) EXX.  

Moreover, by the choice of ~1, we have 

r N~I (X) c Nz~/2 (X) and N~, (X) c N~ (X). 

By the above formula and (2.2) we get, 

(2.3) GT (N~ (~Y), 77) r GT (N~, (X), ~) ~ X  n X .  

The above formula proves (i). 
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Moreover by (2.2) and (2.3), we have that 

GT (x, ~) c X and GT (x, ~) C X.  

Then by Corollary 1.7 we have 

h(X, ~) = h(X, ~). 

The conclusion follows by (ii) of Theorem 2.1. �9 

COROLLARY 2 .3 .  - Let ~ ,  ;~ �9 [0, 1], be a family of flows depending continuously on 
with respect to the topology of the uniform convergence on X x [ -T ,  T] for every 

T > 0 where X r M. 
Suppose that X~ is a family of sets contained in X and depending uniformly on 9~ 

with respect to the Hausdorff topology. 
Finally suppose that X~, �9 210 (v~) for every ;~ e [0, 1]. Then h(X~, r~) does not de- 

pend on ;~. 

PROOF. - By Corollary 2.2, for every ; �9 [0, 1], there exists a neighborhood of ),, I~ 
such that 

h(X~,, w) is constant for ~ e I~. 

Then the conclusion follows strightforward. �9 
The proof of Theorem 2.1 is involved and relies on several lemmas. 

LEMMA 2.4. - Take X e 21 and T large enough such that 

(2.4) G 3/2 (X) c X.  

Set~l:int(GT/2(X))-~ Gr(X)/FT(X) be defined as follows 

Then ~1 is continuous. 

I[x. T] 
~l(x) = lIFT(X)] 

if x. T e Gr (X) 

if x. T ~ GT (X). 

(2.5) 

Moreover 

x �9 int (G ~/~ (X)) ~ x. [0, T/2] c X.  

x. T e GT (X) ~ x . [1T,  3 T] c GT/2 (X). 

PROOF. - It is obvious that ~1 (x) is continuous if x. T �9 int (GT(x)) o r  x. T 6~ GT(X). 
So we have to consider only the case x. T �9 ~GT(X). First  notice that 
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Thus by (2.4) and the above formula x.[(1/2)T, (3/2)T] r X and by (2.5) it follows 
that 

(2.6) x. 0, ~-T c X .  

We claim that 

(2.7) x. T e 5GT (X) ~ x. T e FT(X). 

In fact if x . T  �9 ~GT(X) there exists t e [0,2T] such that x . t  e ~X. 
By (2.6) we have that t->(1/2)T= T. Then by the definition of FT(X), (2.7) fol- 

lows. So we have that 

x. T e aGT(X) ~ ,zl (x) = [FT (X)] 

and by the above formula the continuity of ~ at x follows easily. �9 

LEMMA 2.5. - The function ~2: GT(X)/FT( X)--> GT(X)fl~(X) defined as follows 

I[x. T] if x. T e GT (X) 

~2 ([x]) = [[/,T (X)] otherwise 

is continuous. 

PROOF. - The proof of thie lemma is contained in the proof of Th. 1.5 when it is 
shown that h(t, [x]) is continuous. " 

LEMMA 2.6. - Let X e2o(v) and let T > 0  be large enough that 

(2.8) GT/2(X) ~ X  for some ~ > 0 .  

Then there exists ~1 = ~I(v,X) such that 

x ~ N~I (Iv (X)) ~ x" [O, 3 T] n ~X r ~. 

PROOF. - Choose 81 small enough that 

(2.9) d(x l  , x~) < ~1 ~ d ( x l  " T,  x2 " T) <= 8/2 V X l  , X 2 �9 X,  

This is possible by the uniform continuity of v(T,-). 
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So we have 

3~ �9 rr(X):  d(x,2)<-~l~ 

d(x. T,2. T) < ~/2 ~ 

d(x. T, 8X) < 8/2 

x. T ~ Gin(x) 

[1 1 x. ~T,  T n O X r  [] 

[by (2.9)] 

[since 5. T �9 aXJ 

[by (2.8)] 

[by the definition of G m (X)] 

In the following lemmas we shall write ~t(x) instead of ~(t, x) to simplify the 
notation. 

LEMMA 2.7. - Take X �9 Z0 (V) and choose T large enough that 

(2.10) GT (X) ~- GT/2(X) ~- X. 

Let ~ be a flow such that 

(2.11) d(~t(x),~t(x)) < 1 V x � 9  Vt �9  [-T,T] 
- - 2  

where 81 = ~1(~, X ) <  ~ is defined in Lemma 2.6. 
Let h: [0, 1] x GT(X)/Ir GT(X)/FT(x) be defined as follows 

I[V2T o V-~T o V).T (X)] if V[0, 2T] (X) C G T (X) 

h(~, [x]) = [ [FT (X)] otherwise. 

Then h is continuous. 

PROOF. - By (2.11) taking t = -AT and replacing x with V-~T(X) we get 

(2.12) d(~_ATO(X),X)<=~I/2)(<=~/2) Y~ �9 [0, 1],YX �9 G~(X). 

Then by (2.10), the function 

x ~ V_~T o WT (x) 

mapsGr(X) into (G~/2(X)) for every ;~ e [0, 1]. 
Now consider the function g: [0, 1] • GT(X)---> GT(x)/FT(x) defined as follows 

"[V2T 0 V-AT �9 ~)~T(X)] if V[0,2T] c GT (X) 
g(~, x) = 

[FT (X)] otherwise 
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Then we have g(X, x) = r o r o (~-~r o V~T) where 

~_~TOWT : [0, 1] • Gr ( X ) o  GIn(X) 

~1: GT/4(X) ---~ GT(x)/FT(X) is defined by Lemma 2. 4. 

~2: GT(x)/FT(x) ~ GT(X)/FT(X) is defined by Lemma 2. 5. 

Since all the above maps are continuous also g is continuous. 
It remains to prove that 

h(A, [x]) = gO,, x). 

So we have to prove that if x e pT (X) then g(t, x) is constant, so that the above equali- 
ty makes sense. 

By (2.12) we have 

x e 1 ~T (X) ~ ~_~T o WT (X) e Y ,  1 (F r (X)). 

By the above formula and Lemma 2.6 we have that 

X e ~ T ( x )  =~ V[0,2T] o W.T o r}_~T(X ) ~ ~ X  =fi ~ .  

Therefore g(~, x) = [F T (X)] Yx e F r (X). '. 

LEMMA 2.8. - Take T large enough that 

Cr(X) ar/  (X) X 

and take el = el (X, v) < ~}/4. 
Now take ~ close enough to V such that 

(i) d(;Tt, (x), vt (x)) <= 81 for every x e X and t e [ -2T,  2T] 

(2.13) J(i i)  N~(GT(X))cGT/2(X) 
2~ 

[(iii) GT(X) E X. 

Then the function f :  GT(x)/FT(X) ----> GT(X)/FT(x) defined as follows 

[~2TOV_T(X)] ff ~2TO~TT(X) e GT(x) 
f([x]) = 

[FT(X)]  otherwise 

(we have used the notation G r ( X ) = G T ( X , ~ )  and s  is continuous 
= r r ( x ,  
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PROOF. - By (2.13) (i) we set 

(2.14) d([7_to~Tt(x),x)<-~l V x e G T ( X )  Vt e [0, T]. 

Then, by (2.13) (ii), the function ~TO)TT mapsGT(X) into intGT/2(X). 
Now define g: GT(X)--> GT(X)/FT(x) as follows 

I[72TO~_T(X) if ~2TO~_T(X) e GT(X) 

g(x) = [[/,T ( X ) ]  otherwise. 

Notice that 

g(x) = r o (~To ~-T) 

where ~1 : int G m (X) ~ G T (X)/I~T (X) is the map of Lemma 2.4 with G T (X), F T (X) and 
#t replaced by ~T (X), pT (X) and Vt respectively. 

Therefore g is continuous. It remains to prove that 

f([x]) = g(x). 

So we have to prove that 

x e F T (X) ~ g(x) is constant 

or more exactly g(X) = [P(X)]. 
Use (2.13) (i) with t = 2 T  and x replaced by )7-T(X) with x e/'T(X); then we 

have 

o r  

d(~2T o V-r (x), V2T o ~-T (X) ) <= 81 

d([72T o rj-T(X), )TT(X)) <= 81. 

Since x e F T (X), we have that ~T (Z) e ~X, and by the above formula 

d(~2T o V-T(X), aX) <-<- ~1. 

Thus ~2T ~ GT(X). So we have proved that 

X eFT(X)~g(x )  -----['T(X) 

and this completes the proof of the lemma. " 

PROOF OF THEOREM 2.1 .  - Take T and ~ such that (2.11) and (2.13) are satisfied 
with 81 < 2~. 
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Moreover, if ~ is small enough, we have also 

(2.14) I (a) N~(Gr(X)) c Gr/2(X) 

[(b) GT(X) r- X. 

Now let f :  GT(x)/Ft(X) ---) G~z(X)/I'T(X) be the function defined in Lemma 2.8. We 
have to prove that f is an homotopy equivalence. 

We clain that f :  GT (X)/pT (X) --) G r (X)/r T (X) is the homotopy inverse o f f  ( f  is de- 
fined as f replacing GT(X) with GT(x), etc...). 

f and f are continuous by virtue of Lemma 2.8 and (2.14). 
Moreover f o f =  h(1, .) where h is defined in Lemma 2.7. 
Lemma 2.7 shows that f o f - h ( O , . )  (where ~,-- means homotopy equiva- 

lence). 
Moreover it is strightforward to show that (h, . )~ Id. Thus f o f  ~ Id. 
Analogously we can show that f o r  ~ Id and this proves Theorem 2.1. 

EXAMPLE 2.9. - Let 7 be the flow defined on M by the defferential equation 

2 = F ( x ) .  

We suppose that M is an Hilbert space E (or an Hilbert manifold). Let 5 a nondegen- 
erate critical point for F i.e. F(~) = 0 and F '  (5): T~M---) T~M (where TxoM denotes 
the tangent space at X0) is defined (as Frech~t derivative) and it is an invertible nor- 
mal operator. 

Since F '  (x) is a normal operator, we have (cf. Ex. 1.15) 

T~M = E+ (~ E - 

where E + is the stable manifold of 7 and E -  the unstable manifold. 
Now let v0 be the flow defined by the following equation 

2 = 5 + F ' ( x o ) . X .  

By Theorem 2.1 it follows that 

h(U, 7) = h(U, 70) 

where U is a neighborood of 5 sufficiently small. 
Therefore by the Example 1.15, if follows that 

(2.15) h(U, ~) = (S m(~), *) 

where re(x) = dimE- .  
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3. - The generalized Conley index and compactness.. 

For X �9 2(v) we set 

I(X) = n GT(X) = (x  �9 Xl~(t ,x)  �9 X for every t � 9  
T>0 

The following compactness assumption is very important for our theory: 

DEF. 3.1. - Let X �9 2. We say that X satisfies the property (C) if for every neigh- 
borhood U of I(X) there exists T > 0 such that 

Gr(X) c U. 

PROP. 3.2. - Suppose that X, Y e Z and that satisfy the property (C). Then 

I(X) = I(Y) ~ h(X) = h(Y). 

PROOF. - Let S = I(X) = I(Y). U = X n Yis a neighborhood orS. Then, since X and 
Y satisfy the property (C) there exists T > 0 such that 

GT (.~ c U c Y and GT (y) c U c X .  

The conclusion follows by Corollary 1.7. �9 

DEF. 3.3. - We say that S c X is a (C)-invariant set if 

(i) S is an invariant set 

(ii) S has a neighborhood U which satisfies the property (C) and such that 
I(U) = S. 

By the remarks before Prop. 3.3 and by the Prop. 3.3, it follows that any neigh- 
borhood sufficiently small of S has the same homotopy index. 

Therefore it is natural to define the index of a (C)-invariant set S as fol- 
lows: 

(3.1) h(S) = h(U) where U �9 2 neighborhood of S sufficiently small. 

The following proposition gives a critierium to check if a set U e 2 satisfies the prop- 
erty (C). 

PROP. 3.4. - Let U �9 2 and suppose that 

(3.2) given a sequence Xn �9 U and a sequence t~-~ + ~  such that xn" [0, t~.] c U, then 
the sequence x~. t~ has a limit point. 

Then U satisfies the property (C). 

PROOF. - We argue indirectly and suppose that there exists a neighborhood V of 
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I(U) such that for every T >  0 

Gr(U) CV. 

Then there exists a sequence y~ e U and a sequence t~ ~ + ~ such that 

y~ e Gt~ (U) - V. 

If we set x~ = y~(-tn), then x~. [0, t~] r U. Then by (3.2) xn.t~ is convergent to some 
(may be considering a subsequence). By its construction ~ .R  c U, therefore 
~eS. 

However, since ~ = lira y~, we have that ~ ~ rd. And this is a contradiction, since 

V is a neighborhood of S . .  

COROLLARY 3.5. - Let M be a locally compact space. Then any compact invariant 
isolated set S c M is a (C)-invariant set. 
Therefore, the index (3.1) is defined for such S. 

PROOF. - Clearly every compact neighborhood of S satisfies (3.2). �9 

REMARK 3.6. - When M is locally compact we get the ,,classical, Conley theory (of 
Remark 1.14). 

The property (3.2) (which was introduced by Rybakowsky [R]) can replace the lo- 
cal compactness of M in such a way that the main properties of the ,,original, Conley 
index are preserved (in particular it is possible to define the index of an isolated in- 
variant set). 

Our theory has been developed without any request of compactness, replacing the 
index of an invariant set with the index of a set X e 2:. 

A compactness property, as the property (C), is required only to define the index 
of an invariant set as in the original Conley theory. 

PROP. 3.7. - Let U satisfy the property (C) and suppose that I(U) is compact. Then 
U eZ0. 

PROOF. - Let 

= d(OU, I(U)). 

Since I(U) is compact then �9 > 0. Then setting V = N~/2 (I(U)), we have that V e Z and 
that, for T large enough 

GT(U) r V (since U satisfies the property (C)). 

Thus V ~ U as we wanted to prove, m 
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EXAMPLE 3.8. - Let 5 be as in Example 2.9. Then 5 is a (C)-invariant set 
and 

h(2) = (S mc~, *). 

4. - The general ized Morse  index. 

Let H* (., .) denote the Alexander-Spanier cohomology with coefficients in some 
field F (cf. [Sp]). 

We recall that the Alexander-Spanier cohomology satisfies the following property 
which is not shared by the singular cohomology theory. 

TH. 4.1. - Let (X, A) and (Y, B) two pairs of topological spaces. We suppose that X 
and Y are paracompact Hausdorff spaces and that A and B are closed in X and Y re- 
spectively. Moreover suppose that X - A  and Y - B  are homeomorphic. Then 

H*(X,A)  ~-H*(Y,B).  

PROOF. - See [Sp], Th. 5, pag. 318. �9 

Now for every pairs of closed spaces (X, A) we set 

cr 

p(X,A) = Pt (X, A) = ~ [dimH q (X, A)] t q 
q=O 

p(X, A) is a formal series whose coefficients are cardinal numbers; these numbers are 
known as Betti numbers. 

If X is compact manifold with boundary A, then p(X, A) reduces to a polinomial, 
called Poincar~ or Betti polynomial. 

p(X, A) is a topological invariant which carries part of the information contained 
in the cohomology algebra H* (X, A). 

When A = 0 we shall write p(X) instead of p(X, 0). Wil shall denote by S the set of 
formal series with cardinal coefficients. The following properties of p(X, A) will be 
used to study the generalized Morse index. 

LEMMA 4.2. - Let (X, A) and (Y, B) be couples of closed subspaces of a metric 
space. Then 

(i) p(X, A) = p(X/A, [A]) 

(ii) if X n Y = �9 then p(X u Y, A u B) = p(X, A) + p(Y, B) 

(iii) p(X,A) x (Y,B) = p(X,A) .p(Y,B)  
where (X, A) x (Y, B) = (X x Y, X x B u Y x A) 

(iv) ff B r A r X then there exists Q(t) e S s.t. 
pt (X, A) + Pt (A, B) = Pt (X, B) + (1 + t) Q(t). 
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PROOF. - (i) Let =: X---> X/A be the projection map. Then =iX-A is a homeomor- 
phism between X -  A and X/A - [A]. Thus the conclusion follows from Th. 4.1. 

(ii) trivial. 

(iii) Since (X, A) and (Y, B) are closed pairs, there is an exact Mayer-Vietoris 
sequence for the H* cohomology (cf. [Sp] pag. 291). 

But every closed pairs  of Hausdorff-paracompact spaces is a tout pair for the 
Alexander-Spanier cohomology (cf. [Sp] pag. 315). 

Therefore H* = H* on such pairs. Therefore the Kiinneth formula can be applied 
to such pairs (cf. [Sp] pag. 249) and get 

H* ((X, A) x (Y, B)) = H* (X, A) (~ H* (Y, B). 

From the above formula the conclusion follows. 

(iv) Let us consider the exact sequence relative to the triple B c A c X: 

(4.1) ... 

and set 

G1 ~* J~ q 
> Hq(X,A)-2-> Hq(X,B)----> Hq(A,B) > ... 

By the exactness of (4.1) we get 

dimHq(X,A)  = cq_~ + aq 

dimHq(X, B) = aq + bq 

dimH q (A, B) = bq + Cq. 

Then we have 

Then 

aq ----- dim (ker i~) 

bq = dim (kerj~') 

Cq = dim (ker ~'~) 

(with the convenction that c-1 = 0) 

p(X, A) = ~ (%-1 + aq) t q q=O 

p(X, B) = q~=9(aq + bq) t q 

p(A, B) = q~=o(bq= q" Cq) t q 

o a  

p(X, A) + p ( A ,  B) -- p ( X ,  B) + q~__0(Cq_l= ~- Cq) t q : p ( X ,  B )  -{~ (1 ~- t) q=~0= Cq t q . 

The conclusion follows setting Q(t) = ~o Cq t q, 
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Notice that  the formula (iv) holds even if some of the coefficients are infinite car- 
dinal numbers. I 

We can now define the generalized Morse index: 

DEF. 4.3. - The generalized Morse index is a map 

i: 2:(~) --~ S 

defined by 

it (X, ~) = Pt (N, No) 

where (N, No) is an index pair for X. 
When no ambiguity is possible we shall write i(X) instead of i t (X,)7). 
Using Th. 1.4 we could define the GIM in the following (formally) simpler 

way 

it(X, 7) = lira pt(GT (X),FT (X)). 
r -~+~ 

EXAMPLE 4.3. - Le t  V, 5, U be as in the Example 2.9. Then 

i(U) = ~ dimHq(S ~(~), *)t q = t "~(~ [by 3.9] 
q=0 

since we have 

Hq(S~,.)={OF i f q r  
i f q = k .  

REMARK 4.4. - By Lemma 4.2 (i), p(N, No)= p(N/No, [No]); so the generalized 
Morse index depends only on h(X); thus it is well defined by (1.1) (a) and (b). The 
above remark implies that  the generalized Morse index carries less information than 
the Conley index. Nevertheless it is more usefull since it is much easier to deal with. 
The following theorem illustrates the first properties of the generalized Morse 
index: 

THEOREM 4.5. - The generalized Morse index satisfies the following proper- 
ties 

(i) i fX  e 2: and for every x e X, there is t > 0 such tha t  x. t ~ X, then i(X) = 0; in 
particular if G r ( x )  = 0 for some T > 0, then i(X) = 0; 

(ii) if X e 2: is contractible and positively invariant, then  i(X) = 1; 

(iii) if X, Y �9 Z and X • Y = 0 then i(X w Y) = i(X) + i(Y); 

(iv) if Vi is a semiflow on Mi (i = 1, 2), then a semiflow Vl • ~2 is defined on M1 • 
• Me as follows 

(~71 • ~2)( t, (Xl, X2)) = (r~l(t, Xl), ~2(t, X2)); 
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then if X~ �9 Z(w) (i = 1, 2), we have that  X~ x X2 c 2:(M~ x M2, Vl X 72) and i(X1 • 
x X2, ~1 X W) = i(X1, )~1)" i(X2, )72). 

PROOF. - (i) follows from Theorem 1.11; (ii) follows by the fact tha t  

H q (X) = 1 if and only if q = 0. 

(iii) and (iv) follow by Lemma 4.3 (ii) and (iii) respectively. �9 

Next we are going to prove a property of the GIM which is a generalization of the 
classical Morse inequalities. 

DEF. 4.6. - Take X1, X2 �9 2 with X1 • Xe = 0. We say that  X2 is over X1 if there 
exists T > 0  such that  X ~ n G T ( X l w X 2 )  is positively invariant with respect to 
GT (xl  w xe). 

I f  X2 is over X1 and X1 is over X2 then we say that  X1 and X2 are v-disconnected. 
Otherwise we say that  are ~-connected. 

EXAMPLE 4.7. 

(I): if X1 • X2 = 0, then X1 and X2 are v-disconnected. 

(II): Let  f be a Liapunov function for (M, V) and let c be a constant which is a 
regular value for f(i. e. f(x) = c ~ f '  (x) ~ 0). We set 

X1 = {x E i l f ( x )  < c}; Xe = {x e i t f ( x )  > c}. 

Then X1, )(2 e 2; and X2 is over X1. 

DEF. 4.8. - Le t  X e 2;. A family of sets {Xk}k<=y is called a Morse decomposition of 
X if 

N 

(i) = U 
k = l  

(ii) Xk e 2; for k = 1,. . . ,  N 

(iii) Xk • Xh = 0 for k r h 
h 

(iv) Xh+l is over int O ~" for h = 1, ..., N -  1. 
k=l  

EXAMPLE 4.9. - L e t f b e  a Liapunov function for (M, V) and let cl < c2 < ... < CN-1 
be a sequence of regular values for fi Let  Co = - ~ and CN = + ~ and 

Xk = {x e Zl ck-1 <f ix )  < ck} 

then {Xk} is a Morse decomposition of X. 
The next theorem states one for the most important properties of the index (as far 

as the applications are concerned). 
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THEOREM 4.10. - If {Xk}k=<N is a Morse decomposition of X, then there exists Q �9 S 
such that 

N 
Y, i(Xk) = i(X) + (1 + t) Q(t) Q �9 S.  

h=l 

In order to prove Theorem 4.9 some lemmas are necessary. 

LEMMA 4.10'. - Let X = int (X~ u X~) and suppose that X2 is over X1. Then there 
exist closed spaces No �9 N1 r N2 such that (N2, No), (N2, N1), (N1, N2) are index pairs 
for X, X2 and X1 respectively. 

(4.4) 

PROOF. - Take T big enough in order that 

(a) X1 n GT(X) is positively invariant with respect to GT(X) 

(b) (GT(X),F~(X)) is an index pair for X 

(C) GT (x1) C X1. 

We set 

No = F r (X) 

N1 = (X1 • GT (X)) u FT (x) 

N2 = GT (X). 

We want to prove that No, N1, N2 satisfy the required properties. We now prove that 
(N1,No) is an index pair for X. Let us check (i) of Def. 1.1. Since N 1 - N o  = 
= X1 c~ GT(X) 

(4.5) GT (N1-  No) = GT (XI ~ GT (X)) r GT (x1) c X1 by (4.4) (c). 

Also by Lemma 1.3 (i), (iii) and (iv) 

(4.6) GT (N1 - No) = GT (GT (X)) = G2T (X) c in t  [GT(X)]. 

Then by (4.5) and (4.6) 

G T (N1 - No) c int (N1 - N0). 

(iii) of Def. 4.8 holds since (X1 ~ GT(X)) is positively invariant in GT(x) by defini- 
tion and IT(X) is positively invariant in GT(X) by Th. 1.4. Now let us check (iii) of 
Def. 1.1. If x �9 N 1 and it leaves N1 at some times, it has to leave GT(X) also, since N, 
is positively invariant in GT(X). Thus there exists t* such that x . t *  eFT(X) since 
FT(X) is an exit set for GT(X). Finally since GT(X1) c N 1 - N o ,  (iv) of Def. 1.1 holds. 
Let us check that (N2, N1) is an index pair for X2. 

N2 - N 1  = Gr(X) - X 1  = Gr(X) nX2.  

Then arguing as we have done for G~(X)nX~,  it follows that int (N~-  N ~ ) e 2 .  
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(ii) of Def. 1.1 holds since N~ is positively invariant in N2 and (iii) holds since 
N1 ~ F T (X) and P T (X) is an exit set for N2. 

(iv) follows by the fact that G~(X2) c N ~ - N 1 .  I I  

COROLLARY 4.11. i If X = X2 w X~ and X2 is over X~, then there exists Q c 8 such 
that 

i(X~) + i(X2) = i(X) + (1 + t) Q(t). 

PROOF. - By Lemma 4.2 (iv) applied to the triple No, N~, N2 defined in Lemma 
4.10 we have 

p(N2, N1) + p(N~, No) = p(N2, No) + (1 + t) Q(t). 

The conclusion follows by Lemma 4.10 and the definition of the cohomological 
index. �9 

REMARK 4.12. - It is easy to check that if X1 and X2 are v-disconnected, then, for T 
large enough 

Then 

GT (x1 u X~) = GT (x1) + Gr (X2) and G~ (X1) • GT (X2) = 0. 

PROOF. OF TH. 4.9. - We argue by induction. For N = 2 it is true since it is nothing 
else but Corollary 2.11. 

We can suppose that it is true for N -  1; so there exists Q, e 3 such that 

N o w ,  

get 

i(XN) + i int x~ = i(X) + (1 + t) Q2 (t) 
=1 

Then the conclusion follows with Q(t)= Q1 (t)+ Q2(t). 

: ,  i(x )--itint t U +t)e,(t). 
k=l N 1" k = l  . 

since X• is over int ~ x k ,  applying Corollary 4.11 an other time, we 

with Q2 (t) e 8. 

If we have enough compactness we can define the Morse index of an isolated in- 
variant set as follows (cf. also (3.1)). 

i(X) = i(GT (X1 w X2) by Corollary 1.8 

=i(Gr(X1))+i(GT(X2)) by Th. 4.5 (iii) 

= i(X~) + i(X2). 

Comparing this result with Corollary 4.11 we deduce that Q(t) r 0 implies that X1 and 
X2 are v-connected. 
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DEF. 4.13. - Let S be a (C)-invariant set (cf. Def. 3.1), then we set i(S) = i(U) 
where U e 2: is a sufficiently small open neighborhood of S. From the above definition 
and Theorem 4.10 we get 

COROLLARY 4.14. - Let X and {Xk}k<-N be as in Theorem 4.10. 
Moreover suppose that Xk satisfy the property (C) (k = 1, . . . ,N) and set Sk = 

= I(Xk). Then we have 

N 

E i(Sk) = i(X) + (1 + t) Q(t) Q e 8. 
k=l  

Observe that in Corollary 4.14 the property (C) for X is not required. 

EXAMPLE 4.15. - Let r~ be a flow as in Example 2.9. Suppose that X and the X~ s 
satisfy the assumptions of Lemma 4.14. Moreover suppose that each X~ contains only 
one nondegenerate critical point xk. 

Therefore, by the Example 4.4 and Corollary 4.14, we get 

N 

(4.7) ~ , t m ( ~ k ) = i ( X ) + ( l  +t )Q( t )  Q e 3 .  
k=l  

More in particular, if F(X) = Df(x), then re(x) reduces to the classical Morse index and 
(4.7) reduces to the classical Morse inequalities. 

5. - V a r i a t i o n a l  s y s t e m s .  

The generalized Conley theory concerns general flows, however it can be applied 
to the study of the critical points of a function f defined on a manifold, constructing a 
flow whose stationary points correspond to the critical points o f f  and to obtain a theo- 
ry comparable with the classical Morse theory. This will be done in the next 
sections. 

Let M be a Finsler manifold, i.e., a Cl-manifold modelled on a Banach space with 
a continuous assignment of a norm to each tangent space which is compatible with its 
Banach structure locally uniformly (actually every Banach manifold admits a Finsler 
structure which determines a metric compatible with its structure cf. e.g. [Pa 3]). If 
M has a Riemannian structure on a possible infinite dimensional Hilbert space, we 
will simply say that M is a Hilbert manifold. 

We will w r i t e f c  C 1 (M) if f is a function which is Frech~t differentiable on M and 
such that its derivative is continuous for every x ~ M, f '  (x) e T* M will denote the 
differential of F, and (., .} the paring between T * M  and TM; C 2 will denote the class 
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of twice differentiable functions on M. Also we shall use the following notation: 

fba: = {X �9 Mla <f(x)  < b} 

f b :  = {x �9 Mlf(x)  < b} 

A :  = {x e Mlf(x)  > a} 

K(A) = K(A,  f) :  = {x �9 A I f '  (x) = 0} 

If V is a flow on M of class C 1 we set 

de~ g = ( f ' ( x ) ,  i7). Df(x) = -~f(v(t))  t=o 

When M is not compact and in particular when M is not even locally compact, 
there is a compactness assumption which plays a crucial role in the study of the criti- 
cal points. 

DEFINITION 5.1. - (i) Let f �9 C 1 (M). We say that f satisfies (P. S.) (i. e. the Palais- 
Smale assumption) if any sequence {xn} such thatf(xn) is bounded a n d f '  (x~)--~ 0 has 
a converging subsequence. 

(ii) If S c R is an open set, we say that f satisfy P.S. in S if any sequence {x~} 
such that f(Xn) --~ c �9 S and f '  (x~) --* 0 has a converging subsequence. 

(iii) If A c M, we say that f satisfies P.S. in A if (i) holds only for sequences 
{x~} �9 A. 

The assumption (P.S.) has been introduced by Palais and Smale [PAS] in a pioneering 
paper on the infinite dimensional Morse theory. Since then it has always been used in the 
infinite dimensional critical point theory. Also many generalizations have been done [cf. 
e.g. CE, BBF, B4] for particular problems. Theese generalizations could be adapted to 
our theory; however we will not discuss them to avoid extra technicalities. 

DEFINITION 5 . 2 .  - A variational system relative t o f i s  a couple {7, r(V)} where v is 
a CLflow which satisfies the following properties 

(i) (a) Df(x) <= ~(lf '  (x)ll)" ~(dist (x, K(M)) where a is a strictly increasing func- 
tion with ~(0)= 0. 

and/"  =/'(~) is the family of sets A which satisfy the following assumptions: 

(ii) (a) A �9 ~(~) (i.e. F(~) c ~(~)) 

(b) f lA  is bounded 

(c) f satisfies P.S. in A. 

Notice that if B �9 E(~) and B c A �9 r(~) then B �9 r(~). 
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As we shall see in Theorem 5.5, given any f � 9  CI(M) there exists always a flow 
which satisfies (i). Therefore a variational system can be defined for every f �9 C I(M). 
However, because of the assumption (ii) (c), the family 1,(v) could be very small and 
this theory may not give good information. Nevertheless, i f f  satisfies P.S., then the 
family 1, is reasonably large. 

The next examples will clarify what we mean: 

EXAMPLE 5.3. - Let M bea  compact manifold and f � 9  C2(M). Let v be the flow rel- 
ative to equation 

x =  -kV f (x )  with k =  [maxHVf(x)ll ]. 
[ xeM J 

It  is not difficult to check that {V,2(v)} is a variational system relative to f. 

EXAMPLE 5.4. - Set f � 9  C2(M) where M i s  a Hilbert manifold and let v be the flow 
relative to the differential equation 

2 = - F ( x )  where F ( x ) -  
Vf(x) 

1 + IlVf(x)ll 

Then if F satisfies (P.S), we get a variational system {v,F} with 

I" = {A e 2(v)lflA is bounded}. 

In particular, if a and b are regular values of f ,  f b  a �9 1". 
In many applications to P.D.E. 's  usually f is only of class C 1 (M) and not C 2 (M), 

and sometimes M is a Banach space or a Finsler manifold and not a Hilbert manifold. 
In this case the costruction of a variational system relative t o f i s  more involved as the 
following theorem will show. 

THEOREM 5.5. - Let f � 9  C 1 (M) where M is a Finsler manifold. Then there exists a 
flow v which satisfies the assumptions (i) of Def. 5.1. 

PROOF. - Let �9 be a pseudogradient vector field, i.e. a function 

~: _]15/--~ M 

(where /17/= M - K and K = K(M) = (x �9 M I f '  (x) = 0}) which satisfies the follow- 
ing 

(i) ]l~(x)]l~ 2[I f '  (x)ll 

(ii) ( f ' ( x ) ,  ~(x)} = IIf'(x)ll 

The concept of pseudogradient vector field has been introduced by Palais [P2]. He 
has also proved its existence for every f � 9  CI(M). (See also [R1]. Appendix A). 
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Now let ~ be a function defined as follows 

dis t (x ,K)  
~(x)= 

1 + dis t (x ,K)  

and 

f 
0 if x E K 

�9 (x) i f  x e M .  
g(x)  = ~(x) 1 + IJCP(x)JJ 

Now consider the following differential equation: 

(5.1) 2 = -F(x).  

We claim that  (5.1) has a unique solution defined for all t e R for every x c M. Notice 
that  F(x) is not Lipschitz continuous for x ~ K(M). Thus the existence and uniqueness 
needs to be proved directly. 

EXISTENCE. - If  the initial data xoeK(M) then we have the solution 
x(t) -- Xo. 

I f  x0 e ~/, let ( t - ,  t +) be the maximum interval  for which the solution is defined. 
By standard theorems on O.D.E. 's  it is sufficient to show that  x(t) does not go to in- 
finity or to K(M) for t---> t • unless t= = + ~  (so that  it can be extended). 

x(t) cannot go to ~ since jlF(x)l] is bounded. 
In order to show that  x(t) does not reach K in a positive time we have to prove that  

~(x0) > 0 implies that  ~(x(t)) > 0 for every t e ( t - ,  t+). 
The function t--> z(x(t)) is in H 1'~ ( t - ,  t +) since ? is Lipschitz continuous. So it is 

differentiable for a.e. t e ( t - ,  t +) and we have 

d I ~(x(t)) > ~(x(t)) >i -Ilxll = - ~(x( t ) ) .  1 + ~(x(t)) = - ~(x( t ) ) .  

The above inequality implies that  

(5.2) ~(x(t))>=~(Xo)exp[-jtj] for t e ( t - , t + ) .  

Thus the solution can be extended to all R; i.e. t + = + ~ .  In the same way we can 
prove that  t - =  - ~ .  

UNIQUENESS.  - I t  is an immediate consequence of (5.2). 
So a flow rj is defined and it is easy to check that  the function 

x --> r~(t, x) 

is continuous for every x e M. 
Clearly v satisfies the assumption (i) and (ii) of the Def. 5.1. 
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COROLLARY 5.6. - I f  f � 9  C 1 (M) (where M is a Finsler manifold) and it satisfies P.S. 
then we have a variational system {r , r )  where -~ is constructed in Theorem 5.5 
and 

/~ = {A �9 S(V): f lA is bounded}. 

REMARK 5.7. - I f f  satisfies (P.S.) only in an open set S c R, then the characteriza- 
tion of r is more complicated; however if A �9 27(~), f lA is bounded and f (A )  r S, then 
A e F .  

Before beginning our study of variational systems an other notation is necess- 
ary 

Y~o = {K(A)]A �9 1"; K(A)  is connected}. 

Notice that, by virtue of Def. 5.1 (ii) (c), the sets in :Xo are compact. 

THEOREM 5.8. 

(i) i f f  satisfies (P.S.) in S and K is a connected set of critical points such that 
f(K) c S and dist (K, K(M) - K) > 0, then K �9 :~0 

In particular all the isolated critical points of a function which satisfies (P.S.) be- 
long to :Xo. 

(ii) if K e :~0, then it is a (C)-invariant set (cf. Def. 3.3); in particular i(K) is 
well defined 

(iii) if K e :~o and {~,_P} is an other variational system relative to f, then 

i(K, r,) = i(K, ~). 

This means that i(K) depends only on f and not on the particular variational system 
we have chosen. 

(iv) if xo �9 Y~o is an isolated local minimum point, then i(xo) = 1. 

(v) if U �9 1" and i(U) r 0, then K(U) • 0. 

In order to prove Theorem 5.8 we need some work. 
LEMMA 5.9. - Let f satisfies P.S. in an open set A c M and be bounded in A and let 

be a flow which satisfies (i) (a) of Def. 5.2, then 

V~ > 0 38 > 0 such that Df(x) <- - 8 Vx e A - N ,  (K(A)) .  

In particular the above formula holds for any A �9 r .  

PROOF. - Suppose that the Lemma is false. Then there exists a sequence 
{x~} c A -  N~ (K(A))  such that D f ( x n ) ~  O. Then by Def. 5.2 (i) (a), 

~(llf' (xn)li) ~(dist (x, K(A))  ~ O. 

This implies that at least one of the two factors converges to 0. 
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If  (llf' 0, t h e n f '  (x~) ~ 0, and since f satisfies P.S., x n has a converging 
subsequence x ~  5. By the continuity o f f ' ,  we have t h a t f '  (x-) = 0; so 5 e K and this 
is a contradiction since dist (x~, K) > 0. If ~(dist x, K(A)) ----> O, then dist (x, K(A)) ----> 0 
and also this is a contradiction since d(x~, K)> ~. 

LEMMA 5.10. - L e t f a n d  A be as in Lemma 5.9 and let V satisfies the assumptions 
of Def. (5.2) (i). 

Moreover supposefhas  only one critical value c corresponding to a critical point in 
A and that K = K(A) r A. 

Then A satisfies the property (C) (cf. Def. 3.1) and K is a (C)-invariant set (cf. 
Def. 3.3). 

PROOF. - Since f satisfies P.S., K is compact. Then by our assumptions, there 
exists ~ > 0 such that N3~ (K) r A. 

We have to prove that there exists T > 0 such that 

(5.3) GT (A) c N2~ (A). 

Let 

= inf {llDf(x)ll: x e A - N~(A)}. 

By Lemma 5.9, ~ > 0. Now suppose that x e A - N2~ (A) and that x. t c N~ (A). Then by 
Def. 5.2 (i, b), 

llJ ~<llx.t-xll  = iT(x,t)dt <- Ili~(x,t)lldt<=ltl. 
o 

Then Itl > ~. By (5.3), we get that 

(5.4) , f ( x . t ) - f ( x ) ,= jDf (~ (x , t ) )d t  >=j~dt l>=~, t ,>~.  

Now we set zl = 3~ and 

A - -  s (5.5) ~ = i n f  { l lDf (x ) l l :  x e . ~  . c - , ,  j .  

Since c is the only critical value of in A, then, by Lemma 5.9, ~ > 0. Now we 
set 

T= b - a +  b-___~a where b = sup f(x) and a = inf f(x). 
xeA xeA 

With this choice of T we can prove (5.3). If we take x e N2~ (A), we have to show that 
there exists t e [ -T ,  T] such that x. t e A. 

Now we suppose that f(x)<-c; then it is sufficient to prove that x. T e A. (If 
f(x) => c, using the same argument we prove that x. ( -T)  e A). 
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We now distinguish two cases 

(i) ' r  x . t ~ N ~ ( A )  

(ii) 3 t e [ 0 , - ~ ]  s . t . x . t e N ~ ( A ) .  

In the first case we have that 

(b-a)/~ 

f(x.T)<=f(x.~-~)=f(x)+ f Df(x.t)dt<.c- 
0 

= c - b + a < c  

Therefore x. T e A. 
In case (ii), we have: 

-r 

f ( x .  T) <-f(z) = f ( x .  t) + J D f ( x .  t) dt 

t 

(b-a)/~ 

f ~dt  
o 

(by (5. 3), supposing that x. [0, T] r A). 

~ - a  
with ~ = t +  - -  

Using (5.4), we have that f(x-t)  _-< c - $~ = c - zl, then supposing that x. [0, T] r A,  by 
(5.5), we get 

f ( x .  ) <= c - I~1 d t =  c - (~ - t) 8i = c - ~1 "~ - -  (b - a) < c - (b + a).  

Then also in this case x. T e A. 

PROOF. OF TH. 5.8. - (i) S incef  satisfies P.S. in S ~f(K), then K is compact. More- 
over since K is connected, f(K) consists only of a point, i.e. a critical value c. Then the 
conclusion follows from the Lemma 5.10. 

(ii) If  K e :%, then K has a neighborhood A which satisfies the assumptions of 
Lemma 5.10. Then the conclusion follows from this lemma. 

(iii) Let v and ~ be the flows relative to the following equations 

ic = - F ( x )  2 = -~ ' ( x ) .  

Now let v~ be the flow relative to the following equation 

Jc = - (1  - ~)F(x )  - ~ ( x )  i e [0, 1]. 

Clearly for every i e [0, 1], {M, v~} is a variational system relative to F and K is a (C)- 
invariant set for w by the part (ii) of this theorem. 

Take ~ e [0, 1] and let U~ be a neighborhood of K which satisfies the property (C); 
it exists by (ii). 
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By Proposition 3.7, U~ e 20. 
Then by Theorem 2.1, i(U~, ~ )  is constant for )~ e I7, where  I~ is a suitable neigh- 

borhood of ~. 
This implies that  i(K, rj~) is constant for ~ e I~ for every  ~ e [0, 1]. Thus it follows 

that  

i(r, K) = i(v0, K) = i(~1, K)  = i(~, K). 

(iv) Let  f(xo) = c and let U~ be the connected component of {x I c <-f(x) < c + ~} 
containing x0. 

If  s is small enough, then U~ is contractible. Then the conclusion follows from Th. 
4.5 (ii). 

(v) I t  is a trivial consequence of the fact that  f satisfies P.S. in U. �9 

Now we can state the ,,Morse relations,  for variational sys tems as defined 
above. 

DEF. 5.11. - Let  X e 2(~) and K = K(X). 
A family of sets {Uj}j<=~ is called an s-Morse covering of K if 

(i) U s- is connected for j e I. 

(ii) K r  U UjcN ~(K ) .  
jEI 

(iii) Us. e F and E i(Uj) = i(x) + (1 + t) Q(t) Q e 8. 
j e I  

The above definition is justified by the following theorem. 

THEOREM 5.12. - I f X  e F, then for every  s > 0 there  exists a finite s-Morse cover- 
ing of K(X). 

PROOF. - For  every  c e f (X)  there  exists ~(c) > 0 such that  f ~ + ~ / e / ~  and that 

(5.6) GT(c) ( f  ~+-~(~l) c N 42 (K) . 

Since f(X) is compact there  exists a finite covering ((ci-~(C~),C~+~(Ci))}i<__N of 
f(X). 

Now let b0, . . . ,  b~ an increasing sequence of regular values of f such that  bo = 
= i n f f ;  b~ = s u p f  and for every l = 1, . . . ,  n - 1 

X x 

(5.7) ci + ~(c~) =< b~-I < b~ _-< ci + ~(c~) for some i = 1 . . . .  , N .  

Now we set  

(5.8) A t = X n f ~[_ 1 t = 1 , . . . ,  n .  

By our construction we have that At is a Morse decomposition o f f  (cf. Example 4.9) 
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and by (5.6), (5.7) and (5.8) we get 

(5.9) GT (At) c N~/2 (K) 

By Theorem 4.10, we have 

n 

i(At) = i(X) + (1 + t) Q(t) 
l=l 

(5.10) 

Setting 

for T large enough. 

Q e S .  

since Ut e F. Moreover, since 

for k r l. 

n l  

i(Uk,z) = i(U1). 
k=l  

By the above formula and (5.13) we get 

E i(Uk,z) = i(X) + (1 + t) Q(t). 
l~z 

h e n  

So we have proved the theorem. [] 

satisfied. 

U~,k e F 
! _ _  Ut, k n Ut,~ - 

By Theorem 4.5 (iii), we have 

~= (liAr (~K=/=O) 

by (5.10) and Th. 4.5 (i) we have 

(5.11) ~ i ( A t ) = i ( X ) + ( l  +t)Q(t)  Q e 8 .  
leo 

Now set 

(5.12) Ul = Az ~ N~(K). 

Then by (5.9) and the fact that A~ e/" we have that  

GT (A1) r U~ and GT (ut)  r Az.  

Then, by Corollary 1.7, we have 

i(A1) = i(U~). 

Using the above formula and (5.11) we get 

(5.13) ~ i(U~) = i(X) + (1 + t)Q(t) Q e 8. 
f e z  

Now for I e z, let {Ul,a}k=<~z be the family of connected components of Ul. We claim 
that  {Ul,k}~:;k_-<nz is a ~-Morse covering of K(X). (i) and (ii) of the Def. 5.8 are trivially 
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COROLLARY 5.13. - Suppose that the assumptions of Theorem 5.9 are satisfied. 
Moreover suppose that K(X) consists of a finite number of connected components 
K1, ..., K~. Then 

E i(Kt) = i(X) + (1 + t) Q(t) Q e 8. 
1=1 

PROOF. - It follows from Th. 5.12 and Th. 5.8 (i, ii). �9 

The next theorem generalises the Morse relations to a set where f is not bounded 
above. 

THEOREM 5.14. - L e t f b e  a function which satisfies P.S. and let K = K(f~). Then, 
for every s > 0 there exists an ~-Morse covering of K. 

Notice that, in Theorem 1.16, the series ~ i(Uj) and Q(t) (which appears in (iii) of 
jeI 

Def. 5.11) may have some coefficients equal to +co. 
The following lemma will simplify the proof of Th. 5.14. 

LEMMA 5.15. - If a and b are regular values of f,  then 

i(f~) = ~ dim [gn( f  b, f~)] t n 
n=O 

where H ,  denotes the singular homology with coefficients in Q. 

PROOF. - Since a and b are regular values off,  fa  b is a ANR; then the Alexander- 
Spanier cohomology coincides with the singular cohomology. Moreover, since our co- 
efficients are in Q, 

dimH~(fb,  f ~) = dimH,~(fb, fa) .  �9 

PROOF OF TH. 5.14. - Let c~ > c be increasing sequence of regular values o f f  di- 
verging to +~ .  By Theorem 4.10 we have, for every n e N, 

(5.14) i(fS ~) + i ( f~)  = i(f~) + (1 + t) Q(1)(t) 

By Theorem 5.12 (with X =fg~) we have 

k~ 

�9 t)  Q ( 2 ) ( t )  2 i(U 21 = ~(fc ) + (1 + 
j=l 

Comparing the above formula with (5.14) we gwet 

k~ 

(5.15) E i(Uj) + i(fi~) = i(fi) + (1 + t) Q~ 
j=l 

Now if p =  ~ a l t  teS ,  we set {P}z=a~. 

Q(1) e 8. 

Q(2) e 8. 

Q~ = Q2)+ Q(2). 
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Then (5.15) reads 

(5.16) i(Uj) + {i(fi~)}~ = {i(f~)}l + {(1 + t) Q(~t)}t. 
t 

The theorem is proved if we can take the limit in (5.16) for every 1 e N. 
We consider two cases 

(a) {i(fi~)}z = 0 for n large enough 

(b) {i(fc~)}t 4:0 for a subsequence c'---) + ~. 

If (a) holds we have done, since we can take the limit in (5.16) (notice that the se- 

quence i(Uj) is monotonically increasing as n ~  + ~). 

If (b) holds, then, by Lemma 5.15, we have that 

Hz (M, f c;) r 0 for the subsequence c~. 

Let/~ denote the support of a representative nontrivial homology class ~ e Ht (M, fc ' )  
and let c ;  > max f(x). 

Consider the exact homology sequence: 

, i t  " ~z  

... ---> S t  ( f  r f r Ht (M, f ~;)-~ Ht (M, f ~) ~ ... 

By our choice of Cm, Jz (~) = 0; then by exactness of the sequence B~ e Hi (f~a, f~;) s.t. 

This fact shows that 

{i(fgs # 0 

and by Theorem 5.12 there exists U.~ c f ~  such that U �9 P and 

r 0. 

Since this true for all the terms of the subsequence c; defined by (b), it follows that 
taking the limit in (5.16) 

diverges to + ~. 
Thus the equality (iii) of Def. 5.11 is satisfied also in this case. �9 

Next we shall prove a perturbation theorem for variational system whose a proof 
is simpler than the proof of Th. 2.1 and whose result is more general. 

THEOREM 5.16. - (Perturbation theorem for variational systems). 



268 V. BENCI: A new approach to the Morse-Conley theory etc. 

Let {v, F(V)} be a variational system forfi and let A e F(V). Then there exists z0 > 0 
such that: ff f e C 1 (M) and 

]If-fib(M) < 

there exists a variational system {~,F} relative to f )  such that 

(a) n eZ(~) 

(b) i(A, ~) = i(A, ~). 

Moreover iff]A satisfies P.S., A e_P(A). 

PROOF, - Let T be large enough such that 

(GT (A, ~),FT (A, v)) 

be an index pair for A. 
Now let 

By Lemma 5.9, 8>  0. 
We now set 

8 = in f { -Df (x )  I x e A - GT(A)}. 

8 
f(x) =f(x) +  g(x) 

where IIg(x)Ncl(A) _-< 1. We have to prove (a) and (b) and we will get the first part of the 
theorem with ~o = 8/2. If x ~ A - GT(A, ~) we have 

(5.17) d f(~7(t)) t=o= d l]((t))+ 2g(~(t))lt=o = 

8 8 
=By(x)+ 2" 

Now let {~,P(~)} be a variational system relative t o f  and let ~'(x) be the vector field 
^ ^ 

which defines ~ (i.e. F(x) = (d/dt) ~(t, x)lt=0). Now let ~(x) be a function which is I in a 
det T 

neighborhood of M - G T (A, ~) and 0 for x e Be where B~ : = M - N~ (M - G (A)). Now 
consider the flow ~ relative to the differential equation 

A 

ic = ~(x) F(x) + (1 - ~(x))F(x) 

where F(x) is the vector field relative to ~. 
We claim that {~, F(~)} is a variational system relative t o f  provided that ~ is small 

enough (i.e. we claim that ~ satisfies (i, a, b) of Def. 5.2 where f is replaced by 
f ) .  

In fact (i,a, b) are satisfied in M - G T ( A )  since ~ = ~ and in Be since ~ = ~ In 
G T ( A ) - B ~  (i,a, b) holds too if we take ~ small enough. 

Since in a neighborhood of OGT(A) we have that /7(x)= ~(x), it follows that 
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(Gr(A),FT(A)) is an index pair for ~ and hence A �9 Z(~) and i(A, ~) = i(A, ~). The last 
part of the theorem follows by the Def. 5.2 (ii) and the fact that glA is bound- 
ed. [] 

An interesting consequence of Theorem 5.16 is the following Corollary. 

COROLLARY 5.17. - L e t f  �9 C 1 (M, R) (M is an Hilbert Manifold) and let A �9 F. Sup- 
pose that f is the limit in CI(A) of a sequence of C2-function f~ which satisfies P.S. 
Then i(A) is finite (i.e. i l (A)< +:r 

PROOF. - It is a trivial conseuqence of Th. 5.16 and Corollary 6.6 which will be 
proved in the next section. [] 

COROLLARY 5.18. - Let {L,}),e[0,1J be a family of Cl-functions depending continu- 
ously on the parameter ~ and let {~,~, r~} be a family of variational systems relative to 
f~, with ~ depending continuously on ),. 

Let A be a set such that A �9 r;, for every ~ �9 [0, 1]. Then i(A, ~)  is independent of 
), 

REMARK 5.19. - Given a family (f~} as above, a family r~), with the above property 
can be constructed easily. 

6. - V a r i a t i o n a l  s y s t e m s  and d i f f erent iab i l i ty . .  

In this section we are going to relate the Generalized Morse Index with the differ- 
ential structure of (M, f ) .  Suppose that M is a Hilbert manifold, x is a critical point of 
f such that 

f"(x):  TxM---~ TxM 

is defined. 
For the rest of this section we shall suppose that the nonpositive part of the spec- 

trum of f "(x) consists of isolated eigenvalues of finite multiplicity. Now we set 

m(x) =dimension of the space spanned by the eigenvectors o f f "  (x) correspond- 
ing to negative eigenvalues 

n(x) = dim [kerf"  (x)] 

m*(x) = m(x) + n(x). 

We shall call m(x) the (numerical) Morse index of x. 
We recall that a critical point x is called nondegenerate, i f f "  (x) exists and it is in- 

vertible. In this case we have re(x) = m* (x). I f f l  z has only nondegenerate critical 
points then it is called a Morse function (on X). 

We recall a theorem of Marino and Prodi [MP] ,4ranslated, in our language. 
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THEOREM 6.1. - If {f,/ '} is a variational system, then for every X e/~ and for every 
e (0, ~] (where ~ = ~(X)) there exists a Morse function on X such that If-f~lc~(x~ < 

and f~ satisfies P.S. in X. 
The following theorem characterizes the index of nondegenerate critical 

points. 

THEOREM 6.2. - If  X0 is a nondegenerate critical point of f, then {x0} e :~o 
and 

i(xo) = tl(Xo). 

Moreover if U e P and K(U) = (x0} we have that 

(6.1) i(U) = t m(~~ . 

REMARK. - Observe that in Theorem 6.2 we do not assume that f "  (x) is defined in 
a neighborhood of xo; it is sufficient that it is defined in Xo. A similar result has been 
obtained in the contest of the classical Morse theory by Mercuri and Palmieri 
[Me.P]. 

PROOF. - Since xo is nondegenerate, it is isolated; thus {xo} e :~o- Now let ~ be the 
flow relative to the differential equation 

2= -f"(Xo)'(X-Xo). 

If U is a small enough neighborood of xo, U e F(~). Then by Theorem 5.8 (iii) i(xo, v) = 
= i(xo, ~). But we know by Example 4.4 that i(xo, ~ )=  t re(x~ 

The second part of the theorem follows from Lemma 5.10. �9 

Theorem 6.2 suggests the following definition: 

DEF. 6.3. - A critical point is called topologically nondegenerate if {x} e :~o and 
il (x) = 1 (i.e. if i(x) = t m for some m e N). 

As consequence of Theorem 6.2 we can write the ~classical Morse, relations. 

THEOREM 6.4. - Suppose that X e F contains only topologically nondegenerate 
critical points off.  Let am denote the number of critical points having Morse index m. 
Then 

N 

E am t m = i(X) + (1 + t) Q(t) Q e 8. 
n=0 

PROOF. - First  observe that the number of critical points is finite. Infact, since 
they are nondegenerate they are isolated and by Def. 5.2 (ii) (c) it follows that they 
are a finite number. The conclusion follows from Theorem 5.12 and 6.2. �9 

Notice that theorem 6.4 reduces to the classical Morse relations when f e C 2 . I f f  
satisfies P.S. we have the following variant of the above Theorem. 
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COROLLARY 6.5. - Let  f � 9  C~(M) be a function which satisfies P.S. and let c be a 
regular value of f .  

Suppose that all the critical points of K(f~) are topologically nondegenerate. Let 
a~ denote the number of critical points having Morse index m. Then 

a,~t'~=i(fc)+(l+t)Q(t) Q�9 
m = 0  

PROOF. - It follows from Th. 5.14 and Def. 6.3. �9 

An other consequence of Th. 6.2 is the following one 

COROLLARY 6.6 - Suppose that f satisfies P.S. and that X �9 F. Then i(X) is finite, 
i.e. il(X) < +~ .  

PROOF. - By Theorem 6.1 and Theorem 2.1 we can find a Morse function f~ such 
that i(X, f~)= i(X, f). Then the conclusion follows from Corollary 6.4. �9 

From this corollary, the proof of Corollary 5.17 follows strighforward. 
Theorem 6.2 suggest the following definition. 

DEF. 6.7. - If X is a critical point off, the number il (x) will be called the multiplici- 
ty o f f .  

Notice that the definition 6.7 (as well as definition 6.3) can be extended also to 
critical sets K �9 :~0. Using this definition we have: 

COROLLARY 6.8. - I f X  �9 F, then f ix  has at least il (X) critical points if counted with 
their multiplicity. 

P R O O F .  - O b v i o u s .  

Notice that Corollary 6.8 does not need the function f to be of class C 2 . Now we 
shall consider the degenerate situation. If K is a set of critical points of f we 
set 

(6.2) 
~ m(K) = inf re(X) 

neK 

I ra* (K) = sup m* (X). 
neK 

THEOREM 6.9. - Suppose that U eI', and that f e  C2(U). Then 

m * ( ~  

i(U)= E azt l 
l=m(s 

where K=K(U). 

PROOF. - Let ~1 (x) -< ~2 (x) -<... =< ~k (x) _-<... be the eigenvalues of f "  (x). 
They are continuous functions of x in U since f ~  C~(U). 
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Now let s = re(K) and r = m* (K) + 1. 
By the definition of re(K) and m* (K) we have that 

(6.3) ~8(x) < 0 < ~r(x) for every x e K. 

Now take ~1 small enough in order that (6.3) holds for every x E N~(K). This is possi- 
ble since the ~k (x) are continuous in x and K is compact. Now let 

)~[ (x) =< )~ (x) =<... =< )4 (x) < . . .  be the eigenvalues of 

the operator f"(x)  where f~ is a function as in Theorem 6.1. 
Now chose s < ~ small enough that 

(6.4) ~ (x) < 0 < ~ (x) Vx e N~ (K). 

Thus we have that all the critical points x~, .. . ,  XN off~ are nondegenerate, contained 
in N~, and by (6.4) 

(6.5) s<=m(xk)<=r-1 k =  1 , . . . ,N  

where m(xk) is the Morse index of xk for f~. 
Now, if ~ has been chosen small enough, by Theorem 5.16, there exists a flow 7~ 

relative to f~ such that 

i(U, 7) = i(U, ~). (6.6) 

By Corollary 6.4 

N 

(6.7) • t ~(x~) = i(U, 7~) + (1 + t) Q(t) Q e 8 
k=l  

where the xk s are the critical values of f~ in U. 
By (6.5) we have 

N r - 1  

E tm(~ ~) = E art t. 
k=l l~s 

By (6.6). (6.7) and the above formula we have 

r-J. 

E art t= i(U, 7) + (1 + t)Q(t). 
l=s 

From the definition of s and r the conclusion follows. " 

THEOREM 6.10. - If i (U)= t ~ + other possible terms, (U e r),  then there exists 
c K(U) such that 

m(~) <= n -< m* (x-). 

PROOF. - Set 

K1 = {x e K(U)I re(x) <- n} 
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and 

K2 = {x e K(U)] m* (x) ___> n} 

Since f " (x )  is continuous, it follows that K~ is closed; in fact if x~--> Xo, 
lira m(x~) >= m(xo). Also K2 is closed since x~--~ x0 ~ lira m* (x~) >- m(Xo). We want 

to prove that K~ n K2 :/: ~. We argue indirectly and suppose that K1 n K2 = ~. Since//1 
and K~ are compact, there exists ~ > 0 such that 

d(K1, K2) >= 3~. 

Now let {Uj} be an s-Morse covering of U. 
By our construction each Uj contains points of K1 or points of K2, but does not con- 

tains points of both. 
If K(Uj) cK1,  then for every xeK(Uj ) ,  we have that m * ( x ) < = n - 1  since 

x EK2" n-1 

Then i(Uj)= ~ amt m where rnl is a suitable number = n - 1 .  
~ = ~ r t  1 

~n 2 

Arguing in the same way, i fK(U 9 c K2, we have that i(~.) = ~ a,~t *~. There- 

fore, none of the i(Uj)'s eontains the term t ~ and this is a contradiction since, by the 
Morse relations, we have 

~. i(Uj) = i(U) + (1 + t) Q(t) = t ~ + other possible terms. 
2 

! 

Now we are going to see some consequences of the Gromoll-Meyer theory on our theo- 
ry. The basic tool is the following theorem: 

THEOREM 6.11. - Suppose that U e F and that Xo is the only critical point of f i n  U. 
Then there exists a neighborhood N~ (x0), a homomorphism r N~ (x0) --> N~ (Xo) with 
�9 (x0) = Xo and a Cl-mapping 

h: N~ (xo) ~ (Xo + ke r f "  (xo)) -~ xo + [kerf"  (xo)] • 

such that 

ir 

f o  ~(z + y) = ~ f  (x0)[z, z] +f(h(y) + y) 

where y = Px;z  = P•  and P is the orthogonal projector on ker f"(Xo). 
Theorem 6.11 is essentially due to Gromoll and Meyer. Here we have presented an 

improved version of the theorem due to Chang, we refer to [CH] for the proof. 
From the above theorem we obtain the following results which is a ~4ranslation, 

in our theory of the ,~shifting theorems, of [GM]. 



274 V. BENCI: A new approach to the Morse-Conley theory etc. 

THEOREM 6.12. - Let Xo be an isolated critical point of a C2-variational system. 
Then 

i(xo) = t m(~)" i(xo, f )  

w h e r e f  = f l v  and V = ((h(y) + Y)IY e N~(xo) n (Xo + ke r f "  (Xo))} (h and ~ are as in the- 
orem 6.11). 

PROOF. - Let 

N~ = N~ (Xo) (x o + ke r f "  (xo)) 

Ny = N~ (Xo) (xo + [kerf"  (Xo)]) 

where ~ is small enough that Theorem 6.11 holds. 
The by theorem 5.8 (i) 

i(xo) = i(~ -1 (N: @ N~)). 

Since the index is a topological invariant, we have: 

i(xo) = i (Y :  G N~ , f o ~). 

Now, using theorem 4.5 (iv) and theorem 6.11, we get 

(6.8) i(N~ @ N~ , f o~,) -- i NJ , f '  (y + h(y)) . i  g ~  , -~(Az, z) . 

Since the index is the topological invariant, using Th. 5.8, we get 

(6.9) i (N:  , A Y  + h(y))) = i(U, f )  = i(xo, f ) .  

By theorem 6.2, we have that 

The conclusion follows from (6.8), (6.9) and (6.10). �9 

THEORREM 6.13. - Let xo be a degenerate isolated critical point of a C2-variational 
system with i(xo) r 0; then 

m*(x)-i 

dim ker [ f"  (xo)] -> 2 and i(xo) = ~, a q  t q . 
q=m(~)+ 1 

Before proving the above theorem, we shall prove the following lemma: 

LEMMA 6.14. - If Xo is an isolated maximum point of a variational system defined 
on a n-dimensional manifold Ms. Then i(xo)= t ~. 
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PROOF. - Let U = {x e M~: c - ~ < f_-< c} with ~ small enough such that Us be a 
contractible set. By duality we have that 

H* (U~, ~U~) = gh-* (U~) 

and since U~ is contractible, H~(U~) -~R i f n  = 0 and 0 otherwise. Since (U~, aU~) is an 
index pair for U~, it follows that i(U~)= t ~ and hence i (xo)= t ~. �9 

PROOF OF THE 6.13. - Let V and f be as in Corollary 6.12. 
We claim that x0 is not a maximum point of f l y .  To prove this we argue 

indirectly. 
If  x0 is a minimum point, then by corollary 6.12 and theorem 5.8 (iv), we 

get 

i(xo, f )  = t m(~)" i(xo, f )  = t "~(~)" 1 = t "~(~) , 

then x0 is topologically non degenerate against the assumption. 
If  x0 is a maximum point, then by corollary 6.12 and lemma 6.14, we have 

i(xo, f )  = t m(~)" i(xo, V) = t ~(~). t dimV -- t m(~). t n(~) = t'~*(x); 

thus, also in this case x0 is topologically non degenerate against our assumption. 
Now, since x0 is not a maximum or a minimum point, we have that 

n (x )  - 1 

i(xo, f )  = F. bqtq 
q=l 

and hence using again corollary 6.12, we have that 

m * ( x ) - I  

i(x, f )  = ~ aqt q with aq_m(x) -- bq. 
q = re(x)  + 1 

Moreover since we have supposed that i(xo) r O, some aq needs to be different from 0. 
Then we have m * ( x ) - m ( x ) =  dim[ker f"(x)]->2. �9 

REMARK 6.15. - Theorem 6.14 is the translation in our theory of some results of 
Dancer [DA] cf. also [TI]. 

7. - S o m e  e x i s t e n c e  t h e o r e m .  

As first application of our index theory we are going to prove a well known theo- 
rem of Ambrosetti and Rabinowitz (see e.g. JAR] or [R1]) with an additional informa- 
tion on the Morse index of the critical points; a proof of this theorem and the following 
one found also in [B3]. 

THEOREM 7.1. - (Mountain Pass Theorem). Suppose that f e  CI (M)  where M 
is a connected Finsler manifold, and that there is a set S in M which splits 
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M in two conncected components. Moreover suppose that there exist ~, ~ e R(~ </3) 
such that 

(i) f satisfies P.S. in (~,fi) 

(ii) inf f(x) > 

(iii) f(x~) < ~ i = 1, 2 where Xl and x2 are two points belonging to two different 
connected components of M - S  

(iv) sup f ( x )<  ~ where Q is a curve joining xl and x2. 
xeQ 

Then K =  K(f.~)--/: 0 and i f f e  C2(N~(K)) there exists a point ~ such that 

m(~) -< 1 = m* (5). 

PROOF. - We suppose that there exist two constants 

a f(x)) 

and 

b e (sup f(x), ~) 
xeQ 

such that a and b are not critical values off,  thus f~  e/ ' .  Otherwise we can use a per- 
turbation argument (i. e. take f,, (x) = f(x) + g~ (x) and then let Ilgn IIc 2--~ 0). 

S incef  a has at least two connected components H0 (f~) has at least two generators 
[xl] and [x2]. 

Now consider the map i0: Ho(f~) ~ Ho( f  b) induced by the natural embedding. 
Since xl and x2 belong to the same connected component o f f  b, then i0 ([x~] - [xl]) = 0. 
Then, by the exactness of the sequence, 

--~ Hl ( f  b, fa ) -~  Ho(f~)-~ Ho(fb). 

H1 ( f  , f ) ~ 0. Then, by lemma 5.15 It follows that [xl] - [x2] e Ira j l .  Therefore b a 

i ( f  ~) = t + other possible terms. 

Thus the first statement of the theorem follow by theorem 5.8 (,J). In order to obtain 
the second part of the theorem use corollary 6.10 with U =f~ .  �9 

REMARK 7.2. - The interest of the above theorem is in the fact that we give some 
information about the generalized Morse index of the critical points. A similar result 
for Ce-functionals has been obtained by Hofer [Ho] and Solimini [So]. 

Now we are going to generalize the Mountain Pass Theorem to a more general sit- 
uation i.e. to the so called Linking Theorem: 

DEF. 7.3. - Let Q and S be two disjoint subsets of a manifold M and suppose 
that 
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(i) Q is diffeomorphic to B ~.1 

(ii) aQ is the support of a nontrivial homology class in H~ ( M -  S). 

In this case we say that S and aQ link homologically. 
Roughly speaking we can say that S and aQ link homologically if any n-dimension- 

al manifold sharing the same boundary with aQ intersects S. However this picture is 
not alwais correct; in fact the homological linking depends on the coefficient of our ho- 
mology theory etc. In this paper we have chosen to use homology with real coef- 
ficients since it is sufficient for our applications. 

The next example will describe a fairly general situation of homological link- 
ing. 

EXAMPLE 7.4. - Let S be any connected manifold of codimension n + 1 (n -> 1) in a 
Banach space E and let Q be homeotopic to the (n + 1)-dimensional ball. 

Suppose that S has a tubolar neighborhood N such that aN n Q is homeomorphic 
to OQ in E -  S. Then S and aQ link homologically. 

PROOF. - N has the structure of fiber bundle on S with fiber (B n+l, Sn). Then by 
Thom isomorphism theorem 

Hq+n+l (N, aN) ~- Hq (S) 

and in particular H~+I (N, a N ) =  Ho(S)= R with generator [Q ~ N/aN]. 
Also we have that H~+I (N, a N ) ~  H~+I (N, N -  S) and by excision we have that 

Hn+I (N, N - S) = H~+I (E, E - S). By the exactness of the sequence 

�9 .. --) H~+I (E) --> Hn+~ (E, E - S) ~ H~ (E - S) --~ H~ (E) --) ... 

it follows that Ha (N - S) -- R with generator [aN ~ Q] ~-- [aQ]. " 

THEOREM 7.5. - (Linking theorem). Suppose t h a t f  e C 1 (M) where M is a Finsler 
manifold and let S and Q two subsets of M such that S and aQ link homologically. 
Moreover suppose that exist ~, ~ e R such that 

(i) f satisfies F.S. in (~,~); 

(ii) ~nf f (x)  > ~; 

(iii) sup f (x)  < ~; 
x~aQ 

(iv) sup f (x)  < 8. 
xeQ 

Then K =  K(f~)--/: 0 and i f f  e C2(N~(K)) there exists a point 5 e K such that 

m(5) <= n + 1 <- m * (~). 

Notice that the Mountain Pass Theorem is a particular case of Linking Theorem when 
n = 0 .  
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PROOF. As in the proof of lemma 7.1, we can suppose that there exists 

(7.1) a �9 {a, inff(x)~ 
\ xes ] 

and 

(7.2) b �9 (sup f(x), fl~ 

such that a and b are not critical values of f. 
Let  il : aQ-o E - S, i2: aQ--~f~, and is: f~  ~ E - S be the embedding maps. is 

and i8 are well defined by (ii), and (7.1) respectively. 
Using these maps we get the following diagram 

Ha(aQ) ~-~ Ha (f~) 

H~ (E - S) 

Since il r 0 by the definition of homological linking, we have that /2  r 0 and hence 
H~( f  ~) g= O. 

Now consider the embedding i: f ~ - ~ f  b. Since ~Q is contractible in f b by (7.2) it 
follows that ia([aQ])= 0. 

Now consider the exact sequence 

i n 

�9 .. --> H~+I (fb, f~) ~1> Hn (f~) _____> H~ (fb) ___>... 

Since [aQ] �9 keria,  it follows that [aQ] �9 Im(a~+l) and in particular we have that 
Ha + b a l(f , f ) r {0}. 

So by temma 5.15, we have that 

i(fba) = t ~+1 + other possible terms. 

Now the conclusion follows from theorem 5.8 (,~) and corollary 6.10 with U =  

= f ~ .  ,, 

REMARK 7.6. - As in the case of Th. 7.1 the interest of Th. 7.5 does not rely on the 
existence result which can be obtained in an easier way with minimax methods (see 
e.g. [R1]). The interest lies in the information about the Morse index of the critical 
points which is relevant in some class of problems. A somewhat weaker version of 
this theorem can be four in [B3]. An other slight variant of the theorem is now ap- 
pearing [LS]. 

COROLLARY 7.7. - (Saddle point theorem). Suppose t h a t f  e C 1 (E) and E~+I be a 
(n + D-dimensional space. Moreover suppose that 3a,~ e R such that 

(i) f satisfies P.S. in (a,~); 
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(ii) inf f(x) > ~; 
x, EEn+l ' 

d e f  

(iii) 3R > O: sup f(x) < ~ where OQR = E~+I c~ OBR, 
xeOQR 

d e f  - -  

(iv) sup f(x) < ~ where QR = E~+I n BR. 
xeQN 

Then the same conclusion of Theorem 7.5 holds. 

PROOF. - In order to apply Theorem 7.5 it sufficient to prove that S and aQ link 
homologically with S = En+l and Q = QR. 

To see this we can apply the result of the example 7.4 or it can be seen directly, 
since E -  S is homotopically equivalent to E~+I -  {0} which is homotopically equiva- 
lent to S ~. �9 

REMARK 7.8. - Rabinowitz [cf. e.g. R1] gave a proof of the Saddle Point Theorem 
without any information on the Morse index using the Minimax method. 

COROLLARY 7.9. - Let f e C 1 (E) and let E~ be an n-dimensional subspace of E. 
Suppose that there exist constants ~,~, p, R1 ,R2 (with R1 > ~ > 0 and R2 > 0) and 
z �9 E~ (with IlziI = 1) such that 

(i) f satisfies P.S. in (~,/~); 

(ii) inf f(x) > ~; 
E ~ B ~  

(iii) sup f(x) < ~; 
xeaQ~ 

(iv) sup f(x) < 8  where Qz = {y+tz ty  �9 �9 [0,R1]}. 
xEQ z 

Then the same conclusion of Theorem 7.5 holds. 

PROOF. - Take S = E~ n aB e and Q = QR.  By the Example 7.4 it follows that S and 
aQ link homologically. �9 

REMARK 7.10. - There are several version of Corollary 7.9 without any statement 
about the Morse index (cf. [R1, 3], [BERJ and [BBE]). However the estimate of the 
Morse index of the critical value o f f  is very relevant for some problems. We refer to 
[BF3], [BF1] and [B4] for such applications. In [BF1] there is also a simpler proof of a 
variant of Corollary 7.9. 

Now we consider a case in which f has a special form. 
We suppose that f �9 C I(E) where E is a Hilbert space and that 

(fl) f(x) = 1/2 <Lx, x> - ~(x) where L is a bounded strictly positive selfadjoint 
operator and ~' is compact. 

(j~) Vx �9 E - (0}, lim f(~x) = - ~ .  

(fs) 3 p > 0  and M->0 such that M +  <~'(x),x} >=p~(x)>-O Vx � 9  
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LEMMA 7.10. - L e t f  satisfy (fl), (f2) and (f3) and let {7, F} be a variational system 
relative to f. Then if c(min(f(0),-M/2),  f~ e Z(~) and i ( f i ) =  O. 

P R O O F .  - Let f ( x ) =  -1/211xll 2 and let {~,F} be a variational system relative to f 
with ~(t, x) = xe t . We want to prove that (f~, 5fi) is an index pair relative for i. (i) 
and (iii) of Definition 1.1 are trivially satisfied. Let us prove (ii). We have 

(7.3) d - = ( L x ,  x }  - < f ( 7 ( t ,  x))t  = 

<- (Lx ,  x}  - p~(x) - M <- 

= 2f(c) - M. 

[by (f~)] 

[since p > 2] 

(7.4) 

Als0 we have 

(7.5) 

i(B~, i )  + i(fc - B~, i )  = i(fr i )  + (1 + t) Q(t). 

i ( f i -  B e) = 0 by Theorem 4.5 (i) and (f2). 

Since (B~, aB e) is an index pair for ~ we have that  

(7.6) i (B e) = ~ [dimH q (Be, ~Be)] t q = 0 
q=O 

since 5B~ is contractible. 
By (7.4), (7.5) and (7.6) it follows that  i(f~, i) = 0 and hence p(f~, afc) = 0. But 

(f~, aft) is an index pair for 7 too since, by virtue of (7.3), c is not a critical value off. 
Therefore 

i(fc , 7) = P ( f  r , aft) = O. " 

LEMMA 7.11. - If (fl) and (f2) hold then f satisfies P.S. 

P R O O F .  - Let {xk} be a sequence such that  

(7.7) 

and 

LXk- -~ ' (Xk )  =Vk with vk-o0 as k--~ + 2  

1 (Lxk ,  xk } - ~(xk) ---) c 
2 

a s  k - - ~  + ~ .  

Thus if c e aft, we have that (d/dt)f(v(t ,  x))tt= o < 0 and this implies that  (fc,  aft) is an 
index pair for ~ and that  i(Fc, i ) =  p(fc, afo). 

Now take p small enough in order that B e c f~. 
The family { B e , f i - B ~ }  is a Morse decomposition (cf. Example 4.7), then we 

have, by Theorem 4.9 
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By the above formula, for k large enough, we have that 

1 (Lx~, xk } -< ~b(xk) + c + 1 --< [by (f~)] 
2 

=< 1 (~, (x~), x~ } + M1 [where M1 = c + 1 + M] 

Multiplying (7.7) by xk and using the above formula we get 

1 1 (Lxk,xk} -- (Vk,Xk} - M 1 .  -{ < Lxk , > >- 

Then, since L is positive, 

Since (Lxk, xk) >- ~llxkll 2, by the above formula it follows that IIx lf is bounded. Then 
~' (xk) is convergent (may be considering a subsequence). By (7.7) we get that 

xk = L -~ ~' (xk) + L -~ vk 

is convergent. �9 

THEOREM 7.12. - Suppose thatfsat isf ies  (f~), (f2) and (fa). Moreover suppose that 
0 is a topologically nondegenerate critical point of f with index t ~. T h e n f h a s  at least 
an other critical point N and if this point is nondegenerate has Morse index t m§ or 
t ~-1 . Moreover i f f  e C 2, we have 

m(x~ - 1 - < m =  < m*(~) + 1. 

P R O O F .  - By Theorem 5.14 we have that 

t m + E i(Uj) = i(fc) + (1 + t) Q(t) 
jeI 

where {U2}j~I is an ~-Morse covering of K( fc ) -  {0}. 
By Lemma 1.10, i ( f i)= 0, then there exists a Uj such that 

i(Uj) = t m+l + other possible terms 

o r  

i(Uj) = t m-1 + other possible terms. 

Then Uj contains at least one critical point and if it is nondegenerate it has index t "~+I 
or t m-1. The last statement follows from Corollary 6.10. �9 

We now apply Theorem 7.12 to obtain an existence result which seems not easy to 
be obtained with minimax methods (cf. [R1]). 
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(7.8) 

EXAMPLE 7.13. - Consider the following boundary value problem 

u e H i (t)) t) C R N smooth and bounded, n I> 3 

A u + g ( u ) = O  w h e r e g e C  2(R). 

Suppose that 

(a) 

(b) 

(7.9) (c) 

(d) 

g(O) = o; 

g'(0) is not an eigenvalue of - 4 ;  
t 

3 p > 2 ,  3 R > 0  s.t. g( t ) . t>=pfg( , )dz>O if I t l>R;  
0 

< +K2ttl ~ where < N + 2  3K1, K2 such that Ig(t)l = K 1 ~ N ----~" 

THEOREM 7.14. - If g satisfies (7.9) then the problem (7.8) has at least a nontrivial 
solution. 

To prove Theorem 7.14 we can use theorem 7.12 setting 

E = H 1 (t~) with norm Ilull~ = f tVul 2dx 
a 

L = Identity 
t 

= a + f G(u(x))dx where G(t)= fg(t)dt 
0 

and a is a positive constant which makes ~ = 0 for every u e H01 (~). 
By virtue of well known results and the asumption (7.9) (d) the functional f(x) = 

= 1/2HxH2-~(x)satisfies (fl). 
Moreover, by (7.9) (c), we have that 

c(t) > C1 + C2 It]P, (C 1 e R ,  C 2 > 0). 

Then, since p > 2, it is not difficult to prove f2. 
In order to prove (fa), more work is necessary: 

LEMMA 7.15. - By virtue of (7.9) (c), ~ satisfies (fa). 

P R O O F .  - Let t) 1 = {x t lu(x)l > R }  and ~2 = {xl lu(x)l <=R}. 
Then we have 

(x), x> = fg( )u + fg(u)u>-_ (7.9)(c)1 
D1 t)2 
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>= p f G(u) dx - M1 - M2 = 

= pC(u) -- M1 - M2 - a. 

where M2 = sup 
P[~ll~ =<R 

Thus (f3) is proved with M = M1 + M2 + a. �9 

PROOF OF THEOREM 7.14. - W i t h  our nota t ionf  satisfies (fl), (f2), and by lemma 
(7.15), f satisfies (fs). 

Moreover, by (7.9) (b), 0 is nondegenerate critical point of f .  
Then the conclusion follows from Theorem 7.12. �9 

8. - S o m e  exis tence  theorems  for invariant  funct ionals .  

Now we consider how to use the index in a symmetric situation. We suppose that 
a compact Lie group G acts on E, i.e. that there exists a map 

~: G x E - - , E  

such that ~(g,, ~(g2, x ) )=  ~(g~ "g2, x). As usual we shall write gx  instead of ~(g, x). 
We recall some definition. If x �9 E, the subgroup of G defined by 

Gx = {g �9 E l g x  = x} 

is called the isotropy group of x. 
We say that G acts freely on A c E if G~ = Id  for every x �9 A. A point x is called a 

fix point ff Gx = G. The set of all fix points of G will be denoted Fix (G). The set O~ = 
= (g l3g  �9 G: g = gx}  is called the orbit of G passing through x. A set A c E such that 
gx  �9 A for every g �9 G and every x �9 A is called G-invariant. A functional f :  E---)R is 
called G-invariant if 

f (gx )  = f ( x )  Yg  �9 G. 

If the function f � 9  C '  (E), then it is possible to construct a variational system 

{v,F} where v is a G-invariant flow, i.e.: 

~(t, gx)  = gv(t,  x) Vt  �9 R and Vg �9 G. 

We shall call the triple (V, F, G} an equivariant variational system (notice that we do 
not require that the sets in P are G-invariant). 

If x is a critical point for a G-invariant function f, then all the points of the orbit 
are critical points. Such an orbit is called ~,critical orbit~. We have the following 
proposition: 

PROPOSITION 8.1. - Let  (~,1", G} be an equivariant variational system relative to 
f e C 1 (E) where G is a group of finite order, and let O~ be an isolated critical orbit off. 
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Then there exist a polynomial P(t) e 8 such that 

Ord G 
(8.1) i(t, Ox) = ~"P(t) where ~r = OrdGx 

(notice that ~ is the number of points of the critical orbit). 

PROOF. - Let x = xl, ..., xy be the points of the orbit 0~. Then by theorem 4.5 (iii) 
we have 

Y 

(8.2) i(t, 0~) = i(t, N~ (0~)) • i(t, N~ (xt)) 
~=! 

where ~ is small enough that N(xtl) n N(xt2) = 0 for 11 :~ 12. Now since the index is a lo- 
cal property, i(N~(x~))= i(N~(xj)). Then the conclusion follows immediately by 
(8.2). " 

PROPOSITION 8.2. - Let (v, P, G} be an equivariant system relative t o f w h e r e  G is a 
group of finite order p. Take A e/~ such that 

(i) A is G-invariant 

(ii) G acts freely on K(A) 

(iii) f is of class C 2 is a neighborhood of K(A). 

Then there exists m e N such that 

i(p - 1,A) = p . m .  

PROOF. - Since the set of points on which G acts freely is an open set, it is possible 
to choose ~ > 0 such that G acts freely on N~ (K) where K: = K(A). Also we can take 
small enough t h a t f e  C 2 (N~(K)). Now let {Uj} be an z-Morse covering of K (cf. Th. 
5.12). 

Now by (iii) of Def. 5.11 we get 

(8.3) i(N~ (K)) = i(A) + (1 + t) Q1, Q1 e 8. 

By (iii) and the fact that G acts freely on N~ (K) it is possible to choose a equivariant 
Morse function f~ arbitrarily close to f (apply the Theorem 6.1 at the function f c  =-1 
where =: N~---> N~/G is the natural projection). 
Then by Theorem 1.5 we have 

(8.4) i(t, Uj ,L) = i(t, Uj , f )  

and by Theorem 6.4 we have 

N 

(8.5) E a~t  "~ = i(t, Uj , f )  + (1 + t) Q2 Q2 e 8. 
m=O 

Notice that all the a,~'s are multiple of p since the action is free. Then by (8.3), (8.4) 
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and (8.5) we have 

N 

a ~ t  m = i(A)  + (1 + t)(Q1 + q2).  
m=O 

Since all the a,~'s are multiple of p, the conclusion follows taking t = p -  1 .  [] 

Now let us apply the theory developed to some existence theorems: 

T H E O R E M  8 . 3 .  - Suppose that on S = (x �9 E I IIxll = 1} a group G of finite order acts. 
Suppose that f � 9  C 1 (S, R) is a G-invariant function bounded from below which satisfy 
P.S. in [m0, m~) where m0 = rosin f and m~ = s u p f  (m is allowed to be +o~). More- 
over, suppose that z 

(8.6) there exists ~_= 2 such that every critical orbit has 

a cardinality multiple of ~. 

Then f has infinitely many critical orbits. 

P R O O F .  - Since S is contractible, i(S) = 1. W e  argue indirectly and suppose that f 
has only a finite number of critical orbits 01, ..., Oh. Then by Proposition 8.1 and 
Corollary 5.13 we get 

k 

P" E P~ (t) = 1 + (1 + t) Q(t). 
1=1 

If you take t = p -  1, we get 

p. (number) = 1 + pQ(p - 1) 

and this is a contradiciton. �9 

THEOREM 8.4. - Suppose that f � 9  C 1 (E, R) satisfies (fl), (f2), (f3) of section 7, and 
it is ivariant for the action of a finite group G. Moreover, suppose that 

f ~(a) 0 is the only fixed point of G 

(8.7) ~[(b) 0 is a critical point o f f  and i ( 0 )=  t ~ for some ~ � 9  

[(c) (8.6) holds for any critical point different from O. 

Then f has infinitely many critical orbits. 

P R O O F .  - Remember that by Lemma 7.11, f satisfies P.S. Now take c small 
enough in order that, by Lemma 7.10, we have 

(8.8) i(fc) = O. 

Now we argue indirectly and suppose that f has only a finite number of critical orbits 
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01 , . . . ,  Ok in f t .  Then by  Corollary 5.13 we have 

k 

i(O) + • i(Oz) = i(fc) + (1 + t) Q(t). 
1=1 

By (8.7) (b), (8.8) and Proposition 8.1 (with the assumption (8.6)), we get  

k 

t ~ + ~ ~ mtpt( t )  = (1 + t) Q(t). 
l=l 

Taking t = y - 1  we get  

(~,- 1)  ~ = r ' m  
k 

where  m = Q(~,- 1) - Y. m z p l ( y -  1) 
l=l 

and this is a contradiction. �9 

Next  we want  to consider an example where  the group G is continuous. We con- 
sider the group S 1 = {z e C] Izl = 1} with the multiplicative structure.  

PROPOSITION 8.5. - Let  {V,F,S  1} be an equivariant sys tem relat ive to f. Take 
A �9 F such that  

(i) A is S 1 invariant 

(ii) K(A) n Fix(S  1) = 0 

(iii) f is of class C 2 in a neighborhood of K(A).  

The there exists a polynomial P(t) with coefficients in Z such that  

i(t, A) = (1 + t) P(t).  

PROOF. - We claim that  3~ such that  Zp c S ~ acts freely on K(A)  for every  p _= ~. 
(Here Zp = exp [2=ki/p]] k = 0, . . . ,  p - 1}). To prove this we argue indirectly and sup- 
pose not. Then there exists a sequence p(k)-+ + ~  and points xk �9 K(A)  such 
that  

(gp(k))Z'Xk = Xk 1 = O, . . . ,p(k) -- 1 ( 8 . 9 )  

where  

gp(k) = exp [2z//p(k)] e Zp(k) �9 

Since K(A)  is compact, we can suppose that  xk converges to some 5 c K(A).  Moreover,  
for every  g e S 1, there exists a sequence of / (k) ' s  such that  

(gp(k))z(k)--* g for k---) + ~ .  

Then taking the limit in (8.9) with l = l(k) we get  

(8.10) gx = x. 
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Since g has been chosen arbitrarily, (8.10) implies that 5 e Fix (S 1) c K ( A )  against our 
assumptions. So the claim is proved. 

Then, by Proposition 8.2, for every p sufficiently large, there exists re(p) e N such 
that 

(8.11) i(p - 1,A) = p .m(p ) .  

By Corollary 6.6, i(t, A )  is a polynomial. Then there exists a polynomial P and an inte- 
ger number a0 such that 

(8.12) i(t, A) = (1 + t) P( t )  + ao. 

Then, by (8.10) and the above formula, we get 

ao = i(t, A )  - (1 + t) P( t )  [for every t e R], 

= i(p - 1, A )  - p P ( p  - 1) [for every p => ~], 

= p[m(p)  - P(p  - 1)] [by 8.11]. 

Since m(p)  - P(p  - 1) is an integer number, the above formula implies that a0 must be 
O (otherwise laol = +~) .  �9 

PROPOSITION 8.6. - Suppose that the same assumption of Proposition 8.5 are satis- 
fied. Moreover suppose that i(t, A ) =  (1 + t )P( t )  where 

m2 

(8.13) P(t)  = E bm t "~. 
m=~ '~  1 

Then if b~ :# 0 there exists a critical point of f, 5 e A such that 

m(~) -< n _-< m* (~). 

REMARK 8.7. - Proposition 8.6 is in the same spirit of Th. 6.10; however, by virtue 
of the S 1 invariance, it gives a better information. In fact, if 

i ( t , A ) = l + t 2 " ~ + l = ( l + t ) ( 1 - t + t 2 + . . . + t  2"~) (re->l) 

by Th. 6.10, it is not possible to deduce the existence of a point ~ with 

m(x-) <= n <_ m * (-~ -) 

if 1 < n < 2m. 

PROOF OF PROPOSITION 8.6. - We set 

K 1 = (x e K(A): m ( x )  <- n}  

K2 = {x e K(A): m* (x) => n}. 

We argue indirectly and we suppose that K1 ~ K2--0.  
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and 

Let {Uj} be a Morse ~-covering. Arguing again as in Th. 6.10 we have 

n - 1  

i(t, Uj)= • a j t  "~ i f U j n K 2 = 0  
m ~ m l  

m2 

i(t, Uj) = • aJ t  "~ if UjnK1 = O. 
m = n + l  

With this notation, the Morse relations reads 

(8.14) E i(t, Uj) = i(t, A) + (1 + t) Q(t) 
J 

If we set Q(t)= ~qmt  "~, since the left hand side of this formula does not have any 
m 

term of degree n, we have that 

(8.15) q~ = 0. 

Now, using Proposition 8.5, we have that 

i(t, Uj) = (1 + t)Pj (t) Vj 

where Pj (t) has the term of degree n equal to 0. Replacing the above expression and 
(8.13) in (8.14), and dividing by (1 + t) we get 

~. PN (t) = P(t) + Q(t). 
2 

Since b~ ~ 0 by assumption and the left hand side of the above expression does not 
have any term of degree n, it follows that % = - b ~  ~ 0 and this contradicts 
(8.15). " 

9. - The M a s l o v  index  and the  tw i s t ing  number .  

Now we want to apply the theory developed in the last four sections to the study 
of the periodic solutions of second order Hamiltonian systems. Before doing this we 
will study the Maslov index and the twisting number. This will be done in this and 
the next section. 

F o r ~ c S  l = { z e C I I z l = l }  we set 

L~,2 T ---- {x e L~oc (R, cN)lx(t + T) = ~. x(t)} 

where L~oc (R, C N) in the set of function x: R ~ C N which are measurable and whose 
square is locally integrable. L~ 2, r is a Hilbert space if it is equipped with the following 
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scalar product 

(9.1) 

T 1j (x, Y)L~,~ = -~ (x(t), y(t))c~ dt. 
o 

Now let A(t) be a family of real simmetric N • N matrices depending continuously on 
t and periodic  of period z and consider the following ordinary differential equa- 
tion 

(9.2) ~) + A(t) y = - ~ y  y e C N, ~ e R 

with the condition 

(9.3) y ( t + T ) = z . y ( t )  a e S  1, T = k z ,  k e N .  

Now let W~oc (R, C N) denote the space of functions having two square locally inte- 
grable derivative. 

Wlor C ~) n ~,r If 2~,T is the extension to 2 L 2 of the operator 

(9.3') - f]  - A(t) y 

then it is well known that  ~,, T is a selfadjoint unbounded operator on L~ 2, T. Then the 
eigenvalue problem (9.2), (9.3) becomes 

(9.4) ~ , T Y  = ~Y y e D(.~,,~) = Lr n W~oc(R, cN).  

It  is easy to check from elementary facts of spectral theory that  ~o, T has discrete spec- 
t rum with only a finite number of negative eigenvalues. 

This fact allows us to define a function 

j(T, .): $1-~ N 

as follows. 
j(T, ~) = {number of negative eigenvalues of 2~, ~ counted with their multeplici- 

ty}. 
We shall call the function j(T, 1) the Maslov index relative to the equation ~ + 

+ A( t ) y  = 0 in the interval [0, T]. 
Now let W(t) be the Wronskian matrix relative to equation 

~j + A(t) y = 0 

i.e. the matrix which sends the initial data v0 [~)(t)J" 

The map W(T): C2n~  C 2~ (where T is the period of A(t)) is called the Poinear6 map or 
the monodromy map. 

The eigenvalues of W(T) are usually called Floquet multipliers (relative to the in- 
terval (0, T)). 
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PROPOSITION 9.1. - The function j(T, ~) satisfies the following properties 

(i) j(T, ~) =j(T,  ~) where ~ is the complex coniugate of z 

(ii) if j(1, z) is discontinuous at the point :* then :* is a Floquet multiplier 

(iii) Ij(T, ~2) - j(T, ~1)1 <- l Vzl , ~2 e S 1 -  (+1, -1} where 21 is the number of 
non-real Floquet multiplies on S 1 counted with their multeplicity. Thus, in particu- 
lar 

~(T, z2)- j (T,~I)I<=N for every ~1,~2 e $ 1 -  {+1 , -1}  
k - 1  

(iv) j (kT,  O) = ~ j(T, ~j) where zo,-.-, zk-1 are the k values of . 
j=O 

PROOF. - (i) If y(t) is an eigenfunction of 2~, r ,  the complex coniugate function y(t) 
is an eigenfunction of 2;, r corresponding to the same eigenvalue. Therefore ~:, T and 
2;,T have the same number of negative eigenvalues. 

(ii) The eigenvalues of s depend continuously on z. Since 2:,T is selfadjoint, 
they are all real. Therefore the number of the nonpositive eigenvalues j (T,  ~) can 
change only for those ~* such that 0 is an eigenvalue of 2:., T. This means that if z* is a 
discontinuity of j(:, T), the following problem 

(9.5) ~) + A(t) y = 0 

(9.6) y(t + T) = ~* y(t) 

has a nontrivial solution y(t). If W(t) is the Wronskian matrix relative to this problem, 
then 

y(t)] for some x, v e C N . 

Then the condition (2.9) for t = T reads 

Therefore ~* is an eigenvalue of W(T). 

(iii) W(T) is a sympletic matrix; then if ~ is an eigenvalue of W(T), also 
~, )-1, ~-1 are eigenvalues of W(T). Therefore 

(a) the number of eigenvalues of W(T) different from + 1 is even; 

(b) the sum of the multiplicity of the eigenvalues +1 and - 1  is even (if + 1 are 
not eigenvalues then their multiplicity has to be assumed 0 in order to make sense of 
the above statement). 

In particular the eigenvalues of W(T) on S 1 -  {+1 , -1}  is an even number 
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21. We can assume that  all the eigenvalues axe simple (otherwhise use a perturbat ion 
argument) .  

Therefore j(T, ~) has at most 21 points of discontinuity and at each of them the 
jump of j(T,  ~) is +1 since we have assumed that  all the eigenvalues are simple. 

Now 

~'(T, ~)  - j ( T ,  ~2)1 = ~'(T, exp [ioJ~]) - j ( T ,  exp [ioJ2])l with ~ e ( -= ,  =) - {0},j = 1, 2. 

By (i) we have that  j(T, exp [i~] =j(T,  exp [- i~]) .  Then we can assume that  ~1 and 
o~2 e (0, =). But the function o~ ~ j ( T ,  exp [io~]) has at most  1 jumps in (0, ~) and this 
proves the s tatement .  

(iv) A direct computation shows that  

k - 1  

LkT, o =j--~0'= L~,~j; where  %, . . . ,  ~k-1 are the k values of ~V ~. 

Since T is a multiplier of ~, A(t) is T-periodic; then the operator 2kT, ~ leaves the spaces 
L~, ~j (2" = 0, ..., k - 1) invariant. 

By our definitions, we have that  

~kT, o IL~,o = 2T,~j j = O, ..., k - 1 .  

Therefore we have the following decomposition of ~ k T ,  0 

k - 1  

2kT, O = T(~=o s J j = O, ..., k - 1 .  

From the above formula the conclusion follows. �9 

Now we can define the twisting number  as follows: 

2~ 

i f  if P = 2r:v J(z' ~) d~ = - -  j(v, exp [i~]) d~ 
27r 

S 1 0 

PROPOSITION 9.2. - The twisting number  satisfies the following properties: 
1 .  

(i) p = T-~+~lim -~3(T, 1); 
T=kv 

i f  (ii) ,o= ~ j (T,~)dr T = k z ;  
S 1 

(iii) ITp- j (T ,~) l<-I  for every  ~ e S i - { + l , - 1 } , T = k r , 2 1  is the number  of 
Floque t multiplier on S t -  { + 1 , - 1 } ;  

1 .  (iv) for every  ~ e S 1 we have T-~+~lim -~3(T, ~)= ,~. 
T=k~ 
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PROOF. - (i) By Proposition (9.1) (iv) we have 

k-1 
(9.7) lim -~zj(kz, 1)= lira 1 ~,+~ ~+o~ ~ ~ j(r, exp [2=il/k]). 

l=O 

By the definition of the Cauchy integral, we have 

(9.8) 

2~ 

k-1 f lim 2= ~ j(r, exp [2~l/k]) = j(z, exp [io~]) d~ 
k~+~o T /=0 

0 

= 2 = z ~ .  

Then, by (9.7) and (9.8) we have 

k-1 
lim 1 �9 1) = ~ l i m  2= To+~ "~](k~', 2=Z ~ +  -k- ~ j(z, exp [2=Ilk]) = p. 

l=O 
T=k~ 

(ii) From (i) it follows that p is indipendent on T = k~. 

i f  j (iii) ITp-j(T,~)I = ~ j(T,O)dO- j(T,~r)de <= 
S S ~ 

1__ j ~'(T, O) - j (T ,  :)ldO <= 1 by Proposition 9.1 (iv). < 
- -  2 =  

s1-(+1,-1} 
(iv) It follows from (i) and (iv). " 

E X A M P L E .  - Consider the equation 

~)+ A y = O  

where A is a time indipendent real simmetric matrix with l positive eigenvalues 
~21, ..., ~t 2 and N -  l negative eigenvalues. 

Then the negative eigenvalues of - Y -  Ay on L12,r are 

2n,j= n 2 - ~ y  w i t h n e N ,  l = 0 , . . . , k - 1  a n d n <  2= " 

Notice that for n_>-1 they have double multiplicity. Therefore 

2= J = l + 2 " j = l L  2= J" 

Then by Proposition 9.2 (i) we have 

1 '  
1 .  t 2 = lira ~3(T, 1)= lim + = 
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1 0 . -  The generalized Morse index for periodic solutions of second order 
Hamiltonian systems. 

In this section we consider the following system of ordinary differential 
equations 

(10.t) 2 + V x ( t , x ) = O  x e R  N 

with V e C2(R • R~). We suppose that V(t, .) is r-periodic. We set 

W T= {x ~ W~oc(R, RN)Ix is T-periodic} 

W ~ is an Hilbert space if it is equipped with the following scalar product: 

T 

(x, Y)w~ = ~ (5c. ~1 + x.  y) dt 
o 

where ~.. denotes the scalar product un R N. 
The equations (10.1) are the Euler-Lagrange equations corresponding to the 

functional 

T 

1 f { 1  1~12+V(t,x)}dt x ~ W  T. (10.2) f(x) = -~ 
0 

It is well known that  f(x) is a functional class C 2 on W T. 
Therefore, any T-periodic solution of (10.1) can be interpreted as a critical point of 

the functional (10.2). 
If  we apply the theory of section 6, we can define a Morse index for every T-peri- 

odic solution 5 of (10.1) which we shall denote by m(~, T) to enphatise the fact that  the 
Morse index is computed in the space W T. 

Of course we can also define the nullity n(~, T) and the number m*(~,  T ) =  
= m(5, T) + n(5, T) as in section 6. Now let us consider the linearization of the equation 
(10.1) at x: 

(10.3) ~ + Vx~ (t, 5(t)) y = 0. 

It  is easy to check that m(5, T) is the number of negative eigenvalues of the selfad- 
joint operator 

(10.3') y--) - ~ -  V"x(t, 5(t))y in L2((O,T),R ~) 

n(~, T) is the multiplicity of the eigenvalue 0 of (10.3') and hence it is the number of 
indipendent solutions of equation (10.3). 

A T-periodic solution 5 of (10.1) is called nondegenerate if it is nondegenerate as 
critical point of the functional (10.2) i.e. if n(x, T) = O. Clearly 5 is nondegenerate if 
and only if the linear system (10.3) does not have any nontrivial T-periodic solution, 
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or, if you like, if I is not a Floquet multiplier of the equation (10.3) relative to the in- 
terval (0, T). We recall that a number ~ e C is called a Floquet exponent if e ~ is a Flo- 
quet multiplier. 

DEFINITION 10.1. - Let E be a T-periodic solution of the equation (10.1) and let 
(2rd~j (3 .=  1, . . . ,N) be the purely immaginary Floquet exponent of the linearised 
equation (10.3). Then if ~j ~ Q for j = 1, ..., 1 we say that 5 is nonresonant. 

It  is easy to check that if E is a nonresonant z-periodic solution, then E is T-nonde- 
generate for every T = kz, k e N. 

If  5 is a T-degenerate solution of (10.1) then the definition (6.7) can be applied to 
define the multiplicity of 5. 

We can associate to the equation (10.3) a Maslov index j(T, ~) as in section 9 where 
A(t) = V" (t, ~(t)) and consequently a twisting number p(~). 

PROPOSITION 10.2. - If ~ is a T-periodic solution of (10.1) (T = kz, k e N )  then 

(i) re(E, T) = j(T, 1). 

Moreover if 5 is nondegenerate 

(ii) T. ,o(5) - N -< m(~, T) _-_ T. ~(x-) + N. 

PROOF. - (i) is a trivial consequence of the definitions. 
(ii) Since I is not a Floquet multiplier, then for zl very close to I (~ e $1), ~1 is not a 

Floquet multiplier and 

re(T, x-) = Jr (T, ~) by Prop. 9.1 (ii). 

Then the conclusion follows from Proposition 9.2. (iii). �9 

Now let F T be the family of subsets of W r defined in Def. 5.2. 
Now we want to examine the relationship between the index of a set U(U e r T) 

and the twisting number of the solution of (10.1) contained in U. 

PROPOSITION 10.3. - Let ~ ~ W ~ be a possibly degenerate critical point of f. 
Then 

m * (E, T) - N <- ~(~) T <- m(E, T) + N .  

Proof. - By our assumption ~ satisfies the following equation 

(10.4) x + V~ (t, E) = 0 

and the following operator 

(10.5) y ~ - ~ - V~x (t, x-) y 

has ml: = m(E, T) negative eigenvalues and m2: = m*(E, T) nonpositive eigenval- 
ues. 
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Now, for every ~ ~ 0, consider the following functional on W T 

f~(x) = x 2 - V ( t , x )  - ~ l x - 5 1 2  dt. 

Obviously 5 is a critical point off~ since by (10.4) it satisfies the equation 

+ Vx (t, x) + ~(x - 5) = 0. 

Moreover, if ~ ~ 0 is small enough, ~ is not an eigenvalue of (10.5); this implies that  5 
is a nondegenerate critical point off~ and its Morse index is ml if r < 0 and m2 if ~ > 0. 
I f  we denote by ~ (5) the twisting number of 5 with respect to the function f~, using 
Proposition 3.2 we get  

m l - N < = , ~ ( 5 ) . T < - _ m l + N  if ~ < 0  

m2-N<=?~(5) .T<=m2+N if ~ > 0 .  

It  is not difficult to check that  Pc depends continuously on ~. Therefore let t ing ~ ~ 0 in 
the above formula we get  

m2 - N <= ,o(5) . T <= mi + N .  �9 

COROLLARY 10.4. - (i) Le t  U e F T and let 

i(U) = ~ al t t with am :/: 0 
l = m  1 

Then there exists 5 �9 U, solution of (10.1), such that  

m - N  m + N  
T <= ?(x-) <= T 

(ii) Suppose now that  the equation (10.1) is autonomous (i.e. ~V/~t = 0) and let 
U �9 F T be a set which does not contain constant solutions. I f  

m2 

i ( U ) = ( l + t )  ~ b~t z with b r a e 0 .  
l=m~ 

Then the same conclusion of (i) holds. 

PROOF. - (i) Apply Theorem 6.10 and Proposition 10.3. 

(ii) Apply Proposition 8.6 and Proposition 10.3. " 

11.  - S o m e  a p p l i c a t i o n s  t o  n o n a u t o n o m o u s  s y s t e m s .  

In this section we t ry  to get some information on the s tructure of the periodic so- 
lutions of the equation (10.1). We suppose that  V(t, x) satisfies the following asymp- 
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totic conditions 

(11.1) there exists R > 0 and p > 2 such that 

O<V(t,x)<= 1 V  (t,x).x V t c R  Vx with Ixl > R .  p 

Condition (11.1) implies that V(t, x) grows more than !xl 2 as Ixl ~ + ~. Moreover this 
condition implies the following facts: 

LEMMA 11.1. - Suppose that V satisfies (11.1). Then the functional (10.2) satisfies 
f l  ,fe and f~ of section 7. 

PROOF. - (fl) is verified if we define L and ~ by the following equations: 

T 

<Lx, v} = f(2. +x.v)dt Vve  W 
0 

T j{ 1} ~(x)= V(t,x)+ ~lxl 2 dt. 
0 

(f2) is a consequence of the superlinear growth of V. 
(fs) can be verified reasoning as in Lemma 7.11. �9 

COROLLARY 11.2. - The functional (3.2) satisfies (P.S.). Moreover there exists Co 
such that i(fi)= 0 for every c-< co. 

PROOF. - It follows from Lemma (11.1) Lemma (7.11) and Lemma 
(7.10). �9 

THEOREM 11.3. - Suppose that V satisfies (11.1) and let x0 be a nonresonant v-peri- 
odic solution of 10.1. 

Then, for every ~ > 0 there exists a T-periodic solution x r x0 (with T= 
= k~, T < z + (2N + 1)/~), such that 

I (x) -  (Xo)l --< 

PROOF. - Take T = kz with (2N + 1)/s =< T_-< z + ((2N + 1)/~). Since x0 is nonreso- 
nant, there is a neighborhood N~(xo) in W which does not contain periodic solutions of 
(10.1). Now take a ~-Morse covering {Uz} offc (where fc is as in Lemma 11.2, c _<-Co). 
Then, by Theorem 5.14 

i(xo) + E i(U1) = (1 + t) Q(t). 
le[ 

By the above formula there exists 1 e I such that either 

(11.2) i(Ut) = t m+l 
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o r  

i(U~) = t "~- 1 

where m is the Morse index of Xo (i.e. i(xo) = t m ) .  

We consider the first possibility (if the second one holds we argue in the same 
way). 

By Proposition 10.2 (ii) we have 

(11.3) i(xo) = t ~ with p(xo) T -  N <= m < p(Xo). T + N .  

By Corollary 10.4 (i) and (11.2), there exists x �9 Ul such that 

(11.4) T ( m  + 1 -  N)_=p(x) = < l ( m  + 1 + N). 

Comparing (11.3) and (11.4) we get 

1 
[p(x) - p(x0)t =< ~ (2N + 1) _-< ~. " 

The next theorem we are going to prove has stronger assumptions and gives a bet ter  
information about the T-periodic solution of equation (11.1). 

THEOREM 11.4. - Suppose that V satisfies (11.1). Let T = pz with p prime number, 
and suppose that all the T-periodic solutions of (11.1) are isolated (as points in wT). 
Let xl, xe,. . . ,  xn, ... be the z-periodic solutions of equation (10.1). We suppose that 
they are T-nondegenerate and ordered by increasing twisting number: 

p(xl) _-__ p(x2) ... -< ~(xn) _=... 

Then for every number ,~ �9 [p(x2n-~), ,~(X2n)], (2n < p) there is a T-periodic solution 
such that 

tp(E) - ,~l < N + 1 
= T 

PROOF. - By the Theorem 5.14 relative to the space W ~ we have 

(11.5) E i ( x j ) +  E i ( U j ) = ( l  +t)Q(t)  with Q ( t ) = • q t t  t 
j ~ J  j ~ I 1 

where { Uj}jd is an ~-Morse covering of the T-periodic solutions of (11.1) which are not 
v-periodic and {xj}j~j is the set of z-periodic solutions. Now fix p �9 [~(x2n-1) + T. (N + 
+ 1), P(X2n) - T" (N + 1)] and take m = {integer part of p- T}. 

Consider only the terms of (11.5) of order less or equal to m: 

(11.6) 
m m - 1  

aztl + ~ bzt l= ( l + t )  ~ q~tZ + qmt "~ 
l = l  l=0 l=O 
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where 

m 2 n - 1  

(11.7) • alt t= E i(xj) 
/=1 j = l  

m 

and the term ~ btt I comes from the e-Morse covering relative to the solutions which 
l=O 

are not v-periodic. 
Since we have supposed that these solutions are isolated, by Proposition 8.1 we 

have that 

bt = P~l for some ,~l e N. 

Then rewriting (11.6) for t = -1 ,  we get 

(11.8) ~(-1) la~ + p  ~ (-1)till = (-1)'~q,~. 
l=l l=O 

By (11.7), the first term of (11.8) is an odd number less or equal to 2n - 1, and by our 
assumption less than p. 

Thus the sum of the two terms of the left hand side of (11.8) is different from 0. 
Thus qm r 0. Then, by (4.5), there exists Uj such that 

i(Uj) = t ~ + possible other terms. 

Corollary 10.4 (i) implies that there exists 5 e Uj such that 

1 _ N) ==p(2) < 1 + N )  (m = ~ (m 

and by the definition of m we have that 

N + l _ < p ( 5 ) < p +  N + I  
P T = - - - T -  

Thus the theorem is proved for ~ e [p(x2n-1) + T(N + 1), p(x2~) - T(N + 1)]. 
Considering also the solutions x2~-1 and x2~ the theorem is proved for every 

p e [p(x2~-l), p(x2~)]. �9 

We conclude this section with a theorem which is the analogous of Theorem 11.3 in 
the asymptotically quadratic case. 

We say that V(t, x) is asymptotically quadratic if there exists a matrix A~ (t) such 
that 

(11.9) Vx(t,x) =n~( t )x+O(lx! )  as Ixl-* +oo. 

If V is asymptotically quadratic we can consider the linearised system at oo 

(11.10) ~ + A~ (t) y = 0 

and associate to (11.10) a twisting number #~. 
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Then we have the following result: 

THEOREM 11.5. - Suppose that V satisfies (11.9) and suppose that (11.10) has not 
T-periodic solution different from 0. 

Let xo be a nondegenerate T-periodic solution of (10.1) with twisting number ~(x0) 
such that 

(11.11) ]~(Xo)-p~] > 2N 
T "  

Then the system (10.1) has a T-periodic solution 5 such that 

1~(-2) - ~(x0)L < 2 N  +____! 
T 

SKETCH OF THE P R O O F .  - If we take a ball in W T of sufficiently large radious R, ar- 
guing as in [B3], we have that 

BR �9 F r and i(BR) = t ~(~) . 

It is easy to check that 

(11.12) T.p| - N_- < m(~) -__ T - ~  + N. 

Then the Morse relation take the form 

i(xo) + ~ i(Ut) = t m(~) + (1 + t) Q(t). 
leI  

Let i(xo) = tm. 
Then, by (11.11) and (11.12) 

Im - m(~) I ~ 0. 

Therefore we have that Q(t)-r O. 
From now on we can argue as at the end of the Theorem 4.3. ,, 

It is well known that if V(t, x) is even in x and satisfies (11.1), then the equation 
(10.1) has infinitely many ~-periodic solution. 

Now we want to show that a more general symmetry assumption on V will give 
the same result. 

We assume that 

(11.13) 

(a) V(t, .) is G-invariant, where G r O(N) is a finite group which satisfies 
the following: 

(i) 0 is the only fix point of G 

(ii) there exists r=>2 such that every orbit O~ passing through 
x e R N - {O} has a cardinality multiple of ~. 

(b) O is a nondegenerate T-solution of (10.1). 
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THEOREM 11.6. - Let V satisfy (11.1) and (11.3). Then the equation (10.1) has in- 
finitely many z-periodic solutions. 

PROOF. - It is an immediate consequence of Lemma 11.1 and Theorem 
8.4. �9 

REMARK 11.7. - It has been conjectured that the statement of Theorem 11.6 is 
true without the assumption 11.3. However until now this result is known only for 
n = 1 (cf. [JA]) or if V has the following form 

V(t, x) = U(x) - f ( t ) .  x 

(Cf. Bahri-Beresticky [BAB]). 

12.  - O n e  a p p l i c a t i o n  t o  a u t o n o m o u s  s y s t e m s . .  

Now we consider the following autonomous equation 

(12.1) ~ + V x ( x )  = 0 x e R  n. 

We restrict ourselves to the superlinear case i.e. we still assume that V satisfies 
(11.1). 

In this case the Theorems 11.3 and 11.4 do not apply since every non constant so- 
lution of equation (11.4) is degenerate. 

In fact if x is a T-periodic solution of (12.1), y = 2 is a T-periodic solution of the lin- 
earised equation 

~) + Vx~ (x(t)) y = O. 

In this section we shall prove the following theorem: 

THEOREM 12.1. - For every p _>-~0 there is a T-periodic solution 5 such that 

IP - ~(x)[ < N + 1 
= T 

where ,~o = max {p(x)[ x is a constant solution of (12.1)}. 

REMARK 12.2. - The existence of infinitely many T-periodic solution of (12.1) for 
any T > 0 under the only assumption (11.1) has been proved some years ago (cf. [BF2] 
Th 4.1 or [RA2]). 

So the interest of Theorem 12.1 relies not in the existence of T-periodic solutions, 
but in the relation between the T-periodic solutions and their twisting number. 

PROOF OF THEOREM 12.1. - Let {Uj}y~I be an z-Morse covering of the solutions of 
(12.1). We divide {U/}j~I in two families. 

{U~}jdl if Uj contains a constant solution of (12.1) and { Uj}y~• 2 otherwise. 
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Set mo= integer part of (T~o + N + 1). We claim that 

mo 

(12.2) E i(1, Uj) = E attZ+ (1 + t)Pl(t)  
jeI1 /=0 

where ~ al = {odd number} and P1 (t) is a polynomial with integer coefficients. 
l 

Since the Uj are disjoined, by Theorem 4.5 (iii), we have that 

E i(t, Uj) = i(t, A) 
jeI1 

where 

A=UU . 
jeI1 

Now let V be a small C2-perturbation of V and we set 

T 

0 

and let ~ be the flow relative to f .  
We can chose 17 close enough to V in order that  

(12.3) 
(a) A e/'(~) 

(b) i(t, A, ~) = i(t, A) where i(t, A) = i(t, A, 7). 

This is possible by Theorem 5.16. 
Moreover, by well known generic properties, 17 can be chosen such that  

(12.4) (b) the positive eigenvalues of f/~(xj) are not of the form .n  2 
( n e N ,  j = 1,...s). 

The xj's are critical points of the perturbed functional f and if 17 has been chosen 
close enough to V, their twisting number is less or equal to ,oo + lIT. Moreover by 
virtue of (12.4) (b), they are not degenerate and by Prop. 10.2 their Morse index m(xj) 
is less or equal to m0. Now, the critical points x l , . . . ,  x~ of 17 satisfy the following 
Morse relation (cf. Th. 6.4) 

t m~ = i(R n) + (1 + t)Q(t) 
j=l 

where mj is the Morse index of xj in R y. Since, by our assumption on the potential V, 
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i(R n) = 1, taking the above relation with t = 1 we get 

s = 1 + 2Q(1) = odd number. 

Now let us write the Morse relation in A for the functional f :  we get 

t "~(x~) + E i(t, Uk) = i(t, A) + (1 + t) Q(t) 
j = l  k 

where the xjs are the constant critical points o f f  and (Uk} is an ~-Morse covering of 
the other critical points o f f  in A. By Proposition 8.5, we have that 

i(t, Vk) = (1 + t)Pk(t).  

By the above formula and (12.5) we get 

tm(~J ) + (1 + t) • Pk (t) = i(t, A) + (1 + t) Q(t). 
j = l  k 

Now taking t = -1 ,  we get that i(1,A) is an odd number and hence, by (12.3) (b), 
(12.2) is proved. 

Now we write the Morse relation for f using Corollary 11.2 and we get 

(12.5) E i(t, Uj) + E i(t, Uj) = (1 + t) Q(t). 
jeI1 jeI2 

We use again Proposition 8.5 and we get 

i(t, Uj) = (1 + t) Pj (t) j e /2 .  

Then taking account of (12.2) the equation (12.5) can be written as follows 

m0 

(12.6) ~ az t z + (1 + t) ~ btt I = (1 + t) ~ qz tz 
l=O l l 

where ~ bttt: = Pl(t)  + ~ Pj(t) and ~q t t t :  = Q(t). 
l jeI2 l 

Now we can prove the statement of the theroem for any given p > ~o + (N + 1)IT (if 
P [~0, (N + 1)/T], the statement is true taking the constant solution with twisting num- 
ber Po). 

If we set m = integer part of p. T, we have that m-> mo. 
The equation (12.6) up to the order m reads 

mo m - 1  m - 1  

(12.7) ~ art 1 + (1 + t) ~ bit t + b,~t m = ~ qlt I + qmt "~. 
l=O 1=1 1=1 

Now, taking t = -1 ,  from the above equation we get 

mo 

al t t+ (-1)mb~ = (-1)~q,~. 
l=O 

n 

Since ~ at t t is an odd number, it follows that bm (or q,~) is different from zero. 
l=O 
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In e i ther  case, from Proposition 8.6, there  exists a solution 5 of (12.1) such 

that  

m(~-)<_m<_m*(x-). 

Then by Proposition 10.3 

m - N  m + N  
T <-g(~)<= - - T  

The conclusion follows from the definition of m. [] 
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