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Existence for the Cahn-Hilliard Phase Separation Model 
with a Nondifferentiable Energy (*). 

CHARLES M. ELLIOTT - ANDRO MIKELIC 

Summary. - The Cahn-Hilliard model for phase separation in a binary alloy leads to the equa- l. 
tions (I) ut = Aw, (II) w = ~' (u) - .fzlu with an associated energy functional F(u) = J [~b(u) + 

+ yIVul2/2] dx. In this paper we discuss the existence theory for initial boundary value prob- 
lems arising from modifications to the Cahn-Hilliard model due to the addition of the non- 
differentiable term ~slVul dx to the energy F(u). 

1 .  - I n t r o d u c t i o n .  

The Cahn-Hilliard equation 

~U (1.1a) - - = A w  x e • ,  t > 0 ,  
~t 

(1.1b) w = ~ ( u ) - ~ , A u  x e t ) ,  t > 0 ,  

(1.1c) ~(u) -= u ~-/~u, 

(1.1d) fl_~u = a_~w = 0  x e a~ ,  t > O, 
au au 

holding in a bounded domain t~ c R n (n ~< 3) for t > 0, with ~ denoting the unit outward 
pointing normal to at), where y and/7 are positive constants, arises in the study of 
phase separation in binary mixtures; see CAHN and HILLIARD [1958], CAHN [1965], 
HILLIARD [1970], LANGER [1971], GUNTON, SAN-MIGUEL and SAHNI [1983], NOVICK- 
COHEN and SEGEL [1984] and the references cited therein. Here u(x,  t) is a suitably 
scaled concentration of one of the two components of the mixture, w is a generalized 

(*) Entrata in Redazione il 10 giugno 1988. 
Indirizzo degli AA.: C. M. ELLIOTT: School of Mathematical and Physical Sciences, Universi- 

ty of Sussex, Falmer, Brighton BN1 9QH, England; A. MIKELIC: Rudjer Bogkovi6 Institute, 
Theoretical Physics Department, Zagreb, Yugoslavia. 
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chemical potential and ~(.) is the derivative of the homogeneous free energy 

1 u 2 (1.2) ~(u) = ~ (  _fl)2. 

The equations (1.1) are derived by consideration of the Landau-Ginsburg free-en- 
ergy functional 

for which the chemical potential w is the functional derivative. It is the purpose of 
this paper to study modifications of the original Cahn-Hilliard model based on the en- 
ergy functionals: 

(1.4a) F~,~ (u) = F r (u) + a f [2 + iVut2 ]1/2 dx, 
D 

(1.45) F~(u) = ry(u) + ~ f IVul dx, 

(1.4c) F ~ (u) = f [~b(u) + ~lVul] dx. 
t) 

In particular in sections 3, 4 and 5 we prove global existence theorems for the 
following initial-value problems where we use the notation W(0, T) = 
= {v �9 L2(0, T; H 1 (t~)): dv/dt e L 2 (0, T; (H~ (t))) ' )}. 

w e L 2 (0, T; H 1 (t))) 

VveHI(~) ,  a.e. te(O,T) ,  

(P~,~) Find u e L ~ (0, T; H 1 (t))) • W(0, T) and 

such that 

(1.5a) -~- ,~  +(Vw, V~)--0 V ~ e H I ( ~ ) ,  a.e. te(O,T) ,  

(1.55) (w - ~(u), ~) = ~,(Vu, V~) + 

Vu V~) 

(1.5c) u(0) = Uo. [] 

(P~) Find ueL~(O,T;HI(t)))r~W(O,T) and weL2(O,T;HI(t))) 
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such that 

( a u  t 
(1.6a) -~-,r j  +(Vw, Vv)=0  V)7�9 a.e. t �9  

(1.6b) 
t9 D 

Y~ �9 H~(~) ,  a.e. t �9 (0, T),  

(1.6c) u(0) = Uo. [] 

(P~) Find u �9 L ~ (0, T;BV(t~) (~L4(t~)) and w �9 L2(O, T;HI(t~)) 

with du/dt �9 L ~ (0, T; (H I (~))') such that 

(1.7a) ( -~t  ,V}+(Vw,Vv)=0 Y~eHI(D), a.e. t �9 (0, T), 

(1.7b) a f l v v I - a f I v u l - ( w - , ~ ( u ) , v - u ) > ~ o  VvEBV(D), a.e. t � 9  T). 
D 

The motivation for studying (P~) and (P~) comes from the papers by TILLER, POUND 
and HITRH [1970], CAHN and HILLIARD [1971] and HAGAN and COHEN [1985] which 

discuss the possibility and desirability of adding a term of the form ~ j IVul dx to the 
D 

energy functional. In particular HAGAN and COHEN [1985] study the partial differen- 
tial equation version of (P~) 

(1.8) a---U-U = ~(u)= - yu~x~ - H(ux)~x~, x �9 (0, L), 
at 

where H(-) denotes the Heaviside operator, using approximate analytical methods 
with the interpretation of (1.8) being the limit as ~---) 0 in (1.5). (See also COHEN and 
ALEXANDER [1988].) 

Global existence results for the Cahn-Hilliard equation (1.1) have been obtained 
by ELLIOTT and ZHENG [1986]. The behaviour as t ~ ~ was studied by ZHENG [1987]. 
Results of a numerical study of (1.1) can be found in ELLIOTT & FRENCH[1987]. We 
note that (P~) with (1.6a) replaced by w = f -  au/at and ~(.) ~ 0 is a problem arising in 
non-Newtonian fluid mechanics studied by GLOWINSKI, LIONS and TREMOLIERES 
[1981]. 

Problems (P~) and (P~) and some variants have previously been studied by 
A. VISINTIN, in the context of the Stefan problem with surface tension where ~(u) is 
taken to be - u .  Global existence results are obtained in VISINTIN [1984]; see also 
VISINTIN [1988]. 
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2 .  - P r e l i m i n a i r e s .  

Throughout the paper the norm of H ~ (D) (s I> 0) is denoted by I1" I1~, the semi-no~n 
HD~IIo is denoted by tvl~ and the L2(t~) inner-product by (.,.). For v e L~(~) we 
set 

(2. la) f IVvI:= su p ( - f fv V .~  dx:~ e C~ (t~) ~, I~t ~< 1 in D} 

and the Banach space of functions with bounded total variation in D, BV(t)), is defined 
by 

(2. lb) 

with norm 

(2.1c) llVlIBV(a) = HVHL~(~) + f IVvl. 

It follows that if (vj}j%l is a sequence in LI(~) which converges in LI(~) to v 
then 

(2.2) I IVvl ~< .lim inf f IVvj Idx. 
. j ----> ~ 

Furthermore it is known that bounded sets in BV(f~) are compact in L 1 (~). 
Setting 

(2.3) J(v)= f lvvldx, 
~9 t~ 

we have that J(.) is convex and continuous on H ~ (~) and J~ (.) is convex and differen- 
tiable o n  H 1 ( t)) .  

(2.4) 

and 

(2.5) 

Convexity also 
f e (H ~ (D))': 

Furthermore, a simple calculation, yields 

O<J~(v)-J(v)<~sIt)t Vv e Hl(t~), 

( ) VV V~ V~eH i (t~). 
(J: (v), ~7} = ~ V~ 2 + IVvl ~ , 

implies that the following statements are equivalent for 

(2.6a) (J" (v),v} = ( f ,@ VV e Hi(t)), 
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(2.7a) 

(2.7b) 

where 

(2.8) 

For f e 3~- we define 

(2.9a) 

(2.6b) J~(v)-J~(v)>~ < f , v - v )  Y~ e H1(s 

It  is convenient to use the Green's operator g g  for the Laplacian with Neumann 
boundary data: given f e  97=  { f e  (Hi(O))' : (f ,  1} = 0} we define G y f e  Hi(t2) to 
be the unique solution of 

(VGwf, Vv)= ( f , v )  Vv e H~(tg), 

(GNf ,  1)=O 

{., .) denotes the duality pairing between (H~(O)) ' and H~(t~) such that  

( f ,~)  = (f, v) V f  E L2  (t~). 

tlflt-1 = ]•Nfll 

and note that i f f e  ~-c~L2q?) then 

(2.9b) Ilf]l-, = ( G y  f ,  f )  vz . 

3. - The  (P~,~) prob lem.  

THEOREM 3.1. - If Uo e H1(s then there exists a unique solution to (P~,~). 

PROOF. We use a Galerkin method. Let {zj} be the orthogonal basis for H 1 (~) con- 
sisting of the eigenfunctions for 

(3.1a) - A z  + z = ),z in ~, 8z/au = 0 on 8t~ 

and normalised so that 

(3. lb) (zi, zj) = ~j . 

Note that  {zj} is an orthogonal basis for L 2 (tg). Denote by Vm the finite dimensional 
Z m subspace of Hl(tg) spanned by { j}j=l. A Galerkin approximation to (P~,~) is 

m m 

( 3 . 2 a )  um (t) : s Cj (t) Zj, wm (t) = ~ dj (t) zj,  
j=l j = l  

(gu m ) 
(3.2b) \ dt , m + ( V w m , V r f f ) = 0  V meVm,  

(3.2c) (wm-~(um),~m)=r(Vu~,W/~)+~ ~j+lVumf ,V~ =0 

(3.2d) u ~ (0) = P,~ (u0) 

V ~  m E Y m , 
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where Pro: Hi(t)) -~ V~ is the projection defined by: 

(3.3a) 

so that 

(3.3b) 

Clearly it holds that 

(3.4) 

It follows from (3.1b) 
i =  1 ,2 , . . . ,m  

m 

P,~v= ~(v j , z j ) z j  VV e H1 (t~) 
j = l  

(P~ v - v, ~'~ ) = (VP,~ v - Vv, VV ~) = 0 V~ ~ e V~. 

IP~vli ~< Ivli i = O, 1. 

that (3.2) can be rewritten in the simplified form, for 

(3.8) F~,~ (u ~ (t)) + f Iw ~ (z)l~ dz = F~,~ (Pro (Uo)). 
0 

(3.7) 

Finally we obtain 

(3.5a) dci 
dt (t) = -(;q - 1)di (t), 

(3.5b) di (t) = y ( ~ -  1)ci (t) + ( ~ m  (c)) i + (O,~ (c))i, 

(3.5c) ( ' ~ ( c ) ) i =  ~/~2+ IVu~I2 ,Vzi , (Om(c))i = (z.(u'~),zi), 

(3.5d) ci (0) = (Uo, z~). 

Obviously ~ ( c )  and (1)~(c) are continuously differentiable functions of c = 
= (cl, ..., c~) T. Therefore there exists a positive tm> 0 such that the finite system of or- 
dinary differential equations has a unique solution with c(t) and d(t) being absolutely 
continuous on the interval [0, tin]. 

Using the definition (1.4a) and differentiating with respect to t we obtain, 

d F ~ r [ . ,  ~.-, aum m au "~ Vu~Vaum/a t  

and (3.2b), (3.2cc) imply 

d g ~ , m , = { w , ~ ,  au ~ t  \ -Iw I . 
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It follows from (3.4) and (1.2) that 

t 

(3.9) +  rlu' (t)ll%  + f c 
0 

where C is independent of m. 
Noting (2.7) and (2.9) it follows from (3.2b) that 

hence we obtain the bound 

(3.10) 

jw ji = jfu lJ1, 

where C is independent of m and T. 
Taking m = 1 in (3.2b), (3.2c) (this is valid since zl = 1/It)l ~/2) yields 

(3.11) (u ~ (t) - P~  uo, 1) = (w ~ (t) - ~(um (t)), 1) = 0. 

Inequality (3.9) and equation (3.11) imply that 

(3.12a) Ilu m IIL~(O,T.~(a) ) <- C, 

(3.12b) I]w m ][L2(0,T~I(a))~< C(1 + T) 

where C is independent of m and T. 
Now we can conclude that there exists a subsequence of {u ~, w "~ }~=1 (again de- 

noted by {u'~,w~}) and functions u �9 W(O, T ) n L  ~ (0, T;HI(t))) and w �9 L~(0, T; 
H 1 (~)) such that 

(3.13a) u'~--, u weakly in W(O, T), 

(3.13b) u m-~ u weak* in L ~ (0, T;  H 1 ( ~ ) ) ,  

(3.13c) w~--*w weakly in L2(0, T; HI(~)) ,  

(3.13d) u~--*u strongly in L2(0, T; HZ(t))) 

(3.13e) u ~---) u strongly in L2(0, T; LP(t~)) 

0~</~<1, 

p < 6 ,  

The strong convergence in L 2 (0, T; H ~ (~)) is a consequence of the compactness theo- 
rem in LIONS [1969; p. 58]. Furthermore the continuous ' embedding W(0, T ) ~  

C([0, T]; L ~ (~9)) together with (3.13a) and the strong convergence in L 2 (t)) of Pmuo 
to u0 implies that 

u(0) = u0 �9 H 1 (~). 

For any r~ e H 1 (t)), let ~m = p ~  in (3.2b) and (3.2c). Passing to the limit in (3.2b) 
immediately yields (1.5a). It remains to prove that (1.5b) holds. Rewriting (3.2c), 
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using the equivalence (2.6), yields the inequality 

(3.14) 

T 

f ~(t)(Vu "~ , V~ ~ - Vu ~) dt + 
o 

T T 

+ f~(t)(J~(v ~) - >I fv(t)(w - u )dt 
o o 

for all non-negative ~. e C[O, T] and ~ = P~v .  Passing to the limit in (3.14) as m--* 
one obtains 

(3.15) 

T 

f~(t)[v(Vu , VV) + J~ (7) - (w - ~(V), V - u)]dt >1 
o 

T T 

/> lim mm inf f ~(t)[y(Vu m, Vu m) + j~ (u~)] dt >I f ~(t)[v(Vu, Vu) + J~ (u)] dt 
o o 

where we have used the convergence properties (3.13), the fact that  9(') is a polynomi- 
al of degree 3 and the weak lower semi-continuity of J~ (.). It follows from (3.15) 
that  

y(Vu, Vv - Vu) + J~ (v) - J~ (u) - (w - ~(u), v - u) ~ 0 

for all V e H 1 (~2) and a.e. t e (0, T). Therefore (1.5b) holds after noting the equivalence 
(2.6). 

Finally we prove uniqueness. Let {u ~ i 2 , w }~=1 be two solutions. Consideration of 
(1.5a) and (1.5b) in the usual way leads to, for a.e. t e (0, T), 

(3.16) ( - ~ ,  V} + (V0W, V~) = 0 Yv e H l ( ~ ) ,  

(3.17) rjo~l~- (o ~, o ~) <. (~(u 2) - ~(ul ), o~), 

where 

(3.18) 0 ~ : u 1 - u 2 , 0 w = w I - w 2 . 

Rewriting (3.16) using the Green's operator gN defined by (2.7) (note that  
(u~(t), 1)--(uo,  1)), we have that 0 w= -GN~O~t+m(OW), where m(.) denotes the 
mean value on t~, and substitution into (3.17) yields 

(3.19) 21 dtd (GNO~,OU) + ~,lO~l~ < (~(ul)_,~(u2),Ou) 



C. M. ELLIOTT - A. M I K E L I C :  Existence for the Cahn-Hilliard phase, etc. 189 

Recalling that ~' (s)= ~" ( s ) I>-~  Vs, we obtain from (3.19) that 

1 d i[0~j[2_l + ~,]0~1~ <~[0~[o 2 = ~(V0~, VGgOU) <~lo.~l~[io~[[_l" 
2 dt 

Hence it follows that 

f (3.20) ddt 11~ + ~'1~ 112 < ~- IIo~ I1~-1 �9 

An application of Gronwall's ]emma together with the fact that 0 ~ (0) = 0 yields 
that 0 ~ = 0. Since (w~(t) - ~(ui(t)), 1) = 0 we have that (0 ~ , 1) = 0 and we can conclude 
from (3.16) that 0 ~ = 0. [] 

THEOREM 3.2. - If t ~ e C  8 then a solution {u~,w~} for (P~,~) satisfies 
u~ e L2((0, T: W~ 69)), Vp e [2, +~)  and 

(3.21) [[u~ HL2(O,T;W~(D)) < C 

where the constant C does not depend on ~. 

PROOF. We write equation (1.5b) in the form 

"-~,Au~=w~-~(u~)+~div Vu~ ..., = F ~ +  ~ d i v ~ ,  

(3.22) V~2 + IVu~ 12 

8u~ I =0 .  

Note that ] ~  I < 1 and F ~ e L 2 (QT), n ~< 3. Let us study the following two auxilli- 

ary problems 
i 

~v~ 
] = 0 -~"~v~ = F~ ; ~ I a~ 

and 

~g~ I = 0 .  -yAg~ = ~ d i v ~ ;  - ~  a~ 

It follows from NECAS [1967; p. 320] and (3.12a) that 

(3.23) llv~tlL~(0,~:~)) <~ C(1~ ~ I~(~) + 11~1IL~(o,~;.~(~)) ) <~ C. 

Also results from NECAS [1967; p. 318] and (3.12a) imply that 

(3.24) I[g~ HL~(O,T;L~(a)) <~ C{N ~'~ IIL~(0a";L ~(~)) + Hg ~ IL~(0,T~(~)) } ~< C. 

The estimates (3.23) and (3.24) imply 

(3.25) Ilu~lfL~(o,T,~(~)) < c ,  

where C does not depend on ~. 
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In order to conclude (3.21) we write F ~ in the form 

F ~= divQ ~, Q~. vlaa = 0. 

It follows from (3.25) that 

F~eL2(O,T;L6(~)) and Q~sL2(O,T;(W~(t~))~)~L2(O,T;(L~(t~))~). 

Now (3.22) can be written in the form 

(3.26) div{~,Vu~+ Q ~ + ~ q t  ~} = 0 ,  Y-~-v +(Q~+ a~ = 0  

with Q~ + a,.~C �9 L2(O, T;L = (~)~). 
It follows from A N T O N C E V ,  KAZIKHOV and MONAKHOV [1983; p. 232-236], that the 

solution for (3.26) is from L 2 (0, T; W 1 (t))), Yp �9 [2, ~) and that 

<- CIIQ + Vp �9 [2, =). 

Now it is easy to deduce (3.21). [] 

(4.1a) 

(4.1b) 

(4.1c) 

4. - The (P~) problem. 

Denoting by {u ~ , w ~ } the unique solution of (P~, ~) we shall construct a solution of 
(Pr) by taking the limit as ~-* 0 of {u ~ , w ~ }. 

THEOREM 4.1. - If u0 �9 Hl(t~) then there exists a unique solution to (P~). 

PROOF. - It follows from (3.8) and (3.10) that the estimates 

llau  <- c ,  

hold with C independent of s and T. Furthermore taking v = 1 in (1.5a), (1.5b) 
yields 

(4.2a) (u~(t), 1) = (u0,1), 

(4.25) (w~ (t), 1) = (p(u~ (t)), 1). 

Therefore one can again conclude that there exists a subsequence of {u~, w~} 
(again denoted by {u~,w~}) and functions u�9 and 
w �9 L2(0, T;HI(tg)) such that 

(4.3a) u~--> u weakly in W(0, T), 

(4.3b) u~--~u weak* in L~(O,T;HI(t~)), 
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(4.3c) w~--) w weakly in L2(0, T;HI( t ) ) ) ,  

(4.3d) u~-o u strongly in L 2 (0, T; H ~ (~)) 0 ~< ~ < 1, 

(4.3e) u~--~u strongly in L2(O,T;LP(~)) p ~ ( 1 , 6 ) .  

I t  is easy to obtain the equations 

a__~u = Vw in L 2 (0, T; (H ~ (~) ) ' ) ,  
at 

u(0) = u0 in H 1 (~). 

In order to complete the proof of existence it remains to obtain (1.6b). Rewri t ing 
(1.5b) in the equivalent form (3.15) we obtain 

(4.4) 

T 

f~(t)[,/(Vu~, VV - Vu~) - (w~ - ~(u~), ~ - u~ ) + J~ (7) - J~ (u~)] dt >1 0 
o 

for all non-negative ~ ~ C[0, T] and ~ e H ~ (~9). 
In passing to the limit r = 0 in (4.4) we see that  the only new terms in comparison 

with (3.14) are J~(~) and J~(u~). Clearly 

and noting (2.4), 

T T 

lira f J~(~)~.(t)dt = f J(~)~(t)dt 
~----~0 

o o 

T T T 

limionf f e(t)< (u~)dt>~ l iminf  f ~(t)J(<)dt>- f ~(t)J(u)dt 
0 o o 

by the weak lower semi-continuity of J(.) in HI(~) .  Therefore we obtain 

(4.5) 

T 

f ~(t)[y(Vu, V~ - Vu) - (w - ~(u), ~ - u) + J(~) - J(u)]dt >~ 0 
o 

for all non-negative ~ ~ C[0, T] and V e H 1 (t)). This concludes the proof of existence. 
Uniqueness follows by an argument  identical to that  of Theorem 3.1. [] 

THEOREM 4.2. - Let  u~ and u be the solutions to (P~, ~) and (P~). Then the following 
est imates hold 

(4.6a) IJU -- U~ ]lL~(0,r;(.l(-))') ~< CT ~1/2, 

(4.6b) I lu-  u~ L~(0. T:HI(m ) ~< CT ~I/2 �9 
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PROOF. - Take V = u and u~ in (1.5b) and (1.6b) respect ively and adding the result- 
ing inequalities yields 

( 4 . 7 )  ~'10~ [21 - ( O~ , 0") <~ J~ (u) - J ( u )  + J(u~) - J~ (u~) + (~(u)  - ~(u~), 0 u ) 

where  0 ~ = u -  u~, 0 w = w -  wE. I t  follows from (2.4) that  

121- (o o w) <- =l t + - ou ). 

and employing the arguments  used in the proof of uniqueness we obtain 

d u 2 z (4.8) 

Applying Gronwall's inequality to (4.8) immediately yields (4.6). [] 

COROLLARY 4.1. - The variational inequality (1.6b) is equivalent to the existence 
of ~ e A = {11 e L 2 (t~) x L 2 (t)): Ill(X)[ ~< 1 a.e. ~} such that  for a.e. t e (0, T) 

(4.9a) ~,(Vu, Vv) + a(~, Vv) = (w - ~(u), 7) Yv E H 1 (t)), 

(4.9b) ~.. Vu = IVul a.e. x e ;2. 

PROOF. - Following G L O W I N S K I ,  LIONS and TREMOLIERES [1981; Ch.5] (4.9) is an 
easy consequence of the equations 

(4.10a) ~,(Vu~,VV)+a(~.~,V~)=(w~-~(u~),V) Y~eHl( t ) )  a.e. t e (O,T) ,  

Vu~ 
(4.10b) ~ = 

+ tVu  

and the convergence propert ies of {u~, w~ }. [] 

THEOREM 4.3. - If  ~ e C 3 then a solution {u, w} for 

(P~) satisfies u ~ L 2 (O, T; W~ (t~)) n L  2 (O, T; C~ 

for every  p e [2, + ~ )  and for every  ~ c (0, 1). Fur thermore  if SD is smooth then 
u e L2(0, T;H2 (~)). 

PROOF. - The first s ta tement  is an easy consequence of Theorem 3.2. 

Replacing (w - ~(u)) with f in (1 = 6b) yields a variational inequality of a form 
studied by BREZIS [1971] in the case of Dirichlet boundary conditions. His proof of 
H 2 (D) can be generalized to the case of zero Neumann conditions, QUITTNER [1988]. 
This implies the second statement.  [] 

REMARK. - Noting (2.7) equation (1.6a) implies that  

w = m ( w ) -  GN au/~t 
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and (1.6a), (1.6b) are equivalent to the variational inequality 

(4.11) +7(Vu, Iv lclx-  Ivuldx>  
~ D 

>! (re(w) - .~(u), ~) - u) V~ �9 H 1 (~?) a.e. t �9 (0, T). 

Fur thermore  taking ~ = u + c where  e is any constant we find that  re(w)= m(~(u)) 
and (P] )  is equivalent to 

(4.12a) (G~ 8ua----~,rj- u)+y(Vu, V~-Vu)+~f,V~idx-~f lVuldx>~ 

>I (m(~(w)) - ~(u), v - u)  Yv �9 H 1 (t~) a.e. t �9 (0, T),  

u(0) = Uo. (4.12b) 

Another  
Lhat 

(4.13a) 

(4.13b) 

equivalent formulation is: find u�9 such 

I> ( -~(u) ,  V - u) V~ �9 H 1 (t~), re(V) = m(mo), 

u(0) = uo and m(u(t)) = m(uo). 

a.e. t �9 (0, T), 

5. - The (P~) problem. 

Denoting by  %. the unique solution to (P~) constructed in w 4, we have the follow- 
ing a priori est imates for ~, e (0, 1] 

(5.1) 

t t 

tw (t)igx+ at 1 + 
Q 0 0 

where  C does not depend on z and t. Fur the rmore  the equations 

(5.2a) 

(5.2b) 

hold. 

(5.3a) 

(u~ (t), 1) = (Uo, 1), 

(w 7 (t), t) = (~(u~ (t)), 1), 

Thus the following est imates are uniform in r: 



194 C .M.  ELLIOTT - A. M I K E L I C :  Existence for the Cahn-Hilliard phase, etc. 

(5.3b) 

(5.3c) 

(5.3d), 

where C is independent of T. 

< c ,  

Applying the compactness theorem of SIMON [1987], (Corollary 4, p. 85 with X -- 
= BV(~Q), B = Lq(t~) (q < nl(n - 1)) and Y = (H 1 (t~))') (note that BV(t~)~Lq(t~), 
q < (n/n - 1) is compact embedding see GILBARG and TRUDINGER [1977]) one obtains 
the existence of 

u~L~(O,T;BV(~)c~L4(~)) and weL2(O,T;Hl(t)))  

such that: there exists a subsequence (u~, w~ } still denoted by {uy, wr} with the con- 
vergence properties 

(5.4a) u~--, u weak* in L ~ ((0, T;L4(D)), 

(5.4b) u y ~  u weakly in L2(O, T;L4(g2)), 

(5.4c) u~--+ w strongly in C[0, T;Lq(t~)], 

(5.4d) ur--~ u strongly in L 2 (0, T;Lq(t~)), 

(5.4e) wy---~w weakly in L2(O,T;HI(t])). 

It also follows from (5.1) that 

(5.5) ~'l/2uy~ 0 weakly in 

Let us write (1.6b) in the form 

q< n / ( n -  1), 

q < n/(n - 1), 

L ~ (0, T; H 1 (~)). 

T 

for all non-negative ~. e C[0, T] and ~ e H 1 (t)). It follows immediately from the conver- 
gence properties (5.4) and (5.5) that 

(5.7a) Y--,~lim f ~(t)(y 1/2 Vur, 1/2 V~)dt = O, 
0 

T 

(5.7b) lira f ~(t)(wy, ~)dt = O. 
0 

Also since % is bounded in L2(0, T;L6(~)) and uy converges strongly to u in 
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L2(0, T;L4/3(tg)) we have 

T T 

(5.7c) r-~lim~ f ~(t)(w~, u,r)dt = f ~(t)(w, u)dt. 
0 0 

Furthermore it holds that, by (2.2), 

T T 

y--->O J 
0 ~ 0 

Pssing to the limit ~, = 0 in (5.6) using (5.7) yields 

T T 

(5.8) o ~ ( t ) [ ~ J ' V ~ l d x - ~ f N u I - ( w ' ~ - u ) ]  ~~ 

Introducing A: Ln(D)--~ L4/~(D) defined by 

(5.9) A(v) = ~(v) +flv 

we have, by the inequality ~' (s)/> -~ Vs, that A is a continuous monotone operator. 
Since (5.4b) and (5.4d) with q = 4/3 hold it follows that the right-hand side of (5.8) is 
equal to 

T T 

(5.10) -~  f ~(t)(u, u - ~) dt + lira r ~(t)(A(u,), uy - ~) dr. 
~,--~ 0 . 1  

0 0 

Choosing ~ = u implies that 

T 

lim sup f ~(t)(A(uy), ur - u)dt <- O. 
y---~ O J 

0 

Hence the usual method of monotonieity LIONS [1969; p. 172] yields 

T T 

lim f ~(t)(A(uO, u, - ~)dt = I ~(t)(A(u), u - ~)dt 
?'-->0 , . I  " 

0 0 

so that (5.10), (5.8) finally yield 

T 

(5.11) f S ( t ) I ~ f , V ~ [ d x - ~ f N u , - ( w - ~ ( u ) . ~ - u ) ] d t > > - O .  
o L a a 
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Therefore (1.7b) holds. Limiting (1.6b) yields (1.7a) and (1.7c) follows from (5.4c). 
Hence we have proved the following theorem. 

THEOREM 5.1. - If Uo C H ~ (t)) then there exists a solution to (P~). [] 

6. - R e g u l a r i t y  and a s y m p t o t i c  b e h a v i o u r  in o n e  d i m e n s i o n .  

The next question which we would like to answer concerns the continuity of the 
solution and some further smoothness. We are able to prove it only in one dimension. 
Now t) = (0, L) and QT = (0, L) • (0, T). We shall state a result about smoothness in 
the Holder space H~'~/e(Q~). For definition of these spaces s e e  LADYZENSKAYA, 

SOLONNIKOV and URALCEVA [1968; p. 80]. 

THEOREM 6.1. - Let us suppose the following additional regularity and compatibil- 
ity conditions on the data: 

duo 
(6.1) uo e H 3 (0, L),  d---x >~ 0 on (0, L),  

duo 
(6.2) dx (0) = (L) = 0 

p~t and let {u, w} be a solution for ( r ) .  Then 

(6.3) u e L ~ (0, T;H2(O,L))~HI/2'I/4(-QT), 

(6.4) w e L= (0, T ;H  1 (0, L)). 

PROOF. - Instead of [2 + idu/dxl2]l/2 we choose a regularization from GLOWINSKI,  

LIONS and TREMOLIERES [1981; Ch. 5]. 

(6.5) 
[ 2 ~ / 1 - c o s  =z 

Z ~ ( z ) = J  r : [  2~] '  lz}~<e' 

Note that Z~ e W~,loc(R); Z:' = ZT= 0 for Izl > ~. 
Let us define (a new) t-problem: 
Find u~ e L ~ (0, T; H 1 (t))) ~ W(0, T) and w~ c L ~ (0, T; H 1 (t~)) 

(6.6a) - ~ - ' ~  + ~ x '  ax]  = 0 '  v c  (t~), a.e. t e ( 0 ,  T), 
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( (6.6b) (w~-~(u~),V)=y a x '  0x + ~ Z ' \ ~ x /  ~x - 

-(2],s + a)(r~(L)- V(0)), VV ~H~(D), a.e. t e (0, T), 

(6.6c) u~(O)=uo(x)+2~X=Uo~(X). 

Let {vj} be the orthogonal basis for H~(~) consisting of the eigenfunctions 
for 

L 

(6.7a) -d2 - - -~Z=2z;dZ  ~x f dx ~ -~x (O) = (L) = O, zdx = 0 
0 

and normalized so that 

dvi dvj t 
(6.7b) (v~, vj) = ~j , dx ' -~x ] = ),i ~j . 

Note that {vj} is an orthonormal basis for L 2 (0, L)/R. Denote by Vm the finite dimen- 
V m sional subspace of H 1(0, L) spanned by { i}j=l and let P~ be given by (3.3a). 

A Galerkin approximation to (6.6a)-(6.6c) is: 

(6.8a) 

L 

j=l ~ Uo dx + 2zx, 
o 

L 

win(t) : ~dj( t)vj+ 1 
j=l -L  P(u~(t))dx' 

o 

(6.8b) ( su~ ~ ( swm Svi)=O j = l ,  m, 
- - ~ - ,  vs} + ~ Sx ' ~x " '  

(6.8c) (w r~ - ~(u m), v~) = ~( - -  
au ~ ~v~ 
aX ' aX ax /' ax ) 

- (a+ 2~,)(vj(L)-vj(O)) j =  1, . . . ,m, 

(6.8d) 
1 r 1 

u ~ (0 )=P~  UO-~oJUO + L o  Uo+2~x. 

One can easily obtain results similar to those in w 3, for the system (6.8a)-(6.8d). 
We are interested in obtaining some new estimates. After differentiating in t the 
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equation (6.8c) one obtains 

\ st -gi--'v~ =r  ax at ' S x /  \ ~\ ax Sx st 'Sx]" 

After multiplying (6.9) by dci/dt and summing, we have 

(6.1o) 

L L 

sE 2 2 + 

L L L 

+ f a w ~ S u m = _ f , ( u ~ ) l S u ~ l ~  1 s f  aw'~ I~ 
st at ~ - -~  s-~ -~-x (t) " 

o o o 

By using the convexity of Z~ and (2.8b) we are able to derive the inequali- 
ties 

(6.1 la) 

(o, lL  St 

(6.11c) 

L 

]~(u m) <. C(T). 
0 ' I L=(O,T) 

Now it remains to estimate IIW'~(O)IIL~(O,L). We use the equations (6.8c) and 
(6.7a): 

L L L 

+ 

L 

o 

After partial integration we have 

(6.12) 

L L 

_ f S w m  aV i § f ~, (um)__ 
Sx ~x 

o o 

aUm SV i 

Sx ax 

L 
f O2u m 8~v~ 

= --T Sx 2 8x 2 
o 
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L L 

\ ~ / 8x 2 8x 2 = r Sx a Ox 
o 0 

§ 

L L 

+~J "l ~x ]1 ~x - - - ~  "Tx + ~ z;'\ ax / -~x ~ aV~x 
9 0 

Let us multiply (6.12) by d~(t) and make summation. One obtains 

L L L 

_ ~, 8u "~ Ow'~ = 83u ~ 8 w ' ~ +  

o o o 

L L 

+~z': '  -~x ;" - 7  ~ + t sx / Sx a 8x 
o o 

We have particular interest in the case t = 0. Note that (au'*/Ox)(x, 0)/> z.3/2 
for every x e (O,L)  and sufficiently large m. Therefore Z~'((Su'~/Sx)(O)) = 

= Z"  ((Ou~/Ox)(O)) = O. Also note that (6. I) and (6.2) imply P~ uo - (1/L uo ~ uo - 
L 

- (l/L) f uo in H 3 (0, L). Hence one has 

o L L 

llZ_ ,f , ax ~ )" ( u )  ~ ( o )  ~ (0) 
o 0 

and consequently 

(6.14) 

where the constant C does not depend on ~ and m. Note that the uniform estimate for 
8w'~/Sx in L ~ (0, T;L~(0, L)) and equation (6.12) give a uniform estimate for u in 
L ~ (0, T; H 2 (0, L)). 

Now in the limit m o  + ~  and z ~  +0 one obtains 

w e L ~ (0, T; H I (0, L)); u e L ~ (0, T; H 2 (0, L)) 

and 
(615) [ L (o, r;w(o,L)), 

Finally (6.15) implies u e W~ '1 (Q~) = {zl(ar/St~)(8*/sx~)z ~ L~(QT);2r + s <~ 2}. 
Now an embedding theorem from LADYZENSKAYA, SOLONNIKOV a n d  URAL~CEVA 

[1986; p. 80] gives u E H1/2'I/4(-QT). 
Let us now study the asymptotic behaviour of solutions for problem (P~). We re- 
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strict ourselves to the one dimensional case. Our first goal is to obtain estimates of the 
form 

(6.16) IlUlILo(O,+~;H~(O,L)) <. C, ][wlL~(0,+~l(0,L)) ~< C. 

LEMMA 6.1. - Let all assumptions of Theorem 6.1 be valid. Then inequalities (6.16) 
hold true. 

PROOF. - It is enough to prove that the constant in inequality (6.11a) does not de- 
pend on T. In order to prove it we study equality (6.10). An immediate consequence 
of the equality (6.10) is 

L ; 2 
fl I  3w3 1 a awm(t) 2dx+ - - ( t )  dx<. 

2 at ~ ~ ax ~ 
o o 

(6.17) 

L a 2 W  m 2 

<. c f ~ ( t )  dx 
o 

It follows from (6.17) that 

L 

at ~ - x  )1 
o 

or, after integration and using (3.9) 

aX a L2(O,L) aX 

L 

2dx<Cfl ~awm ( t )  [2 

o 

dx 

Now we will construct a continuous nonlinear semigroup connected with our evo- 
lution problem. 

Let  us construct a metric space X in the following way: we pick up a bounded set 
of functions Uo from Hs(O,L) which satisfy conditions (6.1) and (6.2). Solving a 
parabolic problem (P~) for such initial data one produces a new function for every 
t e (0, +~) .  Because of inequalities (6.16) we make a weak closure in H2(0, L) of that 
whole range. Now X consists of these functions. We equip X with a metric induced by 
the (H(0, L))' norm. Obviously we have 

(6.19) sup IlUlIH2(O,L) < C 
ueX 

X is a metric space, but not a complete metric space (and not a linear space). 
Let us define a family of maps {T(t): X - * X ,  t >i 0} by setting 

(6.20) T(t)uo = u(x, t) Vu0 e X. 
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LEMMA 6.2. - The family of maps (T(t): X - o  X,  t >I 0} is a continuous nonlinear 
semigroup. 

PROOF. - We check conditions from HENRY [1981; Chapter 4, Def. 4.1.1.]. 
First  we have to prove that for fixed t > 0 the map T(t): X ~  X is continu- 

ous. 
Let Uo~ and uos be two different initial data. Then u~ (t) and u~ (t) are corresponding 

solutions for time t. We have 

(6.20a) 
l ~us aul 

o o o 

(6.20b) ftlfl f 8Ul 8u,z 8us . ~x  (ul - u2) + ~ - 
r ax ~ -~ 

o o o 

After adding (6.20a) and (6.20b) one obtains 

L L 

L 

f[wt ~ ( u l ) ] ( u  2 - U l ) ,  

0 

L 

>~ f [w s - ~ ( u 2 ) ] ( u  1 - u 2 ) .  

0 

0 0 

and, consequently 

Ilul (t) - u2 (t)II(HI(O,L)), ~< C(T)lfUol - Uo2 II. 

Therefore T(t) ~ ~ ( X ,  X)  is continuous. 
Next we prove that for fixed u0 e X, the mapping t o  T(t)uo is continuous. Really 

T(t)uo e L ~ (0, T; H 1 (0, L)) and (d/dt)(T(t)uo) e L 2 (0, T; H 1 (0, L)' ) imply T(t)uo e 
C([0, T];X). 

The last two properties are easy to check. Obviously T(0) is an identity on X and 
T(t)(T(r)Uo) = T(t + r)Uo YUo e X and t, r >i 0. Q.E.D. 

We define the o-limit set for u0 by 

(6.21) O(Uo) = {Z e X:  3tn-'-+ +oc such that T(tn)uo--+ z} 

PROPOSITION 6 . 1 .  - For every Uo ~ X,  o(Uo) is a compact connected and non-empty 
subset of X. The functional F given by 

(6.22) 

L L L 

0 0 0 

is a Liapunov functional for T. 

PROOF. - The first assertion is a direct consequence of Proposition 2.1 from 
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DAFERMOS [1977]. From equality (3.8) one easily concludes that F is a Liapunov func- 
tional for T in the sense of Definition 2.1 from DAFERMOS [1977]. 

THEOREM 6.2. - For a given u0 e X there exists a sequence {Q}, Q ~  + ~ ,  a func- 
tion ~ �9 H 2 (0, L) and constant M such that 

(6.23) { u(Q)-~ ~ weakly in H ~ (0, L), 

w(Q) ~ M weakly in H 1 (0, L) 

~t(Q) --> 0 weakly in (HI(O,L)) ' . 

The function ~ e ~(uo) satisfies 

(6.24) 

L L 

0 0 0 

L L 

0 0 

L L 

1 
(6.25) f uo = f and M = f ~(~). Z 

o o o 

Vv e H I (0, L), 

PROOF. - In order to use the theory developed in DAFERMOS [1977] let us prove 
that F is continuous on X. Let  Uo.k--* Uo in X, i.e. strongly in (HI(O,L)) '. Then 

(6.26) Iluo,k - Uo II.l(O,L) ~< CIluok - Uo II~/~l(o,L)), Iluo~ - Uo II~(o,L) ~< Clluok - Uo 11~1<o,~) �9 

Therefore Uok ~ Uo in H 1 (0, L) and F(uo~)-~ F(uo). We have concluded that F is 
continuous on X. 

Now Proposition 2.2 from DAFERMOS [1977] holds true and F is constant on o~(uo) 
for uo e X. The Proof of (6.23), (6.24) and (6.25) is now obvious. 
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