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Some Inclusion Theorems 
for Orlicz and Musielak-Orlicz Type Spaces (*). 

CARLO BARDAR0 - GIANLUCA VINTI 

Introduction. 

In various papers ([6-10,12, 13]) some extensions of the classical Schur-Hardy in- 
equality are studied in the case of integral operators of type 

+ ~  

(I) (:Xf)(t) = ~ K(t, s) f (s)ds 
0 

where K is a homogeneous kernel and f belongs to some KSthe functional space. 
In these papers the estimates are taken with respect to the KSthe norm of the 

space. 
Recently in [2] we obtained analogous estimates for functions belonging to Orlicz 

or Musielak-Orlicz type spaces L ~, with respect to the canonical modular functional. 
These results enable us to say that, for example, 

: ~ f e L ~ ( R  + ) if A( . ) l+Yf ( . )eL~(R+) ,  

where A is a suitable constant and ~, is the degree of homogeneity of K. In general 
f eL~(F~ + ) does not imply Y~f eL~(F~+ ). 

Then this result has been extended in [3] to the case of fractional Musielak-Orlicz 
spaces; such spaces were introduced in [3] by using the Riemann-Liouville fractional 
integral of f, according with an idea developed in[19,20] for the fractional Jordan 
variation. 

A different definition of fractional Orlicz spaces is given in [15] by using a fraction- 
al derivative. 

In this paper we consider integral operators of type (I) with not necessarily homo- 
geneous kernel in which the domain is a bounded interval ]a, b[cF~ § instead of 
]0, + ~ [ .  

(*) Entrata in redazione 1'8 febbraio 1w e, in versione riveduta, il 21 giugno 1993. 
Indirizzo degli AA.: C. Bg_gDARO: Dipartimento di Matematica, Universit~ degli Studi di Pe- 

rugia, 06100 Perugia, Italy; G. VINTI: Dipartimento di Matematica ed Applicazioni, Universit~ 
degli Studi di Palermo, Via Archirafi, 90123 Palermo, Italy. 
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In this case we obtain some estimates that imply the property 

feLV(]a, bD ~ :~feLV(]a, b[) (Section 2). 

An interesting consequence is the following inclusion: 

LV(]a, bDr ~ L~'~(]a,b[), 
el0, 1[ 

where L ~'~ is the fractional Orlicz space of order ~ el0, 1[. 
This inclusion is strict in general, as we show by an example (Section 3). More- 

over, it is no longer true if the base interval is unbounded; this is pointed out by 
means of two examples (Section 5). 

The last section is concerned with some partial extension to the case in which the 
generating function of the space L ~ depends on a parameter and satisfies the h-bound- 
edness condition (see[2-4]). 

In this setting too, some estimates of operators (I) with homogeneous kernel are 
obtained (Theorem 5) and we have some inclusion properties. 

However, the situation becomes different when K is the kernel of the fractional 
integral of order ~ of f, because it does not satisfy all the assumptions of Theo- 
rem 5. 

Nevertheless, we show (Theorem 6) that it is possible to obtain again analogous 
results by suitably restricting the space L V. 

1. - N o t a t i o n s  a n d  d e f i n i t i o n s .  

Let I = ]a, b[c R § be a bounded interval, ~ the class of Lebesgue measurable sets 
of I. We will put F~ + =]0, + ~[, R~  = [0, + ~[. Let ~ be the class of all functions 
?: R ~  --* R~ such that 

(i) ~ is convex, 

(ii) 9(0) = 0 and ~(u) > 0 if u > 0. 

Let us denote by g the class of all ~ x s functions K: I • I - - .  R~ 
such that, for every (t, z ) e  I • I 

b 

(K.1) 0 < I K(t, z) dz <<. A g ; 
a 

for a constant AK > O. 

b 

0 < I K(t, z)dt ~ A K 
a 

Let K e ~ be fixed and let XK be the space of all classes of equivalence of measur- 
able functions f: I - - .  R for which the integral 

b 

(1) (:~f)(t) = [ K(t, z)f(z) dz 

is well-defined for almost all t e I, as a Lebesgue integral. 
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We will assume the following condition: 

(K.2) :~ f  = 0 if and only if f = 0. 

We will consider the functionals on XK defined by: 

b 

, = ~ ,  ( f )  = P ( ~ t f l ) .  p ( f ) =  ~(If(t)l)dt p~(f)  p(:~.f), 
a 

It  is well-known that  p and p ~ are convex modulars on X (see [16]); moreover by 
(K.2), p ~ is a modular too. The corresponding modular spaces (of Orlicz type) are de- 
noted by LV(a, b), LV'~(a, b), L~. ' ~(a, b) respectively. The terms ,~p-convergence,, 
~ - c o n v e r g e n c e - ,  ,,p.~-convergence,, denote the respective modular convergences. 

Note that  (K.2) is only used in order to make ~: a a modular; most of the results con- 
rained in this paper can be obtained also if p~ is a pseudomodular. 

2. S o m e  r e l a t i o n  b e t w e e n  L ~ ,  L ~' x L ~' ~ 

It  is clear that  L ,~' ~ (a, b) c L ~' ~ (a, b) since by (i), e ~ ( f )  ~< ~ , ( f ) .  Thus the most 

interesting relations will relate L v, L$' ~ or L ~' ~. 

THEOREM 1. - For every f e  XK we have: 

[a. ( f )  <~ ,~(AK f ) .  (2) 

PROOF. - Without loss of generality we can assume •(AKf) < + ~ .  For  t e]a,  b[, 

we write: 

b b 

a a 

where ~t is the measure on ]a, b[ defined by 

[zt(E) = I K(t, z)dz. 

Moreover we put h(t) = ~t(]a, bD, t e]a,  b[, and ~t "= (1/h(t))~t. Then ~t(]a, bD = 1 
and so by (i) and Jensen inequality, 

, ) ( ;  ) ~ ( j K ( t ,  z)lf(z)[dz =~ h(t) If(z)ldfit(z) 

b b 

' f  ' I  h(t) ~(h(t) lf(z)l)K(t, z)dz <. ~-~ 
a a 

b 

<~ I ~(h(t)lf(z)l)d~t(z) = 
a 

h(t) AK --~K I f(z)l ) g(t, z) dz. 



192 C. BARDARO - G. VINTI: Some inclusion theorems, etc. 

Again by (i), we have 

(J / ; K(t, z)lf(z) I dz <~ ~ ~(At; If(z) l)K(t, z)dz. 

Then by Fubini Theorem 

~ . ( f )  <- ~-~__ ~(AK If(z)l) ~" K(t, z)dt dz <~ ~(AKf). 

As a consequence of Theorem 1, we obtain also: 

p ~ ( f )  ~< ~(AK f ) ,  f e X g ,  

and we have the inclusions: 

L~(a, b)cL~'a(a, b), L~(a, b)cL~'~(a, b), 

In section 3 we will prove that the inclusions are strict in general. 

COROLLARY 1. - Let { f~ } be a sequence in L~(]a, b[). Suppose that { f~ } is ,~-con- 
vergent to feL~(]a ,  b[). Then {f~} is p~ and ~. convergent to f. 

PROOF. - The assertion follows by 

~()~(fn - f))  < ,o.~ ()~(s - f ) )  <~ p(~AK(f~ -- f))  , 

~ r ~ > 0 .  

3. - A particular case: the  fract ional  Orlicz spaces. 

Let X = {f: I ~ F~: f e  L 1 ] a, c[, for every c e]a, b[} and for each f e  X let us de- 
note by ]~1-~) the Riemann-Liouville fractional integral of order 1 -  ~, ~ el0, 1[ 
(see [5, 17]): 

t 

f(z) 

The operator 9 ~ - ~  is well-defined for every f e X  and it can be written in the 
form: 

b 

J~l-~)(t) = f K~(t, z)f(z)dz, 
Cb 

e]O, 1[ 
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where 

1 1 
K ~ ( t , z ) -  F ( 1 - ~ )  ( t - z )  ~Z]a't[(z)' ( t , z )  e I •  

It  is easy to show that  (K.1) and (K.2) are satisfied ((K.2) follows by Titchmarsh 
Theorem [14]). In this case XK~ = X and the respective modulars will be denoted by ~ ~ 
and p ; .  

The corresponding Orlicz type spaces L ~' ~ (I), L .~'~ (I) are called ~fractional Orlicz 
spaces,,. As corollary of Theorem 1 we have 

COROLLARY 2. - For every f e X ,  ~ e]0, 1[, we have 

(b - a) 1-~ ~ 

PROOF. - It  is sufficient to remark that: 

b 

I K~ (t, z) dz <~ (b - a) ~- ~ 
F(2 - ~) 

a 

Analogously, taking into account that  Zj~, tr ( z ) =  X]~, hi(t) we have, 

b 

[K~ (b - a) 1 - ~ (t, Z )  dt 
F(2 - ~) 

a 

(b  - a )  1 - ~  
and hence we can take A~ :=  

/"(2 - ~) 

COROLLARY 3. - L~(I )r  ~]0,[7 I [L ,  ~' =(I). 

The following example shows that  the inclusion in Corollary 3 is strict in 
general. 

EXAMPLE 1. - Let  I =]0, 1[, ~(u) = u p, p t> 1. L e t f b e  defined on I b y f ( t )  = t -1/p. 
Then 

P ( 1 - 1 / p )  t l _ ( ~ + t / p  ) 
r  ( t )  = F ( 2  - 1 / p  - ~) 

So f~t L ~ (I), and since p(1 - ~ - l /p)  > - 1 ,  for every a e]0, 1[, we have f ~  L ,  ~'~ (I) 
for every ~ e]0, 1[. 

The following result relates the spaces L ,  ~' ~(I) and L~.'z(I), ~, fl e]0, 1[, a ~ ft. 
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(4) 

THEOREM 2. - Let  f e X.  I f  ~ < fi, then: 

( r(1 - ~) 
~(f)~<P~* F ( 1 - ~ )  (b - a) ~ -~f ) .  

PROOF. - We can assume that the right hand side of (4) is finite. If ~ < ~, we have: 

t t I If( )l Lf( )l 
(-t---~) ~ dv <<. (b - a)Z-~ f (t - v) ~ 

a 

- -  d v ,  

for a.e. t e]a, b[ and so, by (i), the inequality (4) follows. 

From Theorem 2, we deduce L $' ,e (I) c L .~'~ (I) and ~ ~.-convergence implies ~ ~-con- 
vergence in L $' ~ (1). 

REMARK 1 .  - We remark that our setting contains also certain ,weighted- cases of 
the Riemann-Liouville fractional integral. For example we can consider kernels of 
the form: 

K(x ,  t) = ~x - ~ t ~ + ~- 1X~a, xE (t), (x, t) E ]a, b[ x ]a, b[ 

for suitable constants ~ and ~ and kernels of the fractional power of the operators de- 
fined by K (see e.g. [18]). 

4 .  - The case of homogeneous kernels. 

Here, as a simple consequence of Theorem 1, we state a <<bounded, version of esti- 
mates for integral operators (1), where K: R + • R + --~ R~ is Lebesgue measurable 
and homogeneous of degree y E R.  

Let K be such a function, ]a, b[ a bounded interval in R + and let us denote again 
by Xg the class of all functions f: ]a, b [ o R  which are measurable and the 
integral 

b 

( ~ f ) ( t )  = ] K(t ,  z ) f ( z )  dz 
a 

is well-defined as a Lebesgue integral. 
We have the following: 

THEOREM 3. - Suppose that K: R + • R + --. R~- satisfies the fo l lowing assump-  
tions: 

(K.3) K is homogeneous of  degree :r >i - 1; 

(K.4) K(1, .), K(-, 1) ~ L I ( R  § ). 
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Then, for the interval ]a, b [ c R  § , K verifies (K.1), and for every f e X g  it re- 
sults: 

(5) o ~ ( f )  ~< p(Af), 

where A is defined by 

A = m a x  b 1§ K(1, v)dv, 
a/b 

b 1+~ K(v, 1)dr . 
a/b 

PROOF. - For t, z e]a, b[ we have: 

b 

I K(t, z) dz 
a 

b/t + 

: t l + ~ I K ( 1 ,  v)dv<<.bi+~ I K(1, v )dv<  + ~ .  
a/t a/b 

The second condition in (K.1) follows by a symmetry argument. 

REMARK 2 .  - (2.a) From the proof we can see that if a > 0 then the assertion of 
Theorem 3 is valid for kernels of general homogeneity degree a e R and such that 
K(1, .), K(., 1) e L~oc(R+). 

(2.b) Theorem 3 represents a bounded version of Theorem 2 in [2]. For un- 
bounded intervals, inequality (5) may fail. As an example we can consider the kernel 
of Example a) in [2]: 

K ( t , z ) =  T 7 xl~ ~ > 1 ,  0 < ~ < 1 ,  ( t , z )  e]O, + ~ [ x ] 0 ,  + ~ [ .  

Then K satisfies (K.3) and (K.4) of Theorem 3, but there i s f e  L~(]0, + ~[ )  such that 
:Xf~L~(]O, + ~[), with suitable p. 

(2.c) The kernel K~ of the Riemann-Liouvflle fractional integral is homogeneous 
of degree - ~ > - 1, but it does not satisfy the assumption (KA) of Theorem 3. How- 
ever, the functions 

b/t b/t 

= t 1-~ [ K(1, v)dv,  h(t) = t 1-~ [ K(v, 1)dv g(t) 
.J 

a/t a/t 

are bounded by the constant A = (b - a) 1-~ IF(2 - ~) (see the proof of Corollary 2) 
and so, for K = K~, the estimate (5) holds. 

A related result is given by the following theorem: 

THEOREM 4. - L e t  K: R + • • + -~ F~ be a homogeneous kernel of degree ~ >1 - 1 .  
Let ]a, b[ a bounded interval in F~ + . 
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Suppose that: 

O<AK:= f g(1, v)dv< + ~ ;  B~::= f v - l K ( l ' v ) d v <  +oo 
a/b a/b 

Then, for every f e XK we have: 

(6) ~ ~. ( f )  <~ ~(AK bl +~f). 

b/t 

PROOF. - Putting h(t): = t i + ~ [ K(1, v) dr, t �9 ]a, hi, we have h(t) ~< Ax b i + ~, for 

every t �9  b[. ~/t 
J 

Thus, using the same methods as in Theorems 1 and 3, we deduce: 

1 ~(Agb 1+~ If(tv)l)K(1, v)dv. K(t, z)[f(z)ldz <~ - ~ / t  

Here, f ( t )  =f(t), if t e]a, b[; f ( t )  = 0, if t ~t]a, b[. 
Then by Fubini Theorem, 

bf bit ] 
l i t  f P*(f)<~ ~ ~(Agb~+~lf(tv)l )K( l ' v )dv  dt << . 

[sit 

<<" -~g ~(AKbl+=lf(tv)l)dt K(1, v)dv<. 
a/b [ a 

1 K ( 1 ,  v)  B/~ 
<~ -~K ~(AKb~+~[f(z){)dz ~ <~ -A--~,~P(At:bl+~f)" 

REMARK 3. - If  a > 0, the condition AK < + oo, implies B K <: + oo. I f  a = 0, then 
d K < + oo does not imply Bt~ < + oo ; moreover, AK + BK < + ~ does not imply that  
K(v, 1) is integrable on R + . Indeed, consider the following example: 

1 (~- 7Zlo, tL(z), (t, z ) � 9  R + • R + , 

with 0 < ~ < ~ < 1 .  
This kernel is homogeneous of degree 

+ 0 o  

f K(t, 1)dt = + ~. 
0 

- a >  - 1 ,  AK< +oo, BK< +Go, but 
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5. - U n b o u n d e d  case:  t w o  c o u n t e r e x a m p l e s  in  f r a c t i o n a l  case .  

Here we prove that for unbounded domains, the fractional Orlicz spaces L $'~ (I) 
and L * ( I )  are not comparable. 

Let  I = ]0, + oo [, ? �9 q~, X = {f: ]0, + ~ [--~ F~: f ~  L 1 (]a, bD, for every b > a} and 
denote again by ~ , ~ , p $ ,  a � 9  1[ the corresponding modulars and by  
L ~ (I), L v' ~ (I), L.~' ~ (I) the corresponding Orlicz spaces. 

Here, 

t 

f ( v )  o 
f ( 1 - ~ ) ( t ) - F ( l l a )  f ( t -=v)  

0 

~ d v ,  f e X .  

EXAMPLE 2. - Let  9 ( u ) =  u p, p i> 1 and let f: I--~ R be the function defined 

by: 

[ 0  O < t < l ,  

f ( t ) = i  t -~ t >  l ,  
L 

where ~ > 0 is chosen in such a way that pfl > 1. 
Thus f e  L ~. Moreover 

f ( 1  - ~) (t) = 

1 
t:  - (~ +s) 

v- (1 - 

U t  

Now, 

{ +oo i f a + ~ < l  
lim f l _ ~ ) ( t )  = 

t-*+| F ( 1 - ~ )  i f a + ~ = l .  

So, for a + fl ~< 1, J~l -~) ~t L~ and hence f e  L ~' ~ 

EXAMPLE 3. - Let  ~(u) = u p, p i> 1 and 

{ t  -~ O < t < l ,  
f ( t )  = 0 t > 1, 

where ~ is chosen in such a way that p~ > 1, 0 < fl < 1. 
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Thus f~t L ~ . Moreover: 

f ( 1 - 3 )  tl_(~+~) if o < t < 1 ,  

f(1 - ~)(t) = l i t  
t l - (~  +~) ; _ 
- ~ : - ~  ] v-Z(1-v)-~dv ff t> l .  

0 
1/t 

Let  us put  g(t) = I v -~(1  - v)-~dv" 
o 

Then lira t~-~g(t) = 1/(1 - ~ )  ~ O. 
t----> + ~ 

Suppose now that  p(1 - ~ - f l )  > - 1  and pe  > 1. Then, we have: 

~ ( f ) =  I p ( l f l ( ~ _ ~ ) ( t ) ) d t =  + ~(Ifl(~_~)(t))dt=Ii+I2. 
o o 1 

Then I~ < + ~ ,  and there  is M > 0 such that  

I 2 - f ( l l a )  I t-P~[tl-~g(t)]Pdt<~M I t-P~dt< +0~ 
1 1 

Thus f e  L $'~. 

6. - Some partial  ex tens ions  to fract ional  Musie lak-Orl icz  spaces.  

Let  @: R + x R~ -~ R~ be a function such that  ~(-, u) is measurable for every  

u e R ~ ,  ~(t, .) is convex, and ~(t, 0) = 0, for every  t e R + and ~(t, u)  > 0 for u > 0. 
Le t  I =]a, b[r R + be a bounded interval. 

We will assume that  ~ is also ,h-bounded, in I([16,2-4]), i.e. there  exists a con- 
stant  H > 0 such that,  for every u E R ~ ,  t, z e R + with t e]az, bz[, we have 

(7) ,~ ( t z  -1, u) ~ ~(t, Hu) + A(t, z) ,  

where ~ is a measurable function on R + x R + and such that  the function 

bz 

h(z) = ~ ~(t, z) dt 
az 

is well-defined a.e. z ~ R + . 
Note that  this condition is different from the classical A2-condition (see 

e.g. [16,11]). Indeed, for example ~(t, u)  = ~(u) = e ~ - 1 clearly satisfies (7) but, as 
it is well-known, it does not satisfy the A2-condition; other  nontrivial examples can be 
found in [3]. 
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Here we consider the case of non trivial homogeneous kernels K: F~ § • F~ § ~ F ~ .  
Let, as before, XK be the classes of all (classes of equivalence of) measurable functions 
jr.. I ~ F~ for which the integral (1) is well-defined for almost all t e I ,  as a Lebesgue 
integral. 

As before we consider the functionals on X~ defined by: 

b 

v ( f )  = [ ~(t, [f(t)l)dt )7~(f) = )7(~f) , , ) 7 ,  ( f )  = ~ ( ~ l f l ) -  
a 

The functionals V and ~ ,~ are modulars on XK; denote by L ~ (I) and L ~,' ~ (I) the corre- 
sponding Musielak-Orlicz spaces. I f  K verifies (K.2), V ~ is a modular too and L ~' ~ (I) 
denotes the respective Musielak-Orlicz space. 

Theorems 5 and 6 below are generalized versions of Theorem 4. 

THEOREM 5. - Let K: F~ + • R + ~ F~o be a homogeneous kerrtel of degree ~ ~ R.  
Then, for every f e  XK the following statements hold: 

(5.a) Suppose I = ]a, b[ with a > 0 and ~ >I - 1 .  I f  

b/a b/a 
O<AK "= [ g ( 1 ,  v )dv< + ~ ,  and CK := ~h(v )v -~g(1 ,  v )dv< + ~ ,  

a/b a/b 

then we have 

(8) ~7~. ( f )  <<. BKA[  1 ~(HAKb 1+ ~f) + CKA~ 1 , 

b/a 
where BK = f K(1, v)v -1 dv. 

a/b 

(5.b) Suppose a > 0, and ~ < - 1 .  Then (8) holds with a 1§ instead of 
b l + c ~  

+:e 

(5.c) Suppose a=O,  and ~ - 1 .  I f  0 < D K  " =  f K(1, v )dv< + ~ ,  EK "= 
+~ +~ 0 

:= f v - lK(1 ,  v )dv< + ~ ,  and FK := f h(v)v- iK(1 ,  v )dv< + ~ ,  then we have 
0 0 

(8') v ~ ( f )  <<. E,~D~[~v(b ~ +~DKHf) + FKD~ ~ . 

PROOF. - (5.a) We can suppose that  v(HAgb~+~f)< + ~ .  
By using the same notations and techniques as in Theorem 4, we have 

( f b  ) --,~ ya 1 ~(t, b 1 + :AK I f(tv)]) g(1,  v) dv. r t,~ g(t,  z){f(z)ldz <- -A-~/b 
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Thus, by (7) and Fubini Theorem, we have 

bf b/~ 1 ~,~(f)< ~ ~,(t, bi+~AKl~f(tv)l)K(1, v)dv dt= 
a 

S0 

b/a f by 

, b*+~AK lY(z)l)dz} 

b/af ~ } 

K(1, v) 
V 

dv <<. 

This implies that 

K(1, v) 
b/a 

dv + - ~  h(v)v-lK(1, v)dv 
a/b 

<. BK T(AKHbl +~f) + CK ~7~. ( f )  AK AK" 

Note that B K < + ~ .  

(5.b) This follows taking into account that t 1 +~ ~< a ~ § ~, for every t e]a, b[, and 

t, K(t, z)f(z)dz < ~ t, a 1+~ g(1 ,  v)ly(tv)ldv . 
a/b 

(5.c) We can suppose that v(b I+~DKHf) < + r 
As in (5.a), we deduce: 

b 1 ~(t, b I +~DK if(tv)[)K(1, v)dv t, K(t, z)lf(z)ldz <. ~ o 

and, by similar reasonings, we have 

v*(f)<<'~ --~K1 o d ~(z, bl§ - -  

and hence (8)' follows. 

K(1, v) dv + 1 
v 

+oo 

f h(v)v-lK(1, v)d 
o 

As a Corollary, we have the inclusions 

L ~ (I) r L +.' ~ (I) c L +' ~ (I).  

Unfortunately the kernel K(t, z) of the fractional integral of a locally integrable 
function does not satisfy the assumption EK < + ~. 
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Thus the proof of inequality (8)' cannot be repeated in this case. In order to give 
some results in this direction, we denote by Yr, 0 < y < 1, the class: 

Yr = { f~Xg:  there is )~ > 0 with ~(t, )~]f(t) I) = O(t-r) ,  t ~ 0  + }. 

Here, as usual, ~b verifies the previous assumptions and K is a homogeneous kernel of 
degree ~. 

We have the following: 

THEOREM 6. - Let I =]0, b[ and let Yy, 0 < y < 1 the corresponding subset of Xg. 

Suppose that K is homogeneous of degree a > ~ , - 2 ,  I v -YK( l ' v )dv<  + ~ '  
+ ~  +oo 0 

g(1, v)v-ih(v)dv< +~ andA~'-- ~ g(1, v)dv< + ~ .  
d 

0 0 

Then, for every f ~ Y~, we have 

f V~*(~xH ) <<.Av(~f)+ B,  

where 2 > 0 is the constant corresponding to f i n  the definition of Yy, H is the constant 
of the h-boundedness and A, B are suitable constants. 

PROOF. - Let ,~ > 0 such that  q(t, ,~]f(t)]) = O(t-v),  t - * 0  + and H the constant of 
the h-boundedness of r 

With similar methods as before, we have 

t t 
+oo 

bl+~ I + ~ K(1, v)v- lh(v)dv = I1 + 12. 
0 

Now, I2 = bl§ Next, let ~ > 0 be a constant such that  z~(z ,  ,~]f(z)l) ~< M, 
for every z e]O, ~[. 

Then, 

11~< f + 
o 6/b 

We have 

~/b I ~ 

!~ -~ ~ o  K(1, v)v2+o t ~ 

K(1, v)v -(2+~) z l*~( z ,  Alf(z)l)dz dv = I~ + I f .  
8 

+~-~'dz d v -  M b 2+~-~" A• 2--~---  ~, K(1, v)v-rdv < + oo 
0 
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Moreover, 

1 S K(1, v ) v - l b  ~ I~<  

Finally, 

~*~(A----~ ) <  ~ ~ ( ~ f ) +  

; ] b2+~ ) IY(z)l)dz dv <<. - - - f -  
0 

V(;~f). 

M b 2 + ~ - 7  

A K 2 + ~ - - y  

# b  

I K(1, v ) v - r d v  + b 1+~ FK 
A K "  

o 

Let now, K(t, z )= Ks(t, z), be the kernel of the fractional integration of order 
el0, 1[. 

As consequence of Theorems 5 and 6 we have the following Corollaries. Here the 
spaces L$'~(I), L*'~(I) are the Musielak-Orlicz spaces of order ~ (see e.g.[3,4]). 

COROLLARY 4. - Let I = ]a, b[ r R + with a > O. Then, i f  CK < + ~ , 

L+(I) c N L~, '=(I) c N L +'=(I). 
el0,  1[ ~ e l0 ,  1[ 

PROOF. - The kernel of the fractional integration of order a, a el0, 1[ satisfies the 
assumption (5.a) of Theorem 5, and so the assertion follows. 

COROLLARY 5. - Let I =]0, b[, b > 0. Let Yr be the corresponding subset of 
X~ = X~ = L~oc (I). Then, i f  FK < + ~ ,  AK < + :r 

L~(I) fl Yr(I) r n L~.~(I) c N L~.~(I). 
el0,  1[ ~ e l0 ,  1[ 

PROOF. - The other assumptions of Theorem 6 are satisfied for the kernel K~ (t, z). 
Indeed, e.g. 

f F(1 - y) 
v-rK(1 ,  v)dv - F ( 2 -  a - y) 

o 

< + ~  

The question if in general L~(I) c N Lr ' ~(I), for I =]0, b[ is at the moment an 
open problem. ~ ~]o. 2[ 

Moreover, it is easy to see that also in this setting we have that, if ~ < fl then 
L ~,,z (I) c L +.'~ (I). 

Acknowledgment. The authors would like to thank the Referee for his interesting 
comments on the matter. 
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