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A General Theory of Hypersurface Potentials (*).

ArBERTO CIALDEA

Summary. - A general theory of hypersurface potentials in n-dimensional space is proposed.
Not only smooth densities but also potentials generated either by L' functions or by mea-
sures are considered.

In the last years methods for solving boundary value problems by means of
boundary integral representations of the solution have acquired a large interest after
the advent of the computational methods founded on boundary finite elements.

While in the case of two independent variables starting from the paper[10] poten-
tial theoretic methods for the representation of the solutions of general elliptic linear
partial differential equations have been fully developed (see[12],[13],[16]) in the case
of n greater then two variables, only very particular results are known for equations
of order 2m, m > 1. This is due to the fact that in spaces of dimension # > 2 a general
theory of hypersurface potentials has not yet been developed. The aim of this paper is
to fill this gap by proposing a general theory of hypersurface potentials in n-dimen-
sional space. The theory will be expanded not only for smooth (ie. hélder continu-
ous) densities but also for hypersurface potentials generated either by L' functions or
by measures.

1. — Basic results.

In this section x = (x;,...,%,_;) denotes a point of R” ! (n = 2). We assume
teR. By 3¢*(R"~!) we denote the space of the functions which are bounded and
measurable in R”~! and have a compact support. Moreover we suppose that each
function of 3¢*(R" ') satisfies a Hélder condition of exponent A in the origin 0 of
R* 1 (0<a<1).

(*) Entrata in Redazione il 12 novembre 1992.
Indirizzo dell’A.: via E. Filiberto 100, 00185 Roma.
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I. Let K(x; t) e CO(R" — {0}) be a function such that
(1.1) |K(x; t)| < C(|z|*+ )T ""2  V(z; 1) e R" - {0}.
Let us suppose

() for any t > 0 the following integral exists

j K(x; tYyde = lim j K(x; t)de;
M-
R -1 ] <M

(ii) there exists y e R such that

1.2) j K@;t)de=y VYit>0;
Rn‘l

(iii) for any ¢>0

(1.3) lim K(z; t)dx =0.

t—ot
] >

Then, for any ¢ < 3 (R* 1), we have

lim j o(@) K(x; ) d = yp(0) + j o(x) K(; 0) dw

T
t=0 Rn‘l Rnfl

where the last integral exists as a singular integral (i.e. as lim j ).

¥
§—0 2] > ¢

Define

AQ) = J o(x) K(x; ) dac — yo(0); B(¢) = I ;o(oc)K(oc; 0)dx .

R® - |z] > ¢

Because of (1.2) we may write

A(t) - B(@) = j [o(e) — p(0)] K(x; £) daz — p(0) j K(x; t)da +

[z} <¢ |z} > ¢

+ [ @)K t) ~ K 0)]de.
lz| >2
Observing that
(14)  |[e@) — 9(0)]K(x; t)| < Clox) - o(0)|(|%]? + (2)L-m2 < O gLt

for any fixed ¢ > 0 we have

lim [ [p(@) - p(0)) Klx; ) d = [ Io@) ~ o0 Kia; 0)d.

t—0 N
- |e| <¢ |e} <@

Since K(x; t) e C°(R™ — {0}) and the support of ¢ is contained in a ball
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{xe R* ||| < M}, we have

(1.6) lim J o) K(x; ) — K(a; 0)]dx =
i |2] > 8

= lim j o(@) K(x; t) — K(z; 0)]dw = 0.

=0 e< x| <M

From (1.3), (1.5), (1.6) it follows that there exists the following limit and

lim A(t) = B(3) + j [o(x) — 9(0)] K(x; 0)dac .

t—0"
|z <¢

On the other hand, because of (1.4),

lim f [o(x) — 9(0)] K(x; 0)dzx = 0.
s—-0"
e} <8

This completes the proof of the Theorem.

We say that K(x;t) is homogeneous of degree o if K(pex; ot) = o*K(x; t),
Y(x; t) e R* - {0}, 0 > 0. We write K(x; t) e C*(R" — {0}) if K(x; t) satisfies a uni-
form Holder condition on any compact set in R™ — {0}.

IT) If K(z; t) e C*(R™ — {0}) is homogeneous of degree 1 — n, the conditions (i),
(ii), (i) of Theorem I are satisfied if and only if (V)

o)) j K(n; 0)do, =0
7] =1
where do, represents the area element on the (n — 1)-dimensional unit sphere

In| =1.

Let us suppose 0 < ¢ < M; because of (1.7) we may write

(1.8) j K(x;t)dxzﬁ»”“zdp j K(en; 1) do, =

s<lmf <M ¢ =1
M
= [t | KO3 /o) = Kins 0)1de,
3 |7} =1

If0st<1,¢029 then 1< [n]®+ (#/0)* <1+ 1/4% In other words, (y; t/o) be-

M From now on (1.7) must be understood as K(-1;00+K(1;0)=0, if n =2.
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longs to a compact set contained in R™ ~ {0}. This implies

1.9) o VK(y; tfe) — K(n; O S Ht'o 7177, Vo=,
Therefore the limit
M
. LM K(; tyde = Jim, J Pl J LK 8 = Koo O,

exists and it is finite. On the other hand
K(x; t)dx
|e] < ¢

is finite (¢ > 0) and therefore condition (i) is satisfied. Moreover from (1.8), (1.9) it fol-
lows that

‘o
l j K(x; tyde | = Jp—ldp f [K(n; t/0) — K(z; 01 ds, | <
|| > ¢ 3 ip] =1
too
<HE [ o7 dp J do, = H't*67%,
¢ 7] =1

H' being a constant independent of ¢ and ¢; then (iii) is satisfied. Condition (i) holds,
because

+ oo 4 0o
j Kz t)do = jpn—de j K(on; Yo, =t [ o"~2de j K(pn/t; 1)do,
Re-1 0 Inl =1 0 ol =1

and, by making the substitution o =¢t, the last term is equal to

+ oo
j sty J K(zn; do, = j K(x; ) da .
0 vl =1 R~
Conversely, since
M

K(x; t)ydx = Jp—ldp j [K(n; t/e) — K(n; 0)]1da, + log —I‘g— J K(n; 0)do,
< lal<M 5 Inl =1 ' Inl =1
condition (i) and (1.9) imply that
lim log —1‘8"1 j K(n; 0)do,

M-
Il =1

is finite. This is possible if and only if (1.7) holds.
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We remark that (1.7) is just the well known necessary and sufficient condition for
the existence of the singular integral

j o(x) K(x; 0) dz
Rn—l

(see e.g.[1],[2],[3],[15)).
The next Lemma gives a simple sufficient condition under which (1.7) is

satisfied.

D) If hx; t) e CL(R" — {0}) is even (i.e. h(—2; —t) = h(x; 1)) and K(x; t) =
= oh(x; t)/ot, then (1.7) is satisfied.

If h(x;t) is even then K(x;t) is odd. Thus (1.7) holds, because K(—z; 0) =
= — K(x; 0). ‘

In order to unify the study for » = 2 and n = 3, it will be convenient to consider
the following definition. We say that k(x; ¢) is essentially homogeneous of degree « if
h(z; t) is homogeneous in case « < 0 or, if a is an integer = 0, i(x; £) has the form
h(@; t) = hy (w5 1) log V/ |2|? + £ + hy(x; t), where hy (x; t) is a homogeneous polyno-
mial of degree « and hy(x; t) is homogeneous of degree «.

The next Theorem provides a necessary and sufficient condition for some kernels
under which (1.7) holds.

IV) If h(x; t) e C2(R™ — {0}) is essentially homogeneous of degree 2 —n and
K(x; t) = Oh(x; t)/0t, then (1.7) holds if and only if

(1.10) j Ay h(w)dS, =0
o] =01

n -1
where Ay represents the Laplacean 2, &% /9xf + 3% /ot? and dX,, represents the area
k=1

element on the n-dimensional unit sphere |w| = 1.

We remark that, obviously, if #(x; t) is essentially homogeneous of degree 2 — n,
then K(x; ?) is homogeneous of degree 1-n. Let D be the domain {(x; t)|1 < |»|2 +
+t2<e? t>0}). We have

fazhdxdt =— [ Sy
5 v

aD

v being the inward unit normal to 3D and dZ the area element on 9D. If X = (z; ),
R = |X|, o = X/R, we have
oh

(L11) MX) =hylogR + RE " hy(w); B R+ (2-n)R' "hy(w)
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(where h, is a constant if n =2 or h; =0 if n = 3). Thus

e

g [ e B Shye [ Ohge.
JavdZ [p de J’ K(en; 0)da, + f aRdE f aRdE—
D 1 7l =1 x| =1 |X|=¢

t>0 t>0

=J.P_ldP J K(n; 0)do, + J (A + (2 —n)hy(w)]dX, —

[p] =1 lo| =1
wy >0

[ ek @ me hele e = [ Ko 0ds,

|w|>=01 Inl =1
Wy

On the other hand

e

jAzhdxdt:J'R%“ldR | teiiRw)dz, =

D 1 lo| =1

wy >0 .
=JR‘1dR j Aoh(w)dS, = j Ay h(w)dS,.
1 lw] =1 |w] =1

wy >0 Wy >0
Consequently
f A h(w)dS, = — f K(n; 0)do,
|wi=01 fnl =1

and the conclusion follows immediately.
Now we are in a position to ealculate the constant y of Theorem I for the kernels

we are considering.

V) If h(z; t) e C2(R"™ — {0}) is essentially homogeneous of degree 2 —n and it
satisfies (1.10), then

[ by — jazhz(w)log[wzmzw n=2,
w12 e
. Y=
7 J[(Z—n)h(w)—Azh(w)loglwnl]dzw n=3,
L]w[=l
wy >0

where v = j K(x; t)dx and K(x; t) = dh(x; t)/08.
Rn»l
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Define By = {(x; )| |e|?+ t2 < M2+ t%;2>1}, 8% By={(w 0||x|*+*=
=M% +1t% =t} We have

Av v

By 3By lo| <M 5% By
Let us introduce the spherical coordinates in the following way

x, = onpsind  h=1,...,n -1,
=pCcosd,

where [0, 7], o2 0 and » = (x4, ..., 5, -) varies on the (n — 1)-dimensional unit
sphere if n =3, and n, =1 if n=2,
Setting u = #(M?% + t?)~'/2 and recalling (1.11), we have

O g
j avdz_

3% By

arccos u

= - J’ sin® 249d9 j[(M?‘-i-tz)'l/zhl+(2—n)(M2+tz)(l‘”)/zhz(nsin&;cos»ﬂ)]-

=1
-(M2+t2)("_1)/2do-,7=- J sin® 248 dd j [~y + (2 — n) hy(nsin d; cos&)]dcn
0 fnl =1
and then
/2
Mhlnw J %%dZ=—Jsin”"2&d& j [h1+(2—n)h2(nsinz9;cos&)]darl=
&% By 0 [nf=1
_ﬂhl n:2,
= - J[h1+(2-n)hg(w)]d2m= (n—2) f Mw)dX, n=3.
fo] =1 lo| =1

@y >0 Wy >0
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On the other hand

arcees U Vm
119 [ ahdadi= [ si-zaas [ ea [ astonsing; ocoss)ds, =
By 0 t/cosd |l =1
arccos u \/m
= sin” " 24 dd J o Yde J Agh(nsind; cosd) do, =
0 t/cos$ Inl=1

arccos u
—logu J sin" " 24 dd f Ash(xysind; cos d) do, +

[nl=1

il

arccos u

+ J sin"~24glog |cos 3| dd J Ay h(nsind; cos ) do, .

0 [n] =1
We may write
arecos u arccos u
logu j sin® ~ 24 dd j Ay h(nsind; cosd)do, = (ulogu)% j (3) ds
0 ] =1 0

where

() = sin” "2 4 J' Ay h(nsind; cos &) da,,.

7] =1
Since, by assumption,
7/2
J(D(&)d&= J Aph(e)ds, =0,
0 lw| =1
wy >0
we have
. P(arccos u)
lim J 08y ds = — lim —— = — G(x/2)
u—0" U o u—0" \ll_uz
and then

arceos ¥

lim (ulogu) - J B(S)ds =0.
u—0"
0
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From (1.14) it follows

/2
lim fAzhdxdt= Jsin”‘zﬂlogicos&id& I Ay h(nsing; cos d) da, =

M- »

By 0 fnl =1

= f Agh(w)log Iwnidzw'

|w] =1
wy >0

Now (1.12) follows from (1.13).
As far as the kernels dh(x; t)/dx; are concerned, the situation is different.

VD) If h(x; t) e C1(R" ~ {0}) is essentially homogeneous of degree 2 — n, the
Junctions K;(x; t) = hlx; t)/@:cj (G=1,...,n—1) setisfy 1.7) and

ho(1;0) = he(—1;0) n=2,
(1.15) y;=

=,

k(xn; 0) n]-da,, nz3,

Inl=1

where v; = j K;(x; t)dx.
Rn—l

If n =2, we have

ah,

K(—1;0)+K(1;0)=——h1+%}—;2~(—1;0)+h1 (1 0)=

oh e
=”—2( i o>+-afiz—<1 0)} =”2};2< ;0) + a—h3<x,0) de =
1 1

= —hy(—e¢;0) + haole; 0) + I (—1;0) — hy(1;0) =0

M

K (x;t)dx = I % (; O)de = h(M; t) — W(—M; t) = hy (M; t) —
o] <M -M

~he(=M; 8) = ha(1; t/M) — ho (=15 t/M) = he (15 0) = ho(=1; 0) (M — + ).

In order to obtain (1.7) if n =3, it is sufficient to observe that K (ax; 0) =
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= (3/3x;)[h(x; 0)] and apply a known result (see e.g.[1],[15]). Moreover

Ki(w;ydo= [ ks Ox/|aldw=" [ kn; e)n;,M" *de, =

lo| <M le] = M Inl =1

= | A t/M)ndo, [ hio; 0ynjde, M +0).

inl=1 [nl=1

REMARK. - If A(x; t) is even, then y; =0 (j=1,...,n — 1).
The final result is given by the following Theorem

VII) Let h(x;t)e C1(R™ — {0}) be essentially homogeneous of degree 2 — n.
Let us set K(x;t) = Oh(z; t)/0t, K;(x; t) = Oh(x; £)/dx; (§=1,...,mn—1). For any
o e 3¢ (R 1), we have that

t—0t

(1.16) lim j o(@) K; (w; 1) da = v;9(0) + j o) K, (x; 0) dav

R"- R" -
where the last integral exists as o singular integral and v; are given by (1.15).
If hx; t) e C2(R™ — {0}) satisfy (1.10) then for any ¢ IC(R" 1)

(1.17) lim J o) K(z; t) dac = y(0) + j o(x) K(; 0) dav
t—0"
R’n—l Rﬂ.*l

where the last integral exists as a singular integral and y is given by (1.12).
Moreover if h(x; t) is even, then it satisfies (1.10). In this case the constants in
(1.16), (1.17) are

y;=0 (j=1,.,m—1),

7Th1_ - J Azhz(&))logiwzldzw 7L=2,

[(2 = 1) W) — A () ]log |w,|1dE, 7= 3.

fw] =1

This Theorem follows immediately from the previous ones.

It is worthwhile to remark that the cases of logarithmic and Newtonian poten-
tials, i.e. h(a; t) = log (|x|2 + t2) if n =2, = (Ja|® + t2)~"/2 if n = 3, in which the ker-
nels K(x; 0) = 0 are not singular, are very special. In the general case, while the sin-
gular integrals

[ o@ K 0

R*™
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exist for any h(x;t) essentially homogeneous of degree 2 — n, the integral

f o(x) K(z; 0) d
Rn—l

may fail to exist, even as a singular integral. An example is given by h(x; t) =
=#(|x|?+ t2) "2 K(x; 0) = ||

2. — Boundary values of some potentials with Hélder continuous density.

Let Q be a bounded domain of R"™ such that its boundary ¥ is a Lyapunov
manifold, ie. ¥ has a uniform Hélder continuous normal field of exponent 2
(0<as1).

By C*(2) we denote the space of all the continuous functions satisfying in ¥ a uni-
form Holder condition of exponent J.
The aim of this section is to study the boundary values of the integral

9 _
J' o(y) 3, Wz —y)ds,
X
where = (1, ..., %), ¥ = (Y1, ..., Y» ), #(x) is even and essentially homogeneous of
degree 2 — n.

VIII) If K(z)e C'(R"—{0}) is a homogeneous function of degree —m
(m e N), then there exists a constant T such that

@D [K@) -K@)| <rla=y] 3 jo] Pyl Ve, ye R - {0).
We may write
K(w) - K(y) = |o| " K@/ [x]) = [y| "Ky/ly|) =
le| " [(K(2/ |x]) - K(y/ [y D] + K(y/ 1y D] =™~ |y|~™).
The result follows from the inequalities
| K/ |2]) ~ K(y/lyD] < Crlela] = yly| | =

=Cil@-wla| 7 +y(a| ™~ [y )] <26 |2 —yl/|x];
m—1 m~1
Hal ™™= Jyl™™ | =[]~ |y| ] hgo 2|y |" < o -y hZO I P

IX) Let h(x) e C2(R™ be an essentially homogeneous Sfunction of degree 2 — n.
We suppose h(x) even, i.e.

2.2) M —x) = h(x).
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Let v, be the inward unit normal vector to X at the point &g € 2. If o € C*(Z), then
the singular integral

@3) [t 52w = sy
5 %
exist and
(24) lim J o(y) 9 W — y)do, = v(x) pag) + J ;o(y)ih(xo —y)do,
o> N, vy,
203 ’ pX

where

nhl—-zl— Ay hy () log |o-vy |2, n=2,
(2‘5) Y(xo) = . jw| =1

£ [ [(2 — n)h(w) — Aph(w)log |w v, |1dZ, n =3,

|w] =1

(the dot denotes the scalar product in R™). The limit relation (2.4) is uniform with re-
spect to .

Let (71, ..., Ty 1, v,) be an orthonormal system and consider the coordinate sys-
tem (9; 1) =(n1,..-,0n—1,t) with the origin in w, corresponding to the basis
(T1yeey Tu_1s Vay)- Liet X4 be the part of ¥ which admits the representation £ = y(),
with (2)

2.6) ) CH*(By), ¥(0)=0, grady(0)=0, [grady()lo@y<G.

where B; = {ye R* ! | < d} and the constants d, G are independent of ;.
Let t. be such that for |z — x| <t,

2

Ny,

<eg.

2.7 J qo(y)[ af h(x —y) —

-2y

h(xo - y):l dcry

t. can be chosen independent of o o
" — -
Since # = g + tvy,, Y = T + hElr)hrh + y(n)v,,, we have x —y = — h2—11n”h +

+ (¢ = y(9)) vy -

®) By || fllo* s, we mean: max |f(@)| + sup[|f(x) — fy)|/ e~ y|*1, where max and sup are
taken in B, and in {(z, )|z, y € B, & = y} respectively.
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Let us introduce the functions:

1

2.8) B, (n; 1) = h[— hglnhfh + tvm}; K(p; t) = %hmo(n; ).

We remark that h,, (n; t) belongs to C#(R” — {0}), it is essentially homogeneous of
degree 2 —n and K(xy;{) satisfies condition (1.7), because of (2.2) (Lemma III).
Sinee

aa ke —y) = K(n; t — v(x)),
Vo
we have
f o) 5 hia — y)do, = f B(n) K(n; ¢ — v()) dn,
4 “ nl <d

n—1
where O(n) = ¢ [900 + ;;_:1 0Tt 7(7))%0] (1+ |grady(n)[*)'/% Defining &(n) =0
{|n] = 1), we have that

2.9 19l = re -1y < (1 + GEY 2 ol=my;  |®(n) — (0)] < Gllallc sy | 0]

Moreover

[ o2 hw—y)de,= [ BlKers = y) — Koy i+ | 00 Kers 0.

. s e
Setting F(v) = K(y; t + v) — K(z; v), we have
| K(n; t = v(m) = K(n; —y(n) — K(n; 1) + K(; 0)| =
= R ) = FO)| = [P (= sy | v (o (0, 1)),
On the other hand, F'(v) = K,(n; t +v) - K,(n; v), and from Lemma VIII
|F'(= oy = |K;(n; t = ov(n) = K, (5 —ay(n)| < Tt|n| "1,

where I' is independent of ¢, n, #,. But (2.6) implies |y(4)| < G|5|'*” and thus
K73t = y(n)) — K(n; —v(n)) —~ K(n; t) + K(n; 0)] <TGt|n|> "~ Thus, recalling
(2.9),

Jim [ @)K ¢~ ) ~ Ko D] d = [ 8K Gy; — () ~ Ky 0)]dy

R*- R™-

uniformly with respect to x,.
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hy,(n; t) satisfy all the conditions of Theorem VII and then

@11) lim [ B0 K(n; D)dy = v} 8(0) + | 9r) Kl 0)dly
t=0 RrR*1 R7-1
where
du= 3 [ Sohaa()log |walaz, n=2,
CORE I
) J [(2 — n) hyy (@) — As by (w)1og |w,|1dE, n=3.

|w] =1

Since

2.12) J D(n) K(g; —v(n))dn =

[n]>¢

= [ oK ~ ) ~ Ko O)dy + | 9 Kls 0)dy

In|>¢ In] >¢

it follows that there exists

lim J () K(n; —y(n))dn

i 07 Il > ¢

i.e. there exists the smgular integral (2.3). (2.4) follows from (2.7), (2 10), (2.11).
Since A, (w) = h| — 2 )}, Tp + W, Vs, |, by making the substitution & = — E w,Ty T
+ wy vy, We obtain

[ Pz, = [ @z

lo] =1 le =1

j Aphg (w)log |w,] 42, = j 4,09 log |£-vy, | 4Z,.
fw] =1 lel =1

In order to complete the proof, taking into account (2.7) and (2.10), we need to
show that the limit relation (2.11) is uniform with respect to x,. If we denote

A(t, xp) = j B(n) K(n; ) dy — 7(2g) D(0); B, @) = j O(n) K(n; 0)dn

re-1 gl >¢
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we have

Aty @)~ B, 7o) = [ [00n) ~ WO K )~ 8(0) [ Kz t)dn +

(9] <e In)>¢

+ [ S b~ Ko Ody.

In| >¢

Taking ¢ < d, because of (2.9) and Lemma VIII, we may write

=

! [ @) - 5O)KCr; 1 ~ Ko 01

in] <2

<Glellow [ 1ol 1Kn; ) = Klrs 0)ldn <

|nl <¢

< I'leller ¢z J’ tln)*"dy < I'llgller iyt 5

Il <¢

t@(m f K(n; t)dnls

iyl >¢

<+GH 2 eloy [ o72de [ |KCr; 1/0)~ KCns Oldo, < H =t

Ini=1

f D) K(n; t) — K(n; 0)]dy

In| >¢

5

<A+ 69 el [ 11K 0) - Ko 00]dy <

s< iyl <M
< Allglly = s f tinl "dy < A fellp= (st
s<|z|<M
Since all the constants in the last inequalities are independent of x,, it follows
that
tim AG, ) = B, @) + [ (807) ~ HO)1K(; 0)dy
- Inl <¢

uniformly with respect to x;.
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Let us consider now the tangential operators

M= vi(wo)g‘%; @) G E=1, ).

X) If h(x) satisfy the hypothesis of Theorem IX and ¢ e C*(X), then

Jim [ () METhG — y))do, = [ o) M@y ~ plds, Gk =1,...,m),
z

revey

where the lost integral exists as a singular integral. The limit relation is uniform
with respect to x.

If i = k or v;(y) = v;, () = 0 the result is trivial. Otherwise let (zy, ..., 7,1, v4,)
be an orthogonal system, where 7, = (vy1, ..., T1,,) I8 given by 7y, = —v; (%), v, =
= vy (i), 71; = 0ifj # 4, k. We have M¥[h(z — y)] = K(n; t — v(n)), where K(x; t) = ~
— (8/3n1) by, (n; t) and hy (n; t) is given by (2.8). Now the result follows by using the
same arguments employed in Theorem IX.

XI) If h(x) satisfy the hypothesis of Theorem IX and ¢ e C*(X), then

xlij}}co f?(y)hxk(w —y)da, = v (a) y(@) p(xg) + JP(?J) by, (2o — Y) day,

Tevy 5 x
(K=1,...,m)

where the last integral exists as a singular integral and y(xy) ts given by (2.5). The
limit relation is uniform with respect to xy.

This Theorem follows immediately from Theorems IX, X because

2

)+ S i) v 2 — @)
g = V)5 2vilaw) i) g — v g

REMARK. — In the Theorems of this section we have considered only the case in
which x tends to x, while remaining on v, . It is obvious how these results have to be
modified if # tends to x, while remaining on —v,, . For example, the relation in Theo-
rem XI becomes

Jim J oY) hy, (@ — y)da, = — v (a00) Y(@p) (o) + f o(y) by, (g — ) day,
re —v?m 5 P
k=1,..,n).
We remark also that since all the limit relations obtained in this section are uni-

form, then they continue to hold if  tends to 2, while remaining in Q or in R” — Q
(see[11], p. 269-271).
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3. - Boundary values of some potentials with integrable density.

In this section we want to study the boundary behavior for potentials with more
general densities. Specifically we shall prove that the formulas we have found in pre-
vious sections hold almost everywhere, when ¢ e L?(X) (p > 1).

We recall that xy is a Lebesgue point for ¢ if

lim, dr- nj lo(@) — plag)|do, = 0.

Zq

It is very well known that the set in which this condition is not satisfied is a set of zero
Lebesgue (n — 1)-dimensional measure.

Let f(x) be a function defined in Q (in R* - Q) and xpeX. We say that the
Hmit

im f(x)=1L
r—xo

is an internal (external) angular boundary value if, given « € (0, ), x tends, to x,
while remaining in the set

QN{xeR"|(w—ap) vy >0, & — 2|2 — [(w — x0) vy, P < [(2 - 2y) v, Ptan®(«/2)},
@N{xeR™ (@) vy <0, |@—up]% = [(@—2) vy, ' < [(w — @) vy, Ptan® («/2)}) .

This means that x belongs to a «circular cone» with the vertex at x;, the axis eoineid-
ing with v, and the plane angle at the vertex equal to a. Moreover L has to be inde-
pendent of «.

The idea of proving formulas like the next ones in Lebesgue points was used for
the first time in[7] (see also[8],[9]) and later used in more general situations
(see[14], p. 293-300).

XID) If h(x) satisfy the hypothesis of Theorem IX, pe L'(X) and xgeX is a
Lebesgue point for o, then
wis,~ |

- g apg

@D lim J — 9 do,| = i) elay)
by

where X, _, = {£e 2| |8 —xo| < |2 —x9]}, y(2o) is given by (2.5) and the limit
must be understood as an internal angular boundary value (3).

If o(x) = 1, the limit relation (2.4) holds and it is uniform with respect to xg. This

(®) The idea of the proof is substantially the one contained in [14] (pp. 293-298), but with some
modifications.
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implies the following internal boundary vaiue:

: 3 B _ 3
:ch—l;rnl:o q;(x(}) | J 8v h(x y) dd'y J 6vx
P

g o 0
Z=Zg -z

(o — y)ddy} = (@) i)

for any ¢. Then in order to obtain the Theorem, it will suffice to show that

3
vy,

vy,
X 2 =Z - )

xl.—l{rnlc()[ J x(y) 9 hiw — y)do, — J xy) 7 My ~ ?/)dcy} =0,

where x(y) = o(y) — o(xy).
Let d be such that (2.6) holds. If |z — x| < d, then

3
vy,

3
Ay,

Wz —y)day, — f x(y)

Z-Zig-um]

62 [ Wz — ) do, =
X

9 (e —y) — 9

vy, Vg

x(y)[ h(wo — y)} do, +

I-X4

S i )it | g

Zg~Z|g-ap)

hx - y)da,.

0
2|z - ap

It is obvious that

83) jim | x(y)[af Wo—y) - h(mo—w]do—y:o.

-2y

As far the second term in the right hand side of (3.2) is concerned, let us observe
that, Py using the same notations of Theorem IX and setting t = |x — x|, © = %, +
"

+ 2 Eutht vy, £= (&1, ..., Eyo1) We have in view of Lemma VIII
K=1

3 -
h(ocy)a

My, %

(o — y) ‘ = |K(n = &t = y(n)) — K(n; —v(n))| <

n—1
SfthO[In — EIZ + (- Y(T}))Z]*(1+h)/2[l.f)|2 + 7’2(77)](h_n+1)/2 <

<ul'tf|n - &2 + (¢ — y()P 12 ' .

On the other hand, since we are considering an internal angular boundary value, we
have |£| <t tan(a/2) and, because of (2.6), |y(n)| < Gd”* |y|. By elementary argu-
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ments (%), it follows |£|(|&|2 + £2) Y2 < sin(a/2), |y (n]? + y2(n) 2 < Gd* (1 +
+ G2d*)™'2, Thus

[&n + ty(m) [ [(1£]2 + 2X([n)? + Y2 ()] < sin(a/2) + Gd* (1 + G2dP)~12,
We may chose d in such a way
B =sin(x/2) + Gd*(1 + G2d?) 12 < 1,
This implies
B4 =P+ - y@F =[P+ [|* + 7+ ¥2 () — 289 — 2ty(n) =
Z £+ [P+ 2+ 2 () = 2680(J 1% + ) n P + P ()] T2 2

Z(1-BE%+ 92+ 2+ 2 () = (1 = B)|n|2 + t)
and then

|[K(p = &t = v(9) = K(n; —y())| ST 8(|n]? + ¢2) 2 5|1 7",

I being a constant independent of v, ¢ and x,. Moreover

!
| f x(y)[af Mz —y) ~ = h(ﬂco—y)]day

Yz
0
A

= | J' D) K(n — & t = y(n) — K(y; —y(n))]dr;' <I'-

t<|p| <d

d
[t n |2+ ¢2) 12 || ~dy =T [tsb’(p)(pz +12) "2l gy
i<yl <d ¢

where

n~1
D(n) = x[xo + ,leh + r(n)vxo] (1 + |grady(n)|*)'?,

°

Wo) = f l@(n)id}y:fr"‘ldrj |B(rw)|d, .

|5l <¢ 0 lw| =1

, 2(‘2 if;)a_,ll/)ziok(alnd ]]z;) Ol/gre such that o < kb, then a? + b2 = a?(1 + k~2) and therefore
ai\a = + - A
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Since x, is a Lebesgue point for ¢, we have

(3.5) lim o' ""¢(p) = 0;

o—0

we may suppose that, given >0, d is such that o'~ "U(p) <&, Yoe (0, d]. This
implies
d
JW(P)(PZ +12) 721 T do = ()% + £2) VRt 2 -
t
d
- jtsb(p)(p2 + %) 732 12 — (e + t2)]dp < W(d)(d® + £2)7 24
t
d
)2 VR 4 jw(p)(pz +E2)7325 R [12 4 (o2 + £2)] dp <
t

d
<S(1+2 Ve + ejtp(pz +2)732(2n + 1) dp <
t

d
<1+27124 (2n+ 1)]jt(92 +2) " do < 1+ 2712 + (2n + 1) /4],
t

Therefore, given ¢ > 0, there exists d, such that

J x(y)[ ® b~ y) - af h(xo—y)]day

Me, .

S

(3.6)

Zd_2|z-x0|

for 0 < |x— 2| <d <d,.
Recalling (3.4), we may write

| wnna-nas, | < [ 106011KG— 5t~ ol <
Z"I:c—ncol . I <t

k j 00| [|n = E[2 + (¢ — y()P 10~ P2 dy < (1 — g~ j \6(n) | diy
[n] <t |n] <t
Because of (3.5) we 4have

lim J x(y)aa I - y)do, = 0.

x—> Xy on

E\I*xo\

The result follows from this relation and from (3.2), (3.3), (3.6).

XIID) If h(x) satisfy the hypothesis of Theorem IX, g e L'(X) and xgeX is a
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Lebesgue point for ¢, then

lgn[ [t Mithte - pids,~ [ o) MEUE, - )] dcy} = 0;

b =g
Jim f;o(y)hxk (x —y)do, ~ jr oY) b, (00 — ) doy | = v (a0) y(30) (o).
| = Zs - e
These relations follow from Theorems X, XI and they are proved in the same way

as Theorem XII.

XIV) If h(x) satisfy the hypothesis of Theorem IX, p e LP(X) (p > 1), then

3
Bve,

d

%o

k(o — y)doy;

hx = y)do, = y(xy) plag) + Jso(y)

z

Jm f o(y) 3
2
s [ o) ME TG — )1ds, = [ o) MUz, - y)ds,
b I

xlg'gluo J;o(?/)lzxk(x —yddo, = v (@) v plwg) + ]¢(y)hzk(xo = y)ds,
x5 X

almost everywhere on X, where y(x,) is given by (2.5), the limits must be understood
as internal angular boundary values and the integrals on the right hand sides exist
as singular integrals,

At first let us show that

J o(y) d W@y ~ y) da,,

ov
X
5 0

exists almost everywhere as a singular integral. This follows form (2.12), because the
singular integral

[ o) K 0)dr
Rn—l

exists almost everywhere in view of a classical Theorem of Calderon and Zygmund
(see [4]). Then Theorem XII implies the first limit relation. The other two relations
are proved in a similar way, by using Theorem XIII.

REMARKS. — In the Theorems of this section we have considered only internal an-
gular boundary values. It is obvious how these results have to be modified for exter-
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nal angular boundary values. For example, the last relation in Theorem XIV
becomes

Jim jqo(y)hxk(w —y)da, = — v (2g) y(@g) p(wg) + f oY) by, (xy — y) doy.

Py b

In sections 2, 3 for sake of simplicity we have supposed X is the boundary of a do-
main. But it is evident from the proofs that the limit relations we gave continue to
hold in the interior of a compact bordered Lyapunov manifold.

4. - Boundary values of some potentials generated by measures.

The next Theorem provides the boundary behavior of potentials of the following
kind

(4D f hy, (@ = y) du,

z

where u € M(X) is a measure defined on the family of all the Borel sets of 2. The ap-
proach we follow is the one introduced in[9] and considered in some other particular
cases in[5],[6].

In order to study the boundary behavior of (4.1) it will convenient to introduce
some «parallel» surface to X. Let () be a unit vector defined and continuously differ-
entiable on X such that (x)-v, = p > 0, (for the existence of such a vector, see[11]
pp. 273-275). Let X, be the surface #, = 2 + of(2), ¥ € X, where |¢| < g (po small
enough).

XV) If h(x) satisfy the hypothesis of Theorem IX and we M(X), for any
fe C*(R™) we have

tim_ [ f(z,)do,, [ ho@, =) duy = = [virfds + [ du, [ F@) b (@ = ) do,

P07 b5 b s b

where y is given by (2.5).

Let ¢ > 0 and fe C*(R"). We may write

f f(@) by, (2, — y) doy, = j £(,) by (x, ~ y) o, —

o
X, 5,

- [f@) e @~y doo + [f@) oy (@~ y-,) o

z X
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From Theorem XI (see Remarks at the end of section 2) it follows that

lim [ f@) ko, (@ ~y_,)dz, = ~ lim j F@ by, (y_, - v)do, =

e 0" p—0%
=0 @YW + [ @ b, (2~ y)da,
P

uniformly with respect to y €X. In order to obtain the result we have to show
that

z

4.2) lim j F@,) by, (1, — ) do, — j F@) by &~ y_,)do, = 0
LIRS

uniformly with respect to y e X.

Let (74, ..., 741, vy) be an orthonormal system and consider the coordinate sys-
tem (n; t) = (n1, ..., nn_1, ) with the origin in a fixed y € X, corresponding to the ba-
SIS (71, ..., Tu—1, vy ). Let X be the part of £ which admits the representation ¢ = y(5),
where y(n) satisfy (2.6). We have

43) |z —y+pl)|i=H(lx—y|®+e%);
lz—y+oty)?zH(|x—y|?+2) VzeX,

H being a positive constant independent of y (see[5], p. 196).

We denote by X, ; the part of Z; which admits the representation &, = x + (),
xeX;. Let {c,-j(p, M} G=1,...,n—1;5=1,...,n) be the matrix whose elements
are ¢;(p, ) =38y +p(85;/0n) (,j=1,...,m—=1), ¢;(e,n)=y/In;+ o(8L/n;)
(j=1,...,m), where ({1, ..., ¢,) are the components of { with respect to the system

n 1/2
(T1y ooy Tao1, vy). T Ho () = [det{ 2 cin (o, 1) ¢ (ps YJ)” , we have da, = Hy(n)dy

(on 2y), do, = H,(n)dn (on X, ;). Therefore, considering H,(n) as a function of z € X,
(which we denote by H,(x)), we may write

(4.4) f f,) hy, (x, — y)do—wp - jf(x) by, (® —y_)do =

2.4 24

(

24 T4

Since

H @ @)
Hy(x) Ho(w)

| e

< |flx,) — flx)] | H,(2) — Hy ()]

H()
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and |H, (x) — Hy(x)| = O(¢) (), in view of (4.3), it follows that

H, () ;
[f( H( ) :|hack(x y)___O(pllxp_y|1—n):G(PA/le_yll—n+)\/2)
this relation being uniform with respect to y € . It follows
: H,(x)
4.5) hn(r)l+ S, ) Ao @) — f() | by, (x, — y)do, = 0
o=
PP

uniformly with respect to y e 2.
Moreover because of Lemma VIII and (4.3), we have

n—1
| &, = ) = @ =y )| <STlo, —y —wty | 2 o~y o -y """ s

<IVelt@) — Lyl =yl + 657,

Thus hy, (8, — y) — hy (@ —y_,) = Oo'*|x — y|! 7" 1/%) and this implies

(4.6) lim. j F@)hy, (, —y) = by (& ~y_)]do, =0

¢e—0
fidand oy

uniformly with respect to y e 2.
Finally observing that

lim j F@) (@, = y)do, - j F@ hy(z—y_)ds, =0

e—07
’ E-3,4 X-3y

uniformly with respect to y € X, from (4.4), (4.5) and (4.6) it follows (4.2), ie. the
Theorem.
In the same way we may prove the result if o <0.

(®) The derivative of H,(y) with respect to ¢ is bounded. This implies the relation in the text,
which, on the other hand, may be proved by direct calculation.
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