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Global Existence of Solutions
for Perturbed Differential Equations (*).

ADRIAN CONSTANTIN

Abstract. — In this paper we consider sufficient conditions for the continuability of solutions for
perturbed differential equations. We obtain also some results for the global existence of sol-
utions for differential inclusions and for stochastic differential equations of McShane and
Ito type. We give an application to the global inversion of local diffeomorphisms.

1. — Introduction.

Let us consider the scalar differential equation
(1.1) 7’ = g(t) w(r)
and the perturbed differential equation
(1.2) r' =) w(r) + (&) 2(r)

where ¢, 4, w,2e C(R,, R,).

Hara, YoNEYAMA and SUGIE [45] gave necessary and sufficient conditions for the
global existence of the solutions of (1.1). The natural problem arises to give sufficient
conditions for the global existence of solutions of (1.2).

Several approaches were made in order to handle differential equations (or differ-
ential and integral inequalities) involving two nonlinearities:

(I) DuoNGaDE and DEo0[30,31] considered nonlinearities belonging to the
class of functions « € C(R, , R, ), positive and nondecreasing on K, and satisfying the
condition

%a(u)$a(%), uz0, v>0;

(*) Entrata in Redazione il 10 luglio 1993.
Indirizzo delPA.: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York,
N.Y. 10012.
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(IT) BEESACK [7] replaced the preceding condition by the condition
%—a(u)Sa(%), >0, v21,

in order to avoid the triviality a(u) = «(1)u, u > 0;

(ITI) DANNAN [27,28] assumed that one of the nonlinearities satisfies a more
general submultiplicative condition and the other is bounded by a linear func-
tion;

(IV) HarA, YONEYAMA and SUGIE [45] proved that if w,ze C(R., R,) are

[+

such that z(r) < Lr, r =2 &> 0 (L > 0) and [ ds/w(s) = © with w nondecreasing, then

1}
the solutions of (1.2) are defined in the future;

(V) PiNnTO[54] considered monotone nondecreasing mnonlinearities w, ze
e C(R,, R, ) subject to the condition that w/z is nondecreasing on (1, ).

One can see that in all these approaches we have either that one of the nonlineari-
ties is sublinear in a neighborhood of o« (this is the case with the classes (I), (II), (ITII)
and (IV)) or the two nonlinearities are comparable in a neighborhood of ® (in the
sense that there exist L, M > 0 with Mz(r) < w(r) for » = L) as it is the case for the
class (V).

We will give a continuation result for the solutions of (1.2) considering two nonlin-
earities which are not comparable to each other or to a linear function in a neighbor-
hood of «. The comparison method of ConTI [22,23] enables us to apply this result to
the general case of ordinary differential equations on R", generalizing some results of
BERNFELD [9], HARA, YONEYAMA and SUGIE [45] and STOKES [66].

We give a global existence result for the Rayleigh equation, completing a recent
result of SOUPLET [65] and our continuation results for the Liénard equation with per-
turbing term improve some results of BurTon [13], GRAEF [38], HARA, YONEYAMA
and SUGIE [44] and NAGABUCHI and Yamamoto [52]. Considering the problem of the
continuability of solutions for the differential equation

(a(t) ") + q(t) fle) g(x") = r(t)

we generalize some results of BURTON and GRIMMER [15] and GRAEF and SPIKES [39].

We consider also the cases of delay and functional differential equations improv-
ing some results of HARA, YONEYAMA and SUGIE [45]. In the case of differential equa-
tions in Banach spaces of infinite dimension, our result generalizes some results of
ALEXANDROV and DAIRBEKOV [2] and of RADULESCU and RADULESCU [57].

Moreover, we are able to provbe global existence results for differential inclusions
obtaining as particular cases some results of SEAH[61] and TANIGUCHI [72].

The method is applicable also in the case of stochastic differential equations of Mc-
Shane and Ito type. Our results improve some theorems of MCSHANE [62], ELWOR-
THY [34] and ANGULO IBANEZ and GUTIERREZ JAIMEZ[3] for equations of MeShane
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type and some results of DAPRATO[55], TANIGUCHI [T1] and YAMADA[75] for equa-
tions of Ito type.

An application of these continuation results to the global inversion of local diffeo-
morphisms of R” is also given. As particular cases we obtain some recent results of
ZAMPIERI [T7].

2. ~ Continuability of solutions of perturbed ordinary differential equations.

Let us assume that fe C(R, X R”, R™) is such that all solutions of the differential
equation

' =fQ, x)
are defined in the future. We will give sufficient conditions on g e C(R, X R™, R") so
that all solutions of the perturbed differential equation
x' =f{t, x) + g(t, x)

are defined in the future.

In our discussion we will impose growth conditions of f and ¢ by requiring the
existence of functions ¢, ¢, 2, w: R, — R, continuous, z(r) > 0 and w(r) > 0 for all
r 2 ¢ >0 such that

Ift, )| < gwl|x|), gt )| <¢@)2(|z|), (& 2)eR, X R".

Because of these growth conditions imposed on f and g we have essentially reduced
the problem to the study of perturbed scalar differential equations (in view of the
comparison method of ConTI[20,22,23]).

We define the class of continuous scalar functions

©

—_ . . _-d_s—zoo
Ry = {w: w(r)>0,'rzé‘,J o(s)

N

Let us consider the nonautonomous secalar equations
(2.1) r’ = @) w(r),
(2.2) r' = ¢@) w(r) + Yt 2(r)

where ¢, ¢, z, w: B, — R, are continuous, 2(r) >0 and w(r) >0 for all r=¢= 0.
The following result gives necessary and sufficient conditions for the continuabili-
ty of the solutions of (2.1).

THEOREM 2.1 [45). — Suppose that ¢(t) is not identically zero. Then the solutions of
(2.1) are defined in the future if and only if we R,.

In order to state results for (2.2) we consider for each y € R, with lim inf y(r) > 0
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the class of continuous sealar functions
(=43

R, = w:w(’r)>0,r26‘;f
é

. da  _ .
w(s) + y(s)

Since

@ ]

J ds ZI ds - ®
; w(s) w(s) + y(s)

é

we see that R, c R, for every y e R, such that lim inf y(r) > 0. We notice that R, =Ry
as it can be seen from Example 2.1.

ExampLE 2.1. - Define the function A:[1, «)— R, as follows: for each integer
7 =1 such that n <t <n +1,

=1 N
h(n) ) h(”"'l) n+1)
1 1
Wt)y=t*, n+-—=<tsn+l- ———,
) n? (n+ 1)?
—l——islinearfornstin+v1—— and n+1-— 1 St<sn+1.
h(t) n? (n+ 1)

From the construction of 2 we have (for more details see[9, page 279]) that

J'w s _ J’ s _ o
h(s) ’ : h(s) +1
1

Since y(r) > 0 for r = ¢ = 0 and lim) iglf y(r) > 0 we have that there exists an ¢ € (0,1)
such that y(r) = ¢ for r = ¢ thus

oo © ©

J ds <J ds <1J ds o
X “M9+h@)1 et+h(s) £ ] 1+h(s)

+34 +é 1+¢

ie. h¢ R, We have so that R, = R,.

LEMMA 21. — For each L >0 and M > 0 we have that

©

J___ii___zw
Lw(s) + My(s)

e

if and only if we R,
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PROOF. — If w e R, we have that

J'm ds . 1 fo ds o
J Luw(s) + My(s) ~ L+M J w(s) + y(s)

3

Conversely, suppose that

o

[t -
Lw(s) + My(s)

We have then that

0 0

ds - ds - w
|t 7 min iz }J L) + My(s)

¢

thus we N,. This completes the proof of the lemma.

We define now the set (for y € R, with lim inf y(r) > 0)
A, ,(K) = {r= ¢ 2(r) < Ky(r)}.
Let m(A; ,(K)) denote the Lebesgue measure of the complement of A, ,(K) in
[, ).
THEOREM 2.2. — Suppose that ¢(t)4(t) is not identically zero and suppose that
there exists K >0 such that m(A; ,(K)) < © and

L. A7)
liminf —— > 0.
Pr—s 0 y(rr-)

Then the solutions of (2.2) are defined in the future if and only if we 3R,

ProoF. ~ Let us suppose that w e R,
Observing that

J _ds
w(s) + Ky(s)
AL (B

we obtain (in view of Lemma 2.1) that

[

J’ ds :J' ds B J’ ds -
w(s) + Ky(s) w(s) + Ky(s) e w(s) + Ky(s)

A,y (KD ¢ AZ 4 (
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Hence

]

J ds _ J ds + J ds > J ds —w
w(s) + z(s) w(s) + 2(s) w(s) + 2(s) w(s) + Ky(s)
B %y 5,y (B Az, y (KD

Since w + z € R, we deduce by Theorem 2.1 that the solutions of the differential
equation

' = ($(8) + YN w(r) + 2(r))

are all defined in the future. By the comparison method of CoONTI [22,23] we obtain
that the solutions of (2.2) are defined in the future.

Let us now prove the necessity of the condition w e R,

Suppose that w ¢ R, and the solutions of (2.2) are defined in the future. Since
#(t) ¢(?) is not identically zero, there exist @ = 0, b > @ and ¢ > 0 such that ¢(¢) = ¢ and
¢(t) = £ on [o,b]. We obtain from (2.2) that

r'(t) =2 e(w(r) + 2(v)), tela,b].
Since
lim inf 27 > 0
=y

we have that there exist » > 0 and M > 0 such that z(r) = ny(r) for all »r = M. We de-
duce that ’

o«

ds _ dS dS
j w(s) +2(s) J w(s) + 2(s) +ﬂ j w(s) + )

¢ Az,y( Az,y<K)
< ds . J’ ds 4 J ds _
w(s) + ny(s) w(s) + z(s) w(s) + 2(s)
Ay (YA IM, ) A, ,(B)A [0, M AL, B

Since m(4; ,(K)) < » and w¢ R, we obtain in view of Lemma 2.1 that

f___ds__ <
w(s) + z(s)
é

Let v, > ¢ be such that

=]

ds
I B <.

*o

The solution *(t, a, ry) of (2.2) satisfies

' (t) 2 (wlr) + 2(r)), tela,bl,
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thus
0]
ds L
Jm>°(t a), tela,b].

7o

We obtain so that

® b)

_ ds ds _
6~ a)> J w(s) + 2(s) g j w(s) + z(s) > &b~ a)

7o 7o

which is a contradiction.
We have so that we 3,.
This completes the proof of Theorem 2.2,

COROLLARY 2.1. — Suppose that ¢(t) ¢(t) is not identically zero. Then the solutions

of the differential equation
r' = ¢ wlr) + U« )
are defined in the future if and only if

o«

J_i%_:oo
1+ w(s)

é

Theorem 2.2 generalizes some results of BERNFELD [9, Theorem 4.1] and HARA,
YoNEYAMA and SUGIE [45, Theorem 3.2 and Theorem 3.3]. The relation of our result

with these results is given by

ExaMpLE 2.2. ~ Let us consider the scalar differential equation

r'=¢t)rin(r+ 1) + L) + In(r + 1))

where ¢, y: R, — R, are continuous and ¢(t) J(¢) is not identically zero. We can apply
Theorem 22 with y: R, — R, , y(r}) = (* + 1)In(r + 1) but we can not apply Theorem

4.1[9] or Theorem 3.2, Theorem 3.3 [45].

THEOREM 2.3. — Let we Ry and suppose there exist constants K, L, M > 0 such

that

2(r) SKw(r)I z_v% + Muw(r), r=L=s.

B

Then the solutions of (2.2) are defined in the future.
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Proor. - Let
4 r

Vb, r) = —J¢(s)ds+f£(%)~, r2L.

0 5
Since w € R, we have that

V(t, r)— © as r— « for each fixed te R, .

We have that

dv . V(t + h, v+ he(t) w(r) + gt 2(r)) — VL, r)
— = lim sup =
dt 2.2) h—0t h
= —4(t) + ——1—(¢(t)wm”) + ¢t) 2(r) = sb(t)—(—) < Ksb(t)J + My(t) =
w(r) w(r) w(s)

é
4

= KWt) V(t, r) + My(t) + Ki(t) j #s)ds, r=L,t=0.

0
By Conti’s theorem (see[22,23,67]) we deduce that the solutions of
r' =g wlr) + Yt)z(r)

are defined in the future. This completes the proof of the theorem.

COROLLARY 2.2. ~ If w e R, is nondecreasing on [3, ) then the solutions of the dif-
Sferential equation

r' = §(t)w(r) + (t)r

where ¢, 4: R, — R, are continuous, are all defined in the future.

PROOF. - Since w is nondecreasing on [4, ©) we have that

w()J ()>r 8

thus we can apply Theorem 2.3 with

_9J
w(s)’

|
o,

K=1, M=

Corollary 2.2 is a theorem of STOKES[66). He arrived at the same result using the
Tychonoff fixed point theorem. For a proof of Corollary 2.2 using differential inequal-
ities see[9] (a different method is used in[45]).
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CoRrROLLARY 2.3 [9]. — Assume that ¢() is not identically zero and all solutions of
(2.1) exist in the futuve. Then all solutions of (2.2) exist in the future if 2
satisfies

Proor. — Since all solutions of (2.1) exist in the future we have by Theorem 2.1
that w e R,.
On the other hand there exists K; > 0 such that

2r) < Kyw(r), r=zdé.
If L > ¢ is such that
L
ds
J ws) K
we obtain that
z(r)Sw(r)fﬂ rzL
w(s)

We can so apply Theorem 2.3.
COROLLARY 24[9]. - Assume that J(f) is not identically zero and all solutions of
r' = yt)z(r)
exist in the future. If

lim fnf 2

>0
rT—> % w(/r)

then all solutions of (2.2) exist in the future.

PRrooF. — We have that z € . Since lirrrl> inf (2(r)/w(r)) > 0 we obtain that w e R,
and lim sup (w(r)/z(r)) < . We can thus apply Corollary 2.3.

ExaMpPLE 2.3. — Let us consider the differential equation
r' =¢t)r+1In(r+ 1) +E)rh(r+1)+In(r+ Din(r+ 1))

where ¢, ¢: R, — R, are continuous and ¢(f)J(f) is not identically zero. We can
apply Theorem 2.8 with w, z: R, - R,, wir)=r+In(r+1), z(r) =rln(r+1) +
+In(r + 1)In(r + 1) but we can not apply the theorem of Stokes [66].
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REMARK 2.1. — It should be noted that if w,, wy e Ry we can not conclude that
w; + we € Ry even if we suppose that w, and w, are nondecreasing (see Example
3.819]). Classes of functions for which this is true are given by Theorem 2.2 and The-
orem 2.3.

We apply our results in order to study the continuability of solutions of the differ-
ential equation

(2.3) u" + flu') + glu) = e(t)

where e, f, g: R — R are continuous.
Equation (2.3) is equivalent to the system

¢’ =y,
2.3
23 {y'= —fy) — g() + e(t).

THEOREM 2.4. — Suppose that

(i) there exists w e Ry nondecreasing on R, such that
|af(x)| < w(x?), xzeR;

() 0 < xg(x) for |x| large enough.
Then the solutions of (2.3) are defined on R.

ProOF. — Let us prove that the solutions of (2.3) are defined in the future. By (ii)
we have that there exists K > 0 such that

x
[g@ds+K>0, wek.
[}

Let us define

€

V:RXR—R,, Wa, y)=y2+2jg(s)ds+2K.

0

We have that

dv

= — 2yf(y) + 2ye(t) < 2w(y?) + (y* + D]e®)| <
dt @3

< 2w(V(x, 9) + Vix, y)|e(t)| + |e(®)].

By Corollary 2.2 we have that

o«

J ds = o
2w(s) +s+1

B



ADRIAN CONSTANTIN: Global existence of solutions, etc. 247

From the relation
y:<Viw,y), x,yeR,

we deduce that y(f) can not explode in a finite time T > £, (f, is the initial time) for any
solution (x(t), y(£)) of (2.3). Since

' =y

we deduce also that x(f) can not explode in a finite time T > {,.

Thus the solutions of (2.3) are defined in the future.

In order to prove that the solutions of (2.3) are also defined in the past we reverse
the time in order to reduce this problem to the problem of the existence in the future
of the solutions of the system

2.3 [ =Y,
#3) 1y = — =) — gla) + e(~1).

We observe that

av

= — 2yf(—y) + 2ye( —1) < 2w(y?) + (¥ + De(-1)| <
dt @3

< 2w(V(z, v)) + Vi, y)|e(=t)| + [e(—1)] .

We conclude in a similar way to the first part of the proof.

Thus the solutions of (2.3") are defined in the future i.e. the solutions of (2.3) are
defined in the past.

This completes the proof of Theorem 2.4.

The continuability of solutions of the differential equation (2.3) was also consid-
ered by SoUPLET[65] in the case e(t) = 0.

ExaMpPLE 2.4. - Congsider the differential equation
w +u'ln(1+|u' [?)+u?=0.
We can apply Theorem 2.4 considering
w: R, >R, wr)=rn(l+7r).

The result of SOUPLET [65] is not applicable since we do not have that there exists a
constant M > 0 such that

0 < zg(x) < Mx® for |x| large enough.

We will give now a global existence result for the solutions of the Liénard equa-
tion with perturbing term

(2.4) "+ flx)x’ + glx) = e(t, x, z')
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where f,g: R — R are continuous and e¢: R, X B X R — R satisfies the following
conditions:

— e(t,x,y) is plecewise continuous with respect to ¢ e B, for arbitrarily fixed
(x,y) e R X R;

— e(t,x,y) is continuous with respect to (x, y) e R X R for arbitrarily fixed
teR,.

Let us denote

x &

Fm)zfﬂﬁd& GM)zImﬁd& xeR.
0 0
THEOREM 2.5. — Suppose that the following conditions hold:
(i) there exists a constant K > 0 such that

eF(x)>0 and xg(x)>0 for |z| ZK;

(ii) there exist continuous functions vy, rs, z, w: R, — R, , w e R, nondecreas-
ing, such that

let, &, y — F(®))| < (&) + () 2(Jy|), teR,,z,yekR,
and

lyle(lyD) sw(y®), yeR.
Then all the solutions of (2.4) are defined in the future.

ProOF. — Let (x(f),x'(f)) be a solution of (2.4) defined on [t,, T), T < . Then
(@), y(®)) is a solution of the system

' =y - Fx),
{y’ = —glx) +&t),
where y(t) = 2'(t) + F(x(t)) and &(t) = e(t, 2(t), y(t) — F(x(t))).
Defining
2

W, y) = 12— +Gx), =, yeR,

we obtain that

av

R CONCOREONOE
24)



ADRIAN CONSTANTIN: Global existence of solutions, elc. 249

Integrating on (¢, t], t < T, we get

t
Via(t), y(t)) — Vit ), 9(ty)) < — j 9(x(8)) F(x(s)) ds +

)

t t
+ J le(s)y(s)|ds < — Jg(x(s))F(x(s)) ds + I le(s)y(s)|ds,

ty Iy to

where [, = {s e [ty, t]: |2(s)| < K} (in view of (i)).
If K; = |n|1%XK{ |g(x) F(x)| }, we obtain that

t
Via(t), y(®) < Va(te), y(to)) + K1 + j le(s)y(s)lds, telty, T).

fo
In view of hypothesis (i), if we denote

K, = V(x(ty), y(ty)) + Ky — 'gﬁ}K{G(gﬂ)}
then we obtain that

y2 ()

t
SK2+J}§(s)y(s)|ds, telty, T).

fo

Using now hypothesis (i), we get

4
Y2 (t) < 2K, + zj {r () + m(®) 2y Dy ds, telty, T).

to

We will prove that () is bounded on [{,, T).
IfR, = tm?xT{ri(t)}, i=1,2 we obtain that
0sts

t t
y2(t) < 2K, + 2le ly(s)|ds + 2R2fw(y2(s))ds, telty, T),

to to
(in view of (ii)), thus (since 2|y(s)| <1 + y%(s))

t 11
y2(t) < 2K, + By T + legﬂ(s)ds + zzesz(y?(s)) ds <

ty fy

t
<2K, + R, T+ (R, + ZRz)j(gﬁ(s) +wyts)ds, telty, T).
to
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Let us define

x

W:(0, ©) >R, W(x)=J ds
1

— >0.
s+ ws)’ v

By Corollary 2.2 and Theorem 2.1 we deduce that mli})r}m W(x) = .
By Bihari's inequality [10] we get that

Y@ SWIWREK; + ByT)+ (B, + 2Rt — 1), telty, T),
and therefore %(t) is bounded on [{;, T).

Taking into account the relation

t t

() = a(ty) + J y(s)ds — j Fla(s)ds, telty,T),
ty to

we get

11
le@)] < |x(t)] + j ly(s)|ds + K5 (T —t,), telty, T),
to
where K; = max. {|F(x)|}, thus x(t) is bounded on [t,, T).

||
We have so that (2(f), %(t)) is continuable up to T.

This completes the proof of Theorem 2.5.
COROLLARY 2.5[52]. — Suppose that the following conditions hold:
(i) there exists a constant K > 0 such that
eF(x)>0 and xg(x)>0 for |z| =K;
(ii) there exist continuous functions v, ro: R, — K, such that
le(t, ¢, y — F(x))| <7 () + 7 (t)|y|, teR., z,yekr.
Then the solutions of (2.4) are defined in the future.
As 3 particular case of Corollary 2.5 (if e(t, x, ) depends only on t) we have a con-
tinuability result of GRAEF [38] which extends a result of BusHaw [16].

The relation of Theorem 2.5 with the result of NAGABUCHI and YAMAMOTO [52] is
given by (

ExaMPLE 2.5. — Let us consider in equation (2.4) the perturbing term of the
form

e(t, , y) = (F(x) + y)In (1 + (Flx) + y)?) + ()
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where r: R, — R is continuous. If there exists K > 0 such that
xF(x)>0 and 29(x)>0 for [z =K

we have that all the solutions of (2.4) are defined in the future (applying Theorem 2.5
with w(r) = rIn(1 + r), re R,). We can not apply the result from [52].

We will investigate now the continuability of solutions for the forced Liénard
equation

(2.5) "+ flw)x’ + glx) = e(t)
with all functions continuous without making the usual assumption ([14],[38])
xg(x) >0 for |x| =K.
Define

T &

F(x)zjf(s)ds, G(x)zfg(s)ds, zeR.
0 [}

Using the Liénard transformation we write (2.5) as the system

x,zy—F(w)a
2.
25 {?/’=—g(x)+e(t).

THEOREM 2.6. — Assume that for some positive number P we have
Gx)=z—-P, zeR,
g Fz)yz —w(Gx)+P+1), =zekR,
|F(x)| < g(x)F(x) + w(G(x) + P+ 1) +2(|x|), 2xzeR,

where w, 2: R, — R, are continuous nondecreasing functions satisfying the condi-
tions of Theorem 2.3.

Then every solution of (2.5) exists in the future.

PRrOOF. — Let V(z, y) =92 /2 + G(x) + |x| + P+ 1, x, y € B. We have that

av

< — glx) Fx) + ye(t) + |y — F(x)| <
dt @5

2
<y?+ cwrl +w(G(e) + P+ 1) + 2([x]) <

2
e2(t)+1

< 2W(x, y) + wV(x, ) + 2(V(x, ) + 2
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By Theorem 2.3 we have

f__@s_* .
1 w(s) + 2(s)

and by Corollary 2.2 and Theorem 2.1 we deduce that

o

J ds — w
25 + w(s) + z(s)

1

Using the comparison method we obtain that the solutions of (2.5) are continuable
in the future since

Ve, y) > as |x| + |y| > = .

This completes the proof of Theorem 2.6.

COROLLARY 2.6[13]. — Assume that for some positive numbers P and Q we
have

Gx)z - P, rxe kR,
g(x)F(w)Z_Q’ QGERy
[F(x)| < glx)F(x) + Q +2(|x]), =zeR,

where 2: R, — (0, «) is some nondecreasing continuous function such that

f ds _ _ .
s + 2(s)
a

Then every solution af (2.5) exists in the future.

Proor. — We have that

fds >f s _
: 2(8) /1 s+ z(s)

so that we can apply Theorem 2.6 with w(r) =Q, re R,.

REMARK 2.2. ~ In view of Corollary 2.2 we have that the condition [ds/(s+

0
+ 2(8)) = ® is equivalent (under the assumption that z: B, — (0, «) is nondecreas-

ing) with the condition | ds/(x(s)) = .
1

The relation of our result with the result of BURTON [13] is given by
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ExaMPLE 2.6. — Consider the system (2.5) with
2
g@) =z, F@)=h{l+z?), G = % xekR.

We can not apply the result of BURTON [13] since

im_ g@) F@) = - o

but we can apply Theorem 2.6 considering the functions w(r) = 2rIn(1 + 27) + In2,
reR,,and 2(r)=1,reR,.

An improvement of Conti’s continuability theorem [22,23] was given by HARA,
YoNEYaMA and SUGIE [44] using two Lyapunov functions which are not radially un-
bounded for fixed . They applied the result to the Liénard equation without making
the assumption that xg(x) >0 for |z| = K.

We will show that using Theorem 2.3 and the continuation theorem of HARA,

YoNEYAMA and SUGIE [44] we can give a more flexible result for the continuability of
solutions of (2.5) than the work done in[44].

We suppose that F and g are regular enough to ensure uniqueness of the solutions
of the differential equation (2.5).

THEOREM 2.7. — Suppose that for some positive number P we have
Gxyz-P, wxekR,

g@)F(x)z -w(Gx) +P+1), =zeR,

@ 0

J ds . J ds —»
1+ max {0, —F(s)} ’ 1 + max {0, F(s)}

0

where w: R, — R, is continuous, nondecreasing and w e R
Then every solution of (2.5) exists in the future.

PrOOF. — We define F_ () = max {0, —F(s)}, F. = max {0, F(s)} for x e R.
Let V(z, y) =y%/2 + G(x) + P + 1-and W(x, y) = |x| for x,y c .
We have that

Wz, y)— ® as |y| — « uniformly in x;

W(x, y)— © as |x| — o for each fixed yeR.
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On the other hand

%(2.5) < —g(®) F(x) + |ye(t)| <

\ 2
e zft) 4 0(G(@) + P+ 1) < Viz, y) + w(Va, ) + 0

2

Y
< =+

2

~

and by Corollary 22 and Theorem 2.1 we have that

f_le.s_zw
; s + w(s)
If =20 and |y| <K, then

W =y = F@)<K+F_(0) =K + F_(W, ).

Similarly, if 2 <0 and |y| < K, then

%‘:—/(2.5) SK+F, (W, y).
Since
ou 0
J dS - = 00 J _—-—-——ds =
. 1+ F_(s) ’ ) 1+F ()

we have (in view of Lemma 2.1 and Theorem 2.1) that every solution of
r'=K+F_(r)
and
r'=K+F, (-7

exists in the future.
By the continuation theorem of HARA, YONEYAMA and SUGIE [44] we deduce that
the solutions of (2.5) exist in the future.

COROLLARY 2.7[44]. — Suppose that there exist some positive numbers P and Q
such that

Gx)=z - P, reR,

gx)F(x) =z —QGx)+P+1), =xeR,
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) 0

JITF® - ) 1+F@

Then every solution of (2.5) exists in the future.

As a particular case of Corollary 2.7 we have a continuability result of
GRAEF [38].

The relation of Theorem 2.7 with the result of HARA, YONEYAMA and SUGIE [44] is
given by

ExamPLE 2.7. — Consider the system (2.5) with

gx)=2, F@)=-xzIn(1+|z|), G&)= ﬁ’

5 zeR,

we can not apply Theorem 5.1 [44] but we can apply our result with w(r) = 27In(1 +
+2r)+In2, reR,.

Let us now consider the problem of the continuability of solutions for the differen-
tial equation

(2.6) (a®)x")" + q(t) flx) glx') = (1)

wherea, q, 7 R, >R, f,9: R— R, a(t) > 0, q(t) > 0, g(x) > 0, r, fand g are continu-
ous and a, ¢ are differentiable.
We will write equation (2.6) as the system

x' =y,
(2.6) . —a' Dy — g f@)gly) +r@)
v= alt) '

Let ¢'(t), =max{q'(¢), 0} and ¢'(!). =max{—¢q'(t), 0} so that we have ¢'({) =
=q'(t), — ¢'(t).. A similar decomposition holds for a(t).

We define
F(x) = J fis)ds, Gx)= ——g(ss) ds, zeR,
0 0
t '(s)
q'(s)_
= - 14 +
p(t) = exp Oj ) ds{, eR

t

a'(s)_
b(t) = exp -—J’ () ds}, teR,.
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THEOREM 2.8. — Assume thal there exist nomwnegative constants m and n such
that

M—l—ﬁm—l—nw(G(y)), yekR,

9(y)

where w: R, — R, is a nondecreasing continuous function and w e Ry.
If a'(t) 2 0, F(x) is bounded from below and G(y) — ® as |y| — = then all sol-
utions of (2.6) are defined for all t = 0.

Proor. — Let K > 0 be such that
Flx) +K=0, =xeR.
Suppose that there exists a solution (x(t), y¥(¢)) of (2.6) and a T > 0 such that
Jim {{a®)] + ly@®]} = =

Define

F)+ K N G(y)
o(t) q(8)

V(t,x,?/)zp(t)l: J, tER+,x,’yER.

We have that
(F(x) + K)o'(t) N f@a'  Gyg'#) N

V'(¢) = p(t) { -

a®(t) a(t) 2 ()
Lo F@) +Kq®).  Gug®)_ | _
9y qt) a(t) q(t) ?@® |
< (D _Gle®) +g'®)-] ity < POTO Jy|
g% (t) g(y) q(t) alt) qt) alt) g(y)

B LN (OLO
ST ama®y T q@)alt)

w(G(y)) .

Denoting

q(%)
M= su —
te[ol,pT] { () }
we observe that

Gy) < %E—%V(t, X, y) < MV, x, y), tef0,T), z,yeR.
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We obtain that

: p(e)r(t) p(t) r(t)
VO smo g T e M) el D.

Since w e R, is nondecreasing we obtain by Bihari’s inequality [10] the existence of a
constant K; > 0 such that

V(t, x(t)y Z/(t)) s K17 t S [07 T) .

We deduce that y(f) = x'(¢) is bounded on [0, T') and an integration yields the bound-
edness of z(t) in [0, T') contradicting the assumption that (x(f), ¥(t)) was a solution of
(2.6) with finite escape time.

This completes the proof of Theorem 2.8.

COROLLARY 2.81[39]. — Assume that there exist nomnegative constants m and n
such that

ol
9(y)

If a'(t) 2 0, F(x) is bounded from below and G(y) — » as |y| — © then all sol-
utions of (2.6) are defined in the future. ’

< m + nGy), yel.

The relation of our result with the result of GRAEF and SPIKES[39] is given
by
ExamMprLE 2.8. — Let us consider equation (2.6) with
at)=qt)=¢*, rt)=0, teR,,

1
2?+1

fx) = : g(x)=%e‘”2, zeR.

We observe that in this case we have
G(y)=ey2—~1, yeR,
so that there are no positive constants m and » with

Ayl

9y) =2|yle’ Sm+n(e” - 1) =m+nGy), yeR.

This makes impossible an application of Corollary 2.8.
We see that we can apply Theorem 2.8 with

w: R, ->R_, w(r) =rIn(l +r),

m=6e’+9, n=1,
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since
2|yle” +y*<m, |y| <3,
2yle? +y2<2|yle’ +e¥" < yle?’, |y| =3,
thus
2lyle’ <sm +y2e¥ —yi=m+we - 1), yeR.

The requirement that a'(f) =0 in Theorem 2.8 can be dropped by imposing a
stronger condition on g(y):

THEOREM 2.9. — Assume that F(x) is bounded from below, G(y) — » as |y| — «
and there are positive constonts M ond k such that

2
Y < Muw(G(y) >k
@) Gy, |yl =k,
where w: R, — R, is a nondecreasing continuous function and w e R,.
Then all the solutions of (2.6) are defined in the future.
PrOOF. — Let — K > 0 be a lower bound for F(x).
We define
Fo)+ K N G(y)
alt) q(t)
Suppose there is a solution (x(¢), y(t)) of (2.6) and a T > 0 such that

Jim {Ja(t)] + |y0]} = .

Vi, =, y)=b(t)p(t)[ }, teR,, xz,ycR.

Along this solution we have

F@)+K)a'(t) fle)y _Gypag®)
a?(t) a(?) q2(t)

V'(t) = b(t) p(t)

__d®y®  flo)y rby
gy)g®)alt)  alt)  g(y)qt)at)

(F(x)+K) +G(y) ). g®_ | _
a(t) qt) [\ a® qt) [{

a'(t) y? N ) |yl
g a(t) gly)  q®)ald) gly) |~

If |y| <max{k, 1} we have (y*/g(y)) <D for some D > 0, so that

< () p(2) [ -

2

Y
) <D+ MwGy), vyeR.
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It !yl Smax{k’l} we have (]?/]/g(?/))le and if ly’ Bmax{k,l} we have
lyl/9(y) < y* [g(y) thus

ly] y*
0 \D L= .

We obtain that

b(t) p(t) | a'(B)| N b p@®) )| \[ |yl N y*
q(t)al(t) q(t) aft) gy g9(y)

<

~

V'(t) s (

< ( b pB|a®| |, bp®)| )]

q(t) a(t) gt a(t) )(Dl +2D + 2Muw(G(y))) -

In a similar way to the final part of the proof of Theorem 2.8 we show that we ob-
tain a contradiction.
This shows that the solutions of (2.6) are defined in the future.

COROLLARY 2.9[39]. — Assume that F(x) is bounded from below, G(y)— o as
|y| — ® and there are positive constants M and k such that

?/2
9y)
Then oll the solutions of (2.6) are defined in the future.

<MG(y), |y|=k.

As a particular case of Corollary 2.9 we obtain a continuability result of BURTON
and GRIMMER [15].
The relation of our result with the results from[15,39] is given by

ExavpLE 2.9. — Let us consider equation (2.6) with

at)y=qt)=t2+1, r{t)=t, teR.,

1 1 .3
= = = , R.
f(x) x2+1; g(%') 36 xre
We have that
v =3y26y3 G(y)=e?’3— 1 yek
g(y) b b I

so that we can not apply the results from [15,39] but we can apply Theorem 2.9 with
w(r) =rln(1+7r), re B, since

3yzey3$w(G(y)), lyl = 4.
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REMARK 2.3. — We can formulate results similar to Theorem 2.2 and Theorem 2.3
for the concept of z-continuability (introduced by Campanini in [18]) using the same
method. This ollows to formulate criteria for the global existence of solutions of ordi-
nary differential equations (see[18]).

3. — Global existence of solutions for delay and functional differential equa-
tions.

In this section we will apply the methods developped in Section 2 in order to give
some continuation results for delay and functional differential equations.
Let us first consider the delay differential equation

3.1) x' = f(t, x) + g(t, 2t — (1))

where f, g: R, X R"—> R", 7: B, —» R, are continuous functions.
For t, = 0 the initial interval at £, is given by

Et0={t0}U{S:S=t*T(t)$t0 for t?to}.

We suppose that E; is bounded for every {he R..

For any initial econtinuous function w,: E;, — R" we say that x(f) is a solution of
(8.1) on [{y, T') if x(?) is continuous on E, U [y, T) and satisfies (3.1) on ({y, T) with
x(t) = o (t) for t € B . If f, g are continuous it is known (see DRIVER [33], HALE [41])
that for every ¢, = 0 and every initial continuous function x,: E; — R" equation (3.1)
admits a solution on some interval [{;, T) with {; < T < o,

THEOREM 3.1. — Suppose that there exist continuous functions ¢, : R, - R, and
w, 2 sotisfying the conditions of Theorem 2.3 with w, z nondecreasing on B, such
that

17, 2)| < ¢(t)z(|2|), lg(t, ©)| < @w(|x]), (¢, x)eR, X R".
Then the solutions of (3.1) exist in the future.
Proor. ~ Suppose that there exist a noncontinuable solution x(f) of (3.1). Let
7(t) = |x(t)|. We have then that
() < o' (®)] S $0)20®) + ()t — 1)) .
If #(¢) is not continuable to T < o, then
’ (t)— o ast—->T7.

Let us prove that =(7) =0,

Suppose =(T) > 0. Then there exists Telty, T) such that t — «(ty< T for all
t e [ty, T1. We have thus that »(t — 7(£)) is bounded on [ty, T'] sinee 7(t) is bounded on
E, Ulty, T1.
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If we denote

M= sup {¢(t)}, L= sup T{gb(t)w('r(t - r(t)))}

th<tsT fpsts
then
Yty < Mz(r(t)) + L.

Since z € M, is nondecreasing we have by Corollary 2.2 that the solution of the differ-
ential equation

?/rzMz(?/)‘f'L, y(t0)=”'(t0),
and defined in the future which contradicts the relation
rf) > » ast—->T".

We have so that =(7') = 0. Thus, there exists ¢, € [{;, T) such that { — =({) = {; on
it;, T1. If we denote

K= sup T{qs(t) + U}

ysts<
we have for {; <t < T that
(1) < ¢(t) 2(r(D)) + b)) w(r(t)) < K(2(r(t)) + w(r(t))) .

By Theorem 2.3 we have that w +ze M, thus the solutions of the differential
equation

y' =K@y +wy), ylt) =rt),

are defined in the future. By Conti’s comparison method (see [23]) we obtain a contra-
diction with the relation

rit)—> o ast—T".

Thus every solution of (3.1) is defined in the future,

COROLLARY 3.1 [45]. — Suppose that there exist continuous functions ¢, ¢: B, —
— R, and a nondecreasing function we R,y such that

I, @)| < ¢@)|z| + eyw(|x]), @ @)eR, X R
Then the solutions of (3.1) exist in the future.

Proor. — By Corollary 2.2 we have if z: R, — R, 2(r) = r and if w € R, is nonde-
creasing, then z, w satisfy the conditions of Theorem 2.3.

We give now sufficient conditions for the continuability of solutions of the gener-
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alized Liénard system with time delay

x' =y - F(x),

3.2
s { y' =g(t, at - @),

where F: R —R, g:R, XR—R, 1 R, >R, are continuous functions with E,
bounded for every {ye R, .

THEOREM 3.2. — Suppose that there exists w, z nondecreasing on R, satisfying the
conditions of Theorem 23 and ¢: B, > R, continuous such that

|F(x)| <2(|x|), weR,
lg@t, )| <¢)w(|x|), teR,, zeR.

Then the solutions of (8.2) exist in the future.
Proor. - We have that

(y —Fx)? <2y?+2F2%(x) < 20 + 292 + 222 (V2 + 9D, «2,yeR,
thus
|(y — F(x), 0)| <2|(x, )| +22(| (2, »]), =, yeR,

|0, —g(t, ®)| < @B w(|(x, ¥)|), teR,, x,yek.

By Theorem 2.3 we have that z + w e R,. Since z + w is nondecreasing on R, , by
Corollary 2.2 and Theorem 2.1 we deduce that

=)

J'__dﬁ__: ©
s+ w(s) + 2(s)

¢

A repetition of the arguments of the proof of Theorem 3.1 enables us to deduce that
the solutions of (3.2) are defined in the future.

The continuability of solutions of (3.2) was also investigated by SuGIE [68] bu Sug-
ie’s result is not applicable in the case

{t>0:z(t) =0} = 0.

ExampLE 3.1. - Consider the system

®' =y —xln(l+ |x|),
y' =2t~ (1),

where ©(t) =min{t, 1}, teR,.
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We can apply Theorem 3.2 with
2R, >R, 2#)=rln(l +r),
w:R, —-R,, wr)=r,

but we can not apply the result of SUGIE [68].

We present now a continuation result for the functional differential equation
(3.3) x' = [, x) + 9@, x)

where f: R, X R"—R" ¢g: R, X C?'—> R" are continuous, C? = C([ —gq, 0], R") for
g =0, and x,(s) = x(t + s) for se[—gq, 0].
Assume that there exist ¢, ¢, w, 2: B, — R, continuous such that

7, )| < ¢(t)2(|x]), teR,, xeR",
lott, ©)| < y@®w(lzl), teR,, xzeC,
where

|| = sup 0]{ lx(s)[}, =eCl.

sel[—g,
We have the following result

THEOREM 3.3. — Suppose that w e R, is nondecreasing and z, w satisfy the condi-
tion of Theorem 2.3. Then the solutions of (3.3) are defined in the future.

Proor. — We first show that the solutions of
3.4) r' = ¢ 2(r) + Y wlr.])

are defined in the future.

Suppose that there exists £, = 0 a continuous initial function ry:[ —¢, 0] — R, and
a noncontinuable solution »(¢) = r(t, ty, ) of (3.4). Then r{t)— » as t > T~ for
some T > {, since r(¢) is nondecreasing for ¢ = t;.

If t, e[ty, T) is such that

r(t) = sup 7(s)
se(—g,0]

we have that
il = »t), t<t<T,
thus
r'(t) = () 2(r(®)) + ) wlr(t)), t<st<T.

By the hypothesis and by Theorem 2.3 we obtain that »(f) is bounded on [¢,, T') which
is a contradiction.
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Let now z(t) be a solution of (3.3). If we define #(t) = |x(t)| we have
(1) < ¢(1) 2(r(t)) + $B) w|r])

Since the solutions of (3.4) are defined in the future we deduce by the comparison the-
orem that x(f) is continuable in the future.
This completes the proof of Theorem 3.3.

COROLLARY 3.2[45]. — Suppose that we R, is nondecreasing and z(r) = Lr,
reR,, for some L > 0. Then the solutions of (3.3) are defined in the future.

Proor. — The result follows from Corollary 2.2 and the preceding theorem.

4. - Continuation results for differential equations in abstract spaces.

In this section we will give a result on the existence and uniqueness of solutions of
differential equations in Banach spaces of infinite dimension.

Let X be a Banach space with norm |-| and let [0, alcR, be a closed
interval.

THEOREM 4.1. — Let f:[0, a] X X — X be a continuous mapping satisfying the fol-
lowing conditions:
() for every bounded set B c X there exists a constant L(B) > 0 such that
lf¢, ) —f&, )| SLB)|x—y|, tel0,al, x,yeB;

(i) there is @ map we Ry and a continuous function ¢ e C((0, al, R, ) such
that

Ift, )| < s@)w(|z]), tel0,al, zeX.
Then, for every x,ec X, the differential equation
(4.1) x' =f(t, x)
with initial condition x(0) = xy, has a unique solution x:[0, a] — X.
Proor. — By (i) we deduce (see[49] that the equation (4.1) with initial condition

x(0) = x, has a solution x(f) defined for ¢ e [0, b) for some b e (0, a].
Let y(t) = |x(t)|, t [0, b). We have then that

lim sup Yt -—y® < '] < ¢ wly®), te(0,d),

s 0 h
and by the comparison method we obtain that

y@) s, 0, |m]), te[0,0),
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where r(t, 0, |#y|) denotes the maximal solution of the differential equation
7" =&t w(r)

with initial condition (0) = |x,| (since w e Ny we have that this maximal solution is
defined on [0, al).
Let M > 0 be such that
"t 0, |z]) S M, tel0,b].
We obtain

|f@, 2| < sé(ti)O supM{w(u)}, tel0, ),

so that there exists a constant M; > 0 with
[ft, @) <My, tel0,b).
We deduce that for 0 <¢; <{, < b,
|(ty) — 2(t)] < M, [ty — ¢y ]
and therefore tl_i)rzl_ x(t) = x; € X exists.

Hypothesis (i) guarantees that there exists a local solution, on some interval
[6, by) with b; < a, of (4.1) with initial condition x(b) = x,. By the uniqueness we have
that z(f) may be continued (in a unique way) up to b;.

This shows that the maximal interval of definition of () is [0, a] and the proof is
completed.

REMARK 4.1. — We see from the proof that condition (i) can be replaced by any con-
dition guaranteeing the local existence and uniqueness for (4.1). We can not exclude
such condition since it is known that if for every continuous function f:[0, ] X X —
— X and every x, € X the equation (4.1) with initial condition x(0) = x, has a solution
defined in some meighborhood of zero, then X is finite dimensional (see GO-
puNov [3T1). We observe also that instead of [0, a] we can consider R . , obtaining thot
all solutions of (4.1) are defined in the future.

COROLLARY 4.1 [2]. - Let £:[0, a] X X — X be a continuous mapping satisfying the
Jollowing conditions:
() for every bounded set B cX there exists a constant L(B) >0 such that
[ 2) &, )| LBz —yl, tell,al, o,yeB;
(i) there is a mondecreasing map we R, such that
[fit, )| <w(|z]), tel0,al, zeX.

Then, for every x, € X, the differential equation (4.1) with initial condition x(0) =
=%y, has a unique solution x:[0, a]l - X.
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REMARK 4.2. — Note that the monotonicity of w is not essential in Corol-
lary 4.1,

COROLLARY 4.2 [57]. — Let f:[0, a] X X — X be a continuous mapping for which its
partial derivative with respect to the second argument, denoted by f,, exists and is
continuous. Suppose that there exist a constant ¢ > 0 and a continuous increasing
fumction w: B, — (1, ), which satisfy the following conditions:

f_d_s__ .
w(s) ’
0
Ifect, ol < cln(w(|2])), tel0,al, zeX.

Then, for every xye X, the differential equation (4.1) with initial condition
x(0) = 2y, has o unique solution x:[0, a] — X.

Proor. - We have that the derivative f, is bounded on every bounded set BcX
thus condition (i) of Theorem 4.1 is satisfied.
On the other hand we have

@, )| < |ft, 0] + [ |{l|f;(t, ll}z| <
Y < |z

/

< Srer%g.)z]{lf(s, O} +e{ln((|z|N}Hzx|=M + c{ln@w(|z| )} x|, tel0,a]l, xeX

If w is bounded on R, by a constant X > 0, we obtain that
f@, )| sM+cn(K)|x|, tel0,a], xeX,

and thus condition (ii) of Theorem 4.1 is fulfilled.

If w is unbounded on R, we choose (as ALEXANDROV and DAIRBEKOV did in {2]) a
sequence 0 < 7, < 7y... such that w(r) > 1, w(r;) < #f and In(»;) >jln(r;_ ), j =2
We have then

7 i

iJ’ ds  _

2s1n (7))

J sln(w(s)) jEZT_J sln(w(s)) erj sln(w(r)) iz

-1 =1 -1

and (in view of Lemma 2.1) condition (ii) of Theorem 4.1 is fulfilled.
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5. - Global existence of solutions of differential inclusions.

We consider now the problem of global existence of solutions of the differential
inclusion

5.1) x' e F(t, x)

where F is a multivalued function from R, X R" into the nonempty, closed and con-
vex subsets of R”.

By a solution of (5.1) with an initial value (¢, %), t, = 0, 2y € R”, we mean an abso-
lutely continuous function x(£): [ty, T]1— R" such that z(ty) = 2, and ='(f) e F(t, 2(t))
a.e. on [, T1.

In our discussion we will make use of the following existence result of FILIP-
pov [35, page 83] which is an extension of a theorem of Davy [29]:

THEOREM 5.1 [35]. — Let a multivalued function F:[ty, t,]1 X R™ satisfy the follow-

mg conditions:

(A1) the set F(t, x) is nonempty, closed and convex for all x e R™ and for
telty, t11 ae;

(A2) F(t, x) is upper semicontinuous in x for a.e. te[ty, t1];

(A3) F(t, x) is measurable in t for all xe R™;

(A4) there exists a summable function m(t) such that |F(t, x)| < m(t) for
(t, ﬂ'/') € [to, tl] X R™

Then the differential inclusion (5.1) has a solution on [t, t;].

In the preceding theorem we denoted

|U| =sup{|u|}, where U is a subset of R".
el

THEOREM 5,2. — Suppose that the multivalued function F: R, X R" satisfies (Al)-
(A3) on every compact subinterval of B, . If there are two functions w, ze C(R., R,)
satisfying the conditions of Theorem 2.3 and ¢, e L (R., R, ) such that

|F(t, 2)| < ¢®)w(|x]) +¥t)2(|2]), teR,, zeR",

then for any initial value (ty, xy), the system (5.1) has a solution defined in the future
and satisfying the given initial condition.

ProOF. - The technique of our proof is adapted from BuLGakov([11] and
SEAH [61].

Let ti=t0+i, 7:=1,2,

We first consider on [t,, ;] the problem

(5.2) x'eFi(t,x), a(ty) =,
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where

Fl(tyx)zp(tyw) lf ix]SK(tlsxﬂ)v

Fl(t,m):F(t,ﬁf”%il‘xlz) if 190[>K(t1,x0).

Here K(t;, %5) > 0 is such that
Kty , mp) ty

ds ,
| ‘Jl W) + 205) >J(¢(8) + ¢(s)) ds.

We can make such a choice since by Theorem 2.3 and Theorem 2.1 we have
that

[+

J’ ds —
w(s) + 2(s) )

ixol +1
From the definition of F; we can deduce that

|Fy(t, )| < (¢(8) + ¢(21) . S}{l(p ){w(]ac]) +z2(|z])},  telty, ], xeR™.
x| = K(ty, %o
It can be easily seen that F; satisfies conditions (A1)-(A3), thus, by Theorem 5.1,
problem (5.2) has a solution x,(£) on [f,, #].
Let us show that [z;(¢)| < K(t;, %) for a.e. t ey, &].
Suppose that there exists T'e(fy,t] such that |xy(T)| > K(¢;, %y). Since

|2y (8g)]| = |2 | < K(t,, %) and a4 (t) is continuous on [¢,, T'], then exist t*, t2 e (t,, T)
such that

loy D] = oo | +1,  Ja (8P| = K(ty, wp)
and

oo | + 1< [y (1) < K(ty, %),  telt!, t2].
We have the relation
2 () e Fi(t, z () = F(t, 4, (¢))  ae. on [¢', t*].
In view of the hypothesis we obtain that
] ()] < (¢(8) + @z )]) + 2(|2 (B)]))  ae. on [t t2].
We deduce

W < () + @21 (D) + 2@ (1)])  ae. on [t} £2].

lim su
0"
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It is obvious that the function
(t, @) — (6(t) + YENw(|x|) + 2(|2])), teR,, xeR",

satisfies the Carathéodory condition [42, page 28] and by comparison theorem of Con-
ti in the case of solutions in the sense of Carathéodory (see [42, page 29]) we deduce
from the preceding differential inequality that

t
oy (6] < W! f(gb(s)w(s))ds o telth 2],
tl
where

7

W:(0, x)>R, W)= j

j#g] +1

ds
w(s) + z(s)

In particular, we would obtain for ¢ =t that

K(ty, w9) t2 . t

ds
J )+ 26 J (8(s) + ¢s)) ds s%j (8(s) + (s)) ds

lgg| +1 ¢

which is in contradiction with the way in which we defined K(%,, %,).
We have so that |z, (t)| < K(t;, xg) a.e. on [t;, t;] and we obtain

x () e Fy(t, 2, (8) = F(t, 2;(¢)) ae. on [, ].

Consider now the problem (5.3) obtained from (5.2) by replacing ¢, by &3, &, by t,,
%, by x;(t) and K(t,, o) by a constant K(t,, x;(¢;)) > 0 such that

K(ta, 71 (1)) t2

_ s
ot )[ | w(s) + 2() > J(¢(8)+¢(8))ds.
o1 (&) + 4

Proceeding as before we obtain an absolutely continuous function z, () on [¢;, to]
such that x5 (f;) = z;({;) and

xs (8) e F(t, z:{t)) a.e. on [t;, ],

Continuing this process we prove the existence of absolutely continuous funetions
@) onlt;_1,6),i=1,2, .. witha;(t;_ ) =2;_{t; - 1), 7= 2, and x,(y) = o, such
that

.’Ei, (t) € F(t, X; (t)) a.e. on [tz —1» tl] .
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The function x:[t;, ) —> R" defined by
x(t)le(t), tE[ti_l,ti],
is a solution of (5.1) defined on [f,, ) and we have that x(fy) = x,.

This completes the proof of Theorem 5.2.

THEOREM b.3. ~ Ubder the hypotheses of Theorem 5.2 we have that any solution of
(6.1) exists in the future (there is a continuation in the future).

Proor. - Let 2(f) be a solution of (5.1) defined on [f,, T'1.

By the preceding method we are able to construet a solution y(t) of (M) on [T, )
satisfying the initial condition y(7T') = x(T').

We have that u:[t,, ©)— R™ defined by

u(@®) =x(), telty, Tl
u®) =yt), tell, )
satisfies
u'(t) e F(t, u(t)) a.e. on [t;, o).

If x(t) is a solution of (5.1) on some interval [¢,, T) with Te R,, we observe
that

|2' ()] < (¢() + LtN(w(|2®)]) + 2(|x()]))  ae. on [t, T).

From the preceding relation we can easily deduce that |x(£)] is bounded on [t,, T')
using the comparison method (as we did in the proof of Theorem 5.2).
We obtain that for some constant K > 0 we have

|&'(t)] < K(¢(t) + ¢(t)) ae. on [t, T).

By the preceding relation we deduce that for t, <t <t, < T,

tp

|aty) — x(t,)| S K j ($(3) + ¥(s)) ds .

a1
Therefore x(ts) — x(¢;)— 0 as t;, t, — T which implies that we can define
lim a(t) = x(T)
t—sT"

obtaining thus a solution of (5.1) on [%;, T'].
In a similar way to the first part of the proof we show that this solution is continu-

able in the future.
This completes the proof of Theorem 5.3.
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COROLLARY 5.1[72]. — Suppose that the multivalued function F: B, X R™ satis-
fies (A1)~(A3) on every compact subinterval of R, . If the inequality

|[F(t, »)| < ¢®) +¥D)|z|, teR,, xeR",
holds, where ¢, ¢ e L. (R, , R, ), then any solution of (5.1) exists in the future.
COROLLARY 5.2[72]. — Suppose that the multivalued function F: R, X R™ satis-
fies (A1)-(A3) on every compact subinterval of R, . If the inequality
|F(t, 2)| <¢®)w(|w]), teR,, xeR",

I ds_ _

J w(s) ’

holds, where ¢ e L. (R, ,R,) and we C(R,, R, ) with w(r) >0 for r = ¢ > 0, then
any solution of (5.1) exists in the future.

REMARK 5.1. — Corollary 52 improves a result of SEAH[61] which asks for the

supplementary condition [ ¢(s)ds < .
0

COROLLARY 5.3 [72]. — Suppose that the multivalued function F: R, X R™ satis-
fies (A1)-(A3) on every compact subinterval of R, . If there exist ¢, g€ Lit. (R, , R, )
and a monotone nondecreasing function we C(R,, R, ) with w(r) >0 for r=z4>0
satisfying

|F(t, 2)] <¢@)w(|z]) +Ut), teR,, xeR"

j'_ds._ C w
w(s) ’

)

then any solution of (5.1) exists in the future.

COROLLARY 5.4. — Let the multivalued function F: R, X R" satisfy conditions
(A1)-(A3) on every compact subinterval of R, . If there exist ¢, b e Lir. (R, , R, ) and
a monotone nondecreasing function we C(R,,R,) with w(r)>0 for r=4>0
satisfying

|F(t, »)| < ¢@w(|z]) +e@d)|z|, teR,, xeR”,

©

f_ié’:_ -
w(s) ’

3

then any solution of (5.1) exists in the future.
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EXAMPLE 5.1. — Any solution of the differential inclusion z' € F({, x) exists in the
future, where

F(t, x) = t(t* + |zjln(|z| + 1)) + UE,x), teR,, xeR",

with Ut, ) ={yeR": |y]| < |z| +1}, teR,, xc R"™
Indeed, we have that

[P, )| St®+t|zin(e| + 1)+ |z| +1, teR,, xeR",

and we are able to conclude in view of Corollary 54.

6. - Global existence and uniqueness of solutions of McShane stochastic inte-
gral equations.

We will use the techniques developped in the previous sections in order to give a
result on the global existence and uniqueness of the solution processes of the stochas-
tie integral system

r t
6D @H=oO+ 3 j g} (s, ©(s)) dz; () +
=

[}
r t
+ 3 J}}C(s,x(s))dzj(s)dzk(s), 0<t, i=1,..,n
jk=1
Q

where the stochastic integrals are interpreted as MeShane stochastic integrals.
In the special case in which «* is not depending on time ¢ we have the stochastic
differential system

62 d'®)= 3 gl x) (e +
2

+ kz_ R (s, a(8)) dz;(8)dz(s), O0<t, i=1,..,n

2 1

with the initial condition
(6.3) (0 =o', i=1,..,n.

Let (Q, F, P) be a complete probability space and let {F;, 0 <t} be a family of
complete o-subalgebras of F such that if 0 < s <t then F,cF,.

Let L, be the space of all random variables y: Q — R with finite Ly-norm | - || and
let L} be the space of all random variables x: Q — R™ with finite norm || |,

laffy = 2 loill's 2= Gy s @) € L
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We say that the real valued second order stochastic process z satisfies a K-condi-
tion if z is adapted to the F; (ie. z(f) is Fy-measurable for every t = 0) and

|E[(2(t) — 2s)?/F,]1| < K|t —s| a.s. whenever 0<s<t, p=1,24.

An example is a Wiener process with respect to the F;, 0 < {.

We refer to ELWORTHY [34] and MCSHANE [62] for the basic elements of the Mec-
Shane stochastic calculus theory. We remind only that if f:[0, a] — L, is a measurable
process adapted to the F, and if t— | f(t)|° is Lebesgue integrable on [0, a]
then [34,62], if 2; and 2, satisfy a K-condition, the McShane integrals

a @

j £(s)dzy (s), j f(s)dzy (8)dzy(s),
0

0

exist and the following estimates hold

a ' a 1/2
” ff(S) dz, (8)} <C { f AP dS} ,
0 0

a

ff(s)dzl (8)dzs(s)

0

a 1/2
}s c{oj uf<s>uzds] ,

where C = (2 + 8Ka)"2

Let C[0, a] denote the space of all processes x:[0, a] — L3’ which are continuous
and adapted to the F;, 0 <{ < q.

A solution to (6.1) on [0, a] is a process ze Cl0, a] which satisfies (6.1) on
[0, al

In this section we sill use the following result

LEMMA 6,1. — Let w, z: R, — R, be continuous, w(x) > 0, z(x) > 0 for x > 0 and
suppose that

1 r
ds_ _ - _ds _
b w(s) < Tlg]%’ f w(s) e
7 1

If there exist constants L, M > 0 such that

ds

2(r) < Law(r) f —— 1 +Muw(r), r>0,
w(s) |

1
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then

1 r

. ds — 3 _ _._..*._._ds =
}EI}) f wis) +2(s) ©, 0 tm J w(s) + 2(s) *

»

Proor. ~ By Theorem 2.3 we have that

r

. ds _
Tlgré J w(s) + z(s) *

Let us define

wy, 21:(0, ®) >R, wl(s)=szw(~é—), zl(s)r—szz(%), s>0.
We see that
1 1/r
ds . ds
© Jw(s)m(s) "lf ne +tam CSTsh

7

By the relation
1

Z(V)ﬁLw(r)J—(is—+Mw(r), O<rsi,
w(s)
we have that
1/r
1 1 d
zl(?)SL’M)l(?)J WIfS) +Mw1(%), 0<T$1.

1

We obtain in view of Theorem 2.3 that

1/r
. ds
1 L N
TI—IH) j wy (s) +2,(8) >
1

and by (®) we deduce that

1

. ds -
}1}3{) I w(s) + z(s) *

r

This completes the proof of Lemma 6.1.

We assume that

(H1) the noise processes 2;, j =1, ..., 7 satisfy on R, a K-condition;
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(H2) if f is any one of the functions g}, hj: Ry X Ly —> Ly, i=1, ...,n; k=
=1, ..., r, then f(s, x) is continuous in x on L for every s € R, and for any z € C[0, a],
the process t — f(t, #()) is measurable and F;-adapted with ¢ — || f(, 2(£))|? bounded
on [0, a] for a > 0;

(H3) there exist w, 2: B, — R, continuous, nondecreasing with w(v) > 0,
z2(r) >0 for »> 0 and

s

1
. ds _ . ds  _
rh—IPO w(s) =, Jm Jw(s)

r

such that for some constants L, M > 0 we have

2(r) < Lw(r) ;U%S;)- ‘ +Mw(r), r>0,

and
lgi @ &) —gi @, PIF <wlle —9lE), i=1,..,n, j=1,..,7 teR., x,yely,
gty 2) = ki, WIE<2(le—yl2), i=1,..,n, j, k=1, .7 teR,, x yel};

(H4) the initial condition « belongs to C[0, a] for every a > 0.

THEOREM 6.1. — Let us suppose that the hypotheses (H1)-(H4) are satisfied. Then
there exists a unique solution of (6.1) on R, .

PrOOF. — Let a > 0. We will first prove the existence of a solution of the equation
6.1) on [0, al.
We define the operator T C10, a] — C[0, a] by

13

r ¢ r
Tx(t) = a(t) + '21 fgj (s, x(s)) dz; (s) +j kE 1 fhjk (s, #(s)) dz;(s)dz,(s), Ost<a.
= TR

0

Let

Pemax{ s g oF, s e 0F)

tel0,al,i=1,..,n;j=1, tef0,al,i=1,..,mk=1,
and denote

Q@=3n sup {la®)E} + 120C2(r? + +*) Pa.
tel0, al

By Lemma 6.1 we have that the maximal solution (which we will denote again
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m(t)) of the differential equation
m'(t) = 6nr? Clw(m(t)) + 6nr* C22(m(t)), O0<t,

with initial eondition #(0) = @ is defined on R, .
We consider the set

B={xeC[0, a} |lx®|2 < mt), 0<t<a}.

The set B is a closed, bounded and convex subset of the Banach space C[0, al.
Let us show that T(B) cB. For x e B we have that

‘ ’ L 172
ngf?(s’ #(s)) dzj(s)l s C{Hgf(s, w(S))llzds} <
0 0

¢ 1/2
< C[ J (g} (s, x(s)) — gj (s, O + [lgi (s, O} ds] <

0

t 1/2
< C{ j(2l|g] (s, w(8)) — g (s, OF +2|\g} (s, 0)|2)ds] <

0

1/2
, O0st=<a,

0

|1
< C[ fW(Hx(s)Hi)ds +2Pt

and in a similar way we obtain that

t
Hf (s, 2(3)) dz; (5) dzy (5)
0

0

t 1/2
< C{ Jz(ﬂm(s)ﬂi)ds + 2Pt} , 0<t<aq.
We deduce that

t 1/2
T2, < Vr sup )], + anC{ Jw(llx(s)“i)ds + 2Pt} +
teif,al

0

i

+ 27w20{ Jz(Hx(s)lli)ds + 2Pt

1/2
, 0st<a,

0
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and since x € B we obtain that

|1

[Tz, < {Vn sgp ]“a(t)lln + \/—2—7?—,7‘0{ fw(m(s)) ds + 2Pa
tel0,a

1/2
+
0

t 1/2)2
+V2nr:C fz(m(s)) ds +2Pa <3n sup || +
g te[0,al

t 2
+120C2(r2 + %) Pa + 6mr®C? f w(m(s)) ds + 6nr*C? j 2(m(s)) ds =
0 D

t t
=Q + GnrzCzjw(m(s)) ds + 6nr? C2Jz(m(s)) ds=m(t), O0<t<a.
0 0

We proved so that 7(B) c B.
The same method enables us to deduce that

t t
IT2(t) — Ta(s)| < 6mr? Czjw(m(s)) ds + 6nr? Czjz(m(s)) ds +

+3n sup |la(t) — a(s)|E + 120C* (P2 + r* )Pt —5s), O0<s<ts<a,
tef0,a)

thus the set T(B) is equicontinuous.
For x, y e B we have that

13

, ' 1/2
IT=i(t) — Tyi@)| < C 21 [ J lgi (s, x(s)) — g} (s, y(S))HQJ +
=

0

M=

+C

Js

Bl

¢ 1/2
I{J!hf}c(s, 2(3) — b s, yMFY . 0<t<a,
[

so that (taking into account (H2) and (H3)) T is continuous by the Lebesgue conver-
gence theorem.

Applying Schauder’s fixed point theorem (see also [50]) we deduce that T has a
fixed point in B. This fixed point is a solution of (6.1) on [0, a].

Let us now prove the uniqueness of solutions (6.1).
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Suppose that there exist two solutions x, y € C[0, a] of (6.1) on some interval
[0, a;] with 0 < a; < a. We have then that

N . 1/2
o)~ y' @l < € Z 1 [llg} 6, o) - g s,y +
= e

- t 1/2 t 1/2

+C 1 fw(”x(s) —y®)E)ds}y + Cr? Jz(llx(s) —y)E)dst , 0<t<aq,

£
I g 0

n

thus

t
M@y—mnmszmﬂﬂfwmﬂw—y@mﬁds+
1]

t
+2nC2rt J 2(le(s) ~y(s)|E)ds, O0<t<a,.
0

Since 2(0) = y(0), in view of Lemma 6.1, we deduce by Osgood’s uniqueness crite-
rion (see[51]) that

le(t) — @2 =0, Ost<a,.

Thus equation (6.1) has a unique solution on [0, a] for every a > 0. We deduce that
(6.1) has a unique solution on R, .
This completes the proof of Theorem 6.1.

REMARK 6.1. — Theorem 6.1 enables us to give a bound for the unique solution of
equation (6.1):

eIz < mt), 0<t.

REMARK 6.2. — For w(t) = 2(t) = Mt, t e R, (M > 0) we obtain the existence and
uniqueness theorem of Angulo Ibanez and Gutierrez Jaimez[3].

When o is not depending on time we obtain the existence and uniqueness theorem
of McShane [62]. Note also thal our requirements are weaker is some aspects than
those made in [34] (Elworthy requires Lipschitz conditions on gj and hy, ).

7. — Successive approximations to solutions, global existence and uniqueness
for Ito stochastic differential equations.

Let (Q, F, P) be a complete probability space and let {F;, 0 <t} be a family of
complete o-subalgebras of F such that F,c F, if 0 <s <{.
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Let W(t), t =0, be the m-dimensional (F,)-Brownian motion on (Q, F, P,(F})).
Let f(¢, ) be an R"-valued measurable function defined on B, X R™ and let g(¢, x) =
= (g;(t, ©)); = 1, m, Where each g; (¢, ), i = 1, m, is a R™-valued measurable function on
R, xR™

We consider the Ito stochastic integral equation

t £
(7.1) X)) =X + [ fls, X()ds + [ g5, X() dW(s),
0 0

where X, is an Fymeasurable, R"valued function independent of the Brownian mo-
tion W), t = 0, and with E|Xy|* < .
Equation (7.1) is equivalent to the stochastic Ito type initial value problem

(1.2) dX(t) = ft, X(t)) + g(¢, X(£))dW(t),
X(O) = XO a.e.

Let us consider the sequence of stochastic processes which are defined by the sue-
cessive approximations

t t
T4 X(t) =X, + jf(s, X;_1(s)ds + [g(s, X, ()dW(s), i=12,...
0 0

As Ito[48] proved, the convergence of the sequence of stochastic processes
dedfined by the successive approximations (7.4) is guaranteed under the conditions
(L > 0 is a constant)

[f(t, ) — Ft, w)| + |gt, ) — g(t, y)| < L|x —y| (Lipschitz condition),
I7(t, @))% + |g(t, ©)|* < L*(1 + |z|®) (growth condition).

YAMADA [75] proved the convergence of successive approximations to solutions
under more general condictions than Ito’s and TaNIGUCHI[T1] extended Yamada's
result.

‘We will show that the resuits of the previous sections enable us, using a method
similar to the method of Taniguchi[71], to give more general conditions under which
on any finite interval [0, T'], the sequence of stochastic processes defined by the suc-
cessive approximations (7.4) converges uniformly to a unique solution of (7.1) (by
uniqueness we mean pathwise uniqueness, i.e. if X(t) and Y(¢) are two solutions, then
P(t s[upT {1X(t) — Y(#)|} = 0) = 1, and not uniqueness in the law sense, i.e. solutions

{0,
have the same distributions; note that pathwise uniqueness is stronger that unique-
ness in the law sense—see YAMADA and WATANABE [74]).
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THEOREM 7.1. — Suppose that the following conditions are satisfied:

(i) the functions f(t, ) and g(t, x) are measurable functions on B, X R" and
continuous in x for each fixed te R, with |ft, 0)|, |gt, 0)| e LE.(R,, R, );

(ii) there exist ¢,¢eLi.(R,,R,) and w,zeC(R,,R,) nondecreasing,
w(r) >0, z(r) >0 for » >0 and

1 I
. ds . ds -
Jim, J w7 J 5

such that for some constant L > 0 we have that

P

)

1

2(r) < Lw(r) +Luw(r), r>0,

and
E|f¢t, X) - f(t, Y)]2 < ¢(t)w(E| X ~ Y|2), teR,, X,YeL?(Q,R"),
Elg(t, X) ~ ¢(t, D]Z < Y E|X ~ le), teR,, X,YeL?(Q,R").

Then, for any finite interval [0, T'], the sequence {X;(t)}, 0 < ¢t < T, defined by the
successive approximations (74), converges uniformly a unique solution of (7.1).

ProoF. - If X e L2(Q, R™) we have that

E|ftt, X)|* < 2Ef(t, X) — fit, 0)|* + 2|f(t, 0)|* <
< 26 w(E|X|%) + 2|1, 0]?, 0<t<T,
and similarly
Elgt, 0|2 < 20D 2(B|X|?) + 2|gt, 0)|?, 0<¢<T.

Fix T > 0. We will prove first that {E|X;(t)|*}, ¢ = 0, are uniformly bounded on
o ’i:}]ue conditions imposed on w and 2 guarantee (in view of Lemma 6.1) that the dif-
ferential equation

u' = 6(1+ T)(¢t) wu) + U 2(w)) + 6(1 + TH(|fE, 0)|% + |g(¢, 0)|?)

with initial condition u(0) = u, > 3E|X;|% has a solution u(f) (in the sense of
Carathéodory) defined on R, .



ADRIAN CONSTANTIN: (zlobal existence of solutions, etc. 281

We have that

t

+ [ ] (s, Xo) dW(s)
0

! 12
[ £6s, Xy ds

0

2

E| X (0)|?<3E||X,|* +

<

i t
<3E|X |+ 87E | |f(s, X,)|?ds + 3E[ |lg(s, Xo)|2ds < 3E|X,|? +

0 0
t
+6(1 + T)f(gs(s)w(EiXo;z) + W) 2B X |P) + [f(s, 07 + |g(s, 0)]%) ds,
0

for all te[0, T].
Since

w(t) > E|X |2, t=20,

we have that

¢
SE|X,|* +6(1+ T)J(qs(s)w(E’lXoiZ) + W) 2 E | X |2) + |f(s, D)%+ |g(s, 0)|2)ds <
0

t

Suy+6(1+7T) j (s(s) wu(s)) + Ys)z(uls)) +

0
+ |f(s, 0)I2+, lg(s, 0)|*)ds = u(t), tel0, T1,
thus
E|Xi()]P<sut), tel0,T].
Let us prove by recurrence that
E\X;®O)|?<wt), tel0,T], i=1,2,...

Suppose this is true for ¢ =k and let us prove it for k + 1.
We observe that

t

¢ 2 2
E|X,  )|*<3E||X]*+ “f(s, X, (s)ds | + ‘ fg(s, X, (s)) dW(s) }S
0 0

4
<3E|X,|% +6(1 + T)j(¢(8)w(Ele(8)lz)dS +
0
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t
+6(1 + T)Jz,b(s)z(Ele(s)F) + (s, 02+ |g(s, 0)|F)ds <

0

t

Suy+6(1+7T) I (#(s)w(u(s)) + $(s) 2(u()) + |f(s, 0)|2 + |g(s, 0)|%) ds = u(t)
0

for t e [0, T, thus
E\ X, . DP<sut), tel0,T].
We proved so by recurrence that
EIX,®OIP<uw(T), tel0,T), i=12,...
Define now the functions
Uy (£) = E| X, () = X, (D7,

b, (1) = sup {a,(t)}.

pzg=zn

We will show that the sequence {b,(¢)} has a subsequence {b,,(t)} which con-
verges uniformly on [0, T'] to a continuous function b(t).
Since {E|X;(1){?} is uniformly bounded on [0, T}, there exists a constant M > 0
such that
G (1) S 2E(1X, )2+ | X, (D)]?) <M, tel0,T],

(we can take for instance M = 4w(T)).
Observe that

|G (B) = Gy ()| = |E| X, (8) = X, (D) | — E| X, (5) — X, (8)]?| =
= E(| X (t) = X, ()] + | X () = X DD X () = X, (D] — | X (9) = X, ()] | <
SE(| X, (1) = Xy (D] + [ Xn(8) = X ()X (8) = X (8)] + X, (1) = X, ()]) <
< [B(1 X () = X, )] + [ X (8) = X () PTRE@| X, () = X ()] +
+2|X,,(8) = X,()|))2 < [EQ| X, (8) — X, (1|2 + 2 (X, () — X, (8) )2
(B2 X, () = X ()] + 2] X, (1) — X, (8)|)]V? =

= 20 (£) + G ()2 [B(| Xy (8) = X (9% + | X () — X, ()T
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2
s

On the other hand

t
E|X,(t) ~ Xn(s)|2< E l ff(f, X, () dr

s

¢
+ l j 9(7, Xpp_1 (2)) dW(2)

t |4
< ZTEJ [z, Xy () |2dr + ZEJ |9(s, X1 () |2dr <

3

41+ 7) f(lf(f, 0%+ [g(z, 0% + () w(u(m)) + Yv) 2(u(x) dr <

<41+ D) —u(s)), 0<s<t<T,

so that we obtain

[ (8) = G (8)] < 8 VM(L + DY) — u(s)'?, 0<s<tsT.
We deduce that

0<sb,()<M, 0<t<T,

[b,(t) — b, (s)] <8 VM + T)u(t) — u(s))/?, 0<s<t<T.

By the theorem of Ascoli-Arzela (see [42, page 2]) there exists a subsequence {bnj(t)}
which converges uniformly on [0, T'] to a continuous function b(?).
If m, n =mn;,,; we have that m — 1, % — 1 =n;, so that

() = B| X, (8) — X, (1)]2 <

H

[ (Fs, X1 () = £, X, -1 () ds

0

2
+

2)
<
t
<201+ T)jE|f(s, X, () — f(s, X, _,(s))|2ds +

0

<2F

t
| [ ol Zura (69 = s, X 1) V)
0

13
+2 [ Blg(s, Xy () = 905, X, -1 (9)|Pds <
0
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¢
<2(1+ T)j () W(E | X,y 1(8) = X, 1 ()]2) + Y$) 2B | X1 (8) — X,,_1(8)]2)) ds <

0
11

<21+ 1) [(@6)w(by (9) + Us)alby (Nds,  0<t<T,
0

thus
4
by, () S 21+ T) [ (2(6)0(by, (5)) + Y(s)2lby, ())ds,  0<t<T,
0

Letting 7 — o, by the continuity of w and # and the dominated convergence theo-
rem of Lebesgue, we obtain

t
b)) <21+ T) j (6(s) w(B(s)) + Us) 2(b(s))ds, O0<t<T.
Q

Taking into account Lemma 6.1 and Osgood’s uniqueness criterion (see[60, page
102]), we deduce that b(¢t) =0, te[0, T].
Observe now that if m, n = n,; ., then

E( swp {|1X,(8) - X, 0[*}) <
T

0<t<

¢ 2
<2E Os?pT{ J[f(s, X,,_1(s) — f(s, X, _,(s))1ds }+
<ts< g
¢ 2
+oS]pr J[g(s, X 1(8)) — g(s, X, -1 (s)]1dW(s) <
<t= G

T
< 2TJE|f(s, X, _1(8) = f(s, X, _1(8))|%ds +
0

T
+2 [ Blg(s, X1 (5) — g5, X, -1 () [2ds <
0
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T
<21 + T)Jqﬁ(s)w(Elewl(S) ~ X, _1()|>)ds +

0

T
+2(147T) J’¢(s)z(E|Xm_1(s) ~X, ,(8)]2)ds <
0

T

<214 7) [ (#s)wlby, () + Us) 2(by, (1)) ds — 0

0

as j— o, thus {X, ()} is a Cauchy sequence in the Banach space B of functions
Wit, o) R, X 02— R™ measurable in « for each fixed t € [0, T, continuous in ¢ for
a.e. we{l and with

E‘( sup {|nt, w)lz}) < o

0<stsT
this is a Banach space (see RODKINA {59]) with the norm
172
Iitt, @)l = {E( sup_{1ntt, ) 2})} "
pst<T

We deduce that there exists a stochastic process X(t), 0 €t < T, such that

E( sup {[X,(t) - X(t)[z}) -0

0t
as 1 —» o,
Furthermore
¢ t 9
Bl sup || X0~ X+ j (s, X(s))ds + j g(s, X(s)) dW(s) =
0=<t<sT 0 Py

t

f (f(s, X;_1(s)) — f(s, X(s))) ds +

0

= K| sup {

0stsT

4 2
+ f(g(s, X;_1(s)) — g(s, X(s))) AW(s) } <
0

T
< 2TjE|f(s, X,_,(s) — fls, X(s))]%ds +
0

T
+sz|g(s, X, () — gls, X(s))|2ds <
0
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T
sm1+ﬂjd®MEH@ﬁ@—X@ﬂ%%+
]

T
+ﬂ1+T”MQdEM@JQ-M@PM&eO
0

as 1— o, thus
4 4
XU)=X5+Jﬂ&X@Dds+jﬂ&X@DdW®L 0<t<T.
0 ]

We proved so that the sequence of successive approximations converges uniformly
to a solution of (7.1) on [0, T].

All we are left to prove is the uniqueness of this solution.

Let X() and Y(f) be two solutions on [0, {,] with X(0) = Y(0) = X,. We ob-
tain

t
E|X®t) - Y®)|*<2(1+7T) [ (@) w(E | X(s) ~ Y(s)|*) + () 2(E| X(5) — ¥(5)|*)) ds,
0

0<tst,,

and by Lemma 6.1 we conclude that E|X(t) — Y(t)|> =0, 0 < ¢ < {,. Thus, for any
tel0, t,], P(X(t) = Y(t)) =1, and so for a countable dense subset S c[0, t,],

PX(t)=Y(t), teS)=1.

Using the a.e. continuity of X and Y, we get

P(wp{muqun}>@=o

0ststy

which implies the pathwise uniqueness of solutions of (7.1).
This completes the proof of Theorem 7.1.

REMARK 7.1. — Instead of the assumption
E|ftt, )~ ft, M|*< ¢t)w(E|X - Y|?), teR,, X,YeL?(Q,R"),
we can suppose that
[t @) =, PP < g@wl|z —y|*), teR,, z,yeR",

is the function w is a concave on R, (o simple application of Jensen's inequality [36]
shows that the second condition implies the first one). The same remork applies if
r—w2(r)/r is concave on R, (see [70]).
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COROLLARY 7.1[71]. - For the stochastic differential equation (7.1), suppose that
the following conditions are satisfied:
@ £t @) = &, »|? + 19, 2) — g, 9 |* < aD) al |2 - y|*);
@ [, 0, |9t 0)] € Lie (R, Ry );

where xe LL.(R,,R.) and « € C(R, R.) is monotone nondecreasing, concove, with
2(0) =0 and such that
1
. ds
Yim, f os)
r

Then, on any finite interval [0, T, the sequence {X; (1)}, 0 <t < T, defined by the
successive approximations (74), converges wumiformly to a wunique solution of
{7.1).

Proor. — Since « is concave on R, , there exist positive constants a > 0, b > 0,
with
alr)y <o+ br, reR.,.

We can conclude in view of Theorem 7.1 and Remark 7.1.

REMARK 7.2. - If M(t) =1, te R, Corollary 7.1 becomes Yamada’s theorem [75].
In the particular case a(r) =r,vre R, and XM(t) =L > 0, t € R, , we obtain Ito’s con-
ditions [48). Note that the vesult of Da Prato[55] is a particular case of Corol-
lary T.1.

COROLLARY 7.2 [701. — For the stochastic differential equation (1.1), suppose that
the following conditions are satisfied:
@ |ft, 2 = £ I+ 1ot 2) — glt, »)|* < A al|z - y|*);
i £, 0], |g(t, 0)] € Lise (R B, );

where e L, (R.,R,) and a € C(R,, R,) is monotone nondecreasing, concave,
with «(0) = 0 and such that

2% (r)
-

¥ —>

is concave on R, and

1
Iim j ds

= 0
r=0 als)

Then, on any finite interval [0, T, the sequence {X;(£)}, 0 <t < T, defined by the
successive approximations (74), converges uniformly to a wunique solution of (7.1).
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Proor. - If ¢ > 0, b > 0 are such that

a®(r)
-

< a + br, reR,,
we deduce that
a(T)S(a+\/5)r+1, reRR,,
and we can apply Theorem 7.1 (taking into account Remark T.1).

REMARK 7.3. ~ A nontrivial example of a function o satisfying the conditions of
Corollary 7.2 is

1/2
a(?):y{ln(%;” , %>’r>0; a(w):\/g, r;%.

In both Corollaries, we have a single nonlinear function of E|X — Y|* which
bounds the expression

E|fG, X) - ft, V)|* + E|g(t, X) — g(t, V)|,
Theorem 7.1 enables us to consider two separate bounds for

E|ftt, X) - ft, D|?

and respectively

E|g(t, X) — g(t, ¥)|?

which are not comparable (in the sense stated in the Introduction) in a neighborhood

of .

7. — Applications to global inversion of local diffeomorphisms.

If f: R" - R"™ is of class C' and
det f'(x) =0, reR",

we have by the inverse function theorem [56, page 32] that fis a local diffeomorphism
at every point of R”.

In this section we will show that the continuation method of Conti with the results
stated in Section 2 can be applied in order to give sufficient conditions for f to be in-
jective and so a global diffeomorphism f: R™ — f(R"™) and a sufficient condition for fto
be bijective and so a global diffeomorphism onto R”. As particular cases of our result
we have the celebrated theorem of Hadamard [40] and the theorem of Caccioppoli-Ba-
nach-Mazur [6,17] in the particular case of local diffeomorphisms f: R” — R™ as well
as some recent results of ZAMPIERI[77].
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In our theorems we will use a nonnegative auxiliary scalar coercive function, that
is, a continuous mapping k: B” — R, such that

k(x) > o as |g] > ».

The use of such functions in the context of global inversion theorems is due to
ZAMPIERI [77]. Our method is similar to Zampieri’s method.
If k: R*— R, we define

k(x + ho) — k
Dt (z) = lim sup * 2) @)
h—0"

for all xz,ve R".

"THEOREM 8.1. — The mapping fe C*(R™, R™) is a global diffeomorphism R"™—
- f(R") if
() det f'(x) %0, zeR";

(i) there exists a point xye R™ and a locally Lipschitzian coercive fumction
k: R"— R, such that

Dy k(x) < wlk(x)), v=—f(x) (fx)-flz), xeR",

where w e R,.

ProOF. —~ Consider the Cauchy problem
8.1) ' =Fx), x=0)=z,

with F(x) = — f'(@) "' (f(®) — f(wy)), e R™

Since F is continuous there is local existence for (8.1).

Let us prove that we have also uniqueness for the Cauchy problem (8.1).

If z(t, Z) is a solution of (8.1) defined on some neighborhood of zero, we observe
that for all ¢t for which this solution is defined, we have

I, D', D) = — (flat, 2)) — flay))
thus
[e! (flat, ®) — fx))] =0
and an integration yields
Fas(t, B) = flay) = e (f@) ~ flxy)

for all ¢ for which this solution is defined.
We have so that

fl(t, ) = flag) + e L&) = fla)
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and since f is a local diffeomorphism at & we obtain that there is uniqueness for
(6.1).

From the continuity of F and from the uniqueness for {8.1) we have also continu-
ous- dependence on the initial conditions for (8.1) (see[25, page 17]).

Let now A(x,) be the «basin of attraction» of @, ie. the set of all points ¥ € R*
such that the maximal solution ¢ — x(t, &) of (8.1) with (0, &) = & is defined in the fu-
ture and tlinl 2(t, x) = x.

The set A(x,) is not void since xy e A(xy)—the Cauchy problem (8.1) with ¥ = &,
has the unique solution x(%, xg) = x4, £ = 0.

We prove now that A(x,) is open and f/A(x,) is one-to-one.

Let x; € A(xy). We denote z(t, x;) =« (£), t = 0.

Let U and V be respectively neighborhoods of 2y and f{xy) so that f/U: U—-Vis a
diffeomorphism (this ehoice is possible by the inverse function theorem).

We choose £ >0, ¢ > 0 such that

|flw) = flwg)| <& if |2 —a0] <3,
{xeR": |x—mxy| <28} cU,
{yeR": |y —flz)| <2c}cV.
Since tlirr; 2, (t) = xy, there is a T > 0 such that
| (8) — 2| <&, t=T.

By the continuous dependence on the initial conditions for (8.1) there is a y =
= y(8, T') such that the solution x (t) = a(t, x,) exists on [0, T']and |, () — 2 (£)] < &
for £ e [0, T] provided that |#; —as| < 7y.

We deduce that if |x; — #y| < min{3, v} then x,(¢) is defined on [0, T'] and

o (T) — 9| < | (T) — 2, (T)| + |2 (T) — ] < 26,
[ () = fley ()] < e |flan) ~fw)| <e, telO, T1.
Define
2 (1) = f 1 (flo @) + ¢ H(flwy) —flm:)), t>T.
This can be done since
£y () + et (fla) — fla)) — flwo)| < |l (8) ~ flag)| +
+e Hflwy) — (fwy)| <2¢, t=T,

and

oo (T) ~ o | < 25.
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We proved so that x,(t) is defined in the future (recall that we have uniqueness
for (8.1)).
Since

2 @) =f 1 (fla () + e (fw) — f=)), t>T,
we deduce that
tlim Lo (1) = 2.
The preceding facts can be resumed as follows: if |2, — 23| < min {8, y} then
Xo € A(xy). We proved so that A(x,) is open.

In order to prove that f/A(x,) is one-to-one, suppose that x;, x; € A(x,) are such
that f(x;) = f(x,). We deduee that

fla(t, 1) — flat, 2)) = e T (flay) — fla)) = 0.
Let T > 0 be such that
|a(t, ®1) ~ o | + |x(t, @) —w] <e, t=T.

Since f(x(t, ;) = f(x(t, x5)), t = T, by the way in which we chose ¢ (remember
that |f(x(t, ;) — flwe)| <& and |flx(t, xp)) — flag)| <& for t=T) we deduce
that

x(t, 4) =x(t, ), t=T.

From the uniqueness property of (8.1) we obtain that z; = x,, thus f/A(x,) is
one-to-one.

The next step in the proof is to show that if Z € bA(x,) (the boundary of A(xy)),
then the maximal solution x(¢, Z) cannot exist in the future.

We proved that f/A(x,) is one-to-one so f/A(x): A(x) — f(A(xy)) is a homeomor-
phism. We obtain the existence of an 2 > 0 such that

[flx) — flxg)| > 8, xeblAlx)).

Suppose there exists an % € b(A(x,)) such that the maximal solution z(¢, ¥) is de-
fined for all fe R, . It is obvious that x(f, ¥) ¢ A(xy), t = 0.
From the relation

fla(t, ) — flwg) = e H(f@) — (), =0,
we obtain that

e &) - flwp)| 28, t=0,
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thus

tsh(W), t20,

which is a contradiction.

We have so that if ¥ e b(A(x,)), then z(f, £) does not exist in the future.

On the other hand, the conditions required on k imply by Conti’s comparison re-
sult (with the slight extension obtained in [20]) that every solution of (8.1) can be de-
fined in the future.

We obtain that b(A(x,)) = @ and thus A(x) = R™ This implies that f: R" — f(R")
is a global diffeomorphism.

COROLLARY 8.1[77]. — The mapping fe C*(R™, R™) is a global diffeomorphism
R™— f(R™) if
@ det f'(x)= 0, xe R"™;

(i) there exists a point xoe R and a locally Lipschitzian coercive function
k: R™— R, such that for every x,ve R",

k(x + hv) — k(a)

1
hirg+ h
exists and
k(x + ho) —
sup[ lim @ Z) k) cv= — (@) (fw) - flag)), x ER”] < o,
h—>0"

Proor. — We apply Theorem 8.1 with w(r) =M, re R, , where

k(x + hv) ~ k
M= sup[ lim & + hv) ~ k(@) :
h—0t h

v=—~f(@) (flx) - flay), x e R”].

REMARK 8.1. — The hypotheses of Theorem 8.1 do not guarantee that f is onto R™.

ExamPLE 8.1. - Let us consider

f:R2R?, f(wl,x2)=( e” ¢ T )

Vi+a? V1+al
We have that (take x, = (0, 0))
v-Flx)<1+ |z]?, xeR?,

(for more details, see[77, page 931]).
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Defining
kKz)=In(1+ |z|?), =xeR?
we have that
Dignk(x) <1, wxeR?,

thus f: R?2— f(R?) is a global diffeomorphism.
On the other hand it is clear that f(R?) # R? since
e™

V1+ a2

Let us now consider the problem of giving sufficient conditions that f: B* — R” of
class C! with

>0, a=(x,1)eR2.

det f'(x) #0, xeR",
be a global diffeomorphism onto R".
THEOREM 82. — The mapping fe C*(R", R") is a global diffeomorphism onto
R"™ if
@) det f'(x) =0, x e R";

(i) there exists a locally Lipschitzian coercive function k: R"— R, such
that

D} k(x) < wlk(z)), v=f(x)'u, wueR", |ul=1,

where w e N,

PROOF. — As in the proof of Theorem 8.1 we consider the Cauchy problem
8.1 ' =Fx), x0)=ux,

with F(x) = — f'(x) 1 (f(x) — f(xy)), x € R™, where x,e R" is fixed.

By Theorem 8.1 we have that f is injective.

Considering the opposite vector field to (8.1), namely the differential equa-
tion
(82) y' = —Fly)
we have by Conti’s comparison theorem (with k¥ as a Lyapunov function) that all sol-
utions of (8.2) are defined in the future thus all solutions of (8.1) are defined in the
past.

If x(t, x) is a solution of (8.1), then we have that it is continuable in the past and in
the future and

flt, &) — flwg)) = e (X)) — flwy)), teR,
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thus f maps (¢, £) into
{y e R™: y = flwy) + s(f(&) — flwy)), 0<s< o},
Since fis locally surjective (thus the image of a neighborhood of 2, will be a neigh-
borhood of f(i;)) we can conclude the proof.
COROLLARY 82[77]. - The mapping fe C*(R", R™) is a global diffeomorphism
onto R™ if
(@) det f'(x) =0, x e R™

(i) there exists a coercive function ke CH(R™, R, ) such that

sup {|['(x) f'(@) Y: x e R"} < .

Proor. - We apply Theorem 8.2 with w(r) = Mr, re B, , where
M = sup {|l’(x) f/(x)"Y: xe R™}.
COROLLARY 8.3 [40]. — Let fe C1(R", R") with det f'(x) # 0, x € R"™ Then fis a dif-
feomorphism onto R™ if there exists a function we Ry such that

If@)- Yl <w(|z]), xeR".

PRrOOF. — Taking k: R"— R, , k(x) = ||, we obtain that
Dy k(@) < |f/ (@) s w|z]) = wk(z)), zeR™
An application of Theorem 8.2 yields the result.

COROLLARY 8.4. — The mapping fe C*(R™, R"™) is a global diffeomorphism onto
R™ if
@) det f'(x) =0, xe R™;

(i) f is coercive.

PROOF. — Defining k: R* = R, , k(z) =In(1 + |f(x)|%), we obtain that
Digy-1, k(@) <1, xeR",

and so we can apply Theorem 8.2.

REMARK 8.2. - Since a global surjective diffeomorphism is coercive we have that
the conditions of Theorem 8.2 are also necessary (for the necessity part, we define k
as in the proof of Corollary 8.4). It should be also noted that the theorem of Cacciop-
poli-Banach-Mazur[6,17] in the particular case of a local diffeomorphism f: R" —
— R"™is a consequence of our results since the properness of f (i.e. f~* (C) is compact for
any compact C) is equivalent in this case to coerciveness.



ADRIAN CONSTANTIN: Global existence of solutions, etc. 295

REMARK 8.3. — Our results are more flexible than the results of Zampieri since we
look for a nonnegative auxiliory coercive function k which enables in Corollary 8.2
for example that

sup {[l'@) £/ @) : v e B} = =
provided that
k' (@) £(2) Y| < wlk(a)), xeR™,

for some we R,
EXAMPLE 8.2. — Let us consider the nonlinear rotation f: R®*— R? defined by
(cos #(r) —siné(r) ) (wl)
sin ¢(r) cos ¢(7) | \as
where r = \/x_lz_Jr_sz The mapping f is of class C' if ¢: R — R is even and of class

C2.
We have that f'(x)~! is given by

cos (1) + 2o ¢'(rycos (6 + &(r))  sing(r) + x4 () sin (6 + ¢(7))
—sing(r) — @, ¢’ (r)cos (6 + ¢(r))  cos ¢(r) — x;¢'(r)sin (6 + ¢(r))

where x; = rcos6, &, = rsiné.
It is easy to see that

@ < V2 +rl¢' ) =V2A + [x]|¢'(=D]), xeR>.
If

k)

J_‘is__ -
1+ s]¢'(s)]

1

we deduce by Corollary 8.3 that f is a diffeomorphism onto RZ.
If in addition we have

%<¢(7‘)Sn, '(ry=0, 7r=z0,

then
trf'(x) <0, detf'(x)=1>0, xzeR?

and, since f is globally one-to-one, we obtain that x = 0 is a global sink for &' = f(x)
(see [T8]).

REMARK 6.4. — In the particular case of Example 8.2 when v — r¢'(r) is bounded
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on R, , ZAMPIERI and GORNI [T8] showed that f is injective. One can see that in this-
case actually f is a diffeomorphism onto RZ.
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