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1~. H.  DYE 

Summary. - I] r divides n then the points o] PGOz- l, q) can be partitioned by the ( r -  1)- 
subspaces o] a classical spread 8~. The underlying finite geometry o] this eon]iguration, in 
particular the orbits o] lines, is used to prove that i/ r is a proper prime divisor o] n then 
the stabilizers o] 8r in PGL~(q) and PSL~(q) are maximal subgroups o] PGL~(q) and PSL~(q) 
respectively. Special attention is needed ]or the case o] PSL,(q) when n/r ---- 2 and r divides 
q -  1. An explicit description is ]ound ]or the stablizers. 

1 .  - I n t r o d u c t i o n .  

P G ( ~ -  1, q), project ive  space of dimension ~ -  1 over  the  field G~v(q) of q ele- 

ments ,  can be par t i t ioned  b y  a set  of its ( r -  1)-subspaces whenever  r divides n. 

Such a par t i t ion  is called a spread. We shall be concerned with  the  (( classical ~ such 

spread 8~, whose construct ion is briefly recalled in Section 2.1. I f  the  points  of 
PG(q~-  1, q) are regarded  as the  1-subspaees of a vector  n-space V over  GF(q), 
t hen  8~ corresponds to  a set  JS~ of r-subspaces of V, where each non-zero vector  is 

in exac t ly  one m e m b e r  of Jdr. Clearly, if r ~ 1 or r ---- ~ then  the stabilizers of 8~ 

in PGL~(q) and  of J%~ in GL,,(q) are PGL~(q) and  GL~(q) respect ively.  So we avoid 

these unin te res t ing  cases and  t ake  1 < r < ~. 

Suppose t ha t  t divides r wi th  1 < t < r. We show in Section 3.1 t h a t  there  is a 

classical spread 8t whose stabil izer in PSL,(q) str ic t ly  contains the stabil izer of 8, 

in PSL~(q). Hence  if r is no t  a p r ime  than  the  stabil izer of 8r in PSL~(q) [PGZ~(q)] 
is not  a m a x i m a l  subgroup of PSZ~(q) [PGL~(q)]: analogous s t a t ements  hold for J ~  

and  SLy(q) and GL~(q). The ma jo r  resul t  (Theorem 4) of this pape r  is the converse 

resul t :  if r is a p roper  p r ime  divisor of ~ then  the  stabilizers of 8r in _PSL~(q) and 

PGL~(q) are m a x i m a l  subgroups of PSL~(q) and /~GL~(~/) respect ively,  ~nd the  
stabil izers of J~, in SLy(q) and GZ.(q) are max ima l  subgroups of SLy(q) and GL~(q) 
respect ively.  

(*) Entrata in Redazione il 27 febbraio 1988. 
Indirizzo dell'A.: School of Mathematics, The University, Newcastle upon Tyne, NE1 

7RU, England. 
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To complete the picture we identify the various stabilizers. Write ~ = n/r. 
To construct 3%~ (see Section 2.1) we set up a bijeetion between V and a vector 
N-space W over GF(qr). Choose a coordinate system for W. Les a be the semi-linear 
bijection of W that  is given by applying to each coordinate the automorphism 

~ 2~ of GF(q~): a has or4er r. As a group GL~(q ~) <~> is independent of the 
coordinate system of W: via the bijection from W to V it acts naturally on V. In 
fact (Theorem 1) the stabilizer of ~ in GL~(q) is the semi-direct product OZ~(q ~) <a>. 
Let 

(i) 

Considered as acting on V this Z~. is the group of all scalar maps of GZ~(q). l~ore- 
over a centralizes Z~v: the action induced by a on PG(,~--1, q) or PG(N- -1 ,  g~) 
may, without confusion, also be denoted by ~. Then (Theorem 2), the stabilizer 
of 8~ in PGL~(q) is the semi-direct product (G.L~(q~)/Z~v)(a} ~ GL~.(q ~) (a}/Z~v. To 
describe the stabilizers in SL~(q) and PSL,(q) requires a little more notation. The 
multiplieative group of GF(q~) is cyclic of order ~ - -  1. Let Q be its unique subgroup 
of order (q~-- 1)/(q-- 1). Let 

(2) (}L~(q ~) = {A: _4 e ~z~,~(q~) ann ac t  A e Q} . 

Let 

(3) z~. --  ( , Ld : ) .  e GF(q) and  ~ ---- 1}.  

We show (Theorems 1, 2) that  the stabilizer of Jd~ in SLy(q) and the stabilizer of $~ 
* r * in PSL~(q) are the respective semi.direct products GL*(~ r) <~> and (GL~(q )/Z~) <~> ~_ 

GL~(q )<a}/Z~v, except for the case when q is odd, r is even and ~Y ~- n/r is o44. 
In this exceptional case a ~ SZ~(~). However, there are members of G/~(~/~) with 
(multiplicative) order 2(~ ~ -  1)/(q--1). Let ~ be such an element. In the excep- 
tional case (Theorems 1~ 2) the stabilizer of Jh~ in SLy(q) is GL*(q~)(~a}~ and the 

$ r * stabilizer of S~ in PSL~(q ) is the semi-direct product (GL~(q)/Z~) (~>. Considered 
as acting on PG(n-- 1, q) <~a> has order r. Considered as acting on V <~a} has 
order 2r, and there is no simple way of writing GL_*~(q ~) (~a> as a semi-direct product. 
I t  is worth pointing out that  these identifications of the stabilizers do not require 
the condition that  r is a Prime. 

The details of the proofs involve a number of strands of arguments, so it will be 
helpful to give an over view. The bijection from W to V shows that  the stabilizer 
of Jh~ in GL~(q) contains GL~(~)(a}. To establish equality we deal first with the 
case ~Y = 2. I t  is known [5, pp. 176-182] that  in this case there are symplectic polar- 
ities having each member of 3L~ for a totally isotropic subspace. The number of 
such polarities is known, and so is the stabilizer of ~ in the symplectie group of one 
of these polarities. A consideration of the orbits oi these polarities under the action 
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of the stabilizer of ~;~ in GL,~(~I) shows tha t  this stabilizer has order at most  
[GL=(q0Ir = [GL~v(~l~)[r. The earlier conta inment  then  delivers the conclusion. For  
the cases N > 3  we take N members  of $5~ whose direct sum is V, and deduce ~hat 
the stabilizer of J{;~ in GL~(q) is GL~,(~y)(@ from the fact t ha t  the subgroup of the 
stabiiizer Of 5%~ in GL~(q) tha t  fiXeS each of the set of ~ members  of JC~ is a subgroup 
of GL~(q ~) (a ) .  This last result  is established by  order considerations, which in turn  
depend on consequences of the known case N = 2. 

The maximal i ty  proofs also use combinatorial  geometric arguments.  We consider 

the orbits of lines of PG(~ -- 1, q) under  a stabilizer of 8~ and the way in which these 
must  fuse under  the action of an over-group. Le t  G be ei ther  PGL~(q) or PSL,(q), 
and let  H be the stabilizer of 8,, i n G. Suppose tha t  

H <  J<~G. 

Let  1 be a line tha t  is contained in some member ,  say ~, of 8~: We show (Proposi- 
t ion 1) tha t  there  is a set of lines 1 = ll, l~, ..., [~-1 tha t  span ~ tha t  are all in the 
same orbit  under  H,  and are such tha t  /i meets  li+l for i < r - -  1. This is one point  
where we need critically the condition tha t  ~" is a prime. We deduce (Proposition 2) 
tha t  if r is a prime, every  orbit  of lines under  d contains lines not  in any member  

of S~. We also show (Proposition 3) tha t  the lines not  in members  of 8~ form a single 
orbit  Under H except  when 37 = 2, r divides q -  1 and G = PNL,~(q). Apar t  f rom 
this exceptional  case we immediate ly  conclude tha t  J acts t ransi t ively on the lines 
of PG(~-  L, q). This same conclusion holds in the exceptional  case, but  its justi- 
fication requires a much longer and intr icate investigation of the action of J on the 
various orbits under  H of lines not  in members  of 8~. In  all eases it  is easy to deduce 

tha t  J acts 2-transi t ively on the points of PG(~-- 1, q). Then a theorem of Cameron 
and 35antor [3, p. 384] gives J~<PSL~(~/), f rom which the conclusion J = G readiIy 

follows. 
This description shows tha t  the details of the argument  are ve ry  different from 

those used in maximal i ty  proofs for the stabilizers of spreads in symplectie and 
orthogonal  groups [6], [7], [8], [9]. As in [7], [8] and [9] the proof is geometr ic:  
Cameron and J Cantor proved  thei r  theorem by  geometric arguments and made no 
use of group-theoret ic  classification theorems. Our results are complementary  to the 
impor tan t  paper  [1]. There Asehbacher lists [1, pp. 472, 473] 8 classes of ~( obvious ~) 
candidates for maximal  subgroups of the finite simple classical groups, and obtains 
a ve ry  significant hold on any other  maximal  subgroups: for PSZ~(q) the stabiliser 
of $~. is in Aschbacher 's  class C~. Although he does not  prove the maximali ty ,  or 
otherwise, of his classes in [1] (see [1, p. 469]) he suggests in [2, p. 40] tha t  [1] can 
be used with the known full list of fil).ite simple groups to settle the meotter. Since 
the completion of the present  work ~[artin Liebeck has informed me that ,  using the 
development  [11], he and P. Kle idman have successfully carried out Aschbacher 's  
suggestion, making heavy  use of the classification theorem. The reason fo r ,  and 
interest  of, the present  proof Of Theorem ~ is tha t  it  is geometric and elementary.  
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2. - The spreads and their stabilizers. 

2.1. - We recall  the  construct ion of classical spreads in a coordinate fo rm tha t  
is convenient  for our discussion of orbits of lines. I t  is analogous to the  approach  

for even N given in [5]. 
Le t  ~ be a p r imi t ive  e lement  of JL - -  G~(q~). Then  l ,  r w ~, ..., co r-~ fo rm a base 

for L considered as a vector  space over  K---- GF(q). I f  A e L then  we m a y  wri te  

r--1 

i=0  

where k ' =  (2o, 21, ..., ),~_~) has i ts  entries in K and is uniquely de te rmined  b y  2, 

and  05 = (1, o), o)'-, ..., ~o~-1) '. 

Suppose t h a t  n = Nr. Using (4) we m a y  define the m a p  x ~-~ x f rom W = Z u 

to V =  K -  b y  the  rule 

(5) r r 
x' --= (x'l, x~, . . . ,  x~) if = (xl, x~, . . . ,  x~ ) .  

Clarly this map  is a bi ject ion f rom W to V. F r o m  (4) and  (5) it  follows tha t  if y e W 

and a ~ K then  to x ~- y and  ax in W correspond respect ively x ~ y and  ax in V. 

Thus to a K-l inear  combinat ion  of member s  of W corresponds the same K-l inear  

combinat ion of the i r  images in V. I n  par t icular  K-linear independent members o] W 
produce linearly in&pe~de~t members of V. 

The vectors  of the 1-subspace (x> of L N spanned by  x =/: 0 are the var ious 
K-l inear  combinat ions of x, o~x, ..., cor-~x. These la t te r  vectors  are K-l inear ly  in- 

dependent .  Thus the  image of (x> in V is an r-subspace:  call this k~. Wri te  

(6) ~, ,  = (G:  x e W, x :/: O}. 

Each  non-zero vector  of W is in exact ly  one 1-subspace of W. Consequently each 
zero vector o] V is i~ exactly o~ve member o] 3L~. Le t  P G ( ~ -  X, q) have  for its points  

the  1-suspaces of V. Then to ~ corresponds a project ive  ( r - - 1 ) - s u b s p a c e  of 

f G ( n -  l ,  q): call this s~: Wri te  

(7) 8~ = (s~: x e W, x # o } .  

The remarks  af ter  (6) show tha t  Sr is a partition, i.e. a spread, of PGOv -- 1, q). 

2.2. - Le t  A ~ GL~.(q~). On expanding each en t ry  of A as a K-l inear  combina-  
t ion of 1, ~,  ... ~ oz -~, we see, f rom (4) and  (5), t ha t  to the  m a p  x -+ Am of W cor- 
responds a l inear map ,  x - - ~ A x  say, of V: the  entr ies  of A depend on those of A 
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and the coefficients t ha t  occur when ~o% o r+~, ... are expressed as / i - l inear  combi- 
nations of 1, co, ..., co *-~. Since x --)- A x  is a bijection of W, so is x -> A x  a bijeetion 

of V. Thus A e GL~(q). 
fixes J~ .  

B y  (4), 

Since A permutes  the 1-subspaces of W we see tha t  A 

r--1 v--I 

i=O i = 0  

where M is the r •  K-mat r ix  whose i-th comma is the coordinate vector  of co (*-l~q 
with respect  to 1, w, ..., co ~-~. Le t  a be the semi-linear bijection of W given by  

(9) a(x) = (x~, xg, . . . ,  x~ ) ' .  

By (8), a, considered a~s acting on V via the correspondence x ~ x, is a lineur map 
whose mat r ix  is block diagonal with N diagonal blocks all equal to  M. Since a is 
a bijection of W we see that ,  considered as acting on V, a e GL~(q). Moreover, since 

~ r  ), for all ~ in GF(q ~) and this is t rue for no lower power of )., we see tha t  
has order r. ~ o w  a permutes  the 1-subspaces of W. Hence (/Z~(q ~) ( a )  stabilizes J~ .  
In  fact  we have 

Tm~o~s~ 1. - Suppose that r is a proper divisor o/ n a~d N = n/r. Define 
GL*~(q r) as in (2), J{'r as in (6), a~d a as in (9). Then: 

(i) the stabilizer o] J~r i~v GL~(q) is the semi-direct produet GL~.(q')<a); 

(if) except when N is odd, r is eve~r and q is odd the stabilizer o/ JS~ in SLy(q) 
is the semi-direct product GL*(qr)(a) ;  

(iii) i ] N  is odd, r is eve~ and q is odd then the stabilizer o] J~ in SLy(q) is 
GL*(q~)<aa~, where ~ is an element o] G~(q ~) o] multiplieative order 2(q ~ -  1 ) / ( q -  1). 

P~ooP. - (i) Notice tha t  the result  is trivially, and uninterestingly,  t rue if r = 1. 
I t  fails if r = n. 

Consider, first, the case N = 2. We know from [5, pp. 176-182] tha t  there  is a 

nonsingular bilinear a l ternat ing form B(x, y) with respect to which each member  
of JSr is to ta l ly  isotropic, and such tha t  the stabilizer of J~r in the symplectic group 
of B(x, y) is Sps(qr)(a} = SL2(qr)(a}: the  nota t ion  of [5] is a li t t le different fl'om 
present  usage; our a is the Q of [5], and our N is, when it  is even, the 2N of [5]. 
L e t / / t  be the stabilizer of J~, in GL~(q), and let  3~ be the orbit  of B(x, y) under  H1. 
Then, the stabilizer of B(x,  y)  i n / / i  is SL,(q ~) (a} so tha t  

0 o )  fH~ f=  l~ljsz~(q')tr �9 
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Each member of 5~ is a nonsingular alternating bilinear form with respect to which 
every member of ~ ,  is totaity isotropic. We know [5, p. 182] that  there are q ' - -  1 
nonsingular alternating bilinear forms satisfying this last  condition. Hence 
I~l~<g ~ 1. Since SL~(~ ~) has index ~ - - 1  in GE~(~ ~) we see, from (10), that  

As we already know tha~ GL~(~')(@<~HlWe deduce that  H ~ =  ~/~(q')(a}, as 
required. 

As i s  customary denote the multiplieative group of  L by 2; x. Let e~= (1, 0)' 
sad  e~ ~ (0~ 1)i. Since, b y  (9), a fixes both e~ and  e~ the subgroup of H~ that fixes 
both (e~} and (e~} is 

o l  o l  

a2I a~ to (e~) is the map ,~e~->-al,~ ~ e~. There are q r - - !  

choices for a~ and r for i. Different pairs a~, i give different maps of (ei}. Hence 
the restriction of H-2 to (ei) consists of r (~ ' - - l )  distinct actions. If  the action is 
known then i and a~ are prescribed, and there arethen g ' - -1  possibilities for a2. 
Hence, if A e H2 then there are q ' - - 1  dements  os H~ having the same action on 
(e~} as A, a n d  these elements provide q':--1 different actions ca (e.~). 

Pass to V. Then H2 is the subgroup of //1 fixing both /q ~_/~. ~nd k~ ~ k~: 

L. \ / : !  0 / ~  ~ 0 n /r (J =. 1 , 2 ) i s  completely specified by its action in W The actio n of ~ 
\ -  / 

on @j}. Since, by (5), k~ is given by x~ = 0 and k~ by x~ = 0 each element of H~, 
/A~O~ \ 

acting on V, has matrix form I ) 0 ~  A2 ' where A~, A2 are r • K matrices. The 

action of this element on k; is specified by Aj. Hence, by the la.st paragraph, we see po,) 
that H2 consists of matrices of the form 0~ A~ ' where there are f(q" -- 1) pos- 

sibilities for A~, and for each possibil!ty for A~ there are q~-: 1 possibilities for A2. 
Now C0nside} N > 2. LeVi 

]~= (1,0, , 0 )  ~ ]~= (0(1'0,...,0)', /.~= (0,0,...,0,1)' 

[a W. Let H~ be the s u b , c u p  of the stabilizer of ~r  in GL,(q) that  fixes each of 
m~--= k~, m~ ~ k;~, ..., m~ ~- ki~ v. By (5)~ mi is given by x~ = x ~ -  -- x~_~ = x~+t = 
. . . . .  x ~ =  0 for /'--= 1 , 2 ~ . . . , h  r . Hens% if C eH~ then C must have block 
diagonal form C d i a g  (C~ C~ ...~ Cm)~ where each C~ is an r•  K-matrix. Take 
j > 1. The definition of the correspondence m-~x,  given in  (4) and (5), shows 
that its restriction to (/~, f~} is just the standard correspondence from (]~,/~) to 
(m~, m~) that  we would take i~ ease h r = 2. Hence to the 1-subsp~ees of (J1, ]~) 
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there  correspond, via x--> x, just  the members  of the s tandard ~ ,  for N = 2. 
Hence  C must  fix this s tandard  : ~  for N = 2. The restr ict ion of C to {m~, ~m,~} 

(C~ 0~). I f  we take,  as we obviously of the last paragraph to be 
x 

is 0,  C~ may,  e~ 
] 

respect ively I1, ]~ then  m~ = /r ~nd m~ = k~ and the conclusion of the last para- 
graph shows tha t  there  are a t  most  ~'(q~--1) possibilities for C~ ~,~(]_~ for each of 

these possibilities, at most  ( C - - 1 )  possibilities for C~. Taking j = 2, 3, ..., N in 
tu rn  we deduce tha t  

Arguing us for the case N = 2 we see thut  the subgroup of G.L.v(q r) <a} fixing each 

of m~, m~, ..., m~ is 

(diag (a~, a2, ..., a~)a~: aje  L • for j = 1, ..., N ~nd i = 0, 1, ..., r - -  1} . 

Clea.rly this has order r(q ~ -  1) N. Since GL~-(q")<a) fixes J~r we deduce from (12) 

that 

Suppose tha t  D is a member  of the stabilizer of J~ in OLd(q). Since V is the 
direct sum of m~, m.., ..., m~- i t  is the direct  sum of Dm~, Dm~ ..., Dm~v. Now 
D m j e J ~ :  suppose it  corresponds to (uj} in W. I f  x e V t h e n  x i s  the sum of N 
vectors, one f rom each of Dm~, D m~ ..., Dm~v. Hence,  by  (4), each vector x in W 
is the sum of N vectors,  one from each of (u~}, <~2), ..., <u~}. As W is an N-space 
this shows tha t  u~ ... ,u,v is a base of W. Hence  there  is a member  A of GLs(q ~) 
such tha t  A u ~ :  ]j, for j : 1 , 2 , . . . , N .  Then A ( u j ) :  <]~) so tha t  A D m j =  mj 
for ] = 1, 2, ..., N. Thus A D  ~ Ha. I t  follows, f rom (13), t ha t  D ~ GL~v(q ~) (a ) .  
Consequently the stabil izer of 55~ in GL~(q) is GZ~v(qO(a). That this is a semi-direct 
product  is obvious. 

(if) and (iii). Le t  E = d i a g  ((o, 1, 1, ..., 1) in GL~-(qr). Then dot (E0 = a~. As 
is a pr imit ive  e lement  of J5 we see tha t  GL~.(q r) is the semi-direct product  

SL~;(qr)(E}. Moreover,  Q = <r Let  A~GZN(qr). Then A = B E  ~ for some 
e lement  B of SL~(qq and some ~ in {0, t ,  ..., ~ -- 2}. Since det  A = r we deduce, 
f rom (2), tha t  A ~ GL*(q ~) if and only if E ~  <Eq-l>. In  particular,  GL~(q ~) = 
= 8s ~) <E~-~>. 

SLx(q ~) is genera ted  by  its t ransvections [4, pp. 37, 38]: one such t ransvect ion is 

0 
(5) tha t  T =  I(~v-2~ ' where d =  0,. I~ . Thus d e t T = l .  Any two trans- 
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vections of 8Lx(q ~) are conjugate  under  GL~v(qO [4, p. r Hence,  considered as act- 

ing on V, all t ransvect ions  of SL~(q ~) are in SLy(q). Their  genera t ing  p rope r ty  yields 

SL~(qO<SL,(q ). Let  A, E, i be as in the previous  paragraph .  I t  follows tha t  

A e SZ,(q) if and only if E~ ~ SZ,(q). The m i n i m u m  polynomia l  ](t) of r over  K 

has degree r:  suppose t h a t  

(i~) t ( t ) = t '  ~ t,'-~ -- ~,,_~ -- p,_~t "-~- . . .  -- p ~ t  -- Po, 

where p ~ e K  and P 0 r  0. Le t  

(Z5) ~ = 

0 0 " " 0  Po 

1 0 " " 0  ~ 

0 1 " " 0  p~ 

0 O" �9 �9 0 p~_~ 

0 O" �9 "1 p~_~ 

An inspect ion of (4) and  (1.4) shows tha t  in block fo rm E ---- diag (P, L ,  L ,  ..., L) .  
Hence  EieSL , (q )  if and  only if (4etP)~--= 1. F r o m  (15), det  P - - - - ( - -1 ) r+ lpo .  

A considerat ion of the effect of the  field au tomorph i sm 2 -~ 2~ shows t h a t  ](t) has r 
~ ... cr f-1 Thus, bv (14), (--l)~+Ipo----co(9~wr ... ~-'----~Iel distinct  roots o~, co q, ~o , , 

since ] Q [ - - ( q ~ - 1 ) / ( q - 1 ) .  Hence  d e t P  is a p r imi t ive  e lement  of K,  so t ha t  

(detP)~---- 1 if and  only if i is a mult iple  of q - -  1. Thus, since E h~s order qr--  1, 

A e SZ,(q) if and only if E ~ e <Eq-I>. The concluding r emarks  of the  last  p a r a g r a p h  

now show t h a t  GZ*(qO -= GL~(q ~) (5 SL~(q). 
By  section 2.2, us a K - m a t r i x  (r - -  diag (M, M, ..., M). Since ~ has order r so 

-~ , M ~-~ are K- l inear ly  in- does M;  i.e. M satisfies t"--  L 0~. Now L ,  M~ M ~, ..., 
dependent .  For  suppose otherwise. Then, for each 2 in L, X, M~, . . . ,  M~-~X ~re 

~ qr - 1 
K-l inear ly  dependent .  We deduce f rom Section 2.1 t h a t  2, Aq, ),~, ..., are 
K- l inear ly  dependent .  Thus the r dist inct  au tomorphisms  A -+ )~q*, i - -  0, 1, ..., r - -  1, 
of L are l inearly dependent .  This contradicts  Dedekind ' s  Theorem [10, p. 25]. Thus 

the  m i n i m u m  polynomial ,  and hence the  character is t ic  polynomial ,  of M is t * -  1. 

Hence  4et  M = (--  1) ~+~ so tha t  det  a : ( --  1) (~+~)~. Hence  a e SL,(q) except  when 
( _  1)(.+~)N_~_ 1 =/= 1, i.e. when q i s  odd, AT is odd and  r is even. Dedekind ' s  rule 

and the  result  of the  last  p a r a ~ a p h  now yields (ii). 
I n  the  except ional  case (iii) a e @o(q-~>,'~> and ha.s the same order 2(q * -  1 ) / ( q -  1) 

as o)( q-~)/~. Hence  ~----~o ~(~-~),'~ where the  integer  a is re la t ively  p r ime  to 
2(q r -  1 ) / ( q -  1) and so, in part icular ,  is o4d. Considered as act ing on V, a I z  has, 

b y  (14) and (15), for its m a t r i x  diag (P~(q-~)/~-, p~(q-x)/.z, ..., p~(q-~l/~) and thus has 
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de te rminan t  (det[P)(q-1)/~] ~'. Since det P is a p r imi t ive  e lement  of K,  (det P)(~-~)/~-= 
= -  1. Thus,  since a and  N are odd, aI~., as an e lement  of GL~(q), has determi-  
n a n t -  1. So does g. Hence  a s s  SL.(q). Obviously  GL.~r(~r)<a} = Gi.v(qr)<aG>, 

Then Dedekind ' s  rule yields (iii). 

2.3. - Take  the s i tuat ion of Theorem 1 (iii). A brief  calculation shows tha t  
(av)~--  - a~a ~ where v = ( q ~ - - 1 ) / ( q -  1). Since ~ has order r, (as) ~ is a l inear map  

of W if and only if u is a mult iple  or  r. Since a has order 2(q ~ -  1)/(q - -  1) we have  

(aa)~-- - - -  I~-. Hence,  as claimed in Section 1, a s  has order 2r. Fu r the r  det  (--  Iv) -~ 
= (--  1 ) N ~  --  1 = co(~-1)/2e <co(~-1)/2> = Q so t ha t  -- I~.e GL*(q r) and G/* (~ )<a~}  is 

not  semi-direct.  

2.4. - The detai l  of the proof  of Theorem 1 (ii) provides the e lement  E of GLs(q ~) 
whose de t e rminan t  is 4et  P, which is a pr imi t ive  e lement  of K.  We obtain  

C0t~0LLAI~u 1. - GI~-(q~)((~) contains elements o] each coset o] SL~(q) in GL~(q). 

2.5. - I f  / e  K • then,  by  (4) and (5),)J~- of GL~-(q ~) acts on V as ~I, of GL~(q). 
Hence  Z~, given by  (2), is the  group of scalar maps  of GL.(q). Since, b y  Section 2.2, 
GL~v(q") c~ SLy(q) = GL*(q ~) the  group of scalar maps  of SLy(q) is the  Z* of (3), and 

Z* < GL*(q~). For  the  s i tuat ion of Theorem 1 (iii) the  discussion of Section 2.3 

shows tha t  the  image of a s  under  the  homomorph i sm GL*(q ~) (aa} --~ GL*(q ~) (aa}/Z* 
has order r and  has no posi t ive power  before its r-th in GL:~(q~)/Z *. This image is, 

of course, the image of aa  in PSL~(q) act ing as a p ro jee t iv i ty  on P G ( n -  1, q). From 

Theorem 1 we deduce 

THEO~E~ 2. - Suppose that r is a proper divisor o] n aq~d N = #/r. De]ine GL*(q~), 
S~, (~, Z~v and Z* as in (2), (7), (9), (1) and (3), and denote the image o] ~; under the 
~atural homomorphism GL.v(q') ( a} ~ GL~(q~) ((~} /Z.~ also by a. Then: 

(i) the stabilizer o] 8~ in PGL~(q) is the semi-direct product (GL~-(qr)/Z~)((~; 

(ii) except when N is odd, r is even and q is odd the stabilizer o] 8~ in PSL.(q) 
$ r ~ " \ is the semi-direct product (GL~(q )/Z~) (a/; 

(iii) i] ~V is odd, r is even and q is odd then the stabilizer o] $~ in PSL~(q) is the 
$ r '~ semi-direct product (GL~(q )/Z~) (aa}, where o: is an element o] GF(q r) o] muItiplicative 

order 2(q ~ -  1)/(q--  1). 

I t  is wor th  point ing out f rom Theorems 1, 2 t ha t  whatever  N, q, r, the  sta- 
bilizer of JCr in SZ.(q) has order IGL~(q~)]r, and the  stabilizer of 8~. in PSL~(q) has 
order IGL*(r 
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3. - The maximality proofs. 

3.1. - Suppose t ha t  n =: 2Vr ~nd tha t  ~ divides r wi th  1 < t < r. Then L has a 
unique subfield iv ~ Giv(q ~) and K < F < L. Le t  

(16) = { ivz :  0 # x z W } .  

Clearly, if x: y # 0 then  ivx = ivy if and  only if y is an iv-multiple of x: and  each 

non-zero vector  of W is in exgct ly  one m e m b e r  of ~ .  Denote  the  image of ivx under  

the  bi ject ion x - >  x b y  f, and  let  

o # x e  w } .  

Let  g~ be the  ima.ge of ]~ in P G ( ~ -  1, ~) and  let 

8~ = {g~: 0 ~ x ~ W} . 

Clearly, ]~ _c/~ and g~ _c s~. 

Le t  a ~  a2~ . . . , a t  be a base os ~ over  K.  The members  of ivx are the  var ious 

K-l inear  combinat ions  of a~x, a~x, ...: a~x, an4 these t-vectors are K-l inear ly  inde- 

pendent .  Hence  by  Section 2,1, so are thei r  images in V. Thus ]~ is a t-subspaee 

of V and g~ a ( t - -  1)-snbspace of P G ( ~ -  1, q). By the r e m a r k  a l te r  (16), each non- 

zero m e m b e r  of V is ia  exact ly  one m e m b e r  of ~ .  Thus 8 t is a spread of PG(n -- 1~ q). 
I f  / ~  iv then  ]qe iv. Hence,  f rom (9) if A ~ G~v(q ~) then  

A ( F x )  = ~ ( A x )  a n d  a ( F x )  = i v ( a x ) .  

Thus G.~(qO <a} fixes ~ .  Define the bijection o of W by  

: (x~, x~, . . . ,  x~ ) '  - ~  (x~ ' , z~, . . . ,  x~v)' �9 

Clearly @ @ GL~(qr)<G>--it is not  even a semi-linear m a p - - s o  its action on V, ob- 

t a ined  via the  m a p  x --~ x, does not  fix ~ .  On the other  hand,  if ] e ~ then  ]q~ = ] 

so t ha t  @(Fx) = iV(@x). Thus @ fixes 5Lt. By  (8): @ acts on V as the l inear map  with 
ma t r ix  4lag (Mt, Ir, I.~, ..., In). Le t  .4 be an e lement  of GL~.~(q") such tha t  d e t A  = 
: 4et  (Mr): such an A is guaran teed  by  Corollary 1. Then @A-' fixes 3Lt, does not  
fix JL~, and is in SL,(q). Hence the  stabilizer of 3L~ in SL,,(q) [GLAq)] is s tr ict ly 
contained in the  stabilizer of ;Kt in  SL,(cl) [GL~,(q)]. Passing to P G ( ~ -  1, q) we see 
t ha t  the stabilizer o~ $~ in PSL~(q) [PGJ3~(q)] is s t r ict ly contained in tha t  of St. 
Since 8~ is ~ p roper  non-tr ivial  spread we deduce 
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Tm~o~E~ 3. - Suppose that r is a proper composite divisor o] n. Define J~ and Sr 
as in (6) and (7). Then: 

(i) the stabilizers o] ~ in S_L~(q) and GL.(q) are not maximal subgroups o] SLy(q) 
and GL~(q), respectively; 

(if) the stabilizers o/ 8~ in PSL~(q) and PGL~(q) are not maximal subgroups of 
PSL~(q) a~d PGL~(q), respectively. 

To see tha t  8~ is a classical sp read- -a  fact  t ha t  we do not  need- -obse rve  tha t  W 
is a vector  _~*-spaee over _~ where 5 T . :  Nr/t, and tha t  if W is so regarded then  
F x  is a 1-subspace. I t  is easy to check tha t  the map x -+ x then  gives the s tandard  
construction of a classical (( t-spread )~ in / ) G ( n -  1, q) f rom F~*: it  is referred to 
base of L over l~ less specific thau  the one for L over K used in Section 2.1. 

3.2. - We are now in a position to deal with the m~in 

TI~O~E~ 4. - Suppose that r is a proper prime divisor o] n. De]ine 3Lr a~vd 8~ as 
in (6) and (7). Then: 

(i) the stabilizers o/ ~ in SLy(q) and GL~(q) are maximal subgroups o] SLy(q) 
and GL~(q) respectively; 

(if) the stabilizers o] 8~ i~ 1?SLy(q) and PGL~(q) are maximal subgroups o] _PS.L~(q) 

and _PGL.(q) respectively. 

PI~OOF. - By  Section 2.5 the stabilizers of ~ in SLy(q) and G_E~(q) contain, 
respectively,  the full groups of scalar maps of SLy(q) and GL~(q). Hence,  by  s tandard 
group homomorphism theorems,  (i) and (if) are equivalent.  We shall prove (if). 
This allows us to use the more graphic geometr ic  language of PG(n -- 1, q); although, 
of course, we pass to the vector  space for mat r ix  computations.  

Le t  G be one of t)GL~(q) or PSL~(q), and let  H be the stabilizer of 8r in G. Sup- 

pose tha t  (see Section 1) 

(17) H < J <  G.  

SL~(q r) is t ransi t ive on the non-zero vectors and doubly t ransi t ive on the 1-sub- 
spaces of W. Since SZ~(q~)<GL*(q ~) we deduce, f rom Theorem 2, tha t  H, and thus 
J, is t ransi t ive on the points of P G ( n -  1, q), and tha t  H is doubly transi t ive on 

the members  of 8,.. 
We label as Proposit ions the main steps of the proof. Le t  ~ be the set of those 

lines of P G ( n -  1, q) tha t  lie in the members  of St, and let JL be the set of the 
other  lines in PG(n--  l ,  q). Since 8r is a spread, if l e ~  then  1 lies in a unique 

member  of 8~. 
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P ~ o ~ o s ~ o ~  1. - Suppose that 1 ~ ~ a,td is in  the member ~ o] 8~. Then  there are 

lines l = Ii, l~, ...~ l~._~ that span  7~, that are i~ the orbit o] 1 under H ,  and are such that l, 

meets l~+~ ]or i < r - - 1 .  

P~ooy.  - The result  is t r ivial  if r ---- 2! To 1 corresponds a 2-subspace, say <x, y},  

o f V .  T h e n ~ - = s ~ ,  so tha t  y = 2 x  for some A i n  L • As x and y a r e K - l i n e a r l y  
independent ,  A e L \ K ,  by Section 2.1. Hence,  since r is pr ime,  L = K(2) and 
the min imum polynomial  of ~ over K has degree r. So, 1, ~, A ~, . . . ,A ~-~ are 
K-l inearly independent ,  and hence so are x, ~x, ~ x, .. . ,  A ~-~ x. Write  z ---- A S x, 

w ~- A~x, ...~ u = ~ - ~ x ,  v = )J-~x. Then,  by  Section 2.1, x, y ,  z, w,  . . . ,  u, v are r 
l inearly independent  vectors in k~, and so span the r-subspace k,. Thus, if l ~-- 
= l~, l~, l~, ..., l,_~ are the lines of s, corresponding to <x, y}, <y, z}, (z,  w}, ..., (u ,  v}, 

respectively,  then  l~, l~, ... ,1,_~ span s, and l, meets  t~+~. Fur ther ,  there  is an ele- 
men t  A of SL~v(qO such tha t  A x  ----- y -~ ).x. Then A y  = z, A z  -= w, ... ,  A u  = v. 

Thus A x ~ - - y ,  A y = z ,  A z = w , . . . , A u = v ,  so that ,  by  Theorem 2, H has an 
element  taking l~ to  l~+~. T h e  Proposi t ion follows. 

Notice that the  condition that r is pr ime is crucial. 

P~OPOSITIO~ 2. - I ]  l* ~ ~ then the orbit o] l* u~der J contains members of ~(~. 

P~ooF. - Suppose otherwise. Le t  z e S~ and j e J .  By  the t rans i t iv i ty  of H 
on S~ there  is a line l of z in the same orbit  as l* under  H.  Take l = l~, l~, ..., l~_~ 

as in Proposi t ion 1. Then l*, l~, l~, ..., l~_~ are in the same orbit  order J .  By  our 
supposition jl e s so tha t  jl is in one member ,  say u',  of S~. Also, jl2 e s and jl~ 

meets  ft. Thus  t he  member  of S~ containing jl~ must  be z ' .  Also, jl3 e ~ and meets  
jl2. Thus ~13, and similarly fld, . . . ,  jl~_~, are lines of the project ive ( r -  1)-subspace ~'. 
Since l~, ...,l~_~ span z we see tha t  ill, ...,fl~_~ span an ( r ~  1)-subspace. Hence 
j z  = ~'. Thus j fixes S~, for all ~ in J .  Th is  contradicts (17): the Proposit ion follows. 

PlCOP0SlTIO~ 3. - H acts transitively on ~L except whe~ N = 2, r d i v i d e s  q - - 1  

and G ~- PSL~(q) .  

PROOF. - -  I f  m ~ ~ then  it  corresponds to a 2-subspace of V, say ( x ,  y>, where 
k~=/: k~. Thus <x} ~ <y>, and x, y are l inearly independent  in W. Now GL~(q ~) 

is t ransi t ive an ordered pairs of l inearly independent  vectors of Wj; so is SL~(q~), 
and thus GL*(q~), if h r > 2. The Proposi t ion now follows from Theorem 2 except  for 
the case h r ~ - 2  and G = PSJS~(q). 

Assume, for the rest  of this proof,  t ha t  :Y = 2 and G ---- PSL~(q) .  

As in the proof of Theorem 1, take e l =  (1, 0)' an4 e~= (0, 1)'. A considera- 
t ion of the  t rans i t iv i ty  of GL2(q ~) and the action of elements of the form diag (2, 1), 
shows tha t  there  is an d e m e n t  A of SL~(q ~) such t h a t  A y  ~ e2 and A x  = 2el for 
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some ). in L • The subgroup of GL2(T)<a> t ha t  fixes <el> a n d  <eu> is /~-~, given 
by  (11). Since, by  (9), a fixes Ke~, we see, f rom (11), tha t  the subgroup Ha of 
GL*(q~)<a> t ha t  fixes <e~> and Ke2 consists of all the  elements diag (a~, a~)a ~ for 

which a 2 e K  • and a~a~eQ. Let  

(18) 

Then 

(19) 

U =  K• 

K • and Q are subgroups of the cyclic group L x of respective orders q - - 1  and 

(q~--1) / (q- -1) .  Thus U is the cyclic subgroup of L • of order 

But  

[UI = ( T - - 1 ) / d ,  where d = ( q - - 1 ,  IQI). 

iQI = q'-~ + q'-" + ... + q + m = (q , -1 -  1) + (q,--'-  I) + ... + (q - 1) + r .  

Hence  

(21) d = ( q -  1, r) .  

Since r is pr ime ei ther  d = 1 or d = r; the la t ter  possibility occurs if and only if 

ri( q -  1). 
So suppose tha t  r X  ( q - 1 ) :  then  d =  1 and, by  (20), U =  L x. Hence,  by  (19), 

B = 4iug (~-1, 0) is in Hd. Thus C = B A  e GL$(q')<a>. Also Cy = e~ an4 Cx = e~. 

Thus C takes <x, y> to <e~, e2}. Since m is any  line of ~ we have the required 

t ransi t ivi ty .  

P~oPosmmIo~ 4. - J acts transitively o~ the lines of P G ( n -  1, q). 

P~ooF. - Exclude,  first, the  case N = 2, r [ ( q -  1) and G = PSaLm(q). By Propo- 
sition 3 there  is an orbit  of lines under  J t han  contains & .  By  Proposit ion 2 this 
orbit  contains every  line of s and hence must  be g U dt(~: we have transi t ivi ty.  

Assume, ]or the rest o/ this proo/, that N = 2, r ] ( q -  1) a~vd G = PSL~(q). The 

various strands of the argument  are presented as le t tered  sections. 

(a) We show first t ha t  under H4 there are r orbits o] non-zero vectors of <el> , 

and that i] ~ ~ L • then the orbit o] )~e~ is U,bl. 

PRooP. - Since [Q[ : (qr_  1 ) / ( q -  ! )  we see tha t  Q = <oyl>,  and thus Q con- 
t~ins the (q -- 1)-th power of each element  in Z *. Thus A q'-I ~ Q < U. Hence ai(2eJ = 
= Aq' el = ~q*-l~el ~ U~el. Thus, by  (19)~ the orbi t  of 2e~ is U2e~. By (20) and (21) 
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this orbit  has size I UI = ( ~ - -  1)It. Since there  are q ' - -  1 non-zero vectors in (e~) 
they  must  fall into r orbits under  H~. 

Wri te  k~ for ke~ and k~ for k , .  Suppose tha t  k~ a~d ks correspond to the members  
s~ and s~ respectively of 8~. Le t  PH~ be the image of H~ acting on  PG(n -- 1~ q). 
Then PH~ fixes s~ and s~, and 

(22) PH~ < H .  

Suppose tha t  Ke~ in V corresponds to the point, ~ in s~. Since //4 fixes Ke~ in W 

which corresponds to Ke~ in V, by  Section 2.1, we see tha t  PH~ fixes Y. Since 
K • < U it also lollows f rom the previous paragraph tha t  under  PH~ the  points  of s~ 
fall into r orbits each of size (q~--1) /r(q--1) .  

(b) Informat ion  about  the geometric s t ructure  of these orbits ea.a be obtained 
by  considering the action o f  ~, We show tha t  i] r>~3 then the restriction of G to s~ 
has r distinct eigen-values i~ K,  and that the r ]ixed points~ which correspond to 
~oIol~l" el ]or i = O~ 1~ ..., r -- 1, are the vertices o] a simplex X and lie one in each orbit 
o] points in  s~ under PHi .  

P~ooF. 

(23) 

Since 
IQI = ( r  ~)/(q- ~) 

we have K x = <will}. Since rl( q -  1) we have oaiQl~(~-~)/"eK • and as i runs f rom 0 

to r -- 1 it  takes r dist inct  values~ namely the members  of (w(~'-t)/'}. Since a pro- 
ject ivi ty  of projective ( r -  1)-space tha t  has r dist inct  eigen-values has r fixed 
points tha t  correspond to a base of the underlying vector  space, and sl is an ( r -  1)- 
spacer the s ta tement  follows from (23) except  for the last clause. For  th~t~ suppose 
tha t  0 < j  < i < r - -  1 and tha t  c~lQ]~f~e~ and o)lQl~l'e~ are in the same orbit  under  H~. 
By(a)~ oCQl(i-J)/~e U. Since IUI = (q~-- l ) /r  we have U =  (o~'}. Thus there  are 

integers a, b such tha t  IQ[ ( i -  j)/r = ar + b(q ~ -  1). Thus r divides IQ f ( i -  j)/r. 
Since r is a pr ime the restr ict ion on i, j implies tha t  PI]Q]. Now 

= ( q - - l §  ~ - l § 2 4 7  powers of q - - 1 .  

Since rI( q -  1) these higher powers are divisible by  r ~. Hence,  since 

1QI = q , - l §  r 2 4 7  . . .  § q 4 1 ,  

we have that r ~ divides 

(]_ + h ( q -  :[)) = r + (q - - ~ ) , ' ( r - - ~ )  
h=0 2 
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Since r is odd r ~ divides the second term.  Then we obtain the contradict ion r~lr. 
The result  is established. 

(c) We nex t  show tha t  i] 0 is a~v orbit o] points o] s~ under PH~ then there is a 
set o]r points X~, X2, ..., X ,  of s~ and an orbit O* o] points of sl under PHa distinct 
]rom 0 such that X~, X~, ..., X~ spa~ s~ and each o] the lines X~X~ X~X~, ..,, XxX~ 
contains a point o] 0". 

P~ooy.  - I f  r ~ 2 then  s~ is a line ~nd there  are, by  (i)~ 2 orbits under  PH~ each 
of size (q q- 1)/2 > 1. We need mere ly  take  X~, X2 as any  two points of 0. 

S% suppose tha t  r~>3. Take,  in accordance with (b), X1 to be the ver tex  of Z 
tha t  is in O. Le t  D ~--diag (o)1~I/% 1). Then D fixes (e~) and (e~.). Since o~ ,QI ~ K x 
we see tha t  D(wlQl~/"e~)is r if O < ~ i ~ r - - 1  and is in Ke~ if i ~ r - - 1 .  
Thus~ by  (b), the action D* induced by  D on P G ( n -  1, q) permutes  cyclically the 
vertices of Z. Since D(U,~e~)-= U(~wI~ by  (a), D* permutes  the orbits of 
points in s~ under  PHd. As each orbit~ by  (b), contains one ver tex  of X, D* must  
permute  these orbits cyclically. Thus each of the orbits has the same number  of 
points not  in hyperfaees  of Z. There  are ( q -  l )  ~-~ points of s~ not  in the  hyperfaces 
ol X: if Z is t aken  as a coordinate simplex of reference then they  are the points all 
of whose r coordinates are non-zero. Thus 0 has ( q -  1)'-~/r points not  in the hyper-  
surfaces of 2:. Consider the  liues joining these points to X1. Not  all these lines 
can have all their  points in 0. For  if they  did then  ( q -  1),-~/r points would form 

batches of q points,  so tha t  ql(q-- 1)'-~/r and thus ql(q-- 1) ~-~: an absurdity.  Thus 
there  is a point  X~ in 0 and not  in a hypersurface of Z such tha t  X~X2 contains a 
point  Z of some orbi t  0*va O. 

Le t  Xa---- aX2, X d =  GX3, . . . , X , =  gX,_z. Since, by  (19), a fixes 0 and O* and, 
by  (b)~ fixes X~, we see tha t  _Xa, . . . ,X ,  e O, and tha t  the line XIX~ contains the 
point  ~ - ~ Z  in 0* for i ~ 2, ..., r. Refererred to Z as coordinate simplex the re- 

str ict ion of a to s~ has by  (b), a matr ix  tha t  is diagonal with distinct eigen-vMues. 
The s tandard  general theory  of such projectivi t ies shows tha t  X~: . . . , X ,  span s~. 

(d) Before applying these results to the orbits of lines through 17 we need 
another  resul t  about  the  action of H. Suppose that :~ is a plane o] P G ( n -  1, q) con- 
taining exactly one line, say l, o] ~. Then the subgroup o] H that fixes ~ and fixes 1 
pointwise acts transitively on the points o/ :~ o]] l. 

P~oor .  - Since H acts doubly t ransi t ively  8,,  l lies in a unique member  of 8, 
and u must  mee t  another  member  of 8, in a point,  we m a y  assume tha t  1 _c sl and 
tha t  ~ meets  s~ is a point.  Suppose this point,  say _P, corresponds to p : #e2 in W. 
Here  # r 0. Any point  2 "  of ~ \ l  has for one of its representat ives  in V a vector  p*  
of the f o r m p * : p q - x  for some x e k l .  Then, by  Section 2.1, p * - - - - p q - x :  

\ ,  _L ] 
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takes p to p*. Thus E fixes kl vectorwise and Ep = p*. Consequently, the image 
of E on 1JG(n- 1, q) fixes sl and, thus l, pointwis% and takes P to _P*. I t  obviously 
fixes ~ = <t, P> = <5, P*}. Moreover, E e SL3(q ~) <-< GL*(q 0 (@. The result follows 
by Theorems 1, 2. 

(e) We are now in a position to complete the prop] o] the Proposition. 

By Proposition 2, some member, say m, of ~g is in the same orbit under J as a 
line of C. The action of the element A considered in the proof of Proposition 3 shows 
that  the orbit of m under H, and thus under J,  contains a line X Y  where X e sl. 
Let 01 be the orbit of X under/~H~. Since PH4 fixes Y we see, from (1.7) and (22), 
that  the lines joining Y to the points of 01 are in the same orbit under J,  and thus 
each is in the orbit under J of a line of s Take 01 as the 0 of (c). Then there are 
points X1, X3, ..., X~ in 0. and an orbit 03:/= 01 of points of sl under PH~ such 
that X1, X3,...~X~ span sl and the lines X1X3, X1Xd,.. . ,X1X~ each contain a 
point of 03. There is ~n element j of J such that  I----~(X1Y) es  Let ~ be the 
unique member of 8~ that  contains I. Not every one of iX2, jX~, ..., jX~ can be in ~; 
else j would take the r-subspace (Iz, sl) spanned by Y, X1, ..., X~ into the (r--1)-  
subspace ~. Suppose that  jX~ ~ z. Let Z be a point of 03 on X1X~. The plane 
~(X1X~ X) is not ia z. Thus 1 is the only line of ~ in i(X1X~ ~): any other line 
of s that  it contained would span the plane with l, and would meet 1 and thus be 
forced to lie in ~. Hence, by (d), since jZ is a point of ~(X1 X~) distinct from iX1 
and thus not on l, there is au element h of H fixing l pointwise such that  hjX~ = jZ. 
Since j : E e l  we have hilZ= jlz. Thus ~-lhj fixes Ir and takes X~ to Z. Since 
the joins of X to the points of 03 are in the same orbit under /~H~, ~n4 thus 
under J ,  we conclude that  the joins of I 7 to 01 UJ 03 are in the same orbit under J ,  
and this orbit contains lines of s 

For r = 2 we immediately conclude that  the lines joining Y to the points of sl 
lie in one orbit under J .  Suppose that  r~>3. We saw when proving (c) that  there is 
a projectivity of sl permuting cyclically the r orbits of points of sl under PHd. 
Since r is prime some power, say E*, of this projectivity permutes the orbits 
cyclically ~nd has E*01 = 03. Write 0 s =  E*02, 04----- E*03, ..., 0~ =/~*0~_1, so 
that  01, 0~, ..., 0~ are the orbits of points of sl under PHd. Now E'X1,  E'X3,  ... 
..., F~*X~ span sl and are in 0s. Further, the lines joining E'X1 to E'X3,  ..., E*X~ 
each contain a point of E* 03 = 03. The conclusion of the last paragraph shows 
that  0~ has all the properties we assumed for 01. ~ g u i n g  as in that  paragraph 
with 02 in place of 01, and E'X1,  ..., E*X.~ in place of X1, ..., X~ we see that  
the joins of I r to the points of 02 W 03 are in the same orbit under J, and this orbit 
contains lines of s Repeat the argument with E*0~, E*03, ... in turn in place 
of 01. We conclude that  under J the lines joining Y to the points of 01 U 03 w 
u . . .u tO~ = sl are all in one orbit under J.  The comment ~t the beginning of (e) 
shows that  the lines of ~L lie in one orbit under J.  By Proposition 2, any line of s 
is in this orbit, which is thus s ~) ~5: transitivity of J on lines of P G ( s -  1, q) is 
established. 
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P~OPOSITIO~ 5. -- I /  m ~ ~t~ then the stabilizer of m in H acts doubly transitively 
on the points o] m. 

PRO0~. - Suppose m corresponds to the 2-subspace <x, y )  of V. Then (x)=/= 

<y>. Since <x, y> ~- K x  Q K y  we see, by  Section 2.1, tha t  it  corresponds to the  
set Kx ~ Ky  in W, which is a K-vec tor  2-space with base x, y. Let  W* be a comple- 

ment  of ( x , y )  in W. 
l inear map  T by :  

Suppose tha t  r162 7, 8 ~ K with r162 1. Define the 

Tx = c~x + fly 

Ty = yx + ~y 

T w * ~  w* for w ~ W * .  

Then T c SL~v(q~). Fur ther ,  T fixes _Kx ~-Ky .  The set of all such T, for all pos- 

sible choices of ~, fi, y, ~, is a group isomorphic to SLy(q) and acts as such on the 
K-vec tor  space K x  ~ Ky. I t  thus acts 4oubly t rans i t ive ly  on {Ku : 0 :/: u ~ Kx  ~ Ky}. 
Since Ku corresponds, by  Section 2.1, to K u  in V and thence to a point  of m~ we 

have the result.  
We can now complete the proo] o/ Theorem 4. 

Proposit ions 4, 5 and (17) imply tha t  the stabilizer of any  line of P G ( n -  1, q) 
in J acts doubly t ransi t ively  on its points.  Le t  R~, R~ and R*, R* be two pairs of 
dist inct  points.  B y  Proposi t ion 4 there  is an e lement  j tak ing  the  line R~ R~ to the 

line R~R2. Then jR* and " * ?R 2 are dist inct  points of R~R2, so that ,  b y  the previous 

remark,  there  is an e lement  j* of J such tha t  j*]~R* -~ R~ and j ' jR*  -~ R2. Thus J 
acts doubly t ransi t ively  on the points of P G ( n -  l ,  q). 

I t  follows by  Theorem 1 of [2, p. 384] tha t  ei ther  a mat r ix  ~ over-group ~) of J 
contains SLy(q) and thus J>~PSL~(q), or tha t  n = 4, q ~ 2 and J is the a l ternat ing 
group A 7 in PSL~(2) -~ SLy(2) ~ GLd(2) ~ As. This la t ter  exceptional case cannot  

occur for us. For  if i t  did then  2r ~ r ~ 2 so that ,  b y  Theorem 2, 

IHI = (4 ~ -  t ) ( 4 2 -  4 ) . 2  : 3 6 0 .  

Then H has index 6 in A 7 and so is a copy of As. This is impossible since A s is 
simple and is thus not  a semi-direct product .  Thus, always, J>~PSL~(q). Hence 
if G ~ PSL.(q) t hen  J = G and H is maximal  in G by  (17). I f  G ~ PGLn(q) it  fol- 
lows f rom Corollary 1 and Theorem 2 tha t  H contains an e lement  of each coset of 
PSL.(q) in G. Hence,  by  (17), so does J .  Hence J contains every  coset of PSL~(q) 
in G and so is G. Again we have maximal i ty .  

3 . 3 . -  I t  is easy to deduce f rom Proposi t ion 5 tha t  if IV = 2, r [ ( q - - 1 )  and 
G ~ PSZ.(q)  then  two lines joining the point  Y of the proof of Theorem 4 to two 
points of sl are in the same orbit  under  H if and only they  are in the same orbit  
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under  PHi .  Consequently ~ splits into r orbits under  H.  Any  hope of simplifying 
the proof  of Theorem ~ in this c~se b y  having simpler or fewer orbits under  H th~n 
we considered is consequently dashed! 

4 .  - A d d e d u m .  

After  the ~bove pages were complete I learned of recent  work of Li [12], [13]. 
I f  K r 2' are division rings with dim~ K = r and n = Nr, then  he has de termined  
the  overgroups of 2LN(K) in GL~(2"). He states his results in [12], and gives the 
proofs in [13]; I ~m grateful  to Li for  sending me copies of [12] and [13]. Our Theo- 
rem 4 follows as corollaries of Li 's results. His argmments are also e lementary,  not  
using the classification theorem for finite s imple groups~ bu t  are ve ry  different f rom 

ours. Ap~rt  f rom some work on groups containing root  groups his proofs are b~sed 
on mat r ix  techniques. He  performes a ve ry  large number  of ingenious matr ix  
manipulations and computations;  a veri table  tour  de force. I t  is in teres t ing tha t  
he has a lengthy special t r e a tmen t  of the ease N = 2. I t  is hoped tha t  the  present  
proof  for the finite linear groups, which explits the finite geometry  and the geometric 
act ion of the groups~ is still of interest .  
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