Bounded Solutions for $\overline{\text { à-Problem }}$ in Pseudo-Siegel Domains (${ }^{*}$ (**)

Elisabetta Barletta - Carla Parrini

Sunto. - Si studia il problema dell'esistenza di soluzioni limitate per l'equazione $\bar{\partial} u=f$ sui domini pseudo-Siegel $\boldsymbol{S}_{p}=\left\{\zeta \in \mathbb{C}^{n}: \sum_{j=1}^{n-1}\left|\zeta_{j}\right|^{2 p_{j}}+\widetilde{\mathfrak{S} m} \zeta_{n}^{p_{n}}-1<0\right\}$ quando il dato $f \in C_{(0,1)}^{\infty}\left(\overline{\boldsymbol{S}}_{p}\right)$ soddisfa alla condizione $|\zeta|^{k}|f|<+\infty$ per $|\zeta| \rightarrow \infty$.

Summary. - We study the problem of the existence of bounded solutions for the equation $\bar{\partial} u=f$ on pseudo-Siegel domains $S_{p}=\left\{\zeta \in \mathbb{C}^{n}: \sum_{j=1}^{n-1}\left|\zeta_{j}\right|^{2 p_{j}}+\mathfrak{F} m \zeta_{n}^{p_{n}}-1<0\right\}$ when the data $f \in C_{(0,1)}^{\infty}\left(\bar{S}_{p}\right)$ satisfies the condition $|\zeta|^{k}|f|<+\infty$ for $|\zeta| \rightarrow \infty$

Introduction.

Let S_{p} be the domain

$$
\left\{\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{C}^{n}: \sum_{j=1}^{n-1}\left|\zeta_{j}\right|^{2 p_{j}}+\Im M \zeta_{n}^{p_{n}}-1<0\right\}
$$

$p=\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{Z}^{+}\right)^{n} . \boldsymbol{S}_{p}$ is a generalization of the classical Siegel domain

$$
\boldsymbol{S}=\left\{\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{C}^{n}: \sum_{j=1}^{n-1}\left|\zeta_{j}\right|^{2}+\Im m \zeta_{n}-1<0\right\}
$$

and we refer to it is a pseudo-Siegel domain.
(*) Entrata in Redazione il 6 marzo 1993.
Indirizzo degli AA.: E. Barletta: Università della Basilicata, Dipartimento di Matematica, Via Nazario Sauro 85, 85100 Potenza, Italy; C. ParRini: Università di Firenze, Dipartimento di Matematica «Ulisse Dini», Viale Morgagni 67/A, 50134 Firenza, Italy.
${ }^{(* *)}$ Work done within the Project 40% M.U.R.S.T. «Geometria Reale e Complessa».

In this paper we deal with the existence of smooth bounded solutions of $\bar{\partial} u=f$, when f is a smooth bounded $\bar{\partial}$-closed (0,1)-form on $\overline{\boldsymbol{S}}_{p}$.
\boldsymbol{S}_{p} is biholomorphic to the bounded pseudoconvex domain

$$
\mathbb{E}_{p}=\left\{\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{C}^{n}: \sum_{j=1}^{n}\left|\zeta_{j}\right|^{2 p_{j}}-1<0\right\}
$$

by $B: \mathbb{E}_{p} \rightarrow \boldsymbol{S}_{p}$ (section 1). Thus we are led back to study $\bar{\partial} u=B^{*} f$ on $\mathbb{E}_{p} . B^{*} f$ is no longer bounded (it has a finite number of singular points on $\partial \mathbb{E}_{p}$) but if f satisfies the condition

$$
|\zeta|^{k}|f|<+\infty
$$

as

$$
|\zeta| \rightarrow \infty, \quad \text { for } k>1+p_{n}\left(1-\frac{1}{\prod_{j=1}^{n} p_{j}}\right)
$$

then a bounded solution exists for $\bar{\partial} v=B^{*} f$ such that $u=B_{*} v$ is bounded, smooth on S_{p} and $\bar{\partial} u=f$.

The analogous problem for unbounded domains was first considered in [11] where a bounded solution is obtained for a special class of pseudoconvex domains assuming, at least, $k>1$ and with the additional hypothesis that supp $f \cap \partial \Omega$ is compact.

1. - The biholomorphism.

Let us consider the unbounded domain

$$
\boldsymbol{S}_{p}=\left\{\zeta \in \mathbb{C}^{n}: p(\zeta)=\sum_{j=1}^{n-1}\left|\zeta_{j}\right|^{2 p_{j}}+\Im m \zeta_{n}^{p_{n}}-1<0\right\}
$$

where $p=\left(p_{1}, \ldots, p_{n}\right) \in\left(\mathbb{Z}^{+}\right)^{n}$: when $p=(1, \ldots, 1) \boldsymbol{S}_{p}=\boldsymbol{S}$ is the Siegel domain which is strongly pseudoconvex and biholomorphic to the unit ball \mathbb{B}^{n} of \mathbb{C}^{n} by the Cayley map. If $p_{j}>1$, for some $j, 1 \leqslant j \leqslant n, \boldsymbol{S}_{p}$ is weakly pseudoconvex.

Let us take

$$
\mathbb{E}_{p}=\left\{z \in \mathbb{C}^{n}: r(z)=\left|z_{1}\right|^{2 p_{1}}+\ldots+\left|z_{n}\right|^{2 p_{n}}-1<0\right\} ;
$$

then, for every choice of the p_{j}-th roots, the map $B: \mathbb{E}_{p} \rightarrow \boldsymbol{S}_{p}$ given by

$$
B\left(z_{1}, \ldots, z_{n}\right)=\left(\left(\frac{i}{1+z_{n}^{p_{n}}}\right)^{1 / p_{1}} z_{1}, \ldots,\left(\frac{2 i}{1+z_{n}^{p_{n}}}\right)^{1 / p_{n}} z_{n}\right)=\left(B_{1}(z), \ldots, B_{n}(z)\right)
$$

is defined and holomorphic on $\mathbb{C}^{n}-\left(\mathbb{C}^{n-1} \times\left\{e^{i \pi(1+2 \lambda) / p_{n}}\right\}\right), \quad \forall \lambda=0, \ldots, p_{n}-1$,
where $\mathbb{C}^{n} \times\left\{e^{i \times(1+2 \lambda) / p_{n}}\right\}$ is the holomorphic tangent space to $\partial \mathbb{E}_{p}$ in $z^{(\lambda)}=$ $=\left(0, \ldots, e^{i \pi(1+2 \lambda) / p_{n}}\right)$.

We choose principal roots. B is a biholomorphism and it has the inverse

$$
b\left(\zeta_{1}, \ldots, \zeta_{n}\right)=\left(\left(\frac{2}{2 i-\zeta_{n}^{p_{n}}}\right)^{1 / p_{1}} \zeta_{1}, \ldots,\left(\frac{1}{2 i-\zeta_{n}^{p_{n}}}\right)^{1 / p_{n}} \zeta_{n}\right)=\left(b_{1}(\zeta), \ldots, b_{n}(\zeta)\right)
$$

where the p_{j}-th root is the principal one, $1 \leqslant j \leqslant n$. When $p=(1, \ldots, 1), b(\zeta)$ is the Cayley map.

If $\zeta \in \bar{S}_{p}$ is such that $|\zeta| \rightarrow \infty$ then it happens either $\left|\zeta_{n}\right| \rightarrow \infty$ for $1 \leqslant j \leqslant n-1$, and in this case, since $1-\Im m \zeta_{n}^{p_{n}}>\sum_{j=1}^{n-1}\left|\zeta_{j}\right|^{2 p_{j}}$, it follows that $\left|\zeta_{j}\right|^{2 p_{j}} /\left|\zeta_{n}^{p_{n}}\right|$ is bounded and $\left|\zeta_{n}\right| \rightarrow \infty$. Hence one has:

$$
\lim _{|\zeta| \rightarrow \infty}\left|b_{r}(\zeta)\right|=\lim _{\left|\zeta_{n}\right| \rightarrow \infty}\left|b_{r}(\zeta)\right| \leqslant C \lim _{\left|\zeta_{n}\right| \rightarrow \infty}\left(\frac{\left|\zeta_{n}\right|^{p_{n} / 2}}{\left|2 i-\zeta_{n}^{p_{n}}\right|}\right)^{1 / p_{r}}=0
$$

for $1 \leqslant r \leqslant n-1$, and

$$
\lim _{|\zeta| \rightarrow \infty} b_{n}^{p_{n}}(\zeta)=\lim _{\mid \zeta n} \mid \rightarrow \infty
$$

therefore $\lim _{|\zeta| \rightarrow \infty} b(\zeta)=\left(0, \ldots, 0, e^{i \pi(1+2 \lambda) / p_{n}}\right)=z^{(\lambda)}$, for $0 \leqslant \lambda \leqslant p_{n}-1$.
Characterization of Proper Holomorphic Mappings. Since in [8] the group Aut $\left(\mathbb{E}_{p}\right)$ of the automorphism of \mathbb{E}_{p} and the proper holomorphic mappings from \mathbb{E}_{p} to \mathbb{E}_{q} are completely described, the explicit expression of the biholomorphism $B: \mathbb{E}_{p} \rightarrow \boldsymbol{S}_{p}$ naturally gives

1) every automorphism Φ of S_{p} is conjugate to an automorphism of \mathbb{E}_{p} in the sense that $\Phi=B \circ \Psi_{\circ}$ b for $\Psi \in \operatorname{Aut}\left(\mathbb{E}_{p}\right)$;
2) every biholomorphic map from S_{p} is given by $B \circ \Psi$, with $\Psi \in \operatorname{Aut}\left(\mathbb{E}_{p}\right)$;
3) every proper holomorphic mapping $f: \boldsymbol{S}_{p} \rightarrow \mathbb{E}_{p}$ is a biholomorphism;
4) there exist a proper holomorphic map $f: \boldsymbol{S}_{p} \rightarrow \boldsymbol{S}_{q}$ if and only if $p / q=$ $=\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n}\right) \in\left(\mathbb{Z}^{+}\right)^{n}$ and it is, up to biholomorphisms of \boldsymbol{S}_{q},

$$
f\left(\zeta_{1}, \ldots, \zeta_{n}\right)=\left(\zeta_{1}^{p_{1} / q_{1}}, \ldots, \zeta_{n}^{p_{n} / q_{n}}\right) ;
$$

5) every proper holomorphic self-mapping of \boldsymbol{S}_{p} is a biholomorphism.

2. - The $\bar{\partial}$-problem: the case with compact support.

We denote by $C_{(p, q)}^{k}(D)$ the vector space of (p, q)-forms with C^{k}-coefficients on a domain $D, 0 \leqslant k \leqslant \infty$, and for $f \in C_{(p, q)}^{(t}(D)$ let $|f(\zeta)|=\sum_{\substack{|I|=p \\|J|=q}}\left|f_{I J}(\zeta)\right|,\|f\|_{\infty}=$
$=\sup _{\gamma}|f(\zeta)|$.

If $f \in C_{(0,1)}^{k}\left(\bar{S}_{p}\right)$ then for the pull-back $F(z)=B^{*} f(\zeta)=\sum_{s=1}^{n} F_{s}(z) d \bar{z}_{s}$ of f by B, we have

$$
\begin{align*}
& F_{r}(z)=\left(\frac{-i}{1+\bar{z}_{n}^{p_{n}}}\right)^{1 / p_{r}} f_{r}(B(z)), \quad 1 \leqslant r \leqslant n-1, \tag{2.1}\\
& F_{n}(z)=\sum_{r=1}^{n-1}\left[-\frac{p_{n}}{p_{r}}\left(\frac{-i}{1+\bar{z}_{n}^{p_{n}}}\right)^{1 / p_{n}} \frac{\bar{z}_{r} \bar{z}_{n}^{p_{n}-1}}{1+\bar{z}_{n}^{p_{n}}}\right] f_{r}(B(z))+ \\
& \\
&
\end{align*}
$$

and it is $\bar{\partial}_{z}$-closed if f is $\bar{\partial}_{\zeta}$ closed; furthermore if U is the solution of the $\bar{\alpha}$-equation in \mathbb{E}_{p} then $u(\zeta)=U \circ b(\zeta)$ solves $\bar{\partial}_{\zeta} u=f$ in S_{p} and

$$
\begin{equation*}
\lim _{|\xi| \rightarrow \infty}|u(\zeta)|=\lim _{|\xi| \rightarrow \infty}|U(b(\zeta))|=\lim _{z \rightarrow z^{(x)}}|U(z)| \tag{2.3}
\end{equation*}
$$

Let us assume that $f \in C_{(0,1)}^{1}\left(\overline{\boldsymbol{S}}_{p}\right)$ has compact support, that is $\operatorname{supp} f \cap \overline{\boldsymbol{S}}_{p}$ is contained in a ball $B(0, r)$ and so there exists a neighbourhood B_{λ} of $z^{(\lambda)}$ such that the form $F=B^{*} f$ is identically zero on $B{ }_{\lambda} \cap \overline{\mathbb{E}_{p}} ;$ moreover $F \in C_{(0,1)}^{1}\left(\overline{\mathbb{E}_{p}}\right)$, $\operatorname{supp} F \cap \partial \mathrm{E}_{p} \neq \emptyset$ and $\|F\|_{\infty} \leqslant C\|f\|_{\infty}$.

On the Siegel domain \mathbf{S}, by Theorem 3.2 of [11], the ∂-equation $\bar{\partial} u=f$ has a bounded solution $u \in C^{1}(\overline{\boldsymbol{S}})$ which goes to 0 as $|\zeta| \rightarrow \infty$.

We prove that this is still true the domains \boldsymbol{S}_{p} and for the Siegel domain \boldsymbol{S} there is a Hölder solution with exponent $\alpha=1 / 2$.

Proposition 2.1. - If $f \in C_{(0,1)}^{1}\left(\overline{\boldsymbol{S}}_{p}\right)$ with compact support is $\overline{\text { - }}$-closed then there exists a bounded and Hölder solution of the equation $\bar{\partial} u=f$ such that

$$
\lim _{|\zeta| \rightarrow \infty}|u(\zeta)|=0
$$

Proof. - Let $\widetilde{f}(\zeta)=\left(2 i-\zeta_{n}\right)^{h} f(\zeta)$, where $h>0$; since the form $\widetilde{F}(z)=B^{*} \widetilde{f}(z)=$ $=\left[2 i-\left(B_{n}(z)\right)^{p_{n}}\right]^{h} F(z)=\left(2 i /\left(1+z_{n}^{p_{n}}\right)\right)^{h} F(z)$ vanishes on B_{λ}, it is $C^{1}\left(\overline{\mathbb{E}}_{p}\right)$ and $\bar{\partial}$-closed because F is $\bar{\partial}$-closed. By [3] and [9], there exists a solution $\widetilde{U} \in C^{\infty}\left(\mathbb{E}_{p}\right)$ of the equation $\bar{\partial} \widetilde{U}=\widetilde{F}$ which is a Hölder function with exponent $\alpha=1 /\left(2 \max \left\{p_{j}\right\}\right)$. Then the function

$$
U(z)=\left(\frac{1+z_{n}^{p_{n}}}{2 i}\right)^{h} \widetilde{U}(z)
$$

solves $\bar{\partial} U=F$ and
i) $|U(z)| \leqslant\left(\frac{1+\left|z_{n}\right|^{p_{n}}}{2}\right)^{h}|\widetilde{U}(z)| \leqslant\|\widetilde{U}\|_{\infty}$,
ii) $\lim _{z \rightarrow z^{(2)}}|U(z)|=\lim _{z \rightarrow z^{(\lambda)}} \frac{\left|1+z_{n}^{p_{n}}\right|^{h}}{2^{h}}|\widetilde{U}(z)|=0$.

It follows that the function $u(\zeta)=U \circ b(\zeta)$ is bounded in S_{p} and by (2.3) it goes to 0 as $|\zeta| \rightarrow \infty$ with order $h>0$. Moreover for $z, z^{\prime} \in \mathbb{E}_{p}$ one has:

$$
\left|U(z)-U\left(z^{\prime}\right)\right| \leqslant c\left|z-z^{\prime}\right|^{\alpha}
$$

for $\alpha=1 /\left(2 \max \left\{p_{j}\right\}\right)$, hence, since b is a Lipschitz function, one gets, for $\zeta, \zeta^{\prime} \in S_{p}$:

$$
\left|u(\zeta)-u^{\prime}(\zeta)\right|=\left|U \circ b(\zeta)-U \circ b\left(\zeta^{\prime}\right)\right| \leqslant c\left|b(\zeta)-b\left(\zeta^{\prime}\right)\right|^{\alpha} \leqslant C\left|\zeta-\zeta^{\prime}\right|^{\alpha} .
$$

so u is α-Hölder continuous.
Remark 2.1. - When $f \in C_{(0,1)}^{m+1}\left(\overline{\boldsymbol{S}}_{p}\right)$, by [6], for every $m \in \mathbb{N}$, there is a solution $\widetilde{U} \in C^{m}\left(\overline{\mathbb{E}}_{p}\right)$ of $\bar{\partial} \tilde{U}=\widetilde{F}$, therefore, using the above arguments, one can obtain a solution $u \in C^{m}\left(\overline{\boldsymbol{S}}_{p}\right)$ of $\bar{\partial} u=f$ such that $\lim _{|\zeta| \rightarrow \infty} \mid u(\zeta)=0$.

3. - Analytic coverings and $\bar{\partial}$-problem.

The biholomorphic equivalence between \boldsymbol{S}_{p} and \mathbb{E}_{p} leads us to find bounded solutions for $\bar{\partial}$-equation on \mathbb{E}_{p} when the data is singular on the boundary $\partial \mathbb{E}_{p}$. Since \mathbb{E}_{p} is an analytic covering via $\pi_{p}: \mathbb{E}_{p} \rightarrow \mathbb{B}^{n}, \pi_{p}(z)=\left(z_{1}^{p_{1}}, \ldots, z_{n}^{p_{n}}\right)$, we study the problem for a smoothly bounded pseudoconvex domain $\Omega \mathrm{C} \mathbb{C}^{n}$ which is an analytic covering of a smoothly bounded strongly pseudoconvex domain $D \subset \mathbb{C}^{n}, n \geqslant 2$, that is there exists a proper holomorphic mapping $\pi: \Omega \rightarrow D$; assume that $\pi \in C^{\infty}(\bar{\Omega})$.

To solve this problem we need an integral representation formula for the solution of the $\bar{\partial}$-equation on strongly pseudoconvex domains introduced by Dautov and Henkin [2]. To write the integral solution we construct in Ω the kernel as in [10] by means of the Henkin function. Following the results of Theorem 9 and Theorem 16 of [4], for simplicity, we can present the formula for D strictly convex.

For $\xi, w \in \bar{D}$ let

$$
\widetilde{\Phi}_{D}(\xi, w)=\Phi_{D}(\xi, w)-s(\xi)
$$

where $s \in C^{2}(\widetilde{D}, \mathbb{R})$ is a function strictly plurisubharmonic in a neighbourhood \widetilde{D} of \bar{D} defining $D, \operatorname{grad} s \neq \underline{0}$ on ∂D and $\Phi_{D}(\xi, w)=\sum_{j=1}^{n}\left(\partial s(\xi) / \partial \xi_{j}\right)\left(w_{j}-\xi_{j}\right)$ is the Henkin function of D. From Taylor's formula and strict convexity of D we have:

$$
2 \Re e \widetilde{\Phi}_{D}(\xi, w) \geqslant-s(\xi)-s(w)+\gamma|\xi-w|^{2}
$$

with γ depending only on D, hence

$$
\left|\widetilde{\Phi}_{D}(\xi, w)\right| \geqslant C_{D}\left[|s(\xi)-s(w)|+\left|\Im m \Phi_{D}(\xi, w)\right|-s(w)+|\xi-w|^{2}\right] .
$$

We define, for $\zeta, z \in \bar{\Omega}$,

$$
\widetilde{\Phi}(\zeta, z)=\widetilde{\Phi}_{D}(\pi(\zeta), \pi(z)) .
$$

For every $w \in \bar{D}, \pi^{-1}(w)=\left\{z^{(1)}, \ldots, z^{(k)}\right\}$ consists of a finite number of points in Ω each of which has its multiplicity $m_{j}, 1 \leqslant j \leqslant k$ and $\sum_{j=1}^{k} m_{j}=M$ is the branching order of π. We consider the set

$$
A_{j, w}=\left\{\zeta \in \Omega:\left|\zeta-z^{(j)}\right|=\min \left\{\left|\zeta-z^{(1)}\right|, \ldots\left|\zeta-z^{(k)}\right|\right\}\right\}
$$

so that $\Omega=\bigcup_{j=1}^{k} A_{j, w}$. For fixed $\zeta \in \bar{\Omega}$, by Theorem 2.3 in [10], it follows that, for every
$z \in \bar{\Omega}$

$$
\begin{equation*}
|\pi(\zeta)-\pi(z)|^{2} \geqslant c \prod_{j=1}^{k}\left|\zeta-z^{(j)}\right|^{2 m_{j}} \tag{3.1}
\end{equation*}
$$

where $\pi(z)=\pi\left(z^{(j)}\right)$.
Taking into account (3.1) and the defining function $r=s \circ \pi$ of Ω, we get the following estimate:

$$
\begin{equation*}
|\widetilde{\Phi}(\zeta, z)| \geqslant C_{D}\left[|r(\zeta)-r(z)|+|\mathfrak{\Im} m \Phi(\zeta, z)|-r(z)+c \prod_{j=1}^{k}\left|\zeta-z^{(j)}\right|^{2 m_{j}}\right] \tag{3.2}
\end{equation*}
$$

for $z^{(j)} \in \pi^{-1}(\pi(z))$.
Let us consider the functions $a_{h}(\zeta, z)=\left[1-(\Phi(\zeta, z) / \widetilde{\Phi}(\zeta, z))^{2 n}\right]^{h}$, for $h \geqslant 0$, and $\left.\eta=\eta(\zeta, z, \lambda)=\lambda(p(\zeta) / \Phi(\zeta, z))+(1-\lambda)(\bar{\zeta}-\bar{z}) /|\zeta-z|^{2}\right)$, where, by Lemma 1.3 in [10], $p(\zeta)=\left(p_{1}(\zeta), \ldots, p_{n}(\zeta)\right.$ is such that $\Phi(\zeta, z)=\Phi_{D}(\pi(\zeta), \pi(z))=\sum_{j=1}^{n} p_{j}(\zeta)$ $\left(z_{j}-\zeta_{j}\right)$. Take the forms $\omega(\zeta)=\bigwedge_{i=1}^{n} d \zeta_{i}, \omega(\zeta+z)=\sum_{p=0}^{n} \omega_{p}(\zeta+z)$, where $\omega_{p}(\zeta+z)$ is a $(p, 0)$-form in z, an $(n-p, 0)$-form in ζ, and $\omega^{\prime}(\eta)=\sum_{i=1}^{n}(-1)^{i-1} n_{i} \bigwedge_{j \neq i} d n_{j}$: using the same techniques as in [2] one can prove the following

Proposition 3.1. - Let $F \in C_{(p, q)}^{\infty}(\Omega), 0 \leqslant p \leqslant n-1,1 \leqslant q \leqslant n$, ${ }^{\infty}$-closed such that $r(z)^{h-1} F(\zeta)$ has integrable coefficients. Then the ($p, q-1$)-forms

$$
\begin{aligned}
U_{h}(z)=\frac{(-1)^{q}(n-1)!}{(2 \pi i)^{n}}\left[\int_{\zeta \in \Omega} a_{h}(\zeta, z) F(\zeta) \wedge \omega^{\prime}\left(\frac{\bar{\zeta}-\bar{z}}{|\zeta-z|}\right)\right. & \wedge \omega_{p}(\zeta+z)+ \\
& \left.+\int_{(\zeta, \lambda) \in \Omega \times[0,1]} F(\zeta) \wedge \bar{\partial}_{\zeta} a_{h}(\zeta, z) \wedge \omega^{\prime}(\eta) \wedge \omega_{p}(\zeta+z)\right]
\end{aligned}
$$

for $h \geqslant 1$ and $z \in \Omega$, are solutions of the equation $\bar{\partial} U=F$ and $U \in C_{(p, q-1)}^{\infty}(\Omega)$.
Remark 3.1. - The Proposition is still true under the weaker hypothesis that F is $a(p, q)$-form with regular measure coefficients on the domain $\Omega \subset \mathbb{C}$.

By the definition of $a_{h}(\zeta, z)$ and calculating $\bar{\partial}_{\zeta} a_{h}(\zeta, z)$, Proposition 3.1 implies the following integral representation formula for the solution of the $\bar{\partial}$-problem on Ω :

$$
\begin{align*}
U_{h}(z)=C_{n, q} & {\left[\int_{\zeta \in \Omega} \frac{r(\zeta)^{h} F(\zeta) \wedge \psi(\zeta, z)}{\widetilde{\Phi}(\zeta, z)^{h}|\zeta-z|^{2 n-1}}+\right.} \tag{3.3}\\
& \left.+\int_{\zeta \in \Omega} \frac{r(\zeta)^{h-1} F(\zeta) \wedge \bar{\partial} r(\zeta) \wedge \psi^{\prime}(\zeta, z)}{\widetilde{\Phi}(\zeta, z)^{h+1}|\zeta-z|^{2 n-3}}+\int_{\zeta \in \Omega} \frac{r(\zeta)^{h} F(\zeta) \wedge \psi^{\prime \prime}(\zeta, z)}{\widetilde{\Phi}(\zeta, z)^{h+2}|\zeta-z|^{2 n-4}}\right]
\end{align*}
$$

where $C_{n, q}=\left((-1)^{q}(n-1)!\right) /(2 \pi i)^{n}$ and $\psi(\zeta, z), \psi^{\prime}(\zeta, z), \psi^{\prime \prime}(\zeta, z)$ are forms with coefficients in $C^{\infty}(\Omega \times \Omega) \cap L^{\infty}(\Omega \times \Omega)$.

If $F \in C_{(p, q)}^{\infty}(\Omega), q \geqslant 1$, satisfies the following condition:
there exists $\alpha \in \mathbb{R}, \alpha<1 / M$, such that

$$
\sup _{\zeta \in \Omega}|r(\zeta)|^{\alpha}\left[|F(\zeta)|+|r(\zeta)|^{-1 / 2 M}|F(\zeta) \wedge \bar{\partial} r(\zeta)|\right]<+\infty,
$$

then $r(\zeta)^{h-1} F(\zeta)$ has integrable coefficients for every $h \geqslant 1$ and (3.3) yields

$$
\begin{aligned}
\left|U_{h}(z)\right| \leqslant C_{n, q}\left[\int_{\zeta \epsilon \Omega}\right. & \frac{|r(\zeta)|^{h-x} d V(\zeta)}{|\widetilde{\Phi}(\zeta, z)|^{h}|\zeta-z|^{2 n-1}}+ \\
& \left.\quad+\int_{\zeta \in \Omega} \frac{\mid r(\zeta)^{h-1-x+1 / 2 M} d V(\zeta)}{|\widetilde{\Phi}(\zeta, z)|^{h+1}|\zeta-z|^{2 n-3}}+\int_{\zeta \in \Omega} \frac{|r(\zeta)|^{h-\alpha} d V(\zeta)}{|\widetilde{\Phi}(\zeta, z)|^{h+2}|\zeta-z|^{2 n-4}}\right]
\end{aligned}
$$

(where $d V$ is the Lebesgue measure). Therefore, in this case, to get bounded solutions for the $\bar{\partial}$-equation we estimate integrals of type:

$$
I_{a, \dot{b}, c}=\int_{\zeta \in \Omega} \frac{|r(\zeta)|^{a} d V(\zeta)}{|\widetilde{\Phi}(\zeta, z)|^{b}|\zeta-z|^{c}} .
$$

By the definition, $\widetilde{\Phi}\left(\zeta, z^{(j)}\right)=\widetilde{\Phi}(\zeta, z), \forall j, 1 \leqslant j \leqslant k$, hence (3.2) and the property of $A_{j, w}$ imply that

$$
I_{a, b, c} \leqslant C_{D} \sum_{j=1}^{k} \int_{\zeta \in A_{j, \omega}} \frac{|r(\zeta)|^{a} d V(\zeta)}{\left[\left|r(\zeta)-r\left(z^{(j)}\right)\right|+\left|\Im m \Phi\left(\zeta, z^{(j)}\right)\right|-r\left(z^{(j)}\right)+c\left|\zeta-z^{(j)}\right|^{2 M}\right]^{b}\left|\zeta-z^{(j)}\right|^{c}} .
$$

Lemma 3.1. - Let $M \geqslant 1$ and

$$
J_{a, b, c}=\int_{\zeta \in \Omega} \frac{|r(\zeta)|^{a} d V(\zeta)}{\left[|r(\zeta)-r(z)|+|\Im m \Phi(\zeta, z)|-r(z)+c|\zeta-z|^{2 M}\right]^{b}|\zeta-z|^{c}} .
$$

Then $J_{a, b, c}$ is bounded for $c=2 n-1$ if $a-b+1>0$ and for $c=2 n-3,2 n-4$ if $2 M(a-b+2)+2(n-1)-c>0$.
$J_{a, b, c} \leqslant C \log (-r(z))$ for $c=2 n-1$ if $a-b+1=0$ and for $c=2 n-3,2 n-4$ if $2 M(a-b+2)+2(n-1)-c=0$.

Proof. - For the sake of simplicity we can assume that $\operatorname{diam}(\Omega)<1$.
Choose, as usual, coordinates t_{1}, \ldots, t_{n} with $t_{1}=r(z)-r(\zeta) \geqslant 0, t_{2}=\mathfrak{s} m \Phi(\zeta, z)$, and $t=|\zeta-z|, \varepsilon=-r(z)$ so that we have

$$
|r(\zeta)-r(z)|-r(z)=\left|t_{1}\right|+\varepsilon
$$

therefore

$$
J_{a, b, c} \leqslant \int_{\substack{|t|<1 \\ t_{1}+\varepsilon>0}} \frac{\left(t_{1}+\varepsilon\right)^{a} d t_{1} \ldots d t_{n}}{\left[\left|t_{1}\right|+\left|t_{2}\right|+\varepsilon+c|t|^{2 M}\right]^{b}|t|^{c}}
$$

One can use polar coordinates $t_{1}=\rho \cos \phi_{1}, t_{2}=\rho \cos \phi_{2} \operatorname{sen} \phi_{1}$ and following [2] we put $s_{1}=s u, s_{2}=s(1-|u|)$ with $s_{1}=\cos \phi_{1}, s_{2}=\left|\cos \phi_{2}\right|$ so that $d s_{1} d s_{2}=-s d s d u$ for $0 \leqslant s u \leqslant 1$. Therefore one gets

$$
J_{a, b, c} \leqslant C_{0} \int_{\substack{0 \leqslant \rho, s \leqslant 1 \\-1 \leqslant u \leqslant 1 \\ \rho s u+\varepsilon>0}} \frac{(\rho s u+\varepsilon)^{a} s \rho^{2 n-1-c}}{\left(\rho s+\varepsilon+r^{2 M}\right)^{b}} d \rho d s d u
$$

When $c=2 n-1$, one takes $\rho s=\varepsilon v$, which implies $s d \rho d s d u=\varepsilon d v d s d u$ and with the method of [2] one gets $J_{a, b, c}$ bounded for $a-b+1>0, J_{a, b, c} \leqslant C \log \varepsilon$ if $a-b+1=0$.

When $c=2 n-3$ or $2 n-4$ one puts $2 n-1-c=m+2$ getting:

$$
\begin{aligned}
& J_{a, b, c} \leqslant C_{0} \int_{0}^{1} \rho^{m} d \rho \int_{0}^{1} \frac{\rho d s}{\left(\rho s+\varepsilon+c p^{2 M}\right)^{b}} \int_{-\varepsilon / \rho s}^{1}(\rho s u+\varepsilon)^{a} \rho s d u \leqslant \\
& \leqslant C_{1} \int_{0}^{1} \rho^{m} d \rho \int_{0}^{1} \rho\left(\rho s+\varepsilon+c \rho^{2 M}\right)^{a-b+1} d s
\end{aligned}
$$

If $a-b+2 \geqslant 0$ then

$$
\begin{aligned}
& J_{a, b, c} \leqslant C_{2} \int_{0}^{1} \rho^{m}\left[\left(\rho+\varepsilon+c \rho^{2 M}\right)^{a-b+2}-\left(\varepsilon+c \rho^{2 M}\right)^{a-b+2}\right] d \rho \leqslant \\
& \leqslant C_{3} \int_{0}^{1} \rho^{m}\left(\rho+\varepsilon+c \rho^{2 M}\right)^{a-b+2} d \rho \leqslant C_{3}^{\prime}(1+c+\varepsilon)^{a-b+2} \int_{0}^{1} \rho^{m} d \rho \leqslant C_{3}(1+c+\varepsilon)^{a-b+2}
\end{aligned}
$$

If $a-b+2<0$ then

$$
\begin{aligned}
& J_{a, b, c} \leqslant C_{2}^{\prime} \int_{0}^{1} \rho^{m}\left[\left(\varepsilon+c_{\rho} 2^{2 M}\right)^{a-b+2}-\left(\rho+\varepsilon+c_{\rho}^{2 M}\right)^{a-b+2}\right] d \rho \leqslant \\
& \leqslant C_{3}^{\prime} \int_{0}^{1} \rho^{m}\left(\varepsilon+c_{\rho}^{2 M}\right)^{a-b+2} d \rho \leqslant C_{4} \int_{0}^{1}\left[\left(\frac{\varepsilon}{c}\right)^{1 / 2 M}+\rho\right]^{m+2 M(a-b+2)} d \rho
\end{aligned}
$$

where one uses the Hölder inequality $(A+B)^{p} \leqslant C\left(A^{p}+B^{p}\right), p \in \mathbb{R}, p \geqslant 0$. Hence

$$
J_{a, b, c} \leqslant C_{5}^{\prime}\left[\left(1+\left(\frac{\varepsilon}{c}\right)^{1 / 2 M}\right)^{2 M(a-b+2)+m+1}-\left(\frac{\varepsilon}{c}\right)^{a-b+2+(m+1) / 2 M}\right]
$$

which is bounded when $\varepsilon \rightarrow 0$ if $2 M(a-b+2)+m+1>0, m=0,1$.
If $2 M(a-b+2)+m+1=0$ we get $J_{a, b, c} \leqslant C \log \varepsilon$.
Now it follows

Theorem 3.1. - Let $\Omega \subset \mathbb{C}^{n}, n \geqslant 2$, be a smoothly bounded pseudoconex domain, let $\pi: \Omega \rightarrow D$ be an analytic covering with branching order M on a smoothly bounded strongly pseudoconvex domain $D \subset \mathbb{C}^{n}$, and $\pi \in C^{\infty}(\bar{\Omega})$.

Let $F \in C_{(p, q)}^{\infty}(\Omega)$ be $\bar{\partial}$-closed. If there is $\alpha \in \mathbb{R}$ such that $\alpha<1 / M$ and

$$
\begin{equation*}
\sup _{\zeta \in \Omega}|r(\zeta)|^{\alpha}\left[|F(\zeta)|+|r(\zeta)|^{-1 / 2 M}|F(\zeta) \wedge \bar{\partial} r(\zeta)|\right]<+\infty \tag{3.4}
\end{equation*}
$$

then there exists $U \in C_{(p, q-1)}^{\infty}(\Omega) \cap L_{(p, q-1)}^{\infty}(\Omega)$ which is a solution of the equation $\bar{\partial} U=F$.

Proof. - The functions $U_{h}(z)$, defined by (3.3), are $C_{p, q-1}^{\infty}(\Omega)$ and solve $\bar{\partial} U=F$, for $h \geqslant 1$. Hence (3.4) give integrals of type $J_{h-\alpha, h, 2 n-1}, J_{h-1-\alpha+(1 / 2 M), h+1,2 n-3}$, $J_{h-\alpha, h+2,2 n-4}$. Since $\alpha<1 / M$ and $h \geqslant 1$ applying Lemma 3.1, it follows that $J_{h-\alpha, h, 2 n-1}, J_{h-1-\alpha+(1 / 2 M), h+1,2 n-3}, J_{h-\alpha, h+2,2 n-4}$ are bounded when $r(z) \rightarrow 0$.

Remark 3.2. - When F has bounded coefficients, (3.4) is satisfied for every α such that $1 / 2 M \leqslant \alpha<1 / M$.

The condition (3.4) is sharp. For this we give two examples. With the first one we point out the significance of the behaviour of the $\bar{\partial}$-closed $(0,1)$-form F at the boundary of the domain. The second one shows that the condition on the exponent $\alpha<1 / M$ is sharp.

Both examples are taken in the unit ball $\mathbb{B}^{2} \subset \mathbb{C}^{2}$; obviously in this case $M=1$.

1) Let us take the (0,1)-form with C^{∞} coefficients in \mathbb{B}^{2}

$$
F\left(z_{1}, z_{2}\right)=\frac{d \bar{z}_{1}}{\left(1+z_{2}\right)^{3}}, \quad \frac{1}{2}<\beta<1
$$

then

$$
|r(z)|^{\alpha}|F(z)|=\frac{\left(1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)^{\alpha}}{\left|1+z_{2}\right|^{\beta}} \leqslant \frac{\left(1-\left|z_{2}\right|^{\alpha}\right)}{\left|1+z_{2}\right|^{\beta}} \leqslant 2^{\alpha}\left|1+z_{2}\right|^{\alpha-\beta}
$$

which is bounded for $\beta \leqslant \alpha<1$, while

$$
|r(z)|^{\alpha-1 / 2}|F(z) \wedge \bar{\partial} r(z)|=\frac{\left(1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)^{\alpha-1 / 2}\left|z_{2}\right|}{\left|1+z_{2}\right|^{\beta}} \leqslant 2^{\alpha-1 / 2}\left|1+z_{2}\right|^{\alpha-\beta-1 / 2}
$$

which is bounded for $\alpha \geqslant \beta+1 / 2>1$.
Hence the condition (3.4) is not satisfied. The function

$$
U(z)=\frac{\bar{z}_{1}}{\left(1+z_{2}\right)^{\beta}}
$$

is a solution of $\bar{\partial} U=F$, but it is not bounded and $U \notin L^{p}\left(\mathbb{B}^{2}\right)$ for $p>6 /(2 \beta-1)$. One can prove as in [7] that $U(z)$ is the unique solution of the $\bar{\partial}$-equation which is orthogonal to the holomorphic functions in $L^{2}\left(\mathbb{B}^{2}\right)$ so that any other solution V of $\bar{\partial} U=F$ can be decomposed as $V=P(V)+U$, where P is the Bergman projection of the ball. In this case P maps L^{p} into itself (cf. [14]), so it follows that if V is a bounded solution then we would have $U=V-P(V) \in L^{p}\left(\mathbb{B}^{2}\right)$, which is not possible. Hence the equation $\bar{\partial} U=F$ has no bounded solution.
2) Consider the $C^{\infty},(0,1)$-form on \mathbb{B}^{2}

$$
G\left(z_{1}, z_{2}\right)=\frac{-z_{1}}{1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}} d \bar{z}_{1}-\frac{z_{2}}{1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}} d \bar{z}_{2}
$$

Then $|r(z)||G(z)|$ is bounded and $G(z) \wedge \bar{\partial} r(z)=0$. So condition (3.4) is satisfied for $\alpha=1$, but in \mathbb{B}^{2} the C^{∞} function

$$
U(z)=\log \left(1-\left|-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right)\right.
$$

is a solution of $\bar{\partial} U=G$ which is not bounded. Moreover there is no holomorphic function $H(z)$ such that $V(z)=U(z)+H(z)$ is a bounded solution of $\bar{\partial} U=G$: in fact if there exists such an $H(z)$, the function $W(z)=\left(1-\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}\right) e^{H(z)}$ is bounded by below in a neighbourhood of $\partial \mathbb{B}^{2}$ so that $e^{-H(z)}$ is a holomorphic function which goes to 0 as z goes to $\partial \mathbb{B}^{2}$: this is impossible by the maximum principle.

4. - The existence of bounded solutions.

Now we assume that $f \in C_{(0,1)}^{\infty}\left(\overline{\boldsymbol{S}}_{p}\right)$ and

$$
|f(\zeta)| \simeq \frac{1}{|\zeta|^{k}} \quad \text { when }|\zeta| \rightarrow \infty
$$

This condition implies, for each components f_{r} of f, that there exists a constant C_{r} such that

$$
\begin{equation*}
|\zeta|^{k}\left|f_{r}(\zeta)\right| \leqslant C_{r} \quad \text { as } \quad|\zeta| \rightarrow \infty ; \tag{4.1}
\end{equation*}
$$

from section 1 it follows that, for $\zeta=B(z)$,

$$
\begin{aligned}
& {\left[\sum_{s=1}^{n}\left|B_{s}(z)\right|^{2}+\left|B_{n}(z)\right|^{2}\right]^{k / 2}\left|f_{r}(B(z))\right| \leqslant } \\
& \leqslant\left[\sum_{s=1}^{n-1} \frac{\left|z_{s}\right|^{2}}{\left|1+z_{n}^{p_{n}}\right|^{2 / p_{s}}}+4^{1 / p_{n}} \frac{\left|z_{n}\right|^{2}}{\left|1+z_{n}^{p_{n}}\right|^{1 / p_{n}}}\right]^{k / 2}\left|f_{r}(B(z))\right| \leqslant C_{r}
\end{aligned}
$$

for $z \rightarrow z_{n}^{(\lambda)}$.
Since $\sum_{s=1}^{n-1}\left|z_{s}\right|^{2 p_{s}}<1-\left|z_{n}\right|^{2 p_{n}}$ then the function

$$
\sum_{s=1}^{n-1}\left[\frac{\left|z_{s}\right|^{2}}{\left|1+z_{n}^{p_{n}}\right|^{2 / p_{s}}}+4^{1 / p_{n}} \frac{\left|z_{n}\right|^{2}}{\left|1+z_{n}^{p_{n}}\right|^{2 / p_{n}}}\right]^{k / 2}
$$

goes to infinity as the function $\left|1+z_{n}^{p_{n}}\right|^{-k / p_{n}}$ when $z \rightarrow z^{(\lambda)}$, so $\left|f_{r}(B(z))\right|$ goes to 0 with the same order as $\left|1+z_{n}^{p_{n}}\right|^{k / p_{n}}, \forall r, 1 \leqslant r \leqslant n$.

The (0,1)-form $F(z)=B^{*} f(z)$ has C^{∞}-smooth coefficients on $\mathbb{E}_{p}-\bigcup_{\lambda=0} B\left(z^{(\lambda)}, \dot{\delta}\right)$, where $B\left(z^{(\lambda)}, \delta\right)$ is a ball with center in $z^{(\lambda)}$, radius a suitable $\delta, 0<\delta<1$ and from (2.2), (2.3), one has:

$$
\begin{equation*}
\left|F_{r}(z)\right|=\frac{\left|f_{r}(B(z))\right|}{\left|1+z_{n}^{p_{r}}\right|^{1 / p_{r}}} \leqslant C_{r}\left|1+z_{n}^{p_{n}}\right|^{\left(k / p_{n}\right)-\left(1 / p_{r}\right)} \tag{4.2}
\end{equation*}
$$

for $z \rightarrow z^{(\lambda)}, 1 \leqslant r \leqslant n-1$ and

$$
\begin{align*}
\left|F_{n}(z)\right| \leqslant \sum_{r=1}^{n-1} \frac{p_{n}}{p_{r}} & \frac{\left|z_{r}\right|\left|z_{n}\right|^{p_{n}-1}}{\left|1+z_{n}^{p_{n}}\right|^{1+\left(1 / p_{r}\right)}}\left|f_{r}(B(z))\right|+2^{1 / p_{n}} \frac{\left|f_{n}(B(z))\right|}{\left|1+z_{n}^{p_{n}}\right|^{1+\left(1 / p_{n}\right)}} \leqslant \tag{4.3}\\
& \leqslant \sum_{r=1}^{n-1} C_{r} \frac{p_{n}}{p_{r}}\left|1+z_{n}^{p_{n}}\right|^{\left(k / p_{n}\right)-\left(1 / p_{r}\right)}+2^{1 / p_{n}} C_{n}\left|1+z_{n}^{p_{n}}\right|^{\left[(l /-1) / p_{n}\right]-1}
\end{align*}
$$

Lemma 4.1. - Let $r(z)$ be the defining function of $\mathbb{E}_{p}, M=\prod_{j=1}^{n} p_{j}$ and $p_{0}=$ $=\min \left\{p_{1}, \ldots, p_{n}\right\}$. If $F \in C_{(0,1)}^{\infty}\left(\mathbb{E}_{p}\right)$ is the form defined above and it satisfies (4.2), (4.3) for $k \geqslant p_{n} / p_{0}$ then

$$
\begin{equation*}
\sup _{z \in \mathbb{E}_{p}}|r(z)|^{\alpha}\left[|F(z)|+|r(z)|^{-1 / 2 M}|F(z) \wedge \bar{\partial} r(z)|\right]<+\infty \tag{4.4}
\end{equation*}
$$

for $\alpha=\max \left(1 / 2 M, 1-\left[(k-1) / p_{n}\right]\right)$.
Proof. - Using the previous notations, when $z \in \overline{\mathbb{E}_{p}}-\bigcup_{\lambda=0}^{p_{n}-1} B\left(z^{(\lambda)}, \delta\right)$, the condition (4.4) is obviously satisfied; when $z \in \mathbb{E}_{p} \cap B\left(z^{(\lambda)}, \delta\right)$ we have:

$$
\begin{aligned}
&\left|z_{r}\right|^{2 p_{r}-1}=\left(1-\sum_{\substack{s=1 \\
s \neq r}}^{n}\left|z_{s}\right|^{2 p_{s}}\right)^{\left(2 p_{r}-1\right) / 2 p_{r}} \leqslant\left(1-\left|z_{n}\right|^{2 p_{n}}\right)^{1-\left(1 / 2 p_{r}\right)}= \\
&=\left[\left(1+\left|z_{n}\right|^{p_{n}}\right)\left(1-\left|z_{n}\right|^{p_{n}}\right)\right]^{1-\left(1 / 2 p_{r}\right)} \leqslant 2^{1-\left(1 / 2 p_{r}\right)}\left|1+z_{n}^{p_{n}}\right|^{1-\left(1 / 2 p_{r}\right)}
\end{aligned}
$$

for $1 \leqslant r \leqslant n-1$ and

$$
\begin{equation*}
|r(z)|=1-\sum_{r=1}^{n}\left|z_{r}\right|^{2 p_{r}} \leqslant 1-\left|z_{n}\right|^{2 p_{n}} \leqslant 2\left|1+z_{n}^{p_{n}}\right| . \tag{4.5}
\end{equation*}
$$

By (4.2) and (4.3) we get

$$
\begin{gather*}
|F(z)|=\sum_{r=1}^{n}\left|F_{r}(z)\right| \leqslant c_{1}\left|+z_{n}^{p_{n}}\right|^{\left[(k-1) / p_{n}\right]-1} \tag{4.6}\\
|F(z) \wedge \bar{\partial} r(z)| \leqslant \sum_{\substack{r, s=1 \\
r \neq s}}^{n-1}\left[\left|z_{s}\right|^{2 p_{s}-1}\left|F_{r}(z)\right|+p_{r}\left|z_{r}\right|^{2 p_{r}-1}\left|F_{s}(z)\right|\right]+ \\
\quad+\left|F_{n}(z)\right|_{r=1}^{n-1} p_{r}\left|z_{r}\right|^{2 p_{r}-1}+p_{n}\left|z_{n}\right|^{2 p_{n}-1} \sum_{r=1}^{n-1}\left|F_{r}(z)\right| \leqslant \\
\leqslant c_{2}\left|1+z_{n}^{p_{n}}\right|^{\left[(k-1) / p_{n}\right]-\left(1 / 2 p_{0}\right)}=c_{2}\left|1+z_{n}^{p_{n}}\right|^{\left[(k-1) / p_{n}\right]-\left(1 / 2 p_{0}\right)}
\end{gather*}
$$

When $z \in \mathbb{E}_{p} \cap B\left(z^{(\lambda)}, \delta\right)$ we have

$$
\begin{aligned}
& |r(z)|^{\alpha}\left[|F(z)|+|r(z)|^{-1 / 2 M}|F(z) \wedge \bar{\partial} r(z)|\right]= \\
& \quad=|r(z)|^{\alpha}|F(z)|+|r(z)|^{\alpha-(1 / 2 M)}|F(z) \wedge \bar{\partial} r(z)| \leqslant \\
& \leqslant 2^{\alpha} c_{1}\left|1+z_{n}^{p_{n}}\right|^{\alpha-1+\left[(k-1) / p_{n}\right]}+2^{\alpha-(1 / 2 M)} c_{2}\left|1+z_{n}^{p_{n}}\right|^{\alpha-(1 / 2 M)+\left[(k-1) / p_{n}\right]-\left(1 / 2 p_{0}\right)}< \\
& \quad<2^{\alpha-(1 / 2 M)} c_{3}\left|1+z_{n}^{p_{n}}\right|^{\alpha+\left[(k-1) / p_{n}\right]-1}
\end{aligned}
$$

and this is bounded because $\alpha \geqslant 1-\left[(k-1) / p_{n}\right]$.
We can prove the following

Proposition 4.1. - Let $M=\prod_{j=1}^{n} p_{j}$. If $f \in C_{(0,1)}^{\infty}\left(\overline{\boldsymbol{S}}_{p}\right)$ is $\overline{\text { à }}$-closed and such that

$$
|f| \simeq \frac{1}{|\zeta|^{k}} \quad \text { as }|\zeta| \rightarrow \infty, \quad \zeta \in \bar{S}_{p}
$$

with $k>1+p_{n}(1-1 / M)$, then there exists a bounded solution $u \in C^{\infty}\left(\boldsymbol{S}_{p}\right)$ of the $\bar{\partial}$-equation $\bar{\partial} u=f$.

Proof. - Let $B: \mathbb{E}_{p} \rightarrow \boldsymbol{S}_{p}$ be the biholomorphism of section 1 with its inverse $b: \boldsymbol{S}_{p} \rightarrow \mathbb{E}_{p}$. Since $k>1+p_{n}(1-1 / M)$ is obviously greater than $p_{n} / p_{0}, \forall p_{1}, \ldots, p_{n}$, then the $(0,1)$-form $F=B^{*} f$ verifies the hypothesis of Lemma 4.1; moreover there exists $\alpha \in \mathbb{R}$, with $\max \left\{1 / 2 M, 1-\left[(k-1) / p_{n}\right]\right\} \leqslant \alpha<1 / M$ such that (4.4) continues to be true. Hence Theorem 3.1 gives a bounded solution $U \in C^{\infty}\left(\mathbb{E}_{p}\right)$ of $\bar{\partial} U=F$, so the function $u(\zeta)=U \circ b(\zeta) \in C^{\infty}\left(S_{p}\right)$ is a bounded solution of the $\bar{\partial}$-equation $\bar{\partial} u=f$ on \boldsymbol{S}_{p}.

Remark 4.1. - We note that when $k>1+p_{n}$, using the same techniques of the proof of Proposition 4.1, one gets a solution which goes to 0 as $|\zeta| \rightarrow \infty$.

Remark 4.2. - For the Siegel domain $S, M=1$ and $\alpha \geqslant 2-k$. Hence if $f \in C_{(0,1)}^{1}(\overline{\boldsymbol{S}})$ is $\bar{\partial}$-closed and verifies the condition of the Proposition 4.1 then the $\overline{\bar{c}}$-equation $\bar{\partial} u=f$ has a bounded solution for $k>1$. By the example in [11] it follows that in \boldsymbol{S} this condition is, in a certain sense, sharp.

REFERENCES

[1] M. Cerne, Automorphisms of Siegel domains, preprint.
[2] Š. Dautov - G. M. Henkin, Zeros of holomorphic functions of finite order and weighted estimates for solutions of the $\overline{\mathrm{a}}$-equation, Math. USSR Sbornik, 35, no. 4 (1979), pp. 449-459.
[3] K. Diederich - J. E. Fornaess - J. Wiegerinck, Sharp Hölder estimates for ä on ellipsoids, Manuscripta Math, 56 (1986), pp. 399-417.
[4] J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Am. J. Math., 981 (1976), pp. 529-569.
[5] G. M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Survey, 32, no. 3 (1977), pp. 59-130.
[6] J. J. Konn, Global regularity for $\bar{\partial}$ on weakly pseudoconvex manifolds, Trans. Math. Soc., 181 (1973), pp. 273-292.
[7] S. G. Krantz, Optimal Lipschitz and L^{p} regularity for the equation $\bar{\partial} u=f$ on strongly pseudoconvex domains, Math. Ann., 219 (1976), pp. 233-260.
[8] M. Landucci, On proper holomorphic equivalence for a class of pseudoconvex domains, Trans. Am. Math. Soc., 282, no. 2 (1984), pp. 807-812.
[9] C. Parrini, Hölder estimates for $\overline{\text { aे }}$ in some finite preimages of strictly pseudoconvex domains, Bull. Sci. Math., 2^{e} série, 112 (1988), pp. 433-443.
[10] C. Parrini - A. Selvaggi Primicerio, Uniform estimates for the $\overline{\mathrm{z}}$-problem in a class of branched coverings of strictly pseudoconvex domains, Math. Z., 189 (1985), pp. 465474.
[11] C. Parrini - G. Tomassinı, $\partial u=f$: esistenza di soluzioni limitate in domini non limitati, Boll. Un. Mat. Ital., (7), 1-B (1987), pp. 1211-1226.
[12] R. M. Range, On Hölder estimates for $\bar{\partial} u=$ fon weakly pseudoconvex domains, Proocedings of International Conferences, Cortona, Italy 1976-1977, pp. 247-267.
[13] H. Skoda, Valeurs au bord pour les solutions de l'opérateur d", et caractérisation des zéros de la classe de Nevanlinna, Bull. Soc. Math. France, 104 (1976), pp. 225-299.
[14] E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Am. Math. Soc., 79 (1973), pp. 440-445.

