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Global Existence of Solutions 
for Perturbed Differential Equations (*). 

ADRIAN CONSTANTIN 

A b s t r a c t .  - In this paper we consider sufficient conditions for the continuability of solutions for 
perturbed differential equations. We obtain also some results for the global existence of sol- 
utions for differential inclusions and for stochastic differential equations of McShane and 
Ito type. We give an application to the global inversion of local diffeomorphisms. 

1. - I n t r o d u c t i o n .  

Let us consider the scalar differential equation 

(1.1) r '  = r w(r)  

and the perturbed differential equation 

(1.2) r '  = r + ~(t )z(r)  

where r ~, w, z �9 C(R+ , R+ ). 
HARA, YONEYAMA and SUGIE [45] gave necessary and sufficient conditions for the 

global existence of the solutions of (1.1). The natural problem arises to give sufficient 
conditions for the global existence of solutions of (1.2). 

Several approaches were made in order to handle differential equations (or differ- 
entia] and integral inequalities) involving two nonlinearities: 

(I) DHONGADE and DEO [30,31] considered nonlinearities belonging to the 
class of functions ~ �9 C(R+, R+ ), positive and nondecreasing on R+ and satisfying the 
condition 

l a ( u )  ~< ~ ( u ) ,  u~>0,  v > 0 ;  

(*) Entrata in Redazione il 10 luglio 1993. 
Indirizzo dell'A.: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, 

N.Y. 10012. 
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(II) BEESACK [7] replaced the preceding condition by the condition 

(u) ~(u) ~< ~ , u > 0 ,  v > ~ l ,  

in order to avoid the triviality ~(u) = ~(1)u, u > 0; 

(III) DANNAN [27,28] assumed that one of the nonlinearities satisfies a more 
general submultiplicative condition and the other is bounded by a linear func- 
tion; 

(IV) HAgA, YONEYhMA and SuGm [45] proved that if w, z E C(R+, R+ ) are 
oo 

such that z(r) <<. Lr, r i> e > 0 (L > 0) and I ds/w(s) = ~ with w nondecreasing, then 
o 

the solutions of (1.2) are defined in the future; 

(V) PINTO[54] considered monotone nondecreasing nonlinearities w, z e  
C(R+, R+) subject to the condition that w/z is nondecreasing on (1, ~). 

One can see that in all these approaches we have either that one of the nonlineari- 
ties is sublinear in a neighborhood of ~ (this is the case with the classes (I), (II), (III) 
and (IV)) or the two nonlinearities are comparable in a neighborhood of ~ (in the 
sense that there exist L, M > 0 with Mz(r) <~ w(r) for r >i L) as it is the case for the 
class (V). 

We will give a continuation result for the solutions of (1.2) considering two nonlin- 
earities which are not comparable to each other or to a linear function in a neighbor- 
hood of oo. The comparison method of CONTI [22, 23] enables us to apply this result to 
the general case of ordinary differential equations on R ~, generalizing some results of 
BERNFELD [9], HARA, YONEYAMA and SUGIE [45] and STOKES [66]. 

We give a global existence result for the Rayleigh equation, completing a recent 
result of SOUPLET [65] and our continuation results for the Li~nard equation with per- 
turbing term improve some results of BURTON [13], GRAEF [38], HARA, YONEYAMA 
and Swam [44] and NAG~UCHI and YAMAMOTO [52]. Considering the problem of the 
continuability of solutions for the differential equation 

(a(t)x')' + q(~)f(x)g(x') = r(t) 

we generalize some results of BURTON and GRIMMER [15] and GRAEF and SPIKEs [39]. 
We consider also the cases of delay and functional differential equations improv- 

ing some results of HARA, YONEYAMA and SUGm [45]. In the case of differential equa- 
tions in Banach spaces of infinite dimension, our result generalizes some results of 
ALEXANDROV and DAIRBEKOV [2] and of RADULESCU and RADULESCU [57]. 

Moreover, we are able to provbe global existence results for differential inclusions 
obtaining as particular cases some results of SEAH [61] and TANIGUCHI [72]. 

The method is applicable also in the case of stochastic differential equations of Mc- 
Shane and Ito type. Our results improve some theorems of MCSHANE [62], ELWOR- 
WHY [34] and ANGULO IBANEZ and GUTIERREZ JAIMEZ [3] for equations of McShane 
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type and some results of DAPRATO [55], TANIGUCHI [71] and YAMADA [75] for equa- 
gons of Ito type. 

An application of these continuation results to the global inversion of local diffeo- 
morphisms of R n is also given. As particular cases we obtain some recent results of 
ZAMPIERI [77]. 

2. - Continuability of  solutions of  perturbed ordinary differential equations. 

Let us assume t h a t f ~  C(R+ • R '~, R ~) is such that all solutions of the differential 
equation 

x'  = f( t ,  x) 

are defined in the future. We will give sufficient conditions on g ~ C(R+ • R ~, R n) so 
that all solutions of the perturbed differential equation 

x'  = f( t ,  x) + g(t, x) 

are defined in the future. 
In our discussion we will impose growth conditions of f and g by requiring the 

existence of functions r ~, z, w: R+ .o  R+ continuous, z(r) > 0 and w(r) > 0 for all 
r 1 > ~ > 0  such that 

[f(t,x)[ <<.r [g(t,x)l <~( t )z ( Ix[ ) ,  ( t , x ) ~ R §  •  n. 

Because of these growth conditions imposed on f and g we have essentially reduced 
the problem to the study of perturbed scalar differential equations (in view of the 
comparison method of CONTI [20, 22, 23]). 

We define the class of continuous scalar functions 

ds _ ~ 
~o = w: w(r) > O, r >i 8; w-~) 

3 

Let us consider the nonautonomous scalar equations 

(2.1) r '  = r w(r), 

(2.2) r '  = r + ~(t)z(r) 

where r ~, z, w: R§ - o R §  are continuous, z(r) > 0 and w(r) > 0 for all r ~  > ~> 0. 
The following result gives necessary and sufficient conditions for the continuabili- 

ty of the solutions of (2.1). 

THEOREM 2.1 [45]. - Suppose that r is not identically zero. Then the solutions of 
(2.1) are defined in the future i f  and only i f  w ~ ~o. 

In order to state results for (2.2) we consider for each y ~ ~0 with lira inf y(r) > 0 



240 ADRIAN CONSTANTIN: Global exis tence o f  solutions, etc. 

the class of continuous scalar functions 

ds 
w(r)  > O, rl> 8; w(s )  + y(s)  - ~ " 

8 

Since 

I ds ds >1 w(s )  + y(s )  = ~ 

we see that  ~v r [Ro for every y e ~o such that  l'm) inf y(r )  > 0. We notice that  ~Ry 
as it can be seen from Example 2.1. 

;~ ~o 

EXAMPLE 2 . 1 . -  Define the function h: [1, ~ ) - - ~ R .  as follows: for each integer 
n / > 1  such t h a t n ~ < t ~ < n + l ,  

1 h(n + 1) - 1 
h(n)  = -~,  n + 1 ' 

1 1 
h(t)  = t 2 , n + n ~---z <~ t <~ n + 1 (n  + 1 -~') 

1 1 1 is linear for n ~ < t ~ < n + - -  and n + l  < ~ t ~ < n + l  
h(t)  n 2 (n  + 1) 2 " 

From the construction of h we have (for more details see [9, page 279]) that  

f d--A-s = or " ds < 
h(s)  ' h(s)  + 1 

1 1 

Since y(r )  > 0 for r i> 8 >~ 9 and lira inf y(r )  > 0 we have that  there exists an ~ ~ (0, 1) 

such that  y(r )  >1 ~ for r >t 8 thus 

y(s )  + h(s)  ~ + h(s----~ -[ 1 + h(s)  
1 + ~  1 + 8  1 + 8  

i.e. h ~ ~y. We have so that  ~y ~ ~o. 

LEMMA 2.1. - F or  each L > 0 and  M > 0 we  have that  

ds 
L w ( s )  + M y ( s )  

i f  and  only  i f  w e ~y. 
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PROOF. - If w e ~y we have that 

ds 1 ds 
Lw(s) + My(s) >~ L +-----M w(s) + y(s) 

Conversely, suppose that 

c~ 

I ds 
Lw(s) + My(s) 

We have then that 

I d8 ds i> rain (L, M} Lw(s) + My(s) w(s) + y(s) 

thus w e ~R~. This completes the proof of the lemma. 

We define now the set (for y e ~0 with lira inf y(r) > O) 

A~, ~ (K) = {r >I $: z(r) <<. Ky(r)}. 

Let m(A~, ~(K)) denote the Lebesgue measure of the complement of A~,~(K) in 
[~, ~r 

THEOREM 2.2. - Suppose that r is not identically zero and suppose that 
there exists K > 0 such that re(A2, y (K)) < ~ and 

" . . z ( r )  

> o .  

Then the solutions of (2.2) are defined in the future if and only if  w e ~y. 

PROOF. - Let us suppose that w e ~y. 
Observing that 

A ~ , y ( K )  

d8 
w(s) +Ky(s) 

we obtain (in view of Lemma 2.1) that 

ds ds 
f w(s)+Ky(s) = l  w(s)+Ky(s) - I 

Az, y (K) ~ A~, y ( K)  

ds 
w(s) +Ky(s) 
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Hence 

oo 

w(s) + z(s) w(s) + z(s) + w(s) + z(s) >~ w(s) + Ky(s)  = ~ " 
A~, y (K) Aez, y (K) Az, y (K) 

Since w + z e ~o we deduce by Theorem 2.1 that the solutions of the differential 
equation 

r '  = (r + ~(t))(w(r) + z(r)) 

are all defined in the future. By the comparison method of CONTI [22, 23] we obtain 
that the solutions of (2.2) are defined in the future. 

Let us now prove the necessity of the condition w e ~v" 
Suppose that wr ~ and the solutions of (2.2) are defined in the future. Since 

r ~(t) is not identically zero, there exist a I> 0, b > a and ~ > 0 such that r ~ ~ and 
~b(t) I> ~ on [a, b]. We obtain from (2.2) that 

r'(t)  >i ~(w(r) + z(r)) , t ~ [a, b]. 

Since 

" . ~ z ( r )  

nn ~ m - -  > 0 
y(r) 

we have that there exist V > 0 and M > 0 such that z(r) >I )?y(r) for all r >/M. We de- 
duce that 

oo 

f f f ds _ ds ds 
w(s) § z(s) w(s) + z(s) + w(s) + z(s) 

Az, y (K) n~, ~ (K) 

<~ 

f § f f < w(s) + ~y(s) w(s) + z(s) + w(s) + z(s) " 
Az, y (K) D[M, ~ ) A~, y (K) D [0, M] Az c, y (K) 

Since m(A~, ~ (K)) < ~ and w ~ ~y we obtain in view of Lemma 2.1 that 

f d s  < 
w(s) + z(s) 

Let r0 > ~ be such that 
c~ 

w(s z(s) 
ro 

< db - a).  

The solution r(t ,  a, ro) of (2.2) satisfies 

r'(t) >I ~(w(O + z(r)) , t e [a, b], 
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thus 

r(t) 

w(s) + z(s) 
>t ~ ( t -  a) ,  t �9 [a, b]. 

We obtain so that  

:o r( b ) 

s(b - a) > w ( s ) ~  z(s) >~ w(s) + z(s) 
ro ro 

/> ~(b - a) 

which is a contradiction. 
We have so that  w �9 ~y. 
This completes the proof of Theorem 2.2. 

COROLLARY 2.1. - Suppose that r162 is not identically zero. Then the solutions 
of the differential equation 

r '  = r + '~(t) 

are defined in the future i f  and only if" 

f ds _ 
1 + w(s) 

Theorem 2.2 generalizes some results of BERNFELD [9, Theorem 4.1] and HARA, 
YONEYAMA and SUGIE [45, Theorem 3.2 and Theorem 3.3]. The relation of our result 
with these results is given by 

EXAMPLE 2.2. - Let  us consider the scalar differential equation 

r' = r  + 1) + ~(t)(r + l n ( r  + 1)) 

where r ~: R+ -~ R+ are continuous and r is not identically zero. We can apply 
Theorem 2.2 with y: R+ ~ R+, y(r) = (r + 1) In (r + 1) but we can not apply Theorem 
4.1 [9] or Theorem 3.2, Theorem 3.3 [45]. 

THEOREM 2.3. - Let w e Go and suppose there exist constants K, L, M > 0 such 
that 

r 

z(r) <~ Kw(r) I d~s) + Mw(r),  r ~ L ~ .  

Then the solutions of (2.2) are defined in the future. 
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PROOF. - Let  

f V(t, r) = - r d s +  w(s) ' 
0 

Since w e ~Ro we have that  

We have that  

dV 
- -  = lira sup 
dt (2.2) h_~o+ 

r>~L .  

V( t , r ) - - )  ~ as r ~  ~ for each fixed t e R + .  

V(t + h, r + he(t)w(r)  + h~(t)z(r)) - V(t, r) 

h 

r 

= - r + (r w(r) + ~(t)z(r)) = ~ ( t ) - ~  <<. K~(t) 

= K~(t) V(t, r) + M~(t) + K~(t) I r ds, 
0 

+ M~(t) = 

r>~L ,  t>~O. 

By Conti's theorem (see [22,23,67]) we deduce that  the solutions of 

r '  = r + i~(t)z(r) 

are defined in the future. This completes the proof of the theorem. 

COROLLARY 2.2. - I f  w e ~o is nondecreasing on [8, :r then the solutions of the dif- 
ferential equation 

r '  = r + ~(t)r  

where r ,~: R+- - .R+ are continuous, are all defined in the future. 

PROOF. - Since w is nondecreasing on [8, ~ )  we have that  

thus we can apply Theorem 2.3 with 

K = I ,  M -  ~ L = ~ .  
w(~) ' 

Corollary 2.2 is a theorem of STOKES [66]. He arrived at the same result  using the 
Tychonoff fixed point theorem. For  a proof of Corollary 2.2 using differential inequal- 
ities see [9] (a different method is used in [45]). 
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COROLLARY 2.3 [9]. - Assume that r is not identically zero and all solutions of  
(2.1) exist in the future. Then all solutions of  (2.2) exist in the future i f  z 
satisfies 

z(r) 
limr_~sup w--~ < ~ " 

PROOF. - Since all solutions of (2.1) exist in the future we have by Theorem 2.1 

that  w �9 ~0. 
On the other  hand there  exists K0 > 0 such that  

If  L > ~ is such that  

we obtain that  

z(r) <~ Kow(r), r >>. ~. 

L fds 

z(r) <. w(r) ; ds 
w(s) 

3 

We can so apply Theorem 2.3. 

r ~ L .  

COROLLARY 2.4 [9]. - Assume that ,~(t) is not identically zero and all solutions of 

r' = ~(t) z(r) 

exist in the future. I f  

z(r) 
> o  

then all solutions of (2.2) exist in the future. 

PROOF. - We have that  z �9 ~0. Since lira inf (z(r)/w(r)) > 0 we obtain that  w e ~o 
T---> ~c 

and lim sup (w(r)/z(r)) < o,. We can thus apply Corollary 2.3. 

EXAMPLE 2.3. - Le t  us consider the differential equation 

r '  = r  + l n ( r  + 1)) + ,~(t)(rln(r + 1) + l n ( r  + 1 ) l n ( r  + 1)) 

where r ,~: R+ o R +  are continuous and r162 is not identically zero. We can 
apply Theorem 2.3 with w, z: R+ -oR+,  w(r) = r + l n ( r  + 1), z(r) = r l n ( r  + 1) + 
+ln  (r  + 1)In (r  + 1) but  we can not apply the theorem of Stokes [66]. 
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REMARK 2.1. - It should be noted that i f  wl , w2 e [Ro we can not conclude that 
wl + w~ e ~o even i f  we suppose that wl and w2 are nondecreasing (see Example 
3.8 [9]). Classes of  functions for which this is true are given by Theorem 2.2 and The- 
orem 2.3. 

We apply our results in order to study the continuabflity of solutions of the differ- 
ential equation 

(2.3) u" + f (u ' )  + g(u) = e(t) 

where e, f ,  g: R ~ R  are continuous. 
Equation (2.3) is equivalent to the system 

(2.3) = y '  
y '  = - f ( y )  - g(x) + e(t). 

THEOREM 2.4. - Suppose that 

(i) there exists w e !Ro nondecreasing on R+ such that 

Ixf(x)l <<.w(x2), x e R ;  

(ii) 0 -< xg(x) for I xl large enough. 

Then the solutions of (2.3) are defined on R. 

PROOF. - Let  us prove that  the solutions of (2.3)are defined in the future. By (ii) 
we have that  there exists K > 0 such that  

X 

I g(s)ds + K > 0,  
0 

Let us define 

V : R x R - - ~ R + ,  

We have that  

dV 
dt (2.3) 

x e R .  

x 

V(x, y) = y2 + 2 1 g(s) ds + 2K.  
0 

By Corollary 2.2 we have that  

f ds = 
2w(s) + s + 1 

= - 2yf(y) + 2ye(t) <. 2w(y 2) + (y2 + 1)le(t)i ~< 

<. 2w(V(x, y)) + V(x, y)le(t)l + le(t) l. 
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From the relation 

y2 <~ V(x, y),  x, y ~ R ,  

we deduce that y(t) can not explode in a finite time T > to (to is the initial time) for any 
solution (x(t), y(t)) of (2.3). Since 

x ' = y  

we deduce also that x(t) can not explode in a finite time T > to. 
Thus the solutions of (2.3) are defined in the future. 
In order to prove that the solutions of (2.3) are also defined in the past we reverse 

the time in order to reduce this problem to the problem of the existence in the future 
of the solutions of the system 

We observe that 

(2.3') f x '  = y ,  
y ' - f ( - y )  - g(x) + e ( - t ) .  

dV = - 2 y f ( - y )  + 2 y e ( - t )  <. 2w(y 2) + (y2 + 1 ) le (_ t )  I ~< 
dt  (2.3') 

2w(V(x,  y)) + V(x, y ) ] e ( - t ) [  + ] e ( - t )  l �9 

We conclude in a similar way to the first part of the proof. 
Thus the solutions of (2.3') are defined in the future i.e. the solutions of (2.3) are 

defined in the past. 
This completes the proof of Theorem 2.4. 

The eontinuability of  solutions of the differential equation (2.3) was also consid- 
ered by SOUPLET [65] in the case e(t)=--O. 

EXAMPLE 2.4. - Consider the differential equation 

u " + u ' l n ( l +  lu ' l  2 ) + u  3 = 0 .  

We can apply Theorem 2.4 considering 

w: R+ --~ R .  , w(r) = r ln(1  + r) .  

The result of SOUPLET [65] is not applicable since we do not have that there exists a 
constant M > 0 such that 

0 ~ xg(x) <<. M x  2 for Ix I large enough. 

We will give now a global existence result for the solutions of the Li~nard equa- 
tion with perturbing term 

(2.4) x" + f ( x ) x '  + g(x) = e(t, x, x ')  
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Where f ,  g: R ~ R are continuous and e: R§ • R • R ~ R satisfies the following 
conditions: 

- -  e(t, x, y) is piecewise continuous with respect  to t e R+ for arbitrarily fixed 
(x, y) E R  x R; 

- - e ( t , x , y )  is continuous with respect  to (x, y) e R  x R for arbitrarily fixed 
t e R + .  

Let  us denote 

x x 

0 0 

THEOREM 2.5. - Suppose that the following conditions hold: 

(i) there exists a constant K > 0 such that 

xF(x)  > O and xg(x) > O for  Ixl >I K ;  

(ii) there exist continuous funct ions  rl ,  r2, z, w: R+ --+ R+ , w ~ ~o nondecreas- 
ing, such that 

{ e ( t , x , y - F ( x ) ) l  <<-r l ( t )+r2( t ) z ( Iy{ ) ,  t e R + ,  x, y e R ,  

and 

ly l z ( ly l )<<.w(y2) ,  y ~ R .  

Then all the solutions of  (2.4) are defined in the future.  

PROOF. - Let  (x(t), x'(t)) be a solution of (2.4) defined on [to, T), T < ~ .  
(x(t), y(t)) is a solution of the system 

x '  = y - F (x) ,  

y '  = - g(x) + ~(t), 

where y(t) = x '( t )  + F(x(t))  and ~(t) = e(t, x(t), y(t)  - F(x(t))) .  
Defining 

y2 
V(x, y) = ~ -  + G(x),  x, y e R ,  

we obtain that 

d V  = - g (x ( t ) )F(x( t ) )  + ~( t )y( t ) .  
dt (2.4) 

Then 
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Integrat ing on [to, t], t < T, we get 

t 

V(x(t), y(t)) - V(x(to), y(to)) <~ - f g(x(s))F(x(s))ds + 
to 

t 

+ f l (s)y(s)jds - f 
tO It 

where I t = {S e [to, t]: Ix(s)l < K} (in view of (i)). 
If  K1 = max { ]g(x)F(x) l }, we obtain that  

Ixl ~< K 
t 

V(x(t), y(t)) <<. V(x(to), y(to)) + K1 + f I~(s)y(s)lds, 
to 

t 

g(x(s)) F(x(s)) ds + f I~(s) y(s) lds, 
to 

t e [to, T) .  

In view of hypothesis (i), if we denote 

K 2  = V ( x ( t o ) ,  y(to)) + K 1  - minK{G(x)} 

then we obtain that  

t 

Y2(t--~)2 ~ K2 + ] le(s)y(s)lds' t e [to, T) .  

to 

Using now hypothesis (ii), we get 

t 

y2(t) ~< 2K2 + 2 1 { r l ( s )  + r2(s)z(ly(s)])}lY(s)lds, 
to 

t e [to, T) .  

We will prove that  y(t) is bounded on [to, T). 
If  R~ = max {ri (t)}, i = 1, 2 we obtain that  

t o m t i T  

t t 

y2(t) <<. 2K~ + 2R1 ] ly(s)lds + 2R2 f w(y2(s))ds' 
to to 

(in view of (ii)), thus (since 21y(s) I <~ 1 + y2(s)) 

t e [to, T) ,  

t t 

y2 (t) <~ 2K2 + R1 T + R1 f y2 (s) ds + 2R2 f w(y2 (s)) ds <~ 
to to 

t 

~< 2K2 + R~T + (R~ + 2Re) f (y2(s) + w(y2(s)))ds, 
to 

t E [to, T). 
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Let us define 

x 

W : ( 0 , ~ ) ~ R ,  W ( x ) =  s + w ( s ) '  x > 0 .  
1 

By Corollary 2.2 and Theorem 2.1 we deduce that lira W ( x ) =  ~ .  
By Bihari's inequality [10] we get that 

y2(t) <. W - I ( W ( 2 K 2  + R1T) + (RI + 2 R ~ ) ( t -  to)), 

and therefore y(t) is bounded on [to, T). 
Taking into account the relation 

we get 

t t 

x(t) x(to) § f  (s)ds- f r(x(s))ds, 
to to 

t e [to, T), 

t e [to, T),  

t 

Ix(t)[ <<. [x(to)l + I [Y(s)lds + K3(T - t~ re[ to ,  T),  
to 

where K~ = max {IF(x)[ }, thus x(t) is bounded on [to, T). 
Ixl ~K 

We have so that (z(t), y(t)) is continuable up to T. 
This completes the proof of Theorem 2.5. 

COROLLARY 2.5 [52]. - Suppose that the following conditions hold: 

(i) there exists a constant K > 0 such that 

xF(x) > O and xg(x) > O for  Ix I >I K;  

(ii) there exist continuous functions rl ,  r2 : R + --* R + such that 

l e(t, x, y - r (x ) )  I <~ r 1 (t) --F r 2 (t) ly[, t e R+,  x, y e R .  

Then the solutions of  (2.4) are defined in the future. 

As a particular case of Corollary 2.5 (if e(t, x, y) depends only on t) we have a con- 
tinuability result of GRAEF [38] which extends a result of BUSHAW [16]. 

The relation of Theorem 2.5 with the result of NAGABUCHI and YAMAMOTO [ 5 2 ]  is 
given by c 

EXAMPLE 2.5. - Let us consider in equation (2.4) the perturbing term of the 
form 

e(t, x, y) = (F(x) + y) in  (1 + (F(x) + y)2) + r(t) 
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where r: R+--)R+ is continuous. If there exists K > 0 such that 

xF(x) > 0 and xg(x) > 0 for I xl /> K 

we have that all the solutions of (2.4) are defined in the future (applying Theorem 2.5 
with w(r)= r ln(1 + r), r e  R§ We can not apply the result from [52]. 

We will investigate now the continuability of solutions for the forced Li~nard 
equation 

(2.5) x" + f ( x ) x '  + g(x) = e(t) 

with all functions continuous without making the usual assumption ([14], [38]) 

xg(x) > 0 for I xl 1> K.  

Define 

X 2~ 

F(x) = I f ( s )  ds, G(x) = f g(s) ds, 
o o 

x e R .  

Using the Li~nard transformation we write (2.5) as the system 

(2.5) I 
x'  = y - F(x),  

y'  - g(x) + e(t). 

THEOREM 2.6. - Assume that for some positive number P we have 

G(x)>I - P ,  x e R ,  

g(x)F(x) >! - w(G(x) + P + 1), x e R ,  

IF(x)l < . g ( x ) F ( x ) + w ( G ( x ) + P + l ) + z ( I x l ) ,  x e R ,  

where w, z: R + - - ) R .  are continuous nondecreasing functions satisfying the condi- 
tions of Theorem 2.3. 

Then every solution of (2.5) exists in the future. 

PROOF. - Let V(x, y) = y2/2 + G(x) + Ix I + P + 1, x, y eR.  We have that 

dV 
dE (2.5) 

<~ - g(x)F(x) + ye(t) + lY - F(x)l <<- 

e2(t) + 1 ~<y2+ 
2 

+ w(G(x) + P + 1) + z(Ixl)  <<. 

e 2 (t) + 1 
<~ 2V(x, y) + w(V(x, y)) + z(V(x, y)) + 

2 
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By Theorem 2.3 we have 

f ds = 
w ( s )  + z ( s )  

1 

and by Corollary 2.2 and Theorem 2.1 we deduce that 
c ~  

1 

ds 
+ w(s) + z(s) 

Using the comparison method we obtain that the solutions of (2.5) are continuable 
in the future since 

V(x, y)--> ~ as Ix[ + lYl--~ ~ .  

This completes the proof of Theorem 2.6. 

COROLLARY 2.6 [13]. - Assume that for some positive numbers P and Q we 
have 

G(x)>I - P ,  x e R ,  

g(x)F(x) >1 - Q, x E R ,  

IF(x)l <<-g(x)F(x)+Q+z(Ixi ) ,  x e R ,  

where z: R+--) (0, ~)  is some nondecreasing continuous function such that 

f s + z ( s )  = ~ " 
0 

Then every solution of (2.5) exists in the future. 

])ROOF. - We have that 

s + z(s) 
1 1 

so that we can apply Theorem 2.6 with w(r) = Q, r E R +. 

a ~  

REMARK 2.2. - In view of Corollary 2.2 we have that the condition f ds/(s + 
o 

+ z(s)) = ~ is equivalent (under the assumption that z: R+ - .  (0, ~ ) is nondecreas- 

ing) with the condition I ds/(z(s))= ~. 
1 

The relation of our result with the result of BURTON [13] is given by 
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EXAMPLE 2.6. - Consider the system (2.5) with 

= x__~ 2 
g(x) = x ,  F(x)  = l n ( 1  + x 2 ) ,  G(x) 2 ' x e R .  

We can not apply the result of BURTON [13] since 

lim g(x )F(x )  = - 
X ~ - - ~  

but we can apply Theorem 2.6 considering the functions w ( r ) =  2r ln(1  + 2 r ) +  ln2, 
r e R + ,  and z(r) = 1, r e R + .  

An improvement of Conti's continuability theorem [22,23] was given by HAnA, 
YONEYAMA and SUGIE [44] using two Lyapunov functions which are not radially un- 
bounded for fixed t. They applied the result to the Li~nard equation without making 
the assumption that xg(x) > 0 for i xl >t K. 

We will show that using Theorem 2.3 and the continuation theorem of HARA, 
YONEYAMA and SvGm [44] we can give a more flexible result for the continuability of 
solutions of (2.5) than the work done in [44]. 

We suppose that F and g are regular enough to ensure uniqueness of the solutions 
of the differential equation (2.5). 

THEOREM 2.7. - Suppose that for  some positive number  P we have 

G(x) >>- - P , x e R ,  

g(x) F(x )  >i - w ( G ( x )  + P + 1), x o R ,  

0 

1 + max{0, - F ( s ) }  ' 1 + max{0, F(s)} 
0 - ~  

where w: R+-->R+ is continuous, nondecreasing and w E Go. 

Then every solution of  (2.5) exists in  the future. 

P R O O F .  - We define F_ (x) = max {0, -F(s )} ,  F+ = max {0, F(s)} for x e R. 
Let V(x, y) = y2 /2  + G(x) + P + l ' and  W(x,  y)  = Ixl for x, y o R .  

We have that 

V(x, y) ---) ~ as l Y t --~ ~ uniformly in x ; 

W(x,  y) --~ ~ as I xl --> ~ for each fixed y e R .  
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On the other hand 

d V  
dt (2.5)<<- - g ( x ) F ( x )  + lye(t)i <~ 

y2 e2(t) 
<. + w(G(x) + P + 1) ~< V(x, y) + w(V(x,  y)) + - -  

e2(t) 

2 

and by Corollary 2.2 and Theorem 2.1 we have that 

cc  

l d s _ ~  
s + w(s) 

1 

If x >i 0 and l Yl < K, then 

d W  
dt (2.5) = Y - F(x)  <~ K + F_ (x) = K + F_ (W(x, y)) .  

Similarly, if x ~< 0 and l Yl ~< K, then 

d W  
dt (2.5) ~ K + F+ ( - W(x ,  y ) ) .  

Since 

0 

f ds I 1 + F_ (s) ' 
ds 

1 + F§ (s) 

we have (in view of Lemma 2.1 and Theorem 2.1) that every solution of 

r '  = K +  F_ (r) 

and 

r '  = K + F+ ( - r )  

exists in the future. 
By the continuation theorem of HARA, YONEYAMA and SUGIE [44] we deduce that 

the solutions of (2.5) exist in the future. 

COROLLARY 2.7 [44]. - Suppose that there exist some positive numbers  P and Q 

such that 

G(x) >1 - P , x e R ,  

g (x )F(x )  ~ - Q(G(x) + P + 1), x e R,  
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0 

f f ds 1 + F_ (s) ' 1 + F+ (s) 
0 --or 

Then every solution of (2.5) exists in the future. 

~--- r162 

As a particular case of Corollary 2.7 we have a continuability result of 
GRAEF [38]. 

The relation of Theorem 2.7 with the result of HARA, YONEYAMA and SUGIE [44] is 
given by 

EXAMPLE 2.7. - Consider the system (2.5) with 

X 2 
g(x) = x ,  F(x) = - xln(1 + Ix[), G(x) = ~ - ,  x e R ,  

we can not apply Theorem 5.1 [44] but we can apply our result with w(r) = 2rln (1 + 
+ 2r) + ln2, r e R + .  

Let us now consider the problem of the continuability of solutions for the differen- 
tial equation 

(2.6) (a(t)x')' + q(t) f (x)g(x ' )  = r(t) 

where a, q, r: R§ ---) R , f i  g: R --~ R, a(t) > O, q(t) > O, g(x) > 0, r, f a n d  g are continu- 
ous and a, q are differentiable. 

We will write equation (2.6) as the system 

(2.6) 

x ' = y ,  

Y' = - a'( t)y - q(t)f(x)g(y) + r(t) 
a(t) 

Let q'(t)+ = max{q'(t), 0} and q'(t)_ = max{ -q'( t) ,  0} 
= q'(t)+ -q ' ( t ) _ .  A similar decomposition holds for a(t). 

We define 

so that we have q'(t) = 

x x 

0 0 

x e R ,  

' 8  q ( ) -  
p ( t ) = e x p -  ~ ds , 

o' 

t E R + ,  

b( t )=exp  

t 

- I a'(s)_ 7 
0 ~ a s  

t e R §  
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THEOREM 2.8. - A s s u m e  that there exist nonnegative constants m and n such 
that 

]Y__~L <~ m + nw(G(y)), y e R ,  g(y) 

where w: R+ --)R+ is a nondecreasing continuous function and w ~ ~o. 
I f  a'(t) >I O, F(x) is bounded from below and G(y)--> ~ as ]Yl -o ~ then all sol- 

utions of (2.6) are defined for all t >10. 

PROOF. - Let K > 0 be such that 

F(x) + K  >I O, x e R .  

Suppose that there exists a solution (x(t), y(t)) of (2.6)and a T > 0 such that 

lira {Ix(t)] + l y(t) I} = 
t ---) T -  

Define 

V(t, x, y) = p(t) 

We have that 

IF(x)  + K G(y) ] 
a(t) + - ~  , t e R + ,  x , y ~ R .  

V'(t) = p(t) I (F(x) + K) a'(t) f(x)  x, G(y) q'(t) - + + 

[ a 2 (t) a(t) q2 (t) 

yy' (F(x) + K) q'(t)_ G(y) q'(t)_ + - -  
g(y) q(t) a(t) q(t) q2 (t) 

r ( t )  y G(y)[q'(t) + q'(t)_ ] + 
<~ p(t) - q2 (t) g(y) q(t) a(t) 

p(t) r(t) 
q(t) a(t) 

<~ 

p(t)r(t) l Yl 
q(t)a(t) g(y) 

p(t) r(t) 
+ n w(G(y)). 

q(t) a(t) 

Denoting 

we observe that 

M =  sup I q( t ) l 
t~[o. Tl [ P--~ J 

q( t )  
G(y) <~ _-:7;:~, V(t, x, y) <<- MV(t, x, y), 

p~) 
t e [ 0 ,  T], x , y ~ R .  



ADRIAN CONSTANTIN: Global existence of  solutions, etc. 257 

We obtain that 

p( t ) r ( t )  p ( t ) r ( t )  
V ' ( t )  <~ m - -  + n - - w ( M V ( t ) ) ,  t e [0, T). 

q(t) a(t) q(t) a(t) 

Since w e ~0 is nondecreasing we obtain by Bihari's inequality [10] the existence of a 
constant K1 > 0 such that 

V(t, x(t), y(t))  <~ K1, t ~ [0, T). 

We deduce that y(t) = x '( t )  is bounded on [0, T) and an integration yields the bound- 
edness of x(t) in [0, T) contradicting the assumption that (x(t), y(t))  was a solution of 
(2.6) with finite escape time. 

This completes the proof of Theorem 2.8. 

COROLLARY 2.8 [39] .-  A s s u m e  that there exist nonnegative constants m and n 
such that 

lyl 
- -  <~ m + nG(y ) ,  y e R . 
g(Y) 

I f  a '( t)  >I 0, F(x)  is bounded f r o m  below and G(y)  --) ~ as l Y I ~ ~ then all sol- 
ut ions of  (2.6) are defined in the future.  

by 
The relation of our result with the result of GRAEF and SPIKES [39] is given 

EXAMPLE 2.8. - Let us consider equation (2.6) with 

a(t) = q(t) = e ~, r(t) = 0, t e R + ,  

G(y) = e y2-  1, y e R ,  

so that there are no positive constants m and n with 

lyJ 
g(Y) 

= 2 1 y l e Y 2 < ~ m + n ( e Y 2 - 1 ) = m + n G ( y ) ,  y E R .  

This makes impossible an application of Corollary 2.8. 
We see that we can apply Theorem 2.8 with 

w: R+ ---~ R+, w(r)  = r ln(1  + r),  

m = 6 e g + 9 ,  n = l ,  

We observe that in this case we have 

1 ~ - -X  2 1 g ( x ) =  ~ , x e R .  
f ( x ) -  x e +  l ' 
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since 

thus 

21yleY2+Y ~<<-m, tYl <<.3, 

~12e y2 21yleY2+y2<~21yleY2+eY2<~ , Lyl> 8, 

21yleY2<<.m+y2eY2-y2=m+w(eY2-1) ,  y e R .  

The requirement that a'(t)>i 0 in Theorem 2.8 can be dropped by imposing a 
stronger condition on g(y): 

THEOREM 2.9. -Assume that F(x) is bounded from below, G(y)--> ~ as lYl ~ ~ 
and there are positive constants M and k such that 

y2 
- -  <<. Mw(G(y)), lYl >~ k, 
g(Y) 

where w: R+--->R+ is a nondecreasing continuous function and w e ~o. 
Then all the solutions of (2.6) are defined in the future. 

PROOF. - Let - K > 0 be a lower bound for F(x). 
We define 

V(t, x, y) = b(t)p(t)[ 
F(x) + K G(y) 1 

a(t) + q - ~ - j ,  t e R + ,  x, y e R .  

Suppose there is a solution (x(t), y(t)) of (2.6) and a T > 0 such that 

lira { Ix(t) 1 + l y(t)l  } = 
toT- 

Along this solution we have 

V'(t) = b(t)p(t) I - (F(x) + K) a'(t) 

t aS(t) 
f(x) y G(y) q'(t) + 

a(t) q~(t) 

a'(t)y 2 f ( x )y  r(t)y 
- g(y) q(t) a(t) a ( t~  § g(y) q(t) a(t) [ ( F ( x ) §  

a(t) 

<~b(t)p(t) 

G(y) ](  a'(t)_ q'(t)_ )} 

a'(t) ye r(t) lyl] 
q(t) a(t) g(y) + q(t) a(t~ g(Y) l" 

y2 
- -  <<. D + Mw(G(y)) , y e R.  
g(Y) 

If lYl ~< max{k, 1} we have (ye/g(y)) <<.D for some D > 0, so that 
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If lYl ~<max{k, 1} we have ([yl /g(y))<~D1 and if lYl ~>max{k, 1} 
lYl /g(Y)  <<- y2 /g(y)  thus 

I_~] <~ D1 + y2 
g(Y) g ~  

<~ D 1 + D + Mw(G(y))  , y �9 R . 

we have 

We obtain that 

b(t)p(t) la ' ( t ) l  
V'(t)  <<. q(t)a(t)  

b(t) p(t) lr(t) I + 
q(t) a(t) 

b( t)p(t) la ' ( t ) l  

<<" q(t) a(t) 

b(t) p(t) lr(t) I 

+ q(t) a(t) ) (D1 + 2D + 2Mw(G(y) ) ) .  

In a similar way to the final part of the proof of Theorem 2.8 we show that we ob- 
tain a contradiction. 

This shows that the solutions of (2.6) are defined in the future. 

COROLLARY 2.9 [39]. - Assume  that F(x)  is bounded f r o m  below, G(y)--~ ~ as 
l y[--~ ~ and there are positive constants M and k such that 

y2 
- -  <~ MG(y) ,  l Yl >~ k .  g(y) 

Then all the solutions o f  (2.6) are defined in the future.  

As a particular case of Corollary 2.9 we obtain a continuability result of BURTON 
and GRIMMER [15]. 

The relation of our result with the results from [15, 39] is given by 

EXAMPLE 2.9. - Let us consider equation (2.6) with 

a(t) = q(t) = t 2 + 1, r(t) = t ,  t � 9 2 4 7  

1 g ( x )  = 3 e -x8 f ( x ) -  x 2 + 1 ,  , x e R .  

We have that 

y2 - 3 y 2 e  y~ G ( y )  = e y8 - 1 y �9 R 

g(Y) 

so that we can not apply the results from [15, 39] but we can apply Theorem 2.9 with 
w(r) = r ln(1  + r), r �9 R+ since 

3y2e y8 <~ w(G(y)) ,  lyl >I 4 .  
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REMARK 2.3. - We can formulate  results s imi lar  to Theorem 2.2 and Theorem 2.3 
for  the concept of  z-continuability (introduced by Campanin i  in [18]) using the same 
method. This allows to formulate  criteria for  the global existence of  solutions of  ordi- 
nary  differential equations (see [18]). 

3. - Global existence of solutions for delay and functional  differential equa- 
tions. 

In this section we will apply the methods developped in Section 2 in order to give 
some continuation results for delay and functional differential equations. 

Let  us first consider the delay differential equation 

(3.1) x '  = f ( t ,  x) + g(t, x(t - z(t))) 

where f, g: R+ x R~--->R n, z: R+ ~ R +  are continuous functions. 
For  to i> 0 the initial interval at to is given by 

E t o = { t o } U { s : s = t - X t ) ~ < t o  for t1>t  o}. 

We suppose that Eto is bounded for every to e R+.  
For  any initial continuous function x0: Et o --> R n we say that  x(t) is a solution of 

(3.1) on [to, T) if x(t) is continuous o n  Eto Y [to, T) and satisfies (3.1) on (to, T) with 
x(t) = xo(t) for t e Eto. If  f, g are continuous it is known (see DRIVER [33], HALE [41]) 
that for every to I> 0 and every initial continuous function Xo: Eto ~ R n equation (3.1) 
admits a solution on some interval [to, T) with to < T < ~ .  

THEOREM 3.1. - Suppose that there exist continuous funct ions  r ~: R+ ~ R + and 
w, z satisfying the conditions of  Theorem 2.3 with w, z nondecreasing on R§ such 
that 

if(t,x)l <.r Ig(t, x)l (t ,x)eR+ x R  n. 

Then the solutions of  (3.1) exist in the future. 

PROOF. - Suppose that  there exist a noncontinuable solution x(t) of (3.1). Let  
r(t) = Ix(t) I . We have then that 

r '( t)  <~ ]x'(t)] ~< r  + ~( t )w(r( t  - : ( t ) ) ) .  

I f  r(t) is not continuable to T < ~ ,  then 

r( t ) --~ ~ as t --~ T - . 

Let  us prove that r ( T ) =  0. 
Suppose z (T)  > 0. Then there exists T e  [to, T) such that  t - z(t) '<< . T for all 

t e [to, T]. We have thus that  r(t - Xt)) is bounded on [to, T] since r(t) is bounded on 

Eto U [to, T]. 



ADRIAN CONSTANTIN: Global existence of  solutions, etc. 261 

If  we denote 

M =  

then 

sup {r L = sup { r  ~(t)))} 
to <<.t<~ T to <~t<~ T 

r ' ( t )  <<. Mz(r( t ) )  + L .  

Since z E ~o is nondecreasing we have by Corollary 2.2 that  the solution of the differ- 
ential equation 

y '  = Mz(y )  + L ,  y(to) = r( to) ,  

and defined in the future which contradicts the relation 

r( t )  --> ~ as t ---> T - .  

We have so that  v(T) = 0. Thus, there exists tl e [to, T) such that  t - ~(t) i> to on 

It1, T]. I f  we denote 

K = sup {r +.~(t)} 
tl <~t<~T 

we have for tl ~< t < T that  

r'(t)  <~ r  + ~( t )w(r( t ) )  <<. K(z(r( t ) )  + w(r( t)))  . 

By Theorem 2.3 we have that  w + z E ~o thus the solutions of the differential 
equation 

y '  = K(z(y)  + w(y))  , y(to) = r(to),  

are defined in the future. By Conti's comparison method (see [23]) we obtain a contra- 
diction with the relation 

r ( t ) -~  ~ as t - - ~ T - .  

Thus every solution of (3.1) is defined in the future, 

COROLLARY 3.1 [45]. - Suppose that there exist continuous funct ions  r ~: R .  --> 
~ R §  and a nondecreasing funct ion  w ~ ~o such that 

I f ( t , x ) l  ~<r + ~ ( t ) w ( I x l ) ,  ( t , x ) ~ R §  x R  ~. 

Then the solutions of  (3.1) exist in the future.  

P R O O F .  - By Corollary 2.2 we have ff z: R§ ~ R §  z(r) = r and if w e ~0 is nonde- 
creasing, then z, w satisfy the conditions of Theorem 2.3. 

We give now sufficient conditions for the continuability of solutions of the gener- 
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alized Li~nard system with time delay 

(3.2) { x '  
y '  

where F: R -~ R, g: R§ • R --) R, 
bounded for every to e R+. 

= y - F(x),  

= g(t, x(t - r(t))), 

r: R+ o R +  are continuous functions with E~ 

PROOF. - We have that 

thus 

x e R .  

(y _ F(x))2 << 2y2 + 2F2(x) ~< 2x 2 + 2y2 + 2z2(~/x 2 + y2), 

I ( Y -  F(x), O) I <<. 21(x, Y)! + 2z(l(x, Y)I), x, y � 9  

I (0 , -g ( t , x ) ) l  <<.~(t)w(l(x,y)l), t e R + ,  x, y e R .  

Corollary 2.2 and Theorem 2.1 we deduce that 

s + w(s) + z(s) 

A repetition of the arguments of the proof of Theorem 3.1 enables us to deduce that 
the solutions of (3.2) are defined in the future. 

The continuability of solutions of (3.2) was also investigated by SUGm [68] bu Sug- 
ie's result is not applicable in the case 

{t > 0: ~(t) = 0} ~ 0. 

EXAMPLE 3.1. - Consider the system 

x ' = y - x l n ( l  + Ixl),  

y '  = x ( t  - 

where r ( t )=  rain {t, 1}, t ~ R§ 

x, y e R ,  

By Theorem 2.3 we have that z + w ~ [Ro. Since z + w is nondecreasing on R+,  by 

----  0 0  �9 

IF(x)l  z(Ixl), x e R ,  

Ig(t,x)l <~(t)w(Ix]) ,  t e R + ,  

Then the solutions of (3.2) exist in the future. 

THEOREM 3.2. - Suppose that there exists w, z nondecreasing on R+ satisfying the 
conditions of Theorem 2.3 and ~: R+-~R+ continuous such that 
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We can apply Theorem 3.2 with 

z: R+ o R + ,  z(r) = r ln(1  + r),  

w: R+ ~ R+,  w(r) = r ,  

but we can not apply the result of SUGIE [68 ] .  

We present now a continuation result for the functional differential equation 

(3.3) x '  = f ( t ,  x) + g(t, xt) 

where f :  R§ x Rn-->R n, g: R+ • Cq---->R n are continuous, C q = C([ -q ,  0], R ~) for 

q1>0, and x t ( s ) = x ( t + s )  for s e [ - q ,  0]. 
Assume that there exist r ~, w, z: R+ -oR+ continuous such that 

I f ( t , x ) l  <~r t ~ R §  x e R  ~, 

Ig( t ,x) l  <<.~(t)w(]lx]l), t ~ R + ,  x e C  q, 

where 

Ilxll-- sup {Ix(s)l},  x Cq. 
s e [ -q ,  0] 

We have the following result 

THEOREM 3.3. - Suppose that w e ~o is nondecreasing and z, w satisfy the condi- 
tion of  Theorem 2.3. Then the solutions of  (3.3) are defined in the future. 

P R O O F .  - We first show that the solutions of 

(3.4) r '  = r z(r) + '~(t) w(Hrt[I) 

are defined in the future. 
Suppose that there exists to I> 0 a continuous initial function r 0 : [ -  q, 0] .o  R+ and 

a noncontinuable solution r(t) = r(t, to, ro) of (3.4). Then r(t) .o  ~ as t --) T -  for 
some T > to since r(t) is nondecreasing for t I> to. 

If tl ~ [to, T) is such that 

r(t~)>1 sup r0(s) 
s ~ [ - q ,  0] 

we have that 

thus 

r( t ) ,  t < T,  

r'(t) = r + ,~(t)w(r(t)) , tl <~ t < T .  

By the hypothesis and by Theorem 2.3 we obtain that r(t) is bounded on [tl, T) which 
is a contradiction. 
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Let now z(t) be a solution of (3.3). If we define r(t) = I x(t)l we have 

r'(t) <<. r + ~(t)w(llrtH). 

Since the solutions of (3.4) are defined in the future we deduce by the comparison the- 
orem that x(t) is continuable in the future. 

This completes the proof of Theorem 3.3. 

COROLLARY 3.2 [45]. - Suppose that w ~ ~o is nondecreasing and z(r)= Lr, 
r �9 R+, for some L > O. Then the solutions of (3.3) are defined in the future. 

PROOF. - The result follows from Corollary 2.2 and the preceding theorem. 

4. - C o n t i n u a t i o n  resu l t s  for  d i f ferent ia l  e q u a t i o n s  in abs tract  spaces .  

In this section we will give a result on the existence and uniqueness of solutions of 
differential equations in Banach spaces of infinite dimension. 

Let X be a Banach space with norm I ' l  and let [0, a ] c R +  be a closed 
interval. 

THEOREM 4.1. - Let f:  [ O, a] x X--)  X be a continuous mapping satisfying the fol- 
lowing conditions: 

(i) for every bounded set B c X there exists a constant L(B) > 0 such that 

I f ( t , x ) - f ( t , y ) l  < ~ L ( B ) I x - y ] ,  t e [ 0 ,  a],  x , y � 9  

(ii) there is a map w �9 ~o and a continuous function r �9 C([0, a], R+ ) such 
that 

I f( t ,x) l  <~r t �9 [0, a],  

Then, for every xo �9 X, the differential equation 

(4.1) x' =f( t ,  x) 

x � 9  

with initial condition x(0 )=  x0, has a unique solution x: [0, a]--)X.  

PROOF. - By (i) we deduce (see [49] that the equation (4.1) with initial condition 
x(0) = x0 has a solution x(t) defined for t e [0, b) for some b e (0, a]. 

Let y( t )= Ix(t)l, t �9 [0, b). We have then that 

y(t + h) - y(t) 
lira sup <<. Ix'(t)l <- r t �9 (0, b), 

h ~ 0  + h 

and by the comparison method we obtain that 

y(t)<~r(t,O, Ixol), t e  [0, b), 
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where r( t ,  0, I xol) denotes the maximal solution of the differential equation 

r '  = r w(r) 

with initial condition r (0)  = I xo I (since w E ~o we have that  this maximal solution is 
defined on [0, a]). 

Let  M > 0 be such that 

r(t,O, Ixol)<~M, t e l 0 ,  b]. 

We obtain 

If(t,x(t))l ~<r sup {w(u)},  t e [ 0 ,  b), 
O<~u<<.M 

so that  there exists a constant M1 > 0 with 

If(t, x(t))l <~ M1, t e [0, b). 

We deduce that for 0 < tl ~< t2 < b, 

Ix(t2 ) -- X( t l  )t <~ M 1  it2 - tl r 

and therefore lira x(t) = xl ~ X exists. 
t ~ b -  

Hypothesis  (i) guarantees that  there exists a local solution, on some interval 
[b, b~ ) with 51 ~ a~ of (4.1) with initial condition x(b) = Xl. By the uniqueness we have 
that x(t) may be continued (in a unique way) up to b~. 

This shows that the maximal interval of definition of x(t) is [0, a] and the proof is 
completed. 

REMARK 4.1. - We see from the proof that condition (i) can be replaced by any con- 
dillon guaranteeing the local existence and uniqueness for (4.1). We can not exclude 
such condition since it is known that i f  for every continuous function f : [ 0 ,  a] • X 
--> X and every Xo e X the equation (4.1) with initial condition x( O) = xo has a solution 
defined in some neighborhood of zero, then X is finite dimensional (see GO- 
DUNOV[37]). We observe also that instead of[O, a ] we can consider R+ , obtaining that 
all solutions of (4.1) are defined in the future. 

COROLLARY 4.1 [2]. - Let f:  [0, a] • X--)  X be a continuous mapping satisfying the 
following conditions: 

(i) for every bounded set B r X there exists a constant L(B) > 0 such that 

I f ( t , x ) - f ( t , y ) l  <<.L(B) lx-y l ,  t E [ 0 ,  a ] ,  x, y e B ;  

(ii) there is a nondecreasing map w e ~o such that 

I f ( t ,x) l  <<.w(lxl), t e [ 0 ,  a ] ,  x e X .  

Then, for every Xo E X, the differential equation (4.1) with initial condition x( O) = 
= x0, has a unique solution x: [0, a] -~X.  



266 ADRIAN CONSTANTIN: Global existence of solutions, etc. 

REMARK 4.2. - Note that the monotonicity of w is not essential in Corol- 
lary 4.1. 

COROLLARY 4.2 [57]. - Let f:  [0, a] x X - ~  X be a continuous mapping for which its 
partial derivative with respect to the second argument, denoted by fg ,  exists and is 
continuous. Suppose that there exist a constant c > 0 and a continuous increasing 
function w: R+ ---)(1, ~ ), which satisfy the following conditions: 

I ds _ ~  
w(s) 

O 

IIf;(t,x)ll<.cln(w(Ixl)), t~[0, a], x ~ X .  

Then, for every Xo e X, the differential equation (4.1) with initial condition 
x(O) = xo, has a unique solution x: [0, a] --)X. 

PROOF. - We have that  the derivative f~ is bounded on every bounded set B c X 
thus condition (i) of Theorem 4.1 is satisfied. 

On the other hand we have 

If(t, x) I <. If(t, O) I + sup {llf~(t,  Y)ll}lxl <- 
lYl <~ Ix] 

< max{I f (s ,O)l}+c{ln(w(Ixl ) )} lx l=M+c{ln(w(lx l ) )}[x  L t~[0, a] x ~ X .  
s e [ 0 ,  a] ' ' 

If  w is bounded on R+ by a constant K > 0, we obtain that  

l f ( t ,x) l  < ~ M + c l n ( K ) l x l ,  t e [ 0 ,  a] ,  x e X ,  

and thus condition (ii) of Theorem 4.1 is fulfilled. 
If  w is unbounded on R+,  we choose (as ALEXANDROV and DAIRBEKOV did in [2]) a 

sequence 0 < rl < r2... such that  w(rl ) > 1, w(rj ) <~ r] and In (rj) > j In (rj _ 1 ), J >i 2. 
We have then 

sln(w(s)) j=2 sln(w(s)) >~ j=2 sln(w(ry)) >~ j=2 2sln(rj)  
rl r j -1  r j -1  r j -1  

) 1 1 i> 1 - 1  
= 2 ln(r j )  2 j- = ~ 

and (in view of Lemma 2.1) condition (ii) of Theorem 4.1 is fulfilled. 
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5. - Global exis tence  o f  so lut ions  o f  differential  inclusions.  

We consider now the problem of global existence of solutions of the differential 
inclusion 

(5.1) x' �9 F(t, x) 

where F is a multivalued function from R§ x R ~ into the nonempty, closed and con- 
vex subsets of R ~. 

By a solution of (5.1) with an initial value (to, x0), to I> 0, x0 �9 R ~, we mean an abso- 
lutely continuous function x(t): [to, T] ~ R n such that x(to) = Xo and x ' ( t ) � 9  F(t, x(t)) 
a.e. on [to, T]. 

In our discussion we will make use of the following existence result  of FILIP- 
POV [35, page 83] which is an extension of a theorem of DAVY [29]: 

THEOREM 5.1 [35]. - Let a multivalued function F: [to, tl ] X R n satisfy the follow- 
ing conditions: 

(A1) the set F(t, x) is nonempty, closed and convex for all x �9 R ~ and for 
t �9 [to, tl] a.e.; 

(A2) F(t, x) is upper semicontinuous in x for a.e. t �9 [to, tl]; 

(A3) F(t, x) is measurable in t for all x �9 R~; 

(A4) there exists a summable function re(t) such that IF(t, x)l ~< m(t) for 
(t, x) �9 [to, tl ] x R ~. 

Then the differential inclusion (5.1) has a solution on [to, tl]. 

In the preceding theorem we denoted 

I UI = sup { lul }, where U is a subset  of R n. 
u ~ U  

THEOREM 5,2. - Suppose that the multivalued function F: R§ x R ~ satisfies (A1)- 
(A3) on every compact subinterval of R+. I f  there are two functions w, z �9 C(R. , R+ ) 
satisfying the conditions of Theorem 2.3 and r ~ �9 Ll~oe (R+, R + ) such that 

IF(t ,x)l  <~r  t � 9  x � 9  n, 

then for any initial value (to, xo ), the system (5.1) has a solution defined in the future 
and satisfying the given initial condition. 

PROOF. - The technique of our proof is adapted from BULGAKOV[ll] and 
SEAH [61]. 

Let  t ~ = t o + i , i = l ,  2 . . . . .  
We first consider on [to, tl] the problem 

(5.2) X' �9 F1 (t, x) ,  x(to) = xo, 
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where 

Fl(t,  x) = F(t, x) if Ix[ ~ K(tl, Xo), 

xK( t l , xo ) i  if ]xl > 
F I ( t , x ) = F  t, Ix[ K(tl, XO ) . 

/ 

Here  K(tl, Xo) > 0 is such that 

K(tl, Xo) tl 

~,,(s~ > (~(s) + ~(s))ds. 
].'Co] + 1 to 

We can make such a choice since by Theorem 2.3 and Theorem 2.1 we have 
that 

o ~  

f 
iXo[ + 1  

ds 
w(s) + z(s) 

From the definition of F 1 we  can deduce that 

]Fx(t,x)[ ~< (r + ~(t)) sup {w(]x])+z([x] )} ,  
Ix[ ~< K(tl, xo) 

te[ to ,  tl], x ~ R  ~. 

I t  can be easily seen that F1 satisfies conditions (A1)-(A3), thus, by Theorem 5.1, 
problem (5.2) has a solution x~ (t) on [to, tl]. 

Let  us show that [xl(t)[ ~< K(tl, Xo) for a.e. t e [to, tl]. 
Suppose that  there exists Te( to , t l ]  such that IX l (T)  I >K(t~,xo). Since 

]xl (to)[ = [xo] < K(tl, Xo) and xl (t) is continuous on [to, T], then exist t 1, t ~ ~ (to, T) 
such that 

Ix l ( t l ) l  = ]xo[ + 1, Ixl(t2)] = K(tl, Xo) 

and 

IXo[ + 1 ~  < ]xl(t)] <~K(tl,xo), tE[ t l ,  t2]. 

We have the relation 

x~(t) ~ Fl(t, xl(t)) = F(t, xl(t)) a.e. on [t 1, t2].  

In view of the hypothesis we obtain that  

]xi( t) l  <<-(r247 a.e. on [tt, t2].  

We deduce 

[xl (t + h)[ - [xl(t)[ 
lira sup <<. (r + z([xl(t)[)) a.e. on [t 1, t2]. 

h ~ O  + ~t 
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It  is obvious that  the function 

( t , x ) - - ) ( r162  t e R + ,  x e R  ~, 

satisfies the Carath~odory condition [42, page 28] and by comparison theorem of Con- 
ti in the case of solutions in the sense of Carath~odory (see [42, page 29]) we deduce 
from the preceding differential inequality that  

(f t ) lxi(t)l  ~< W -1 (r + r , 
t { 

t �9 It i, t2],  

where 

W:(0, ~ )  --*R, 

T 

W(r) = I 
{xol + 1  

ds 
w(s) +z(s)" 

In particular, we would obtain for t = t 2 that  

K( t l ,  xo) t 2 tl 

I J f w(s) + z(s) <" (r + ~(s))ds <~ (r + ~(s))ds 
rxol + 1 t 1 to 

which is in contradiction with the way in which we defined K(tl, xo). 
We have so that Ix~(t)l <<. K(ti, Xo) a.e. on [to, tl] and we obtain 

x; (t) e F1 (t, Xl (t)) = F(t, xl (t)) a.e. on [to, ti ]. 

Consider now the problem (5.3) obtained from (5.2) by replacing tl by t2, to by tl,  
x0 by xl (tl) and K(tl, Xo) by a constant K(t~, xl(t l))  > 0 such that  

K(te, xl  (tl)) t2 

ds 
f w(s)+z(s)  > I  (r 

I x i ( h ) l  + 1 tl 

+ ~(s)) ds. 

Proceeding as before we obtain an absolutely continuous function xe (t) on [tl, t2] 
such that  x2 ( t , )  = xl (ti) and 

x~ (t) e F(t, x2 (t)) a.e. on [tl, t2 ]. 

Continuing this process we prove the existence of absolutely continuous functions 
xi(t) on [ t i -1,  ti], i = 1, 2, ... with xi(ti-1) = x i -  l ( t i - , ) ,  i I> 2, and xl(to) = Xo, such 
that 

xi' (t) e F(t, xi (t)) a.e. on [t~_ i, ti]. 
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The function x: [to, ~ ) - o R  ~ def'med by 

x(t) = x~(t), t e [ t i-  1, t i] ,  

is a solution of (5.1) defined on [to, ~ )  and we have that  x(to)= Xo. 
This completes the proof of Theorem 5.2. 

THEOREM 5.3. - Ubder the hypotheses of Theorem 5.2 we have that any solution of 
(5.1) exists in the future (there is a continuation in the future). 

PROOF. - Let  x(t) be a solution of (5.1) defined on [to, T]. 
By the preceding method we are able to construct a solution y(t) of (M) on [T, ~ ) 

satisfying the initial condition y(T) = x(T). 
We have that  u: [to, ~r )---~R ~ defined by 

satisfies 

u(t) = x(t) ,  t ~ [to, T], 

u(t) = y(t) ,  t ~ [T, ~ )  

u ' ( t )  eF( t ,  u(t)) a.e. on [to, ~ ) .  

If  x(t) is a solution of (5.1) on some interval [to, T) with T e R + ,  we observe 
that  

Ix'(t)l <~ (r + ~(t))(w(Ix(t) 1) + z(Ix(t)l)) a.e. on [to, T). 

From the preceding relation we can easily deduce that  Ix(t) l is bounded on [to, T) 
using the comparison method (as we did in the proof of Theorem 5.2). 

We obtain that  for some constant K > 0 we have 

Ix'(t)l <. K(r + ~(t)) a.e. on [to, T). 

By the preceding relation we deduce that  for to < tt < t2 < T, 

t~ 

Ix(t2) - x ( t l ) l  ~< K [ (r + ~(s)) d s .  
tl 

Therefore x( t2 ) - x (  t l  ) ~ 0 a s  t l  , t2 ---> T which implies that  we can define 

lira x(t) = x(T) 
~ - .  T -  

obtaining thus a solution of (5.1) on [to, T]. 
In a similar way to the first part  of the proof we show that  this solution is continu- 

able in the future. 
This completes the proof of Theorem 5.3. 
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COROLLARY 5.1 [72]. - Suppose that the multivalued function F: R+ x R ~ satis- 
fies (A1)-(A3) on every compact subinterval of R+. I f  the inequality 

IF(t,x)l <~r162 t e R + ,  x ~ R  ~, 

holds, where r ~ E L~or R+ ), then any solution of (5.1) exists in the future. 

COROLLARY 5.2 [72]. - Suppose that the multivalued function F: R+ x R ~ satis- 
fies (A1)-(A3) on every compact subinterval of R+. I f  the inequality 

IF(t,x)l <~r t ~ R + ,  x e R  n, 

i ds - ~  
w(s) 

1 holds, where r ~ Llor R+ ) and w ~ C(R+,  R+ ) with w(r) > 0 for r I> ~ > 0, then 
any solution of (5.1) exists in the future. 

REMARK 5.1. - Corollary 5.2 improves a result of SEAH [61] which asks for the 

supplementary condition f r  < ~ . 
0 

COROLLARY 5.3 [72]. - Suppose that the multivalued function F: R+ x R ~ satis- 
1 ties (A1)-(A3) on every compact subinterval of R+. I f  there exist r ~b e Lloc(R+, R+ ) 

and a monotone nondecreasing function w e C(R+ , R+ ) with w(r) > 0 for r >i ~ > 0 
satisfying 

IF(t,x)l <.r162 t ~ R + ,  x e R  ~, 

z o  

then any solution of (5.1) exists in the future. 

COROLLARY 5.4. - Let the multivalued function F: R§ x R ~ satisfy conditions 
(A1)-(A3) on every compact subinterval of R+. I f  there exist r ~ e Llloc(R+, R+ ) and 
a monotone nondecreasing function w e C(R+, R+ ) with w(r) > 0 for r >I ~ > 0 
satisfying 

IF(t,x)l <<.r l ,  t ~ R + ,  x E R  ~, 

then any solution of (5.1) exists in the future. 
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EXAMPLE 5.1. - Any solution of the differential inclusion x' e F(t, x) exists in the 
future, where 

F(t ,x)=t( t2+ Ixiln(Ix I + l ) ) + U ( t , x ) ,  t eR+,  x e R  ~, 

with U(t , x )={yeR~:  lYl <~ Ix[ +1},  t eR+,  x e R  ~. 
Indeed, we have that 

IF(t,x)l <--ts+tlxtln(Ixl + 1 ) +  Ixl + t ,  tER+, x e R  ~, 

and we are able to conclude in view of Corollary 5.4. 

6. - Global existence and uniqueness of  solutions of  McShane stochastic inte- 
gral equations. 

We will use the techniques developped in the previous sections in order to give a 
result on the global existence and uniqueness of the solution processes of the stochas- 
tic integral system 

(6.1) 
t 

X i ( t )  : 9t i( t )  +2~1"= I g](S, x(s))dzj(s) + 
0 

t 

+ ~ fhjk(s, x(s))dzj(s)dzk(s), 0 <<. t, i= 1, ..., n 
j , k = l  

0 

where the stochastic integrals are interpreted as McShane stochastic integrals. 
In the special case in which ~ is not depending on time t we have the stochastic 

differential system 

(6.2) dx i(t) = ~ gj (s, x(s)) dz~ (s) + 
j = l  

+ ~ h ~jk (s, x(s)) dzj (s) dzk (s), 
j , k = l  

0<~t, i =  1, . . . , n  

with the initial condition 

(6.3) xi(0) = a t, i = 1, ..., n .  

Let (t~, F, P) be a complete probability space and let {Ft, 0 <~ t} be a family of 
complete ~-subalgebras of F such that if 0 ~< s < t then F~ c Ft. 

Let L2 be the space of all random variables y: ~ --~ R with finite L2-norm II II and 
let L~ be the space of all random variables x: ;~-~ R ~ with finite norm I1" I1~, 

Ifxlt -- Irx lt 2, 
/ = 1  

x = (xl, ..., x~) e L  ~ 2 "  
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We say that the real valued second order stochastic process z satisfies a K-condi- 
tion if z is adapted to the Ft (i.e. z(t) is Ft-measurable for every t I> 0) and 

IE[(z( t )  - z(s))P/Fs]]  <- K i t  - s I a.s. whenever 0 ~< s < t, p = 1, 2, 4.  

An example is a Wiener process with respect to the Ft ,  0 <<. t. 
We refer to ELWORTHY [34] and MCSHANE [62] for the basic elements of the Mc- 

Shane stochastic calculus theory. We remind only that if f :  [0, a] --) L2 is a measurable 
process adapted to the Ft and if t--)[If(t)l[ 2 is Lebesgue integrable on [0, a] 
then [34, 62], if zl and z2 satisfy a K-condition, the McShane integrals 

a a 

o o 

exist and the following estimates hold 

ii  fa} 112 ff(s)dz (s) <. c f llf(s)jl ds , 
o 

[ f ( s ) d z l ( s ) d z 2 ( s )  <~ C I[f(s)N2ds 
o 5 
J 

where C = (2 + 8Ka)  1/2. 

Let C[0, a] denote the space of all processes x: [0, a] --, L~ which are continuous 
and adapted to the Ft ,  0 <<. t <<. a. 

A solution to (6.1) on [0, a] is a process x e C[0, a] which satisfies (6.1) on 
[0, a]. 

In this section we sill use the following result 

LEMMA 6,1. - Le t  w, z: R+ ---> R+ be cont inuous ,  w(x )  > 0, z(x)  > 0 for  x > 0 and  

suppose that  

1 r 

lim ds - :r rl'~nn~ w( s ) - ~ " 
r--,o w(s)  ' 

r 1 

I f  there exist  constants  L ,  M > 0 such that  

z(r) <<. L w ( r )  - ~  , 

1 

r > 0 ,  
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then 
1 ; 

lim f ds _ ~ ds 
r-~O W ( S )  -~ Z(8)  ' rlinl~ W ( 8 )  -[- Z(S) 

r 1 

- -  O 0  

PROOF. - By Theorem 2.3 we have that  

r 

j " ds 
l i ra  w(s)  + z(s) 

1 

Let us define 

wl, zl:(0, ~ ) ~ R + ,  

We see that 

2 1 Wl(S)=S w ( ~ ) ,  

1 1/r 

( ' )  w(s)  + z(s) wl (s) + zl (s) ' 
r 1 

By the relation 

1 

z(r) <<. Lw(r) f ds 

1# 
1 1 ds 

Zl(-r) <~LWl(7) I wl(s) 
1 

we have that 

We obtain in view of Theorem 2.3 that 

zl(s) = s 2 z ( 1 ) ,  

0 < r < l .  

and by (o) we deduce that  

+ Mw(r), 0 < r ~ 1, 

(1) - - + M W l  ~ , 0 < r ~ < l .  

1/r 

lim I ds 
r-*O W1(8 ) -[- Zl(S ) 

1 

lim I ds 
r-.o w( s )  + z(s) 

This completes the proof of Lemma 6.1. 

s > 0 .  

We assume that 

(H1) the noise processes zj, j = 1, ..., r satisfy on R+ a K-condition; 
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(H2) i f f  is any one of the functions g), h)k: R+ • L~---)L2, i = 1, ..., n; k = 
= 1, ..., r, thenf ( s ,  x) is continuous in x on L~ for every s a R+ and for any x a C[0, a], 
the process t ---~f(t, x(t)) is measurable and Ft-adapted with t --> [If(t, x(t))l[ ~ bounded 
on [0, a] for a > 0; 

(H3) there exist w, z: R+ ---)R+ continuous, nondecreasing with w(r) > O, 
z(r)>O f o r t > 0  and 

lira ~ ds - ~ lira ~,,(~ds oo 

w sj ov sj 
r 1 

such that for some constants L, M > 0 we have 

1 

r > 0 ,  

and 

i]gj(t, x) -gj(t,y)ll2< w(llx-yl] ), i = l , . . . , n ,  j =  l , . . . , r ,  t a R . ,  x, yaL , 

]lh~k(t,x)--hjk(t,y)][2<~Z(llx--yll~), i = l , . . . , n ,  j , k = l , . . . r ,  t aR+,  x, y a L ~ ;  

(H4) the initial condition ~ belongs to C[0, a] for every a > 0. 

THEOREM 6.1. - Let us suppose that the hypotheses (H1)-(H4) are satisfied. Then 
there exists a unique solution of (6.1) on R+. 

PROOF. - Let  a > 0. We will first prove the existence of a solution of the equation 
(6.1) on [O, a]. 

We define the operator T: C[0, a]---) C[O, a] by 

t t 

j = l  j , k = l  
0 0 

O<t<<.a. 

Let  

t e [0 ,  a] ,  i = 1, . . . ,  n ; j  = 1, . . . r  t E [0 ,  a] ,  i = 1, . . . ,  n ;  k = 1, . . . r  

and denote 

Q = 3n sup {[]~(t)[]2n } + 12nC 2 (r 2 + r 4)Pa. 
t e [ 0 ,  a ]  

By Lemma 6.1 we have that the maximal solution (which we will denote again 
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re(t)) of the differential equation 

m'(t) = 6nr2C2w(m(t)) + 6nr4C2z(m(t)) , 0 <. t,  

with initial condition m(0) = Q is defined on R+. 
We consider the set 

B = {x ~ C[0, a]: Hx(t)ll~ <~ n( t ) ,  o ~< t z a}.  

The set B is a closed, bounded and convex subset of the Banach space C[0, a]. 
Let us show that T(B)r B. For x e B we have that 

[l I~](s, x(s))dzj(s)' 
0 fit 1 I/2 ~< c Ngj(s, ~(s))l[ ~g~ 

t ]1/2 
<~c [(llgr o)Ll+llgj(s,O)LI)2ds 

o" 

t }1/2 
~< C [ (21lgj(s, x(s)) - gj(s ,  o)[p + 2[[gj(s, 0)ll2)ds 

d 

[( 1 lj2 <~ C w(llx(s)l[~)ds + 2Pt , 
d 

O<<.t<a, 

and in a similar way we obtain that 

t 

I hjk (s, x(s)) dzj (s) dzk (s) 
0 

t }1/2 
<~ C I z(l[x(s)[l~) ds + 2Pt 

J d 
O <<. t <<. a. 

We deduce that 

ft }1/2 
IlTx(t)l]~ <<. Vn  sup II~(t)N~ + V~-nrC w(llx(s)il~n)ds + 2Pt + t e [0, a] 

t 

+ ~r o "[ z(llx(s)l[~)ds + 2Pt} t/2, O<.t<.a,  
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and since x e B we obtain that  

tlTx(t)l[~ < fN/~ {/ sup I[~(t)ll~ § v~rc  w(m(s))ds 
t e [0, a] 

l /2  

+ 2Pa I 
+ 

+ V~-nr2C z(m(s))ds + 2Pa ~< 3n sup Ila(t)l]~ + 
te[0, a] 

t 

+ 12nC 2 (r 2 + r 4 ) Pa + 6nr 2 C 2 f w(m(s)) ds + 6nr 4 C 2 f ds = 
0 0 

t t 
= Q + 6nreC2 ] w(m(s))ds + 6nr4C 2 f z(m(s))ds 

0 0 

= re( t ) ,  0 ~< t ~< a .  

We proved so that  T(B)r B. 
The same method enables us to deduce that  

t t 
!rTx(t) - Tx(s)ll~ ~ 6nr2C 2 f w(m(s))ds + 6nr4C 2 f z(m(s))ds + 

s 8 

+ 3 n  sup Ha(t) - ~(s)lI~ + 12nC 2 (r e + r4)P(t - s), 
te[0, a] 

O<~s<.t<<.a, 

thus the set T(B) is equicontinuous. 
For  x, y e B we have that  

f t  }1/2 
tfTx~(t) - Ty~(t)ll <. c ~ Ilgff(s, x(s)) - gj~(s, y(s))ll ~ 

j = l  
+ 

+ c  ~ tlhjk(S,X(S)) -- hjk(s, y(s))tf 2]'/2, 
j , k = l  

O<.t<<.a, 

so that  (taking into account (H2) and (H3)) T is continuous by the Lebesgue conver- 
gence theorem. 

Applying Schauder 's  fixed point theorem (see also [50]) we deduce that  T has a 
frxed point in B. This fixed point is a solution of (6.1) on [0, a]. 

Let  us now prove the uniqueness of solutions (6.1). 
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Suppose that  there exist two solutions x, y e C[0, a] of (6.1) on some interval 
[0, al] with 0 < al ~< a. We have then that  

llx~(t)- y~(t)ll < c 
j = l  I llgj(s, x(8)) - gj (8, y(8))l121~/~ + 

}1,, t t + c  ~ [w( l lx ( s ) -  y(8)ll~)~s + [z(LIx<s)- y(s)ll~)d8 , 0 ~ t < al, 
j,k=l o 

thus 

t 

IIx(t) - y(t)ll~ ~ 2nC2r 2 f w(LIx(s) - y(s)Ll~)ds § 
0 

t 

+ 2nC2r41 z(llx(s)- y(s)ll~)ds, 
0 

O <<. t < al . 

Since x(0) = y(0), in view of Lemma 6.1, we deduce by Osgood's uniqueness crite- 
rion (see [51]) that  

]Ix(t) - y(t)ll~ = 0,  0 ~ t ~ a 1 . 

Thus equation (6.1) has a unique solution on [0, a] for every a > 0. We deduce that  
(6.1) has a unique solution on R+.  

This completes the proof of Theorem 6.1. 

REMARK 6.1. - Theorem 6.1 enables us to give a bound for the unique solution of 
equation (6.1): 

IIx(t)ll~ ~ re(t), o ~ t ,  

REMARK 6.2. - For w(t) = z(t) = Mt, t e R§ (M > O) we obtain the existence and 
uniqueness theorem of Angulo Ibanez and Gutie~rez Jaimez [3]. 

When ~ is not depending on time we obtain the existence and uniqueness theorem 
of McShane [62]. Note also that our requirements are weaker is some aspects than 
those made in [34] (Elworthy requires Lipschitz conditions on gj and hij, k). 

7 . -  Successive approximations to solutions, global existence and uniqueness 
for Ito stochastic differential equations. 

Let  (~, F,  P) be a complete probability space and let {Ft, 0 <<- t} be a family of 
complete ~-subalgebras of F such that  Fs r  ff 0 <~ s <<. t. 



ADRIAN CONSTANTIN: Global existence of solutions, etc. 279 

Let W(t), t I> 0, be the m-dimensional (Ft)-Brownian motion on (~9, F, P, (Ft)). 
Let f(t ,  x) be an R~-valued measurable function defined on R+ • R ~ and let g(t, x) = 
= (g/(t, x))/= 1, m, where each gi (t, x), i = 1, m, is a R~-valued measurable function on 
R+ X R ~. 

We consider the Ito stochastic integral equation 

(7.1) 

t t 

X( t ) :Xo  + f f(s ,X(s))ds + fg(s,X(s))dW(s), 
0 0 

where Xo is an Fo-measurable, R~-valued function independent of the Brownian mo- 
tion W(t), t >i O, and with EIX o 12 < ~. 

Equation (7.1) is equivalent to the stochastic Ito type initial value problem 

(7.2) dX(t) = f(t, X(t)) + g(t, X(t))dW(t), 

X(0) = X0 a.e. 

Let us consider the sequence of stochastic processes which are defined by the suc- 
cessive approximations 

t 

(7.4) X~(t)=Xo+ If(s, Xi_l(s))ds+ Ig(s, Xi_l(s))dW(s), i = 1 , 2  . . . . .  
0 0 

As ITO [48] proved, the convergence of the sequence of stochastic processes 
dedfined by the successive approximations (7.4) is guaranteed under the conditions 
(L > 0 is a constant) 

If(t, x ) - f ( t ,  Y)I + Ig( t, x) -g( t ,  Y)I ~ LIx -Y]  (Lipschitz condition), 

If(t, X)I 2 + Ig(t, X)l ~ <~ L2(1 + Ix] s) (growth condition). 

YAMADA [75] proved the convergence of successive approximations to solutions 
under more general condictions than Ito's and TANIGUCHI [71] extended Yamada's 
result. 

We will show that the results of the previous sections enable us, using a method 
similar to the method of Taniguchi [71], to give more general conditions under which 
on any finite interval [0, T], the sequence of stochastic processes defined by the suc- 
cessive approximations (7.4) converges uniformly to a unique solution of (7.1) (by 
uniqueness we mean pathwise uniqueness, i.e. if X(t) and Y(t) are two solutions, then 
P( sup { IX(t) - Y(t) I } = 0) = 1, and not uniqueness in the law sense, i.e. solutions 

t e  [0, T] 
have the same distributions; note that pathwise uniqueness is stronger thatunique- 
ness in the law sense see YAMADA and WATAN~E [74]). 
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THEOREM 7.1. - Suppose that the following conditions are satisfied: 

(i) the functions f(t ,  x) and g(t, x) are measurable functions on R+ • R ~ and 
continuous in x for each fixed t E R+, with If(t, O)I, I g(t, O) l 2 e Lloc (R+, R+ ); 

(ii) there exist r ~ ~ L~oc(R+ , R+ ) and w, z e C(R+, R+ ) nondecreasing, 
w(r) > O, z(r) > 0 for r > 0 and 

1 T 

lim I ds - ~  lim I - - -  
~-~o w(s )  ' 

r 1 

ds 
w(s)  

such that for some constant L > 0 we have that 

1 

and 

r > 0 ,  

and similarly 

EIg(t,X)12<<.2~(t)z(EIXI2)+21g(t,O)l 2, O<. t< .T .  

Fix T > 0. We will prove first that {EIXi(t)12}, i >t 0, are uniformly bounded on 
[o, T]. 

The conditions imposed on w and z guarantee (in view of Lemma 6.1) that the dif- 
ferential equation 

u '  = 6(1 + T)(r + ~(t)z(u)) + 6(1 + T)(If(t, 0)12 + Ig(t, 0)12 ) 

with initial condition u(O)=uo>3EIXol  2, has a solution u(t) (in the sense of 
Carath~odory) defined on R+. 

O~t<<.T,  

successive approximations (7.4), converges uniformly a unique solution of (7.1). 

P R O O F .  - If XeL2( t~ ,  R n) w e  have that 

Elf( t ,  X)I 2 <. 2Elf( t ,  X) - f(t ,  0)12 + 2If(t, 0)12 <<. 

<. 2r 2) + 2If(t, 0)12, 

E I f ( t , X ) - f ( t , Y ) 1 2 < ~ r  t e R + ,  X, Y e L 2 ( t ~ , R ~ ) ,  

E Ig ( t ,X ) -g ( t ,Y )12<<.~ ( t ) z (E IX-Y I2 ) ,  t e R + ,  X, Y e L 2 ( t ~ , R n ) .  

Then, for any finite interval [0, T], the sequence {Xi(t)}, 0 <~ t <<. T, defined by the 
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We have that 

E]X~ (t)l 2 <~ 3E[lXol 2 I; ,2 12] f(s ,  Xo)ds ' + g(s, Xo)dW(s) <~ 
0 0 

t 

~< 3E[Xo 12 + 3TE f !f(s'X~ + 3E f [g(s, Xo)i2ds <~ 3E[Xoi 2 + 
O 0 

t 

+6(1 + T) f (r 2) + '~(s)z(EIXol 2) + If(s, O)l ~ + Ig(s, O)12)ds, 
0 

for all t e [ 0, T ]. 
Since 

u(t) > EIXo] 2, t >~ O, 

thus 

Let us prove by recurrence that 

EIX~(t)12<~u(t), t e[0,  T], i =  1,2, .... 

Suppose this is true for i = k and let us prove it for k + 1. 
We observe that 

EIXk + l (t)l 2 <<. 3E[  IXo 12 I I 12+ ]i(s,x~(s))ds + ]~(8, Xk(s))dW(s) 
0 0 

<~ 3EIX  o 12 + 6(1 + T) f (r + 
0 

t 

~< Uo + 6(1 + T) ] (r w(u(s)) + ~(s) z(u(s)) + 
0 

+lf(s,O)12+ Ig(s,O)12)ds=u(t) ,  t~  [0, T], 

E]Xl(t)]2<~u(t), r e [ 0 ,  T]. 

we have that 

t 

3EIXol 2 + 6(1 + T) f (r 2) + ~(s)z(EIXol 2) + If(s, 0)] ~ + Ig(s, 0)12)ds < 
0 
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t 

+6(1 + T) f ~(s)z(EIXk(s)l 2) + V(s, 0)12 + Lg(s, O)l~)ds 
0 

t 

< Uo + 6(1 + T) I ( r  + ~(s)z (u(s ) )  + If(s, 0)] 2 + ]g(s, 0)12)ds = u(t )  
0 

for t e [0, T], thus 

EIXk + ~(t)] 2 <. u ( t ) ,  te[0, T]. 

We proved so by recurrence that  

WtX~(t)f 2 <. u(T), t ~ [0, T~, 

Define now the functions 

a~n(t)  = E I X ~ ( t )  - X~(t)12, 

b~( t )=  sup {%q( t ) } .  
p ~ q > ~ n  

i = 1 , 2  . . . . .  

We will show that  the sequence {b~(t)} has a subsequence {b~j(t)} which con- 
verges uniformly on [0, T] to a continuous function b(t). 

Since {E IX~ (t)t 2 } is uniformly bounded on [0, T l, there exists a constant M > 0 
such that  

a,~( t )<<-2E(IX~( t )12+ I X m ( t ) [ 2 ) < M ,  t e [0, T], 

(we can take for instance M = 4u(T)) .  
Observe that  

lam~(t) - a .~ ( s )  I = [E[X.~(t)  - X~( t ) l  2 - E I X ~ ( s )  - X~(s)121 = 

= E ( I X ~ ( t )  - X~(t)I  + IXm(s) - X~(s ) l ) [  IX.~(t) - X~( t ) l  - IXm(s) - X~(s) l  l << - 

< ~ E ( I X . ~ ( t ) - X ~ ( t ) i  + t X . ~ ( s ) - X ~ ( s ) l ) ( t X ~ ( t ) - X . ~ ( s ) l  + t X ~ ( t ) - X ~ ( s ) t )  

<~ [ E ( I X ~ ( t )  - X~(t)[ + IXm(s) - X~(s)I)211/2[E(2 IX.~(t) - X.~(s)l  2 + 

+2 IX~(t) - Xn(s)12)] 1/2 <~ [E(2 Ix~(t) - xn(t)12 + 2 IXm(s) - Xn(s)12)] 1/2. 

�9 [ E ( 2  I X m ( t )  - X , ~ ( s ) t  2 + 2 Ix~(t) - X ~ ( s ) 1 2 ) ]  1/2 = 

= 2[a.~ (t) + a..~ (s)] 1/2 [E( IXm (t) - X~  (s)] 2 + I X  n ( t )  - X n (8)] 2 )]1/2 
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On the other hand 

If I E I X ~ ( t ) - X ~ ( s ) [ 2 < E  f(z ,  Xm_1(r))dz 

t 

t ]2 
8 

~ 2 T S f  [ f ( ~ ' , X m _ I ( T ) ) t 2 d T - ~  2 S f  Ig(T, X m _ l ( 7 ) ) [ 2 d T ~  
8 8 

t 

~< 4(1 + T) I ( If(z' 0) i2 + I g(v' 0) t 2 + r w(u(~)) + ,~(z) z(u(v))) dr <<. 
8 

~< 4(1 + T)(u(t) - u(s)),  O < s < t < T ,  

~< 2(1 + T) ] EI f ( s  , Xm-1 (s)) - f (s ,  Xn_l(s))12ds + 
0 

t 

+2 f EIg(s,  X.~-I (s)) - g(s, Xn - 1 (8))12ds <<. 
0 

[2) 
+ f (g ( s ,  X m _ l ( s ) ) - g ( s , X ~ _ l ( s ) ) ) d W ( s )  < 

0 

so that we obtain 

I a.~ (t) - a.~ (s) l <<. 8 ~ + T)(u(t) - u(s)) 1/2, 0 <<. s <~ t <<. T .  

We deduce that 

0 <<. b.(t)  < M ,  0 <<. t <- T ,  

[b~(t ) -b~(s)]  < . 8 V M ( ( l  + r ) ( u ( t ) - u ( s ) )  1/2,  O<<.s<-t<<-T. 

By the theorem of Ascoli-Arzel~ (see [42, page 2]) there exists a subsequence {b~j(t)} 
which converges uniformly on [0, T] to a continuous function b(t). 

If m, n >i nj+l we have that m -  1, n -  1 >I nj, so that 

a.~.(t) = EIX.~(t)  - X~(t) l ~ <~ 

~ 2E ~ (f(s, X~_~(s)) -As ,  X~_I (s))) ds + 
0 



284 ADRIAN CONSTANTIN: Global existence of solutions, etc. 

t 

~< 2(1 + T) I (r -X~_~(s)l  2) + ~(s)z(EIX,~_~(s) -Xn_l(S)12))d8 <~ 
o 

t 

~< 2(1 + T ) I  (r + ~(s)z(bn~(S)))ds, 
o 

O <<. t <<. T , 

thus 

t 

b~j +~ (t) < 2(1 + T) ] (r w(bnj (s)) + ~(s) z(b,~j (s))) ds, 
0 

O<<.t<T. 

Letting j ~ ~,  by the continuity of w and z and the dominated convergence theo- 
rem of Lebesgue, we obtain 

t 

b(t) <~ 2(1 + T) f (r w(b(s)) + r z(b(s))) ds, 
o 

O<~t<~T. 

Taking into account Lemma 6.1 and Osgood's 
102]), we deduce that b(t)= 0, t E [0, T]. 

Observe now that if m, n >t nj + 1, then 

uniqueness criterion (see [60, page 

E (  sup {IXm(t)-Xn(t)12})<~ 
O < ~ t ~ T  

 2 (sup I 21 § 

+ Is 12)t sup [g(s, x~_~(s ) )  - g(s, X~_~(s)) ]dW(s)  <. 

T 

<- 2T ] E If(s, Xm- l (s)) - f(s,  Xn_ l (s) )12 ds + 
o 

T 

+ 2 ] EIg(s, Xm_l(s)) - g(s, X~_l(s))12ds <~ 
o 
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T 

~< 2(1 + T) f r  - X . _ l ( s ) 1 2 ) d s  + 
o 

T 
r 

+2(1 + T) J ~(s)z(E]Xm_l(s) - X~_ l(s)i~)ds <~ 
o 

T 

~< 2(1 + T) I (r + ~(s)z(b~(s))) ds ~ 0 
o 

as j ~ ~,  thus {X~(t)} is a Cauchy sequence in the Banach space B of functions 
h(t, ~): R§ x f ~ R  ~, measurable in m for each fixed t e [0, T], continuous in t for 

a.e. oJ e ~ and with 

E(  s,p (ix(t,  < ; 
O<~t<~T 

this is a Banach space (see RODKINA [59]) with the norm 

We deduce that there exists a stochastic process X(t), 0 ~< t ~< T, such that 

as i --~ ~ .  

Furthermore 

Xo + f(~, X(s))ds + g(s, X(s))dW(s) = 
o o 

= o 

* I (g(s, N -  ~ (s)) - g(s, X(s))) dW(s) 
o 

T 

<.< 2T f E l l ( s ,  X~_ I (s)) - f (s ,  X(s))]U ds + 
o 

T 

+ 2 f E]g(s, Xi - 1 (s)) - g(s, X(s))l 2 ds <~ 
o 

:~_ l (s)) - f(s ,  X(s))) ds + 

<~ 
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T 

~< 2(1 + T) i r - Z(s)12)ds + 
o 

T 

+2(1 + T) I ~(s)z(EIX ~ 
o 

as i --* ~,  thus 

t t 

X(t) = Xo + I f ( s ,X(s ) )ds  + I g(s, X(s))dW(s),  
o o 

- l (s) - X(s)12)ds ~ O 

O<~t<.T. 

We proved so that the sequence of successive approximations converges uniformly 
to a solution of (7.1) on [0, T]. 

All we are left to prove is the uniqueness of this solution. 
Let X(t) and Y(t) be two solutions on [0, to] with X ( 0 ) =  Y(0)=X0. We ob- 

tain 

t 

EIX(t) - Y(t)l 2 <<. 2(1 + T ) I  (r - Y(s)12) + ~b(s)z(EIX(s) - Y(s)12)) ds'  
o 

O <<. t <<. to, 

and by Lemma 6.1 we conclude that EIX(t) - Y(t)l 2 = 0, 0 ~< t <~ to. Thus, for any 
t E [0, to], P(X(t) = Y(t)) = 1, and so for a countable dense subset S z [0, to], 

P(X(t) = Y(t), t e S) = 1. 

Using the a.e. continuity of X and Y, we get 

P (  sup { I X ( t ) -  Y(t)]} >O)=O 
\o<~t<~to 

which implies the pathwise uniqueness of solutions of (7.1). 
This completes the proof of Theorem 7.1. 

REMARK 7.1. - Instead of the assumption 

E I f ( t , X ) - f ( t , Y ) 1 2 < r  t e R + ,  X, Y e L 2 ( t ~ , R ~ ) ,  

we can suppose that 

I f ( t , x ) - f ( t , y )12<<.r  t e R + ,  x, y e R  ~, 

is the function w is a concave on R+ (a simple application of Jensen's inequality [36] 
shows that the second condition implies the first one). The same remark applies i f  
r--+w2(r)/r is concave on R+ (see [70]). 
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COROLLARY 7.1 [71]. - For the stochastic differential equation (7.1), suppose that 
the following conditions are satisfied: 

(i) If(t, x) - f ( t ,  y)l  ~ + Ig(t, x) - g(t, y)l  2 <~ ~( t )a ( Ix  - y12); 

(ii) If(t, 0)1, Ig(t, 0)1 EL~or R+);  
1 where ~ ~ Lion(R+, R+ ) and a e C( R + R+ ) is monotone nondecreasing, concave, wi th  

~( 0 ) = 0 and such that 

1 

lira ~ ds _ 
r---*O J ~(8)  

r 

Then, on any  f ini te  interval [0, T], the sequence {Xi( t )} ,  0 <<. t <~ T, defined by the 
successive approximations  (7A), converges un i formly  to a unique solution of  
(7.1). 

P R O O F .  - Since a is concave on R+ ,  there  exist positive constants  a > O, b > O, 
with 

~(r) <<. a + br, r e R + .  

We can conclude in view of Theorem 7.1 and Remark  7.1. 

REMARK 7.2. - I f  )~(t) = 1, t ~ R + ,  Corollary 7.1 becomes Yamada's  theorem [75]. 
In  the part icular case a(r) = r, r ~ R+ , and )~(t) = L > O, t e R+ , we obtain Ito's con- 
ditions [48]. Note that the result of  Da Prato [55] is a part icular case of  Corol- 
lary 7.1. 

COROLLARY 7.2 [70]. - For the stochastic differential equation (7.1), suppose that 
the following conditions are satisfied: 

(i) If(t, x) - f ( t ,  y)l  z + Ig(t, x) - g(t, y)l  2 <. 2(t)~(  Ix - Y12); 
2 (ii) If(t, O)l, Ig(t, O)l EL~o~(R+R+ ); 

where ), ~Llloc(R+, R + )  and a E C(R+, R +)  is monotone nondecreasing, concave, 
wi th  ~( 0 ) =  0 and such that 

~2(r) 
r - ~  

r 

is concave on R+ and 

1 

lira f ds _ 
~-~o ~(s) 

r 

Then, on any  f ini te  interval [0, T], the sequence {Xi(t)}, 0 <~ t <<. T, defined by the 
successive approximations (7.4), converges uni formly to a unique solution of  (7.1). 
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PROOF. - If a > 0, b > 0 are such that 

we deduce that 

~2(r) 
- - < < . a + b r ,  r ~ R §  

r 

~(r)<<.(a+V~)r+ l ,  r e R + ,  

and we can apply Theorem 7.1 (taking into account Remark 7.1). 

REMARK 7.3. - A  nontrivial example of a function ~ satisfying the conditions of 
Corollary 7.2 is 

[ ( 1 ) ]  a/e, l > r > O "  ~ ( r ) ~ -  1 
~ ( r ) = r  In 7 e ' , r1> e 

In both Corollaries, we have a single nonlinear function of E I X -  YI 2 which 
bounds the expression 

Ei f ( t  , X) - f( t ,  Y)I 2 + EIg(t, X) - g(t, Y)I 2. 

Theorem 7.1 enables us to consider two separate bounds for 

El f ( t ,  X) - f( t ,  Y)i 2 

and respectively 

Elg(t, X) - g(t, y)12 I 

which are not comparable (in the sense stated in the Introduction) in a neighborhood 
o f ~ .  

7. - Applications to global inversion of local diffeomorphisms. 

If f :  Rn--+ R n is of class C 1 and 

de t f ' (x)  ~ 0, x � 9  ~, 

we have by the inverse function theorem [56, page 32] that f i s  a local diffeomorphism 
at every point of R n. 

In this section we will show that the continuation method of Conti with the results 
stated in Section 2 can be applied in order to give sufficient conditions for f to be in- 
jective and so a global diffeomorphism f :  R n - - + f ( R  n ) and a sufficient condition for f t o  
be bijective and so a global diffeomorphism onto R ~. As particular cases of our result 
we have the celebrated theorem of Hadamard [40] and the theorem of Caccioppoli-Ba- 
nach-Mazur [6, 17] in the particular case of local diffeomorphisms f :  R n --+ R n as well 
as some recent results of ZAMFIERI [77]. 
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In our theorems we will use a nonnegative auxiliary scalar coercive function, that  
is, a continuous mapping k: R~--* R+ such that  

k(x)-- ,  ~ as Ix I - "  

The use of such functions in the context of global inversion theorems is due to 
ZAMPIERI [77]. Our method is similar to Zampieri's method. 

If  k: R ~ ~ R+ we define 

k ( x  + hv)  - k (x )  
D J  k ( x )  = lira sup 

h~o+ h 

for all x, v e R ~ . 

THEOREM 8.1. - The m a p p i n g  f e C 1 (R n, R n) is a global d i f f e o m o r p h i s m  R ~ -~  

-~ f ( R " )  i f  

(i) d e t f ' ( x )  ~ 0, x e R ~ ;  

(ii) there ex is ts  a po in t  Xo ~ R ~ a n d  a locally L i p s c h i t z i a n  coercive f u n c t i o n  

k: R ~ --* R + such  that  

D~ + k (x )  <<. w ( k ( x ) ) ,  v = - f ' ( x )  -1 ( f ( x )  - f ( x o ) ) ,  x c R n, 

where  w e 9to. 

PROOF. - Consider the Cauchy problem 

(8.1) x '  = F ( x ) ,  x(O) = 2 ,  

with F ( x )  = - f ' ( x )  -1 ( f ( x )  - f ( xo ) ) ,  x ~ R n. 

Since F is continuous there is local existence for (8.1). 
Let  us prove that  we have also uniqueness for the Cauchy problem (8.1). 
i f  x( t ,  2) is a solution of (8.1) defined on some neighborhood of zero, we observe 

that  for all t for which this solution is defined, we have 

f ' ( x ( t ,  2 ) ) (x ' ( t ,  2))  = - ( f ( x ( t ,  ~2)) - f ( x o ) )  

thus 

[e~(f(x(t, 2)) - f ( x o ) ) ] '  = 0 

and an integration yields 

f ( x ( t ,  2))  - f ( x o )  = e 

for all t for which this solution is defined. 
We have so that  

t ( f (2)  - f(xo)) 

f(x(t ,  2)) = f(xo) + e -~ ( f (2 )  - f ( x o ) )  
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and since f is a local diffeomorphism at 5 we obtain that there is uniqueness for 
(6.1). 

From the continuity of F and from the uniqueness for (8.1) we have also continu- 
ous  dependence on the initial conditions for (8.1) (see [25, page 17]). 

Let now A(xo) be the -basin of attraction, of x0, i.e. the set of all points 5 e R ~ 
such that the maximal solution t ~ x(t, 5) of (8.1) with x(0, 5) = 5 is defined in the fu- 
ture and lira x(t, 5) = Xo. 

The set A(xo) is not void since xo e A(xo) - - the  Cauchy problem (8.1) with 5 = Xo 
has the unique solution x(t, Xo) = Xo, t >i O. 

We prove now that A(xo) is open and f /A(xo)  is one-to-one. 
Let xl eA(xo) .  We denote x(t, x l)  = xl(t) ,  t >i O. 
Let U and V be respectively neighborhoods of xo and f(xo) so that f f  U: U ~ V is a 

diffeomorphism (this choice is possible by the inverse function theorem). 
We choose s > 0, ~ > 0 such that 

V(x)  - f (xo) !  < ~ if Ix - xo ] < 8, 

{x~Rn: IX-Xol < 2r c U,  

{Y~R~: l Y - f ( x o ) 1  <2~}cV. 

Since lira x 1 ( t ) :  X0, there is a T > 0 such that 
t - ->  c~ 

I x i ( t ) - x o l  < 8 ,  t ~  T .  

By the continuous dependence on the initial conditions for (8.1) there is a 7 = 
= r(~, T) such that the solution xe(t) = x(t, x2) exists on [0, T] and IXl (t) - xe(t) I < 
for t e [0, T] provided that Ix1 - x21 < r. 

We deduce that if Ix1 -  xel < min{~, r} then x2(t) is defined on [0, T] and 

I x 2 ( T ) - x o l  <~ I x 2 ( T ) - X l ( T )  I ~- I X l ( T ) - X o l  <2~ ,  

If(x2(t)) - f ( x l ( t ) ) l  <<- e - t l f ( x2)  - f ( x l ) l  < ~, t e [0, T]. 

Define 

x2(t) = f  l ( f ( x l ( t ) )  + e t ( f (x2)  - f ( x l ) ) ) ,  t > T .  

This can be done since 

I f (x l ( t ) )  + e - ~ ( f ( x 2 ) - f ( x l ) ) - f ( x o ) l  <~ V ( x l ( t ) ) - f ( x o ) l  + 

+ e - t l f ( x 2 )  - ( f (x l ) l  < 2 s ,  t >~ T ,  

and 

Ix2(T) - Xol < 2~. 
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We proved so that x2(t) is defined in the future (recall that we have uniqueness 
for (8.1)). 

Since 

x2(t) = f - l ( f ( x l ( t ) )  + e- t( f (x2)  - f ( x l ) ) ) ,  t > T, 

we deduce that 

lim x2 (t) = Xo. 

The preceding facts can be resumed as follows: if Ix1-x2]  < min{Z, y} then 
x2 ~ A(xo). We proved so that A(xo) is open. 

In order to prove that f/A(xo) is one-to-one, suppose that xl, x2 ~ A(xo) are such 
that f(xl  ) = f(x2). We deduce that 

f(x(t, xl )) - f(x(t, x2)) = e - t ( f ( x l )  - f(x2)) = O. 

Let T > 0 be such that 

]x(t, x l ) - X o l  + lx(t, x2 ) -xo]  <~, t ~ T .  

Since f(x(t, x l ) )=f(x( t ,  x2)), t i> T, by the way in which we chose s (remember 
that If(x(t, xl)) - f (xo)]  < ~ and [f(x(t, x2)) - f ( xo) l  < ~ for t i> T) we deduce 
that 

x(t, xl) = x(t, x~), t >I T. 

From the uniqueness property of (8.1) we obtain that xl = x2, thus f/A(xo) is 
one-to-one. 

The next step in the proof is to show that if 2 ~ bA(xo) (the boundary of A(xo)), 
then the maximal solution x(t, 2) cannot exist in the future. 

We proved that f/A(xo) is one-to-one so f/A(xo ): A(xo) --->f(A(xo )) is a homeomor- 
phism. We obtain the existence of an ~ > 0 such that 

I f ( x )  - f ( x o ) l  > 8 ,  x ~ b ( n ( x o ) )  . 

Suppose there exists an 2 e b(A(xo)) such that the maximal solution x(t, 2) is de- 
fined for all t ~ R+. It is obvious that x(t, 2)r t >I O. 

From the relation 

f ( x ( t ,  2 ) )  - f ( x o )  = e - t ( f ( 2 )  - (Xo)), t I> 0, 

we obtain that 

e -t if(2 ) _ f(xo)l ~ ~, t >1 O, 
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thus 

t<<'ln( I f ( 2 ) - f ( x ~  , t>~O, 

which is a contradiction. 
We have so that ff 2 e b(A(xo)), then x(t, 2) does not exist in the future. 
On the other hand, the conditions required on k imply by Conti's comparison re- 

sult (with the slight extension obtained in [20]) that every solution of (8.1) can be de- 
fined in the future. 

We obtain that b(A(xo)) = ~ and thus A(xo) = R n. This implies that f :  R n - -> f (R  n ) 

is a global diffeomorphism. 

COROLLARY 8.1 [77]. - The mapping f e CI(R ~, R ~) is a global diffeomorphism 
R~--~ f (R  ~ ) i f  

(i) de t f ' (x )  ~ 0, x e R ~ ;  

(ii) there exists a point Xo ~ R ~ and a locally Lipschitzian coercive function 
k: Rn--~R+ such that for every x, v e R ~, 

k(x + hv) - k(x) 
lim 

h--. cr + h 

exists and 

sup l  lim k(x + hv) - k(x) , -1 ] 
[~_~o + h : v =  - f ( x )  ( f ( x ) - f ( x o ) ) ,  x E R  ~ < 

PROOF. - We apply Theorem 8.1 with w(r) = M, r e R+, where 

t k(x + hv) - k(x) 
M = sup lim+ 

[h-~0 h 
: v = - f ' ( x ) - l ( f ( x )  - f (x0) ) ,  x e Ru}. 

REMARK 8.1. - The hypotheses of Theorem 8.1 do not guarantee that f is onto R n. 

EXAMPLE 8.1. - Let us consider 

e xl e xl x2  

f : R 2 - - ) R  2, f ( x l , x 2 ) :  ~ / l  + x  2 '  

We have that (take Xo = (0, 0)) 

x 'F(x)  <~ 1 + Ixl 2, 

(for more details, see [77, page 931]). 

x e R  2 , 
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Defining 

we have that 

k(x) = ln(1 + Ix12), x e R  2, 

thus f :  R 2 ~ f ( R  2) is a global diffeomorphism. 
On the other hand it is clear that f ( R  2) ~ R 2 since 

e xl 

~/1 + x~ 
> 0 ,  x = (xl , x2) e R 2. 

Let us now consider the problem of giving sufficient conditions that f :  R~-~  R n of 
class C 1 with 

det f ' (x)  ~ 0, 

be a global diffeomorphism onto R ~. 

x e R n, 

THEOREM 8.2. - The mapping  f e C I ( R  ~, R ~) is a global di f feomorphism onto 
R~ i f  

(i) de t f ' (x )  r 0, x e R~; 

(ii) there exists a locally Lipschi tz ian coercive func t ion  k: Rn--->R+ such 
that 

D~+k(x)<<.w(k(x)), v = f ' ( x ) - l u ,  u e R  ~, tu I = 1 ,  

where w e ~o. 

PROOF. - As in the proof of Theorem 8.1 we consider the Cauchy problem 

(8.1) x '  = F(x),  x(O) = 2, 

with F(x)  = - f ' ( x ) -  l ( f ( x )  - f (xo))  , x ~ R n, where xo e R n is fixed. 
By Theorem 8.1 we have that f is injective. 
Considering the opposite vector field to (8.1), namely the differential equa- 

tion 

(8.2) y '  = - F(y)  

we have by Conti's comparison theorem (with k as a Lyapunov function) that all sol- 
utions of (8.2) are defined in the future thus all solutions of (8.1) are defined in the 
past. 

If x(t, ~) is a solution of (8.1), then we have that it is continuable in the past and in 
the future and 

f (x ( t ,  2) - f ( x o ) )  = e - t ( f ( 2 )  - f ( x o ) ) ,  t ~ R ,  

D~x)k(x)  <- 1, x e R 2, 
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thus f maps x(t, 2) into 

{ y e R ~ :  y =f(xo)  + s( f (~)  - f ( x o ) ) ,  0 < s < ~ } .  

Since f i s  locally surjective (thus the image of a neighborhood of Xo will be a neigh- 
borhood of f(xo)) we can conclude the proof. 

COROLLARY 8.2 [77]. - The mapping f � 9  C 1 (R ~, R ~ ) is a global diffeomorphism 
onto R ~ i f  

(i) de t f ' ( x )  ~ O, x �9 Rn; 

(ii) there exists a coercive function k �9 CI(R ~, R+ ) such that 

sup {llk'(x) f '(x)-~il: x �9 R ~ } < ~ .  

PROOF. - We apply Theorem 8.2 with w(r) = Mr, r e R+,  where 

M = sup {llk'(x)f'(x)-~ll: x �9 R n }. 

COROLLARY 8.3 [40].- Let f � 9  C 1 (R ~, R ~ ) with det f '  (x) ;~ 0, x �9 R ~. Then f is a dif- 
feomo~39hism onto R ~ i f  there exists a function w �9 ~o such that 

IIf'(x)-l]l <~ w ( I x l ) ,  x � 9  ~. 

PROOF. - Taking k: R~---)R+, k(x) = Ixl,  we obtain that  

Df+,(~)-~k(x) <~ llf'(x)-ill <~ w ( l x l )  = w(k(x)) ,  

An application of Theorem 8.2 yields the result. 

X E R  ~. 

COROLLARY 8.4. - The mapping f � 9  CI(R ~, R ~) is a global diffeomorphism onto 

R ~ i f  

(i) de t f ' ( x )  ~ 0, x �9 Rn; 

(ii) f is coercive. 

PROOF. - Defining k: R~--~R+, k ( x )=  ln(1 + If(x)12), we obtain that  

Df+,(x)-iuk(x) <~ 1, x �9 R n, 

and so we can apply Theorem 8.2. 

REMARK 8.2. - Since a global surjective diffeomorphism is coercive we have that 
the conditions of Theorem 8.2 are also necessary (for the necessity part, we define k 
as in the proof of Corollary 8.4). It should be also noted that the theorem of Cacciop- 
poli-Banach-Mazur [6,17] in the particular case of a local diffeomorphism f:  Rn---~ 
-~ R ~ is a consequence of our results since the properness off(i.e, f -  1 ( C) is compact for  
any compact C) is equivalent in this case to coerciveness. 
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REMARK 8.3. - Our results are more flexible than the results of Zampieri since we 
look for a nonnegative auxiliary coercive function k which enables in Corollary 8.2 
for example that 

provided that 

sup {Hk'(x) f ' (x)- l l l :  x �9 R n } = :r 

Hk'(x) f '(x)-lll <~ w(k(x)), x �9 R n, 

for some w �9 ~o. 

EXAMPLE 8.2. - Let  us consider the nonlinear rotation f :  R 2 --)R 2 defined by 

sin r cos r x2 

where r = ~/x~ + x~. The mapping f is of class C 1 if r R -o R is even and of class 
C 2 . 

We have that  f ' (x )  -1 is given by 

cosr + x2r + r sin r + x2r + r / 
! 

- sin r - Xlr cos (0 + r cos r - xl r sin (0 + r 

where xl = rcos0, x2 = rsinO. 
It  is easy to see that  

l[f '(x)-lll~<V~(1 +r[r V~(1 + I x l l r  x e R  2. 

If  

ds 
1 + slr 

we deduce by Corollary 8.3 that  f is a diffeomorphism onto R ~. 
If  in addition we have 

7~ 
< r ~< =, r i> 0,  r i> 0,  

then 

t r f ' (x )  < 0, de t f ' (x)  = 1 > 0, x �9 R 2, 

and, since f is globally one-to-one, we obtain that  x = 0 is a global sink for x' =f(x)  
(see [78]). 

REMARK 6.4. - In the particular case of Example 8.2 when r---> rr  is bounded 
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on R +, ZAMPIERI and GORNI [78] showed that f is injective. One can see that in this- 
case actually f is a diffeomorphism onto R 2 . 
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