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Existence and Stability Results 
for the Hyperbolic Stefan Problem with Relaxation (*). 

NIKOLAY V. SHEMETOV(**) 

Summary. - The aim of this paper is to study a phase transition mode~ based on the Cattaneo- 
Fourier constitutive law for the heat flux and on a relaxed constitutive law for the phase 
variable. In turn, the model describes fast processes of melting and crystallization with su- 
percooling and superheating effects. We give existence and stability results for the former 
phase transition problem. Uniqueness is deduced from the stability result. 

1. - I n t r o d u c t i o n .  

In this paper we will consider the following system of equations describing the 
<diquid-crystal, phase transition: 

(1.1) c:Ot + ;~)~t + divq = 0, 

(1.2) ~qt + q = - k grad 0, 

(1.3) Zt + H -1 (Z) ~ F(O, ;~). 

Equation (1.1) is the energy balance law for the internal energy e = c~ 0 + ),Z, where c~ 
is the specific heat at a constant pressure, 0 is the relative temperature (thus 0 = 0 
will be the equilibrium temperature for a liquid-crystal mixture), ~ is the latent en- 
ergy of phase transition. Equation (1.2) is the Cattaneo-Fourier constitutive equation 
for the heat flux q, where k denotes the thermal conductivity and ~ the thermal relax- 
ation time. Finally, equation (1.3) is the non-equilibrium constitutive equation for the 
!iquid concentration Z, where F(0, Z) is the so-called driving force of phase transition 
and H -1 denotes the inverse of the Heaviside graph, i.e. H - 1 ( 0 ) = { r  
H-1(1 )  = {$ I> 0}, H - I ( Z )  = {0} for all Z e (0, 1). Here, all thermodynamical param- 
eters c~, ~, a, k are positive constants. 

System (1.1)-(1.3) was suggested by Visintin (1985) for describing phase transi- 
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tion processes with supercooling and superheating effects. The usual phase transition 
model (Stefan problem) consists in coupling the balance energy law (1.1) with the 
Fourier's conduction law 

(1.4) q = - k grad 0 

and the equilibrium constitutive equation for Z 

(1.5) Z �9 H(O). 

System (1.1), (1.4), (1.5) is not completely satisfactory, especially for extremely rapid 
cooling and heating processes, since it corresponds to a parabolic equation having an 
infinite speed of propagation of the thermal signal. Replacing (1.4) by Cattaneo law 
(1.2), one gets a hyperbolic system which yields to a finite speed of propagation of the 
thermal signal. Moreover, in order to describe dynamical supercooling and super- 
heating effects, (1.5) can be replaced by (1.3). Supercooling and superheating effects 
correspond to the cases X = 1, 0 < 0 and X = 0, 0 > 0 (respect.); these conditions are 
compatible with (1.3). 

Under suitable assumptions on the data existence of a solution of system (1.1)- 
(1.3), but not uniqueness, is known only for the case F is linear (VISINTIN, 1985). A 
numerical approximation for this system has been given by MAZZULO et al. (1989); 
NOCHETTO and VERDI (1989); VERDI and VISINTIN (1992). 

Others hyperbolic models for phase transitions were considered by FRIEDMAN and 
Hu BEI (1987); GREENBERG (1987); SHOWALTER and WALKINGTON (1987); SHEMETOV 
(1991); COLLI and GRASSELLI (1992). 

The aim of this paper is to prove existence and uniqueness of the solution of sys- 
tem (1.1)-(1.3), even for a nonlinear driving force F, in the one-dimensional case. In 
addition, we will show that the solutions of this system converge to the solution of the 
Stefan Problem with the non-equilibrium constitutive equation (system (1.1), (1A), 
(1.3)), as a ---) O. 

2. - Sta tement  of the main results. 

Just for the sake of simplicity, assume that c~ = )~ = k = 1. Then, the one-dimen- 
sional problem reads 

(2.1) 

Or + •t + q~ = O, (x, t) �9 7~T, 

~qt + q + 0~ = 0, (x, t) �9 7VT, 

~(t + H - 1  (Z) 9 F(O, Z) (x, t) �9 r:T, 

where =T = {(X, t): X �9 R, t �9 [0, T]}. We consider the Cauchy problem with initial 
data 

(2.2) O(x, 0) = 0o (x), q(x, O) -- qo (x), X(x, 0) = Zo (x), x �9 R .  
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Let  us give the definition of weak solution for problem (2.1), (2.2). Fi rs t  we intro- 
duce a change of the variables 0 and q as follows: 

o + o -  
(2.3) F - S - 

2 ' 2 ' 

whence, we set 

f(F, S, z) := F ( F + S ) ~ ,  Z = F(O, 7.). 

Then (2.1), (2.2) reads equivalently as the following symmetric system: 

(2.4) 

f -  1 - + F - S  1 
I't + -~1'. --2--a-- = - ~Xt' 

o 1 ,~ F - S _  1 
~t V~O,~ 2~ 2 Zt' 

Zt + H-~ (Z)  ~f(F, S, Z), 

F(x, 0) = Fo (x) ,  S(x, O) = So (x), x(x, O) = Xo(X), 

where 

0o + V~qo Oo - V~qo 
Fo - , So - 

2 2 

DEFINITION. - The triplete of (F, S, Z) is a weak solution of (2.4) in 7 t ' T ,  if." 

D1) Zt ~ L ~ (7:T) and the function 0 ~< Z ~< 1 satisfies 

xt + H -~ (X) ~f(r, S, )~) 

X(x, O) = Xo (x) 

D2) F, S ~ L ~ (7:T) satisfy: 

j 
for all ~, CeC~(7;r), ~, r 0 and k,l~R. 

a.e .  in 7:T, 

a.e. on R .  

I ~ - S  
2~ 

F - S  
2~ 

2Zt ~ dxdt>~O, 

11} 2)~t r dxdt>~O, 
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have 
D3) There exists a set E r (0, T) of measure zero, such that, for each R > 0, we 

lim f 
~ 0  

t e ( O , T ) \ E  tzl <-R 

{ hF(t, x) - F o ( X ) i  + IS(t, x) - So(X)l }dx  = o.  

THEOREM 2.1 (Existence). - Suppose that 

(2.5) Oo, qo, z o ~ L ~ ( R ) ,  O~<Zo~< 1 a.e. in F~, 

and F: R x [0, 1]--~ F~ be a Lipschitz-continuous function, i.e., 

(2.6) IF(O,z)-F(O,~) ] <~M{]O-6] + I Z - Z ] }  Y0, OeF~ and V Z, ~,e[0,  1]. 

Then there exists a unique weak solution (0, q, Z) of problem (2.1), (2.2). 

THEOREM 2.2 (Stability). - Let (0, q, Z) and (-6, ~, ~) be the weak solutions of prob- 
lem (2.1), (2.2) with initial data (0o, qo, Zo) and (0o, qo, Zo), respectively, satisfying 
(2.5). Then, for every fixed R > 0, we have 

(2.7) I{L0-~l  + v ~ l q - ~ l  + Iz-~l}(x,t)dx<. 
Bt 

<-cI{10o-~oL + ~ l q o - ~ o l  + l z o - ~ o l } a x ,  
B0 

for a.e. t e [ 0 ,  To], 

where C is a constant independent of the initial data and t, To = rain(T, RV~), 

B, = {x: Ixl < R - t/V~}. 

REMARK 2.1. - Uniqueness clearly follows from Stability Result. 

THEOREM 2.3. - Assume that (2.5) and (2.6) hold. Let (0~, 4=, Z~) be the solution of 
problem (2.1), (2.2) and let 0 e L ~ (=T), 0 --< Z -< 1 be the weak solution of the Stefan 
problem with non-equilibrium constitutive relation 

(2.8) 

Or + Xt + Oxx = O, 

zt + H- I (Z)  ~F(O, z), 

O(x, O) = 0o, Z(x, O) = Zo, 

(x, t) e 7rT, 

(x, t) e ~r,  
X E ] ~ .  

Then, 

(2.9) 0~--~0, Y.=---~Z in Llloc(~T), as a ~ 0 .  
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3. - Notat ion and additional properties. 

Before proving Theorems 2.1, 2.2 and 2.3, let us introduce some notations and ele- 
mentary properties. 

Let  ~ be a mollifier function on F~ such that  3(z) I> 0, r - 0 for lal I> 1 and 

I ~(z) d z -  1. For  h > 0 we set any 

Given v e Llor let us v h denote the function 

(3.1) h > 0 ,  x e R .  

R 

The point Xo is a point of Lebesgue of v(x) say xo ~ 2(v) if 

lira 1 I -h I v (x )  - V ( Xo) ldx  = O. 

Ix- xo[ ~<h 

Note that  l i m v h ( x o ) = v ( x 0 )  for all Xoe2(v). Since meas ( F ~ \ 2 ( v ) ) = 0 ,  then 
h - * 0  

v~'(x)-->v(x) a.e. on R, as h - > 0 .  
Let  o~(~) denote a module of continuity, i.e. a nondecreasing continuous function 

defined for z I> 0, such that co(0)= 0. 

LEMMA 3.1 (See KaUZKOV, 1970). - Set K~+2~ = {Ix[ ~ < r + 2 9 }  for r >  0, ~ > 0. 
Let  v e L 1 (Kr + 2p ) satisfy 

vl,Jxl 
K, 

Then, for h ~< ,o, 

J,(v ~, Ax) <~ o~r+h(tzlxl) and f t tvi  - v ( s i g n v )  h l d x  < 2~or(h) .  
K~ 

LEMMA 3.2 (See KRUZKOV, 1970). - Set Q = { Ix I ~< R} • [0, T]. Let  v e L ~ (Q). I f  
for some ~ e (0, rain {R, T}) and any h e (0, ~) we set 

1 f f iv(x ' t ) - v ( y ,  v)ldxdtdydz, 
Q~ x Qh 
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where 

Qh --- / ---<h,  2 / '  

then lim V~= 0. 
h ~ 0  

LBMMA 3.3 (See KRUZKOV, 1970). - Let u e L ~ (K~+~ x [0, T]), 0 < 2,~ ~< r. Let for 
O <- t <- T, I/ixl-< : 

(3.2) J~(u(x, t), ~ix) = I lu(x + ~ix, t) - u(x, t ) ldx <- o~(]Axl)  
I~1 <~ 

and for every t, t +/it  e [0, T],/It > 0 and for every function g(x) ~ C1o (Kr) the follow- 
ing inequality holds: 

(3.3) { I g ( x ) [ u ( x ' t + / i t ) - u ( x ' t ) ] d x l  <<.C~ztt I~lmax[fgl + / g ~ t ] . _ <  
fxl ~< 

Then for 0~<t~<t+ / l t~<T 

L.(u(x, t), ~it)= I l u ( x , t  + A t ) -  u(x,  t ) ldx <<. const o<~<pmin [h 

Ixl-<r 

where const depends only on C,. and IlUllL ~ (K,• • [o, T]). 

+ oJr~(h) + h ] 

4. - E x i s t e n c e  o f  t h e  w e a k  s o l u t i o n .  

1) We will prove existence of a weak solution of problem (2.9) via a finite differ- 
ence discretization. 

For any integer number N (z = T / N  stands for the time step), the semi-dis- 
cretization algorithm can be stated as follows. 

Suppose the approximate solution {Y ~, S ~, Z ~ } is known at the time nz; then we 
define {s ~ + 1/2, S n + 1/2, zn + 1/2 } and {s n + 1, S n + 1, Z~ + 1 } by: 

(4.1) 

I F ~+1/2 i,~ ~aa + F~ § t/2 _ 1 Z '~ § 1/2 _ Z~ 
T 2 ~ 

S ~ + l / z _ S  ~ + ~ S  n+l /2_  1 Z ~ § 

Z~ + 1/2 _ Z~ 

T 
+ H- l ( zn+1/2)  9f(Fn, S n, ,yn) 
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and 

2" 

(4.2) S ~ + 1 _ S ~ + 1/2 

I Fn+l Fn+l/2 F n + l  _ S n + l  

+ 2~ = 0 ,  

F n  +I _S  n+l 
~- - 2~ = 0 ,  

~ n + l  = xn+ 1/2 

Note that  systems (4.1) and (4.2) admit a unique solution which, in explicit form 
reads: 

(4.3) 

x [ n+l/2 n 
z ( 0  - z ( 0  1 

F'~+l/2(x) = e-#~ ek~ [F'~(~.) - ~ - - - 2 - - - - -  J'kd~, k = V~/~,  

- ~ - -  ~-- J ' k  d~ , 
x 

1, Z ~ + :f(F ~, S "~, Z '~) i> 1, 
.n + 1/2 __ .n + .ff(Fn S n .n'~ zn z - ~ , ~  J , , Z  J, O< +2-f(pn, s n, z n ) < l ,  

[ 0 ,  ;Z'~ + 2-f(F'~, S*, f f  ) <~ O , 

and 

(4.4) 

f F~+ 1 =F~+I/2 (1 + q )  sn+1/2 ( 1 - q )  ~ +  2 

sn+l ~_ / m +  1/2 (1 - q) sn+1/2 (1 + q) 
~ +  2 

Z n + l  = z n + l / 2  

- - ,  O < q -  ~ < 1 ,  

Then, the semidiscrete scheme is well-defined in terms of the initial data {F ~ S ~ Z ~ } 
defined, for any h > 0, by 

(4.5) F ~ = (Fo~h) h, S O = (So,h) h, Z ~ = (Z0~)  h 

where v h is defined in (3.1) and ,~ is the cutoff function 

~ ( x )  = 1 for Ixl ~ i/h, ~ ( x )  = o for Jxl > 1/h. 

Let  us introduce the functions, defined in 7:T, 

(4.6) 
Fir (t) = F ~ + i/2, Sir (t) = S ~ + i/2, Zir (t) = Z ~ + ~/2, 

for t e ]n~: , (n+l )~] ,  n = 0 , 1 , . . . , N - 1  

i = 1 , 2  
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and 

{ F~(t), S~(t), ~ ( t )  linear on (nr , (n  + 1)z) and 

(4.7) F~(nv) ---- F n, S~(n~')  = S n, ~ ( n z )  = Z ~. 

2) A priori estimates in L ~ (7:T). 

LEMM~ 4.1. - Set Co = t~FolIL=(R) + IISolIL~(R). Then, for all n = 0, . . . ,  N - 1 and 
i = 1, 2, there exists a positive constant K independent of ~ and h, such that  

I P  + ~/~IILo(~) § IIs ~ + ~/211~o(~) ~< e M~Co + K ,  

0 ~ Z n+i/2 ~ 1, ) ~< K .  

PROOF. - Let us set ~ ~ + i/e = I ~  + i/211L ~G),/A"~ + ~/2 = IIS ~ + i/211L o (R). Then from (4.3) 
we have 

(4.8) ) , ~+ l /2+#~+~/2<~2~+/A~+max l z~+ l /2 -Z~ l  <<- 
x~R 

<~ ~ + ~ + z max If(F~, S~, z~) I <<. s + [.P + zM(k~ + /A~ + I) + zF(O, O) 

whereas (4.4) gives 

(4 .9)  ),~ + 1 -F /A n+  1 ~ ) u +  1/2 -F /An+ 1/2. 

The asserted estimates follow from (4.8) and (4.9). �9 

3) A module of  continuity for  the space variable x. 

LEMMA 4.2. - Le t / i ? (x )  = 9(x +/ ix)  - ~(x), x e :E, /ix ~ R. Then 

(4.10) +.o 1/27/iz I I/i  l + 
I I 

VX, /iX ~ R .  

PROOF. - First, let us prove the estimate 

(4.11) ]~zn+t/21 + ]A~/~ I(1 - sgnAz~'sgnAz ~+1/2) ~< ]/iZ~ 1 + vl/if(I "~, S ~, Z~)].  

From the last equation in (4.1) we have 

(4 .12)  zlZ~ + 1/2 _ / iy~ + ~H -1 (Z~ + 1/~ ) ~ Af(F~, S ~, Z~), 
v 

where 

/ i H - l ( z  "~+1/2) = {x - y: x e H - l ( z ~ + l / 2 ( x  +/ix)), y e H - l ( z ~ + l / 2 ( x ) ) } .  
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We multiply (4.12) by sgnAz n + 1/2. Noting that  sgnAz~ + 1/2.AH -~ (Z ~ + ~/2) e {~ I> 0}, 
we readily get inequality (4.11). 

The estimate (4.10) follows from (4.11). For  example, consider the case 
jZ~ § 1/2 > 0 > zlX ~ ; then 

,~n,+1/2 [ + z I Ax~+~/2 - Ax~ / - 2 [A~ +1/21 + ]Azn I < z  

~<2(IAZ~+1/2 [ + [ZlZ~[ + [ZlZ~[ ~< [/IZ~ I +2z]Af(pn, s~,zn)[ .  

LEMMA 4.3. - There exists a positive constant C independent of z and h such that  
for n = 0 , 1 , . . . , N - 1 ,  i = 1 , 2  

(4.13) f{l~r~§ + IASn+i/21 + IzlZn+i/21}dx<~CI{JAF~ I + I~S~ + l~x~  

R R 

(4.14) 

R 

dx <~ c f { l ~ r ~  + I~s~ + I~z~ 
R 

PROOF. - For  all x, Ax s R ,  it is easily seen that  J F  ~ § 1/2 and AS ~ § 1/2 satisfy the 
system 

(4.15) 

f AF~ + 112 _ ~fn + AP~ + 1/2 _ 1 AZ ~ + 1/2 _ Ay~ 

A S  n + 1/2 __ A S  n § I _ ~ _ A S  n + 1/2 _ 1 /IZ~ + 1/2 _ A%~ 

Multiply the first and second equation in (4.15) by sgn~AF ~ + 1/2 and sgn~Af ~ + 1/2, re- 

spectively, where sgn~(x )  = ~/~r + ~. We obtain 

T sgn /iF~ + I/2AFn + 1/2 § sgn~AS ~ + 1/2AS~ + 1/2 + - ~  • 

[ A%,~+1/2 _ AZ~ [ >((~/(AIm+l/2)2 § $ -  ~/(L~sn+l/2)2 § $)x<~ IArnl + I~S~I + ~ ~ �9 

If  we integrate on R and take the limit as s--* 0 we get 

(4.16) I(l~r~+l/21 + 1~+l/21)dx~ 
R 

<<- f(IAfnl  + lAS~l)dx + z ] l AZ~+I/2- zlZ~ I -~ dx. 
R F~ 
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From (4.2) (or (4.4)) we easyly obtain 

(4.17) I ( IAr~+! j  + IAS~+lJ + jAX '+ ' j )d ,x -  < 
R 

~< [(IA_rn+l/~ I + j~'+*/21 + lAZ'+l/21)dx. 
lB. 

The asserted estimates then follow from Lemma 4.2 and inequalities (4.16) and 
(4.17). " 

4) A module of continuity for the time variable t. 

Lemma 3.3 allows us to estimate the L ~ module of continuity in t, for the approxi- 
mate solution I'~(x, t), S~(x, t), ~ ( x ,  t) defined by (4.7). From Lemmas 4.1 and 4.3 it 
follows that the functions/ '~, S~, ~ bear the estimates (3.2), (3.3) with the constant 
C~ = r const. 

Therefore (we can take r t> 2 and ~ = 1 in Lemma 3.3) 

(4.18) 

{ Ir(F(x, t), At) <~ ~t~(At) = const 

Ir(~(x, t), At) < ~(~t ) ,  

I~(~(x, t), At) <<. Ojtr(At). 

min [ h + ~ ( h ) + - - ~ ]  

For the function ~t (x, t) = (X n § 1 _ Zn)/z from Lemma 4.2 we have 

T 

(4.19) r [ izt(x + Ax, t ) - ~ t ( x ,  t)Jdxdt ~ ~(Ax)  
0 Ixl ~<r 

and moreover by using the same ideas as in Lemma 4.2 we can obtain that 

T 

(4.20) I I I~t(x ' t+At)-z~(x ' t ) ldxdt<<'~t(At)  Vt, t+Ate[O,T]  (A t>0) .  
0 }xl ~<r 

Therefore we have constructed the L 1 modules of continuity ~ ~ (z), o~t (z) independent 
o f z ( z = T / N )  such that for 0 ~ < t ~ < T x e R  

(4.21) Jr(F, 4x) + Jr(Z, Ax) + Jr(~" Ax) + I r ( F  , At) + I~(S, At) + Ir(~, At) <<. 

and the Ll-modules of continuity ~ ,  ~ such that estimates (4.19), (4.20)* are 
fulfilled. " 

5) The limit as z--~ O. 

From (4.19)-(4.21), (4.6), (4.7) it follows there exists a subsequence {vk} c_ {z} 
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such that 

(4.22) { �9 - - - - >  (F ,  S ,  ~, ~t) 
vk----~ O 

( p ~ ;  S ~ ;  Z ~ )  > (F, S, X) 

*-weakly in L ~ (7~T) , a . e .  in 7:T, 

strongly in L~I:(TrT). 

Let ~(0, | be arbitrary smooth convex functions on the line - ~ < 5 < + ~ ; ff we 
multiply the first equations in (4.1), (4.2) by ~ '(F ~ + ~/z), ~ ' ( r  ~ +1) respectively and 
sum the resulting expressions we get 

~(F~ + 1) _ ~ ( ~ )  
1 ( ~ ( F ~ + t  F ~ + 1 - S  ~ + 1  

+ ~ ))~ + ~ ' (F"+~)  2~ + ~ZtO (F +~/z)~<0. 

Here we have used twice the property of convex function, that ~ ( ~ ) -  ~(V)I> 
i> ~'(V)(~ - ~), V~, V e F~. Hence for every ? e C~(rZT), ~ >I 0 

(4.23) f ~(F2~)~+ ~(F~) ~z - ~ r Fz~-S2~ + -~Ztr dxdt>>- 
~ 2~ ' 

where 

~ ( t )  - ~ ( t  - 3)  
~t-= v 

Taking the limit as zk--~ 0 we obtain 

(4.24) 1 f f ~(F)(~t + - ~ x )  - ~r ~-aS  + -~Zt} dxdt >~ o. 
rz T 

By using the same arguments for every ~b e Co 1 (7:T), ~/> 0 we obtain 

(4.25) ~ f I ~ ( S ) ( ~ t - - ~ a ~ x ) + ~ b ~ ' ( S ) { l ~ - S 1 } "  ' 2~ 2 Zt dx dt >>- O. 

After the approximation of the functions I F -  k I and IS - II by the smooth functions 
r and | it follows that inequalities (4.24) and (4.25) are valid and for ~ = f -  
- k I and | = IS - ll(~'(F) ) = s g n ( F -  k), |  = sgn(S - k). 

We readily get that F, S and • satisfy D1) and D2) in the definition of weak 
solution. 

6) The limit as h---) O. 

In Section 5 we have shown that there exists a weak solution F h, S h, X h of problem 
(2.4) with initial data (4.5) in L | ( k )  with a compact support on R. 

In the next section we will show the Stability result for arbitrary initial data in 
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L ~ (R). Therefore if in Theorem 2.2 we take (to,  So, Zo):= (Fo h, So h, Zo h) and 

(to,  so, 2o): = (r (x + So (x + zoh(x + 

for a given Ax e R, then for every fLxed r > 0 there exists a positive constant C inde- 
pendent of h: 

(4.26) I{l rhl + I hl + Inz ]}(x,t)dx<-CI{IAr i + + ]az0 ligx 
Bt Bo 

for a.e. t e [ 0 ,  To], 

where To = rain(T, rV~),  Bt = {x] Ix[ <~ r - t /V~}.  
The modules of continuity of Fo h , S~, Z0 ~ are estimated by the module of continuity 

of Fo, So, ;/o (Lemma 3.1). Hence from (4.26) and Lemma 3.3 the set IF h, S h, x h }h > o 
has modules of continuity o~,t o~ independent of h such that for every fixed 
r > 0  

J~(P h, Ax) + Jr(S h, Ax) + Jr(Z h, AX) + 

I~(l~,~t)+I~(Z~,~t)+I~(z~,At)<,c~(l~xl)+o~t~(~t)  V ~ x e R ,  ~ t > 0 .  

This estimate allows to find a subsequence of {F h, S h, Xh}h> o such that 

F ~, S~, Z h > F, S, X *-weakly in L ~ (7:T), a.e. in 7:T, strongly in Lloc(TZT). 

Finally, it is easy to see that the limit functions F, S, X are a weak solution of (2.9) 
with:the given initial da ta / 'o ,  So, 9~o. 

5. - Stability results (Theorem 2.2). 

Here we will show the Stability Result, for the variables F, S, Z. 
Let the triplets Z = (F, S, Z) and Z = (F, S, 2) be weak solutions of problem (2.4) 

with initial data Zo=(Fo,So,i~o)eL~(F~), 0~<Xo~<l and Zo=(Fo,So,2o)e 
e L ~ (R), 0 ~< 2o ~< 1 respectively. Then 

(5.1) I IZ(t' x) - Z(t, x) ldx <<. C I IZo(x) - Zo(x)l dx,  
Bt BO 

for a.e. r e [ 0 ,  To], To=min(T,  RV~) ,  Bt = {x[ Ixl 

PROOF. - In the first and second equations of D2) for F, S, X (Definition, w 2) we 
s e r f =  ~(x, t, y, z) and g = ~(x, t, y, v) respectively, where ~e C~(=~ • =T), ~ I> 0 and 
let k : F(y, z), 1 = S(y, z). Then we integrate these equations in (y, z) and add the re- 
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sulting expressions. We obtain 

+E( F - S  ) (sgn (S - S) - sgn (Y - F)) + 

+ 21 :(sgn " (F - F ) Z t  - sgn(S  - S )~ t ) ldxdyd tdz  >I 0 
J 

Adding this inequality with the one obtained similarly f r o m / ' ,  S, ~,, we get 

~ T  • ~T  

Here  we have used the following inequalities 

( r  - _r) - (S - S) 

2a 

+ l ~ t - ~ [ ~ } d x d y d t d z  >10. 

(sign (S - S) - sign (F - F)) ~< 0,  

Let us define 

(sign (S - S) + sign (F - F)) 

(z-y)(x+y 
~(x, t, y, z) = $h (x, t, y, z) = ~h ~h - ~  ~ 2 ' 2 

where ~ e C~(r:T), ~ >I O. We see that 

t x - y  (5.4) 

Taking the limit as h---) 0 in (5.3), by using (5.4) from Lemma 3.2 we have 

rr T 
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Let  E and E be the sets of zero measure for which D3) holds for (P, S, ~/) and (P, S, 2) 
respectively. In addition, let us define E ~ c [0, T] as the set of non Lebesgue points of 
the bounded measurable function 

(5.6) Ix(t) = I ( I F - P l  + I S -  S I ) d x .  
Be 

We set E ~ = E (2 E U E ,~ and note that  E ~ has zero measure. We define 

~h(~) = ~ ~h(s)ds 
~ 0 9  

and take ,0, z e (0, T ) \ E  ~ ~ < v. In (5.5) let us choose 

? = [ ~ h ( t -  ~) - a h ( t -  z)]X~(x, t) ,  h < min(~, To - r) 

where y~(x, t) = 1 - ~ ( I xl - R - t / V ~  + ~), ~ > 0. Note that  X ~ satisfies the rela- 
tions 

0 ~> X~ + ~ Y ~ .  

Then, from (5.5), we obtain the  inequality 

I I [ ~ h ( t -  ~) - ~ h ( t -  r t ) { I P - P l  + I S -  21 } + I ( Z -  ~)tlZ~(x, t ) }dxd t  >10. 
=T 

Taking h ---) 0 and e ~ 0 we obtain 

(5.7) I IF(z' x) - P(z' x)] + IS(v' x) - S(~' x ) ldx  <<" 
B; 

I(tr(~,  x ) - ~ ( ~ ,  x)l + ls(~,x)-~(~,x)l~dx+ f l  I(x-~)~ldxdt. 
B~ ~ Bt 

In addition, from D1), since Zt, ~t e L ~ (r~T) we have the following relations: 

(5.8) I Iz(~, ~) - ~(~, x)ldx - I Iz(~, ~) - ~(~, ~),d~ + 
B; B~ 

Bt ,o Bt 
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r 

z Bt P Bt 

2 1 I If(r' S, Z) - f(F, S, z) ldx dt. 
Bt 

The last inequality follows from the following inequality (see D1) 

Iz - ~1~ < If(r, S, z) - f ( P ,  S, ~)1 a.e. in r ~ f .  

Therefore adding (5.7) and (5.8) and using that f is a Lipschitz function for 

~(t) -- I{  IF(t, x)  - P( t ,  x ) l  + IS(t ,  x )  - ~( t ,  x)t + Iz(t, x) - ~,(t, x)l } dx, 
St 

we have the following inequality 

~(~) <~ ~(p) + K f ) ( t )d t .  

Finally taking ,o ~ 0 on the set E ~ and applying Gronwall's lemma we prove the state- 
ment of Theorem 2.2. �9 

6. - Proof  of Theorem 2.3. 

Denoting by (0~, ~ ,  Z~) the weak solution of problem (2.1), (2.2) with initial data 
0o, q0, Zo independent of a > 0, we have the following estimates from above 
results: 

(6.1) 0~, V~q~, X~ e L ~ (7~T), 

(6.2) I I~o~ I + v ~ ] ~  I + ]~z~ ] } dx <. 
Bt 

<~CI IAOol + V~Iztqol + IAZot}dx for a.e. t ~ [ 0 ,  T 0] VAxeF~, 
Bo 

where C is a constant independent of ~, /~ = ~(x + Ax) - ~(x). From (6.1)-(6.2) by 
using Lemma 3.3 we conclude that Vr > 0, Ax ~ R, there exist two modules of continu- 
ity COrX, ~ort independent of ~ such that 

(6.3) Jr(O~, Ax) + u Ax) + Jr(z~, Ax) + 

+ Ir(O~, At) + ~r At) + Ir(z~, At) <~ o~(IjXl) + o)~(At). 
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From (6.1), (6.3) we have 

0~--) O, Z~--> Z, V~q~--~ it, 

as a--*0 strongly in Lltoc(=r) and *-weakly in L ~ (=T)- 

Therefore easily conclude that  0, • is a weak solution of the Stefan problem (2.8) with 
non-equilibrium constitutive relaxation. [] 
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