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S u n t o .  - L'equazione differenziale lineare degenere in uno spazio di Banach X 

d(M(t) v)/dt + L(t) v = f(t) ,  0 < t <~ T, 

viene trasformata nell'equazione multivoca du/dt + A(t) u ~f(t), 0 < t <~ T. Sotto opportune 
ipotesi sulla no~*ma di M(t)(zM(t) + L(t)) -1 nello spazio L(X), z numero complesso, si di- 
mostra che -A( t )  = - L(t) M(t)-1 genera un semigruppo infinitamente differenziabile in X 
e si costruisce la soluzionefondamentale per tali problemi. I risultati vengono applicati sia 
a molte equazioni differenziali paraboliche degeneri nella derivata temperale, sia alla 
equazione di Stokes. 

1. - I n t r o d u c t i o n .  

Let  

(1.1) 

and 

(1.2) 

d(M(t) v ) /d t  + L(t) v = f ( t ) ,  

tlimo+ M(t)  v(t) = Uo, 

O < t < ~ T ,  

uM(t) du /d t  + L( t )u  = M(t ) f ( t ) ,  

(0) = uo, 

O < t < . T ,  

be initial value problems of parabolic type in a Banach space X with a degeneration in 
the time derivative, that  is, - L(t), 0 <~ t <~ T, are the generators of infinitely differ- 
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entiable linear semigroups on X and M(t) ,  0 <<. t <<. T, are closed linear operators in X, 
the inverse of which may not be bounded operators. 

We shall make use of the notion of multivalued linear operator to present a new 
method for constructing a fundamental solution for (1.1) and (1.2). 

The first systematic reserches for these problems were made by CARROLL- 
SHOWALTER [24]; they studied the weak solution using the theory of sesquilinear 
forms jointed with the energy method. More recently, the strict solution was studied 
by FAVINI-PLAZZI [8,9,10] (cf. also FAWNI [5,6,7]); they reduced the problem (1.1) 
to seeking the ,,inverse, of a linear operator B M  + L acting in some HSlder continu- 
ous function space C~ T]; X), 0 > 0, where B u  = d u / d t  with the initial condition 
u(0) = 0, generalizing the technique in DA PRAT0-GRISV~D [3]. For further detailed 
historical references, we refer the reader to the references in [8,9,10]. 

However, our starting point of the present work is rather a result obtained in [4] 
by the fnzst author of this paper. In [4, Sect. 5] he handled a time homogeneous 
equation 

(1.3) 
d ( M v ) / d t  + Lv  = f(t),  

tlim+ My(t )  = Uo, 

0 < t ~ < T ,  

in X and indicated that the operator defined by 

Zo(t) = ~ -~  e-Zt()~M - L)-ldk, 
I" 

t > O ,  

plays a role like a fundamental solution under the assumption that 

(1.4) 
the bounded inverse (AM - L) -1, called M-modified resolvent of L, exists for 
any ~ � 9 1 4 9  larg~ I i>~}, 0 < o J < = / 2 ,  and ( L ~ / - L )  -1 satisfies 
IlL( ,~M - L)  -~ II~(x) < Const, ~ �9 E. 

To understand this result intuitively, let us rewrite (1.3) into a non degenerate form 
by putting u ( t ) =  My(t )  (such a change of unknown function was already seen in 
SHOWALT~R [15], in which M is a non linear operator). It then turns out that 

(1.5) 
d u / d t  + A u  ~ f ( t ) ,  

u(O) = Uo, 

0 < t ~ < T ,  

were A = L M  - 1 and M - 1 is the inverse of M. Of course M - 1 is no longer defined as a 
univalent operator, but conserves its linearity; such an operator is called a multival- 
ued linear operator (see Section 2). Let us next examine the resolvent of A. It is veri- 
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fled (at least formally, since )~ - A = (~M - L ) M  -1) that (2 - A) -~ = MO~M - L) -1 

for 2 e Z; so that, it follows from (1.4) that 

the bounded inverse (~ - A )  -! exists as a univalent operator for any ), e22, and 
0, - A) -1 satisfies: 

eonst/l ], 

We are then led naturally to define an operator 

2~i e - A)  - Id~  = ~ e - t~M(~M - L) -1 d~, t > O, 
F P 

and to expect that e _k~ is a fundamental solution for (1.5), or a semigroup generated 
by A (see Section 3). Since e - ~ =  MZo(t), the role of the operator Zo(t) is now 
clarified. 

Our method is thus to rewrite the equation (1.1) or (1.2) into non degenerate form 
using multivalued linear operators. Indeed, (1.1) (resp. (1.2)) is reduced to the 
problem 

rdu /d t  + A(t)  u ~f(t), 0 < t ~ T, 
(1.6) ~ -(u(0) = Uo, 

where A ( t ) = L ( t ) M ( t )  -1 (resp. M(t) - lL( t ) ) ,  by putting u ( t ) = M ( t ) v ( t )  (resp. by 
operating M(t)- l ) .  The machinery of constructing a fundamental solution for the 
parabolic equation (1.6) has then been, although we have still the minor but some- 
what  long task to adapt it to the multivalued case, established satisfactorily by 
an extensive literature, including SOBOLEVSK~[16,17], KATO-TANAJ~E[14], TAN- 
ABE [18,19], AMANN[2], ACQUISTAPACE [1], YAGI [20, 21, 22]. But we may notice that 
the domains ~(A(t))  of A(t) in (1.6) are not dense in general (on the contrary, they can 
be {0}, cf. Example 6.5 in Section 6); in addition, we may notice that -A( t )  may be 
merely generators of infinitely differential semigroups even if - L ( t )  generate aria- 
lyric semigroups (cf. Examples 6.3 and 4). By this reason we shall use among other 
the results obtained in [21,22] in which such general (univalent) cases were consid- 
ered. Essential things in generalizing them to the multivalued case are that all the re- 
sults in [21, 22] are deseribed in terms of the resolvents, and that, on the other hand, 
even though A(t) themselves in (1.6) are multivalued, their resolvents ( ~ -  A(t)) -1 

can exist as univalent operators for suitable )~ (see Section 4). 
The fundamental solution for (1.1) or (1.2) we shall construct in Section 5 under 

suitable assumptions then provides the existence and uniqueness of the strict solution 
of the problem as well its representation formula. Especially it will be noticed that 
the initial value u0 can be taken arbitrarily in X (without any compatibly condition), 
provided that we impose on the initial condition of (1.1) (resp. (1.2)) only a weak 
sense, i.e. M(t)v(t)  (resp. u(t))---> Uo, as t--~ 0, in a certain seminorm specifically de- 
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termined by M(0) and L(0) (see Theorems 5.2 and 5.3). While, when u0 is more regu- 
lar, the maximal regularity results in [8] can be applied (this will be discussed sys- 
tematically in the paper [11]). 

It is possible to apply our results to many parabolic differential equations of de- 
generate type with respect to time derivative. Among others only immediate applica- 
tions will be presented in Section 6; for example the Stokes equation also falls in the 
scope (see Example 6.2). Further applications will be, however, published in the 
forthcoming paper. 

Not only for the parabolic equations, our method is available also for the hyper- 
bolic equations. For example, a generation theorem of semigroup for a multivalued 
linear operator A in a Banach space X can be proved (although this semigroup e -tA is, 
now, far from Co semigroup, cf. Example 6.1) under the condition of Hille-Yosida 
type 

II(~ - A ) - "  Ilr(x) <<- M / I ~  - fil m , ~ < #,  n = 1, 2, 3 . . . .  , 

see [23]. 

N O T A T I O N S .  - Throughout this paper, X denotes a Banach space; the norm is de- 
noted by I1" Iix; a seminorm defined on X is denoted by p(.). Let Y be another Banach 
space; 2(X, Y) is the space of all bounded linear operators from X to Y; II" lit(x. Y) de- 
notes the uniform operator norm in ~(X, Y). We shall use the abbreviation ~(X) (re- 
sp. ]1" lit(x)) instead of 2 ( X , X )  (resp. I1" I]r(x,x)). For a closed interval [a, b], e([a, b]; X), 
C~([a, b]; X) (0 < ~ < 1) and C 1 ([a, b]; X) denote respectively the space of all functions 
on [a, b] with values in X which are continuous, which are z-Hhlder continuous, and 
which are continuously differentiable. LP(a ,  b; X )  (1 ~< p ~< r162 denotes the space of 
all measurable functions f on an open interval (a, b) with values in X such that IIf(')llxp 
are integrable if 1 ~< p < cr such that f are essentially bounded if p = ~.  

Acknowledgmen t .  - This work was done during the stay of the second author in 
Bologna Universit~ as a visiting professor on Italy CNR and Universit~ di Bologna 
funds. 

2. - M u l t i v a l u e d  l i n e a r  o p e r a t o r s .  

Let X be a Banach space over the complex numbers C. For two subsets F, G of X, 
we define: F + G = { f + g ; f e F ,  g e G }  and, for a number ; (eC,  ) J ' =  
= {~f; f e  r } .  
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DEFINITION. - A mapping A from X into 2 X is called a multivalued linear opera- 
tori in X if the domain ~(A) = {u �9 X; Au ~ 0} is a linear subspace of X and A 
satisfies: 

AL4u + Av r  + v) for u, v �9 O~(A), 

u c A(2u) for ~ �9 C and u �9 O~(A). 

~,(A) = U A u  is called the range of A. 
u e 0~(A) 

This section is devoted to establish basic results of the multivalued linear opera- 
tors. Theorems 2.1-2.7, excluding 2.3 and 2.7, are quite analogous to those of the uni- 
valent linear operators. To the contrary, Theorems 2.3 and 2.7 seem to be very proper 
to the multivalued linear operators, which we shall use in an essential way in the sub- 
sequent sections. 

Throughout this section A and B denote multivalued operators in X. 

THEOREM 2 .1 .  - Au + A v  = A(u + v) for  u ,  v �9 0 ~ ( A ) .  L 4 u  = A 0 , u )  for  u �9 (~(A) i f  
~ 0 .  

PROOF. - By definition, A(u + v) - Av c A(u + v) + A ( -  v) c Au; hence A(u + v) c 
c Au  + Av. Similarly, A(iu)  = 2)~-lA(iu) c L4u if ~ ;~ O. 

THEOREM 2.2. - A O  is linear subspace of X. Au  = f +  AO for any f � 9  u �9 ~(A); 
'in particular, A is univalent i f  and only i f  AO = {0}. 

PROOF. - From definition A0 + A0 = A0 and L40 = A0, hence the first assertion. 
Clearly, f + A O c A u  for f � 9  on the other hand, if g e A u ,  g - f e A u - A u  = 
= A0. 

The inverse A-1 of a multivalued linear operator A is defined as 

{ 0 ~ ( g - 1 )  = ~J~(A),  

A - i f =  {u e 0~(A); Au ~ f } .  

THEOREM 2.3. - A  -1 is also a multivalued linear operator in X. f e Au  i f  and only 
i f  u �9 A - i f ;  in particular, (A -1)-1 = A. 

PROOF. - If u �9 A ~ i f  and v e A - 1 g, then f E A u  and g �9 Av; so that f + g ~ A(u + v); 
hence u + v � 9  + g). Similarly, u � 9  implies 2f � 9  and 2 u � 9  
hence L 4 - i f  c A - l ( ~ f ) .  The second assertion is obvious from the definition. 

If, for two multivalued linear operators A and B, (D(A)c O~(B) and Au c Bu 
for every u e  0~(A), then B is called an extension of A and it is denoted by 
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A c B. Obviously A c B defines an order  relation and, in particular, A r  and 
B r A imply A = B. 

If  a univalent linear operator  A ~ satisfies (~(A ~ = 0~(A) and A ~ cA,  then A ~ is 
called a linear section of A. 

Le t  now U be a univalent linear operator  in X. Summation A + U and multiplica- 
tion AU and UA are defined respectively as follows: 

{ O~(A + U) = 0~(A) n ~ ( U ) ,  

(A + U) u Au + Uu f o r u e 0 ) ( A + U ) ;  

{ O(AU) = {u ~ O~(U); Uu E ~(A)},  

AUu = A(Uu) ; 

{ (~(UA) = {u e 6~(A); Au N 6~(U) ;~ 0}, 

UAu = {Uv; v e A u  N (~(U)}. 

THEOREM 2.4. - The operator A + U, AU and UA defined above are multivalued 
linear operators. 

PROOF. - The proofs for A + U and AU are immediate from the definition. Le t  u l ,  
u2 e (~(UA) and let Uvl ~ UAul, Uv2 e UAu2, then vl + v2 cA(u1 + u2) N (~(U), so that  
U(Vl + v2) e UA(Ul + u2) i.e. UAUl + UAu2 c UA(ul + ue). Similarly, it is observed 
that  XUAu c UA(ku). 

THEOREM 2.5. - Let U, V be two univalent linear operators in X. Then, 
(UV-1) -1 = VU -1 and (U-1V)  -1 = V-1U. 

PROOF. - Let  u e ( U Y - 1 ) - l f ;  then, UV-~u ? f o r  Uv = f f o r  some v e 6~(U) n V- lu;  
so that, Vv = u with v e 0~(V) N U-~ f ;  hence u e VU-~f. The converse is also true. 
The second assertion is verified similarly noting that  u e ( U - 1 V ) - l f  if and only if 
Vu = Uf with u e 0~(V) and f e (~(U). 

For  a multivalued linear operator  A, the set of all numbers ~ e C such that  
t~()~ - A) = 0~(()~ - A) -1) = X and (~ - A) -1 is a univalent bounded operator  on X is 
called the resolvent set of A and is denoted by ~(A). (), - A) -1, ~ e p(A), is called the 
resolvent of A. 

THEOREM 2.6. -p (A)  is an open set of C. The resolvent O~ - A )  -1 is a holomorphic 
function in ~(A) with values in 2(X). 
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PROOF. - I) We first consider the case that  (2 - A) -~ ~ 0 for every A e ~(A). Le t  

2o e ~(A) and let IA - 201 < 1/11(2o - A)-~llr(x). F o r  any f e X ,  put  

g = {1 + (2 - 2o)(2o - A ) - ~ } - ~ f  and u = (2o - A ) - ~ g ;  

since g + (2 - Ao)u = f and g e (2o - A ) u ,  we have: f e  (2 - A ) u ;  hence 8K2 - A )  = X. 
Conversely, let (2 - A)-~0 ~ u or (2 - A ) u  ~ 0; then there  is an element g e (20 - A ) u  
such that g + ( A - 2 o ) u = O ;  so that {1 +(A-Ao) (2o-A) -a}u=O;  this shows that u=O. 
Thus we have proved that  2 e ~(A) and (2 - A )  -~ = (Ao - A )  -~ {1 + (2 - 20)(;(0 - A )  - 1  } - ~ .  

II) Le t  now (2o - A) -~ = 0 for some Ao �9 ~(A). Then Ao - A = 0~ is the inverse 
of the 0 operator  and we observe that  4~(0~) = {0} and 0 ~ 0 = X; so that, A = 0~ .  I t  
is also verified easily that  ~ ( 0 ~ ) =  C and ( 2 -  0 ~ )  - ~ =  0 identically, hence the 
result. 

THEOREM 2.7. - (A -- A ) - ~ A  c 2(2 - A) -1 - i cA(2 - A)  -~ for  2 e ,o(A). In  part@u- 
lar, ( A - A ) - ~ A  is univalent on (~(A) and ( 2 - A ) - ~ A u  = ( A - A ) - ~ f  for any 

f e A u .  

PROOF. - Le t  f e Au; then A u - f e  ( A -  A ) u  and ( A -  A ) - ~ f  = 2 ( A -  A ) - l u -  u; 
this means that  (2 - A ) - ~ A  c2(2  - A )  -1 - 1. On the other  hand, let v = (2 - A ) - ~ f ;  
then A v - f e A v  and 2 ( A - A ) - ~ f - f e A ( A - A ) - l f ;  hence 2 ( 2 - A )  - ~ - l c  
c A(A - A) -~. 

DEFINITION. - We denote by A~ - A)  -1 the linear section 2(X - A) -x - 1 of the 
multivalued operator  A(2 - A)-1 for ;~ e ~(A). 

We shall conclude this section by proving the resolvent equation for the multival- 
ued linear operators.  

Let  2,/z e ~(A). Putt ing 2~ = 2 - / z  and A~ = A - tz, we apply Theorem 2.7 to A,. 
Then, noting A,, 0 e ~(A,), we obtain that  

( 2 .  - A ~ ) - I A ~  c 2~(2~ - A . )  -1 - 1 ,  

(2~ - A~,)-~A~(A~) -1 c 2~(2~, - A~,) -~ (A~) -~ - (A~,) -~ . 

Since the inclusion l cA~(A~) -~ holds, it follows from Theorem 2.7 again that  
(A, - A , ) -  I A~ (A,) -1 = (2~ - A~) -1. Therefore  

(2.1) ( 2 - A )  - ~ -  ( ~ - A )  -~ = - ( 2 - , ~ ) ( 2  - A ) - I ( ~ - A )  ~ for 2 ,~  e~(A).  

Consider now two multivalued operators A and B, and let 2, 0 e~(A)gl  ~(B). 
Writing: 

( 2  - A )  - ~  - (A - B )  - ~  = { A ( A  - A )  - 1  - 1 } ( A  - B )  - ~  - (A - A )  - ~  { 2 ( 2  - B )  - ~  - 1 } ,  

we replace ( A - A )  -1 (resp. ( A - B )  -I) by 2 { ( A - A )  - 1 -  1}A --1 (by respectively, 
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B-1{~(~_ B ) - I  1}), then it turns out that 

(2.2) 0~ - A) -1 - (~ - B) -~ = - {)~(()~ - A) -1 - 1}(A -1 _ B -1){~()~ _ B)-I  _ 1} = 

= - A ~ 1 7 6 1 6 3  -1 for ~e~(A) N~(B). 

3. - Time h o m o g e n e o u s  equations.  

In this section we consider an initial value problem for the time homogeneous evo- 
lution equation of parabolic type 

[du/dt  + Au  ~ f( t) ,  0 < t ~ T,  
(H.E) ~ -[u(0)=uo,  

in a Banach space X, where A is a multivalued linear operator in X, f :  [0, T] --. X is a 
given continuous function, Uo is an initial value in X, and u: [0, T] --> X is the unknown 
function of the problem. 

Our main assumption on A is that  A satisfies: 

(H.P) The resolvent set ~(A) contains a region 2 

~(A)~Z = { ~ e C ;  Re~ ~< c( l Im~ I + 1) ~} 

and there the resolvents ( ~ -  A) -1 satisfy 

I1(~ - A ) - l l l r ( z )  <. M/(I~  ] + 1) z, ~ e 2  

with some exponents 0 < ~ <~ ~ ~< 1 and constants c, M > 0. 

Using the semigroup generated by A, we shall prove the existence and unique- 
ness of the strict solution of (H.E). By the strict solution we mean. 

DEFINITION.- A function u:[0, T]-->X, u e el((0, T] ;X) ,  and u(t) EO~(A) for 
0 < t <~ T, is called a strict solution of (H.E) if u satisfies the equation in (H.E) for 
every 0 < t <~ T and satisfies the initial condition: u(0) = Uo with respect to the semi- 

norm PA(')= ]~4-1"11x. 
Let  a multivalued linear operator A satisfy Condition (H.P). We define a family of 

bounded operators on X 

1 [e_~(A_A) -Xd)~  for z > 0 ,  and e x p ( - 0 A ) = l ,  (3.1) exp ( - zA) = ~-~ 

F 

by the Dunford integrals in Z(X), where F: ~ = c(ly I + 1) ~ + iy, - oo < y < oo, is a 
contour lying in Z. exp ( - zA), z >~ O, is called the semigroup generated by A. In the 
same way as for the univalent ease (using the resolvent equation (2.1)), it is verified 
that  exp ( -  zA) has the semigroup property exp ( -  .cA)exp ( -  eA) = exp ( - (z + ~)A). 
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In addition, exp ( - r A )  is infinitely differentiable for z > 0 and 

dkexp ( - zA) 
( -1 )k  f 2m ~k e - ~ (2 - A) -  1 d2,  

F 

r > 0, k = 1, 2, 3 . . . . .  

We then define bounded operators A ~ exp ( -  rA), r > 0, by 

1 f _~(~ A ~  = ~ he - A ) - l d 2 ,  r > O. 
r 

Since A -1{~(2 - A ) - I  _ i} = (~ - A ) - I ,  it follows that  A-1A~ ( - zA) = exp ( - rA); 
this then shows that  A ~  r > 0, is a linear section of A e x p ( - z A ) .  
Hence 

d exp  ( - rA)  
dr = A~ exp ( - rA) c A exp ( - rA), z > 0 .  

In the multivalued case, however, the convergence of exp ( -  zA) to 1, as r ~ 0, be- 
comes considerably worse; it is no longer possible to expect it on the whole space in 

any norm; indeed, if f eAO,  then ( ; ~ - A ) - l f  = 0 and e x p ( - r A ) f =  0 for all ~ > 0. 
What  we can simply observe is that  

(3.2) exp ( - rA) A - 1 _..) A - 1 _ 1 f ~ - 1 (~ - A) - 1 d2, as z > 0, in ~(X) 
27:/ " 

F 

In other words, exp ( -  rA) converges to 1 in the norm X only on the domain O~(A) of 
A, and only in the seminorm PA (') sense on the whole space X. 

For  a multivalued operator  A satisfying (I-I.P), we can define the fractional pow- 
ers A -0, 0 > 1 - 8, of A by the integrals 

A-~ _ 2rdl f _ A)_l 
F 

A -~, 0 > 1 - 8, are bounded operators on X and A -~ -o' = A -r + o') for 0, 0' > 1 - ft. 

As was defined above for 0 = 1, we define, for every 0/> 0, a bounded operator  
(A 0)o exp ( - vA) by 

1 f _~(~ (A~)~ = ~ 2~e -A)- ld)~,  
I" 

v > 0 .  

By (3.1), (A~176 = e x p ( - z A ) .  I t  is easily verified from (H.P) that  

(3.3) I{(A~ ~ exp (-zn)l[e(x ) ~ CDeF[ 0+ / ~1 - 8 \)z(z-o- 1)/~, 0 ~ 0, v > 0, 

where C, D are some constants independent of 0, r and F( . )  is the gamma function 
with the convention that  F(0) is understood as F(0) = 1. 
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Let  A still satisfy (H.P). The bounded operators on X defined by 

(3.4) A ~ = A O ( l + n - l A ) - ~ = n - n e ( n + A )  -~ for n = 1 , 2 , 3 , . . .  

are called the Yosida approximations of A. If  n ; ~ / ( n -  ~)~ ~(A), then ~ e ~(A~) 
and 

( )( )1 
1 + n 2 n~  A 

(3.5) (~ - A~)-~ - ~ _ n ~ n - 

In fact, this relation is well known when A is univalent; in the present case, this is 
then verified by a direct calculation using (2.1), i.e. we put 0, - A ~ )  -~ the right hand 
side of (3.5) and show directly that  ( )~ -A~) ( ) , -A~)  - 1 =  ( ~ - A ~ ) - ~ ( s  = 1. 
Since there exists an integer no such that  {n / (n  - s n i> no, ), e 2} is a bounded set, 
and since nk / (n  - ~) = I n / ( n  - ~) I e ~ - I),/(n - ~)l ~ n, we observe that, for some 
0 < ~ < c, the resolvent sets ~(A~) contain 

p(A~) ~ 2  = {2 e C; Rek -< ~( l Imkl  + 1) = } for all n /> no. 

Similarly, 

{{(A-&)-~{I~(x)~M/(I~I +1)~ for all Ae2  

with some constant M independent of n t> no. 
We do not know, in general, whether, as n --+ ~ ,  A~ converges to some linear sec- 

tion of A or not. But we can easily verify (and we shall use the fact essentially in the 
sequel) that, for each ~ e 2 ( r  the resolvents ( ~ -  A~) -1 converge to ( ~ - A )  -1 in 
~e(X) as n -+ ~ .  Consequently, it follows that  A~ exp ( -  rA) converges, for each 0 I> 0 
and ~ > 0, to (A~ ~ e x p ( - z A )  in ~e(X) with an estimate 

eo0F(0+l-et - >  
(3.6) [lAg exp ( -  "~A,,)l[~(x) <~ \ 0>10 and r > 0 ,  

where C and /) are constants independent of n t> no. More strongly, we can 
prove: 

THEOREM 3.1. - Let J~ = (1 + n-1A) -~ .  A similar estimate 

~  ~ 
0>!0 and z > 0 ,  

holds for every n >t no with uni form constants C and D; in  addition, as n - +  ~, 
A~ converges to ( A ~ 1 7 6  in ~(X) for each 0 >I 0 and ~ > O. 
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PROOF. - Using the resolvent equation (2.1), in view of (3.5) we have: 

n 3 ( n2 )-~ J~(2 - A n )  -1  - n (n + A) -1 + (n + A) -~ - -  A 
~t - n ( n  - )~)2 n - ~t 

( )1 
_ n n 2  A �9 

n - ; ~  n - 2  

therefore J~( ;~ -  A~) -~ converge s to ( ) , -  A) -~ for each ,~ E~: with an estimate 

IIJ,~(~-A~)-IlI~(x)~M/(I;~I +1)% ~ 2 ,  

with some M independent of n>~no . Then the proof is the same as for A~exp(-rA~).  
We are now in a position to state the main theorem of this section. 

THEOREM 3.2. - Let A satisfy the Condition (H.P) with 2~ +fi > 2. For any HSlder 
continuous function f e  G:([0, T]; X), (2 - a - ~ ) / ~  < ~(~< 1), and any initial value 
Uo ~ X, the function u given by 

t 

(3.7) u(t) = exp ( - tA)Uo  + f exp ( -  (t - r )A) f ( r )dr ,  0 < t <~ T, 
0 

is a strict solution of (H.E). Conversely, any strict solution of (H.E) with 
f e  e([0, T]; X) and Uo ~ X is necessarily of the form (3.7). 

PROOF. - Let f be the HSlder continuous function above. Since a + fi > 1, the inte- 
gral in (3.7) is well defined (with 0 = 0) by (3.3). We consider a sequence of functions 
Un, n >I no, defined by 

t 

u~ (t) = exp ( - t A n )  u 0 t-  f exp ( -- (t -- r)A~) f(r) dr, 
0 

O<t<~T.  

As n --) ~ ,  u,, (t) converges obviously to u(t) pointwisely on [0, T]. Moreover, operate 
A~ and write: 

A~ u~ (t) = A n exp ( - t A n )  u 0 "F 

t 

+ I A n e x p ( -  (t - z)A~){f(r) - f ( t ) }  dr  + {1 - exp( - tAn)} f ( t ) .  
0 

Then A n  u n (t), in view of (3.6) (with 0 = 1), converges to a continuous function g(t) 
pointwisely on (0, T]. Therefore, from u~( t )=AnlA~u~( t )  it follows that u(t)= 
= A-lg( t ) ,  hence u(t)~ O~(A) and g(t)e Au(t). Letting n--~ o: in 

t 

un(t) - u~(s) = f{f (z)  - A n u n ( v )  } dr, 
x 

s < ~ t ~ T ,  



364 ANGELO FAVINI - ATSUSHI YAGI: M u l t i v a l u e d  l i n e a r  operators ,  etc. 

with any z > 0, we also obtain that  u e C 1 ((0, T]; X) and u satisfies the equation for 
every 0 < t ~< T. The initial condition of (H.E) is an immediate consequence of (3.2), 

t 

since, as t--)  0, I exp ( -  (t - r )A)f (z )dz- -~  0 in X .  Conversely, let now u be any strict 
o 

solution of (H.E). Writing for any ~ > 0: 

t 

u( t )  - e x p ( -  (t - ~ ) A ~ ) u ( e )  = I a -~z exp ( - (t - v ) A  n) u(~) d~ = 

t t 

: f e x p ( -  (t - z ) A ~ ) { ( A ~ u ( r )  - g(z)} dz  + I e x p ( -  (t - z ) A ~ )  f ( = ) d z ,  
E 

where g(t)=f(t)- d u / d t  e A u ( t ) ,  we use Theorem 3.1. Then, since A~u(t)= J~g(t) 
from (3.4), the convergence of exp (-zA~,)Jn yields that  

t 

u( t )  - exp ( - (t - e )A )  u(z)  = I exp ( - (t - z ) A )  f ( v )  d z ,  s ~ t ~ T .  

Noting A ~ exp ( -  (t - e ) A ) A -  1 = exp ( -  (t - e)A), we next make e to converge to 0. 
Then from the initial condition on u we conclude (3.7). 

REMARK. - If, for a multivalued linear operator A ,  p(A) ~ {), e C; Re 2  ~< 0} and the 
resolvent (2 - A) - '  satisfies: 

(3.8) - 1  II()~ - A )  lie(x) <-<. M/(I)~ + 1) 8 for Re)~ ~< 0 

with some 0 < fl ~< 1, then by Theorem 2.6 (~ - A) -1 can be continued to a region S = 
= {s e C; Re~  ~< c ( l Im~ ] + 1)z}, c > 0, as a holomorphic function with a similar esti- 
mate as (3.8) on Z. This then shows that if the Condition (H.P) holds for an operator A 
with some exponent 0 < ~,/3 ~< 1, then the relation fi ~< a always takes place. 

REMARK. - We notice from (3.2) that  the function u given by (3.7) is continuous at 
t = 0 in the norm of X if u0 e (D(A). Therefore, if the initial value Uo of the problem 
(H.E) ~ 0~(A), then there exists a strict solution which belongs to C([0, T]; X). 

4. - Time non  h o m o g e n e o u s  equations.  

We consider in this section the initial value problem for a time dependent equation 
of parabolic type: 

[ d u / d t  + A ( t ) u  a f ( t ) ,  0 < t <~ T ,  

(E) ~ u(O) = uo,  



ANGELO FAVINI - ATSUSHI YAGI: Multivalued linear operators, etc. 365 

in a Banach space X. Here, A(t), 0 <<. t <<. T, are multivalued linear operators in X 
which generate infinitely differentiable semigroups on X, i.e. A(t) satisfies, for each 
0 ~< t ~< T, the Condition (H.P) in Section 3. f :  [0, T] ~ X is a given continuous func- 
tion, u0 �9 X is the initial value, and u: [0, T] ~ X is the unknown function of the 
problem. 

We shall prove the existence and uniqueness of the strict solution of (E) by con- 
structing the evolution (fundamental) operator U(t, s), 0 <. s <. t <~ T. The strict sol- 
ution of (E) is defined analogously to the time homogeneous problem according: 

DEFINITION If the function u: [0, T]--) X, u �9 e 1 ((0, T]; X), and u( t ) � 9  5~(A(t)) for 
0 < t ~< T, satisfies the equation (E) for every 0 < t ~< T and satisfies the initial condi- 
tion: u(0)= Uo with continuity at t = 0 with respect to the seminorm PA(O)(')= 
= 1~4(0) -~" ]IX, the function u is called a strict solution of (E). 

By the evolution operator for A(t) we mean bounded operators U(t, s), 0 ~< s < t 
~< T, on X which have the properties at least: a) U(t, s) U(s, r) = U(t, r) for 0 ~< r ~< s ~< 
<<. t <<. T, U(s, s) = i for 0 <~ s <<. T; b) U(t, s) is strongly continuous for 0 ~< s < t ~< Twith 
an estimate IIU(t, s)llr(x) <<- C1 (t - s) (~- 1)#; c) U(t, s) is strongly differentiable in t for 
0 ~< s < t ~< T, and aU(t, s)/at is strongly continuous for 0 ~< s < t ~< T with an estimate 
lieU(t, s)/atll~(x)<~ C2(t - s)~-2)/~; and d) the range ~(U(t,  s)) of U(t, s) is contained in 
~(A(t)) for 0 ~< s < t < T, and there exists a bounded linear section A(t) ~ U(t, s) of 
A(t) U(t, s) such that -aU( t ,  s)/at =A(t)  ~ U(t, s )cA( t )U( t ,  s). 

As was mentioned already, the following condition is a basic assumption through- 
out this section: 

(P) The resolvent sets ~(A(t)), 0 <<. t <~ T, of A(t) contain a region 

~(A(t)) ~ ~ = {2 e C; Re 2 ~< c(lIm ~1 + 1) ~ } 

and there the resolvents ( 2 -  A(t)) -I satisfy: 

II(2 - A(t))-lllr(xl <<. M/(I21 + 1) z, 2 e l :  

with some exponents 0 <~ ~< a < 1 and constants c, M > 0 independent of t. 

On the other hand, assumptions on the regularity of A(t) with respect to t depend, 
as in the case of univalent coefficients A(t), on the nature of variation of the domains 
5~(A(t)) of A(t). We state them separating in the two cases that 1) ~(A(t)) varies tem- 
perately with t (inclusing the case that d)(A(t)) is independent of t) and that 2) 
(~(A(t)) varies completely with t. 

Assumptions for the case of temperately variable domains: 
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(T.1) For  some 0 < t~, v ~< 1, A(-) satisfies: 

NA(t) ~ (~ - A(  t) ) -~ {A(t) -1 - A(s ) -  ~ }ll~(x) ~< 

<~ K i t -  s[~ /(12i + 1) ~ 

(T.2) The exponents a, /~, ~ and 
(In particular, in order that  such 
3a + 2fl > 4). 

for all ~ E Z  and 0 ~ < s , t ~ < T .  

v satisfy the relation 2(~ + ~) + ~ + ~ > 5. 
a relation takes place it is necessary that  

Assumption for the case of completely variable domains: 

(C.1) A(.) -~ is strongly continuously differentiable in t, and the derivative satis- 
fies: 

]~4(t) ~ (~ - A(t))  -~ dA(t) -~ /dtil~(x) <<. 

N/(I I § 1)  ~ 

with some exponent 0 < v ~< 1. 

for a l l s  and 0~<t~<T,  

(C.2) The exponents ~, fl and v satisfy a relation 2(~ + ~ ) +  v > 4. (In particular, 
2(~ + ~) > 3). 

(For  the definition of A ( t ) ~  A(t)) -1, see Section 2.) 
Let  Jn(t)  = (1 + n-1A(t ) ) - l ,  n = 1, 2, 3, . . . ,  and let 

A~ (t) = A(t)  ~ Jn (t) -- n - n2 (n + A ( t ) ) - l ,  n = 1, 2, 3, . . . ,  

be the Yosida approximation of A(t). Since we have from the resolvent equation 
(2.2): 

(~ - A ( t ) ) -  ~ - ( ~  - A ( s ) ) -  1 = 

= - A(t)  ~ ()~ - A ( t ) ) -  1 {A(t)- 1 - A(s ) -  1 } A(s)O (~ _ A(s ) ) -  1, f o r  ,)~ ~ .~, 

any condition (T.1) or (C.1) implies that  An (') is a HSlder continuous function with 
values in 2(X). Therefore there exists an evolution operator Un (t, s) for An (t), n = 
= 1, 2, 3, . . . .  We can then prove in each case: 

THEOREM 4.1 (Case of  temperately  variable domains) .  - Le t  (P) and (T.1 and 2) be 
satisfied. Then Un(t, s) and Un(t, s )Jn(s)  have a common strong l imi t  U(t, s) as 
n---> ~ for  0 <. s ~ t <<. T, which has the properties a)-d) announced above. Moreover, 
for  any  f and any  Uo such that 

(4.1) f e ~ ( [ O , T ] ; X ) , ~ > ( 2 - ~ - [ 3 ) / ~ ,  and u o e X ,  
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the function u defined by 

(4.2) 
1 

u(t) = U(t, O)Uo + f U(t, z)f(~:)d'~, 
0 

O<t<~T ,  

gives a strict solution of (E) with 

(4.3) t (~ -Z)/~u, t (2 -~)/~du/dt e L ~ ((0, T); X) .  

Conversely, for 

(4.4) f e  C([O, T]; X) and Uo e X ,  

any strict solution of (E) with 

(4.5) t~du/dt e L ~ ((0, T); X) ,  7 < (a + v - 1)/a + ~, 

must be necessarily of the form (4.2). 

THEOREM 4.2 (Case of completely variable domains). - Let (P) and (C.1 and 2) be 
satisfied. Then Us (t, s) and Un (t, s)J.~ (s) converge strongly to an evolution operator 
U(t, s), 0 <~ s ~ t ~ T, with the properties a)-d) and giving for any (4.i) a strict sol- 
ution of (E) with (4.3). Conversely, for (4A), any strict solution of (E) with 

(4.6) t~'u ~ L ~ ((0, T); X) ,  • < (a + fi + v - 2)/~, 

must be necessarily of the form (4.2). 

As will be verified soon, the Condition (T.1) (resp. (C.1)) implies the similar con- 
dition (4.8) (resp. (4.15)) for the Yosida approximation A~ (.) with the same exponents 
as A(.) as well strong convergence (4.9) (resp. (4.16)). In the univalent case, in fact 
by [22, Theorem 3.2 and 3] (resp. by [21, Theorems 4.3 and 4]), a machinary of con- 
structing the evolution operator starting from these two things was already estab- 
lished. Therefore what we have to do here may be only to modify it to the multivalued 
case. Detailed calculations at each stage of the proof described below may be hence of- 
ten omitted, for which we refer the reader to the papers quoted above and to other 
papers in the References. 

PRoo~ OF THEOREM 4.1. - As it has be en shown in Section 3, the resolvent sets of 
the Yosida approximation A~ (t), n I> no, contain a fLxed region Z and there the uni- 
form estimate 

(4.7) I}(~ - A~(t))-lllr(x) <~ M/(]2} + 1) 8, ;( eX  

holds with the same ~ and fi as in (P). And, as n - ~  ~,  the resolvent (~ -A~( t ) )  -~ con- 
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verges to (~ - A ( t ) )  -1 in 2(X) for each )~ e 2 .  On the other  hand, since we have from 

(3.5): 

{ ( A s  (t)(~ - A s  ( t))-  1 = ~(~ _ An ( t))-  ~ - 1 - n n~ n)~ A( t )  - 1 = 
n ~ ~ - - ~  n-Z,~  

_ n A(t)o n ~  A( t )  , for n l > n 0  and ~ e 2 ,  
n - ~  n - ~  

the condition (T.1) implies the same uniform estimate 

(4.8) t~4s(t)(,~ - A n ( t ) )  -1 {An(t) -1 -As ( s ) - l } ] l~ (x )  <~ [~lt - s l~ / ( l~]  + 1) ~, )~ e~: 

for n >I no with the same t~ and v. In addition, as n--~ oo, 

(4.9) A n ( t ) ( ~  - A . ( t ) )  -~ {As (t) -1 - An ( s ) - ' }  - - ~ A ( t ) ~  - A ( t ) )  -~ {A(t) -~ - A(s)  -~} 

in 2(X) for each )~ e 2 .  
Le t  Un (t, s) be the evolution operator  for An ('), and put V~ (t, s) = Un (t, s )An  (s) 1 - '~ 

and Wn (t, s) = Art (t) Us (t, s) - An (t) exp ( - (t - s )An  (t)), where ~ is a fixed number  
such that  3 - ~ - ~ - ~ < ? < v. As was verified in the proof of [22, Proposition 3.1], 
the following three  integral equations in Us (t, s), Vs(t ,  s) and Wn (t, s) hold: 

(4.10) Us(t,  s) = e x p ( -  (t - s )An(s ) )  + 

t 

+ ~ Vn (t, z )Dn (~, s ) A s  (s) exp ( - (z - s )An  (s)) d~, 
8 

(4.11) Vs(t ,  s) = As(s ) l -~exp  ( - (t - s )An(s ) )  + 

t 

+ ~ Vn (t, ~) Dn ('~, s )An  (s) 2 -'~ exp ( - (z - s )An  (s)) d z ,  
8 

t 

(4.12) Wn(t, s) = Rn(t, s) - ~ An(t)  2 - ~ exp ( - (t - z )As ( t ) )  D~(t, z) Wn (z, s) d~, 
8 

where D~ (t, s) = As (t) .~ {A~ (t)- 1 _ An (s) - 1 } and 

t 

Rs( t ,  s) = - ~ n n ( t ,  s)(t)e-~exp ( - ( t -  z ) A s ( t ) ) D s ( t ,  z ) A n ( z ) e x p ( -  ( v -  s )A ,~(z ) )dv .  
8 

Since all the integral kernels in these equations can be writ ten in terms of 
(~ - As (t)) - ~ and of As (t)(2 - As (t)) - ~ {An (t) - 1 - As (s)- ~ } alone, it is possible to esti- 
mate them by using (4.7) and (4.8) and to conclude from that  they have all integrable 
singularities at  t = s which are uniform in n >1 no. In addition, we also conclude from 
(4.9) that  they converge strongly in 2(X) as n ~ ~ for each 0 ~< s < t ~< T. 

As a consequence, we obtain that  the solutions Vs(t ,  s) and Ws( t ,  s) of (4.11) and 
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(4.12) respectively converge strongly in 2(X) for 0 ~< s < t ~< T; from (4.10) it is the 
same of U~(t, s). Let  us define U(t, s), 0 <. s < t ~ T, as the limit of U,~(t, s) and 
U(s, s) = 1, and denote the limit of An (t) U~ (t, s) by A(t) ~ U(t, s). Then it is easy to verify 
that this U(t,s) has the properties a)-d); for example, U~(t, s)=A~(t)- lA~(t)Un(t ,  s) 
implies that  U(t, s) = A(t)--~A(t) ~ U(t, s); this shows that  A(t) ~ U(t, s) is a section of 
A(t) U(t, s), i.e. A(t) ~ U(t, s) c A(t) U(t, s). Letting n ~ ~ in 

t 

Un (t, S) = U~ (s + ~, s) - f A,, (7.) U~ (z, s )d r ,  s+z<~t<<. T, ~ > 0 ,  

we observe that  8U(t, s)/St = - A ( t )  ~ U(t, s). Convergence of U~(t, s)J~(s) to U(t, s) is 
proved by operating Jn (S) to (4.10) from the right and by noting the fact shown by 
Theorem 3.1. 

We shall next prove that  the function u defined by (4.2) is under (4.1) a strict sol- 
ution of (E). Put  for n >t no: 

t 

(4.13) Un (t) = U~ (t, O)uo + I U~ (t, "c)f(z)dr, 0 ~ t <~ T,  
0 

and write, after operating A~ (t), A~ (t)u~ (t) in the form 

t 

A~ (t) u~ (t) = A~ (t) U~ (t, 0) uo + f A~ (t) U~ (t, 7.){f(z) - f(t)} d r  + 
0 

t 

+ f W~ (t, 7.)f(t) dr + {1 - exp ( - tA~ (t))} f ( t) .  
0 

Then An (t)u~ (t) is observed from c) and d) and from (4.1) to converge pointwisely on 
(0, T] to a continuous function g(t). Since u~ (t) clearly converges to u(t) pointwisely 
on [0, T], we have: u( t )=A( t ) - lg ( t ) ,  i.e. g(t)eA(t)u( t ) .  On the other hand, letting 
n ~  in 

t 

U n ( t )  - -  U n (~) = I {7(7.) --  A ~  (v) u~ (r)} d r ,  

$ 

~<t~<T, with any ~ > 0 ,  

we observe that du(t)/dt = f(t) - g(t), 0 < t ~< T, hence u(t) satisfies the equation in 
(E). The continuity of u at t - 0 in the seminorm Pa(0)(') is verified from 

(4.14) IIu(t, 0) - exp( -  tA(O))ll ,x, as t 

(which follows from (4.10)) and from the fact that, as t --~ 0, exp ( - tA(O)) --, 1 on X in 
PA(O) (') (see (3.2)). Finally, (4.3) follows from b) and c). 

Conversely, let us prove that  under (4.4) any strict solution u of (E) with (4.5) is 
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of the form (4.2). Since 8U~(t, s)/Os = U~(t, s)A~(s), we have for any  ~ > 0: 

t 

u(t) - Un (t, ~) u(~) = I U~ (t, r) {An (z) u(r) + -ddz (T) } dr , s <~ t <. T . 

Pu t  g(t) = f(t) - du/dt  e A(t)u(t); then,  since J~(t)g(t) = A~(t)u(t) by vir tue of Theo- 
rem 2.7, it follows tha t  

t t 

u(t) - U~(t, ~)u(s)= f U~(t, z ) { J ~ ( z ) -  1}g(z)dr + ] U~(t, ~) f (r)dr .  

So tha t  le t t ing n --* r162 we obtain in view of Un (t, ~) J~ (z) --) U(t, z) t ha t  

t 

u(t) - U(t, ~)u(s) = f U(t, r ) f ( r )dr ,  r  

To finish the proof  therefore  it suffices to prove U(t, ~) u(e) --) U(t, O) uo in X as ~ ~ 0; 
or more s t rongly  u(~) - U(z, 0) uo ~ 0 in X. Inser t ing  exp ( - (a4(0)) u0, then  we first  
observe f rom (4.14) tha t  {exp ( -  a4(0)) - U(z, 0)} uo--* 0 in X. On the other  hand,  
wri t ing for any 0 < 4 < e: 

and let t ing n--~ ~ ,  we have: 

u(t)  - exp ( - (~ - a)A(0)) u(~) -- 

= IA(0)~ exp ( - (~ - v)A(O)){A(r) -~ - A(0) -~ } g(z) d r  + I exp ( - (e - r)A(0)) f(z)  dr 
3 

(note tha t  A(0)~ ~ vA(0))A(0) -1 = e x p ( -  vA(0)), r > 0). Le t  here  8--->0, then  
f rom the  initial condition of (E) it follows tha t  

u(D - e x p ( -  (a4(0))Uo = 

= I A(0)~ exp ( - (e - r) A(0)){A(z)-I _ A(0)-I  } g(v) d r  + I exp ( - (~ - z) A(0)) f(v) dr.  
0 0 

With the aid of the es t imate  

1~4(0) ~ e x p ( -  rA(O)){A(t)-I _ A(O)-I }ll~(x) ~ Cr(~-x)/~t ~, ~ > 0 and 0 ~< t ~< T,  
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which follows from (T.1), we conclude from (4.5) that  

[lu(~)- e x p ( -  a4(0))uo fix ~< C{ s(~ + ' -  '>/~ +" - r  + ~(" +z- ~)/'}, 

and hence the result to be proved. 

PROOF OF THEOREM 4.2. - By the same argument  as for (4.8), we verify that  the 
condition (C.1) implies the same estimate for the Yosida approximation An(t),  
n ~  > no: 

(4.15) J~4~(t)(2 - A ~ ( t ) ) - l d A s ( t ) - ~ / d t l l r ( x )  <~ N / ( I 2 I  + 1) ~, ~ ~ 2 ,  

and that, as n--> oo, 

(4.16) A ~ ( t ) ( ) ~ - A ~ ( t ) ) - l d A ~ ( t ) - ~ / d t - > A ( t ) ~  in 2(X). 

We use in this case the following two integral equations: 

t 

Un (t, s) = exp ( - (t - s) A n (s)) + I Pu (t, v) Un (% s) dr ,  
$ 

(4.17) t 

Wn (t, s) = Rn (t, s) + f Qn (t, v) Wn (% s) dz ,  
8 

for Us(t, s) and W~(t,  s) =As( t )  U~(t, s) - As(s)exp(  - (t - s)A~(s)),  0 <~ s <~ t <~ T. 
The integral kernels are respectively: 

Pn(t,  s) = (O/Ot + a/0s)exp ( - (t - s )A~(s)) ,  0 <~ s <~ t <<. T ,  

Qs(t,  s) = P~(t, s) - A~(s)exp( - (t - s ) A ~ ( s ) ) d A ~ ( s ) - l / d s ,  0 ~ s <<. t <~ T ,  

t 

R~,(t, s) = f Qn(t, r)A~(s)exp( - (z - s )As ( s ) )d~ ,  0 <~ s <~ t ~ T .  
8 

For  the derivation of these equations, compare [20]. From (4.7) and (4.15) it is veri- 
fied that  all the kernels have integrable weak singularities at t = s which are uniform 
in n, and that  they converge strongly in 2(X) as n--* ~ for each 0 ~< s < t ~< T. 

Therefore the solutions Un (t, s) and W~ (t, s) also converge strongly in 2(X) to lim- 
its U(t, s) and W(t, s) respectively for 0 ~< s < t ~< T. In the same way as above U(t, s) 
is shown to have the properties a)-d). The convergence of Un (t, s)J~ (s) to U(t, s) is 
also verified by operating Js(s)  to (4.17) from the right and by using Theorem 
3.1. 

Let  us now prove that  the function u given by (4.2) is under (4.1) a strict solution 
of (E). Le t  u~ (t), n /> no, be the sequence defined by (4.13), which converges to u(t) on 
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[0, T] pointwisely. We write A~ (t)us (t) in the form 

t t 

A,( t )us( t )  = As( t )U,( t ,  O)uo + f A, ( t )  U,(t, v){f(r) - f ( t ) }  dr + f W~(t, r) f ( r )dr  + 
O 0 

+ f {A  n (r) exp ( - (t - r) A n (v)) -- A~ (t) exp ( - (t - r) A n (t)) } f(t) dr + 
0 

+ {1 - exp ( - tA~(t))} f( t) .  

A n (t)Un (t) is then shown to converge to a continuous function g(t) on (0, T] pointwise- 
ly, which is f(t) - du/dt  = g(t) e A(t) u(t) for 0 < t ~< T; hence u(t) satisfies the equa- 
tion of (E). Initial condition is verified in the same way as before from 

(4.18) I[U(t, O) - exp(  - tA(O))l[r(x)~ Ct(~+z~§ as t - ) o ,  

(which follows from (4.17)) and from exp ( - rA(0)) - )  1 on X as z - .  0 in the seminorm 

PAl0) ('). 
Conversely, under  (4.4), let u be any strict solution of (E) with (4.6). Using as be- 

fore the fact that  U, (t, s) J~ (s) - )  U(t, s) as n - )  ~ ,  we easily obtain that  

t 

u(t) - U(t, ~)u(~) = I U(t, r ) f (r )dr ,  ~<<.t<~ T, with any s > 0. 

Therefore,  the problem is to verify u(~) - U(~, 0)uo - ) 0  in X as ~ - ) 0 .  We insert  
exp ( - a4(0))Uo. Then exp ( - a4(0)) - U(s, 0) is estimated by (4.18). On the other 
hand, writing with any 0 < ~ < z: 

u(~)  - e x p  ( - (~ - ~ ) A ~  (~)) u ( ~ )  = f a exp ( - (~_~_~- r)As(z))  
3 

u(r) dr  + 

+ exp(  - (~ - r ) A s ( r ) ) ~ a ' ~  = r)u(r)dr + 

+ I e x p ( -  ( ~ -  z )A~(r ) ) {Js ( z ) -  1}g(r)dr + I e x p ( -  ( s -  r )As(r ) ) f ( r )dr ,  

where g(t) = f(t) - du/dt  e A(t) u(t), 0 < t ~< T, we let n tend to ~ and then ~ to 0. 
Then the initial condition of (E) jointed with the estimate 

Ilexp ( - (e - ~)A(~)) - exp(  - (s - ~)A(O))l]~(x)<~ Cr - ~)cz +v-2)/~ 
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(which follows from (C.1)) and with (4.6) yields that 

~P(s, f u(s) - exp( - a4(0))uo = f v ) u ( z ) d z  + e x p (  - (~ - z )A ( z ) )  f ( z ) d z ,  
o 0 

where P(t, s) = (a / t  + a / s )  exp ( - (t - s )A(s) ) ,  0 <~ s < t <~ T. Since P(t, s) is shown by 
(C.1) to satisfy: 

liP(t, s)H~(x) <~ C(t - s) (~ *~-2)/: 

the desired result follows now from the condition (4.6). 

REMARK. - From (4.14) and (4.18) in both the cases studied above we verify that, 
if u0 e 0~(A(0)), then U(t, O) Uo ~ Uo as t -* 0 in the norm of X (remember (3.2)). There- 
fore, if the initial value u0 e 0~(A(0)), then the strict solution given by (4.2) is continu- 
ous at t = 0 in the norm of X. 

REMARK. - In the case of temperately variable domains 69(A(t)), the case of con- 
stant domains is included. In fact, if A(t) ,  0 <<. t <<. T, with constant domain satisfy the 
condition (P), then everywhere defined multivalued operators A ( t ) A ( s )  -~ are defined 
for 0 ~< s, t ~< T. If, for example, there exists a linear section K(t, s ) e  2 ( X )  of 
A ( t ) A ( s )  -1 for each 0 ~< s, t ~< T, and if K(t, s) satisfies: 

IlK(t, s) - l[Ir~x ) ~< K i t  - s[ ~ , 0 <~ s, t <~ T ,  

then, since A(t )  ~ ()~ - A ( t ) ) - l A ( s )  -1 = ()~ - A ( t ) ) - l K ( t ,  s) from Theorem 2.7, it follows 
that 

]~4(t)~ (2 - A(t ) )  -1 {A(t) -1 - A(s)-l}]lr(x) <<. M K I t  - s l ,  / (12l  + 1) z, 

i.e. (T.1) is valid with ~ = ft. 

REMARK. - Contrary to the above remark, there is a substantial difference bet- 
ween the temperately variable domains and the completely variable domains. 
Example 6.5 described in Section 6 satisfies in fact the Condition (C.1) but not the 
Condition (T.1). 

5 .  - D e g e n e r a t e  e q u a t i o n s .  

In this section we apply the results obtained in the preceding sections for studying 
the parabolic evolution equations in a Banach space X of degenerate type with respect 
to the time derivative. 
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Let us first consider 

(D.E) 
dM(t) v /d t  + L(t) v = f ( t ) ,  

t F~mlo+ M(t) v(t) = % .  

0 < t < ~ T ,  

Here, M(t) and L(t), 0 <~ t ~< T, are densely defined univalent closed linear operators 
in X such that  (D(M(t)) D O~(L(t)) and L(t) -1 e ~e(X); T(t), 0 <~ t <~ T, denote the bounded 
operators T(t) = M(t) L(t) -1. f :  [0, T] ~ X is a given continuous function, u0 e X is an 
initial value, and v: (0, T] ~ X is the unknown function. 

I f  we put u( t )=  M(t)v(t),  then (D.E) is reduced to 

(5.1) 
du/d t  + A( t )u  ~ f ( t ) ,  

u(O) = Uo, 

0 < t ~ < T ,  

in which the unknown function is u(t) and the operators A(t) = L(t)M(t)  -1 = T(t) -1 
(cf. Theorem 2.5), 0 <~ t ~< T, are multivalued linear operators in X. I t  is then possible 
to apply Theorem 4.1 and 2 to obtain existence and uniqueness of the strict solution of 
(5.1). From the Definition of the strict solution in Section 4 we are naturally led 
to: 

DEFINITION. - A function v: (0, T ] - ~ X  is called a strict solution of (D.E) if 
v(t) e (~(L(t)) (r  (~(M(t))) for 0 < t <~ T with Mv e C 1 ((0, T]; X) and L v e  C((0, T]; X), 
v satisfies the equation in (D.E) for every 0 < t ~< T, and the initial condition: 
M(t) v(t)---)uo, as t--* 0, is satisfied in the sense of the seminorm lIT(0). IIx. 

LEMMA 5.1. - Let T e ~e(X) be a bounded operator on X, and let A = T -1 be its in- 
verse. Then, (A - A) -1 = T(AT - 1) -1 = (AT - 1) -1T for all )~ e C in the sense of multi- 
valued operator. 

PROOF. - Let  u e 0~((iT - 1)T -1) = 0~(A); then, ( A T -  1 ) T - l u  = { ( A T -  1)f;  
f e  T - l u }  = {Au - f ; f e A u }  = (A - A)u;  therefore, (AT - 1)T -1 = Z - A; then the 
first assertion follows from Theorem 2.5. 

Let  now u e ( A T - 1 ) - l T f ;  then, u = T ( ; ~ u - f ) ;  so that, A u - f e A u  or u e  
e (A - A ) - l f ;  hence ( ; (T-  1 ) - iT  c (A - A )  -1. The converse is also true. 

This lemma shows that, in order that  A(t) satisfy the Condition (P), it suffices to 
assume on T(t) that  

(D.P) There exists a region Z = {A E C; ReA < c((ImA I + 1) ~} such that, for ;~ e Z ,  
( ~ T ( t ) -  1) -2, 0 ~< t <~ T, are univalent bounded operators on X and there an 
estimate 

IIT(t)(TT(t) - 1)-lll~(x) ~< M/(IA I + 1) ~, ~ e Z ,  0 < t ~< T 

holds with some exponents 0 < ~ < ~ ~< 1 and constant c, M > O. 
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Moreover, since it is also verified from the lemma that  

A ( t ) ~  -~, ~ e E ,  O<~t<~T, 

it is sufficient for (T.1) or (C.1) to assume respectively that  

(D.T.1) I](2T(t) - 1)-~ {T(t) - T(s)}llr(x ) <~ K i t  - s l ' / ( 1 2 l  + l y ,  )~ eE ,  0 ~< s, t ~< T; 

(D.C.1) T(t) is strongly continuously differentiable in t, and the derivative 
satisfies: 

I[(2T(t) - 1)-ldT(t)/dt[lr(x) <~ N / ( I ~ I  + 1) ~, ~ eE ,  o <~ s, t <~ T.  

THEOREM 5.2. - Under (D.P), assume (D.T.1) and (T.2), or assume (D.C.1) and 
(C.2). Then, for  any  HSlder continuous funct ion  f e  C:([0, T]; X), ~ > (2 - ~ - ~ ) / ~ ,  
and any  init ial  value Uo e X, there exists a strict solution of  (D.E). Conversely, for  
f e C ( [ O , T ] ; X )  and u o e X ,  any  strict solution v of  (D.E) with t ~ d M v / d t E  

L ~ ( 0 , T ; X ) ,  Y < ( a + v - 1 ) / ~ + [ - ~ ,  (resp. t Y M v ~ L  ~ ( O , T ; X ) ,  ) , < ( ~ + ~ + ~ -  
- 2 ) / a ) ,  when we assumed (D.T.1) and (T.2), (resp. (D.C.1) and (C.2)), is 
unique. 

PROOF. - The unique thing we have to verify now is that  v(t) is a strict solution of 
(D.E) if and only if u(t) = M(t) v(t) is a strict solution of (5.1). Let  u(t) be a strict sol- 
ution of (5.1); then, there exists a function v(t) ~ ~(L( t ) )  n M( t ) - lu ( t ) ,  0 < t <~ T, such 
that  du /d t  + L ( t ) v ( t ) = f ( t ) ;  since M ( t ) v ( t ) =  u(t), v(t) satisfies the equation of (D.E). 
The convergence at t = 0 is given by the same relation between u and v. Conversely, 
if v(t) is a strict solution of (D.E), we put u(t) = M(t) v(t) for 0 < t ~< T and u(0) = u0 ; 
then, the proof is immediate. 

Le t  us next consider a degenerate equation of the dual form of (D.E) 

(D.E)' 
M(t) du /d t  + L(t) u = M(t)g( t ) ,  

u(O) = Uo 

0 < t ~ < T ,  

in X. Here, M(t) and L(t), 0 ~< t -<< T, are densely defined univalent closed linear oper- 
ators in X such that  L(t) -1 ~ 2(X)  and that  L ( t ) - l M ( t )  has a bounded extension on X 
for each 0 ~< t ~< T, the bounded extension being denoted by S(t) = L(t)-~M(t) .  g is a 
given function, u0 is an initial value, and u is the unknown function. 

We operate M(t) -~ to the equation; then, since M ( t ) - l L ( t ) r  S(t) -1 from Theorem 
2.5, an extended equation 

(5.2) 
du /d t  + B(t) u ~ g(t), 

u(O) = Uo 

O<t<~ T ,  

is obtained, where B ( t ) =  S(t) -1, 0 ~< t ~< T, are multivalued linear operators in X. 
From Lemma 5.1 we have: (~ - B(t)) -1 = S(t)(~S(t) - 1) - i  and B(t)~ - B(t)) -1 = 
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= O~S(t) - 1) -1. Therefore the Conditions (P), (T.1) and (C.1) for B(t) are implied by the 
conditions which will be obtained by replacing T(t) by S(t) in (D.P), (D.T.1) and 
(D.C.1) respectively. Let us call these conditions on S(t) (D.P)', (D.T.1)' and (D.C.1)' 
respectively. We then obtain easily the following theorem. 

THEOREM 5.3. - Under (D.P)' assume (D.T.1)' and (T.2), or assume (D.C.1)' and 
(C.2). Then, for any HSlder continuous function g �9 ~ ([0, T]; X), ~ > (2 - a - fl)/a, 
and any initial value uo �9 X, there exists a strict solution of the extended equation 
(5.2). Conversely, for f � 9  C([0, T]; X) and Uo �9 X, any strict solution u of (5.2) with 
t~ du/dt e L ~ (0, T; X), y < (~ + v - 1)/~ +/z, (resp. tr u �9 L ~ (0, T; X), y < (:r + fl + 
+ v -  2)/~), when we assumed (D.T.1)' and (T.2), (resp. (D.C.1)' and (C.2)), is 
unique. 

REMARK. - As was remarked in Section 4, if the initial value uo in 
(5.1) �9 6~(A(0)) = ~(T(0)), then the strict solution u is continuous at the t = 0 in the 
norm of X. This means that, if uo �9 ~(T(0)) = M(0) 59(L(0)), then the strict solution v 
of (D.E) satisfies: M ( t ) v ( t ) ~  Uo, as t -~  0, in the norm X. 

REMARK. - Similarly to the above remark, if Uo e O)(B(0)) = ~(S(0)) in (5.2), then 
the strict solution u is continuous at t = 0 in the norm of X. Since we assumed 
that L(0)-~M(0)= S(0)e~(X),  u0e  ~(S(0)) if and only if there exist sequences 
u~ �9 (~(L(0)) and fn e (b(M(0)) such that L(O)u~ = M(O)f~, u~ converges to Uo in X and 
fn is also convergent in X. 

REMARK. - As may be easily- seen, the strict solution of the extended equation 
(5.2) is not necessarily that of the original equation (D.E)'. But this is the case if M(t) 
are bounded operators, since then S(t)= L(t)-lM(t),  and there are some interesting 
examples in which M(t) are bounded operators but have no univalent inverses. 

6. - E x a m p l e s .  

It is known that many partial differential equations can be written in the form 
(E), (D.E) or (D.E)'. We shall study in this section elementary ones, and we shall see 
how our abstract results apply to those examples. 

EXAMPLE 6.1. 

(6.1) 
du/dt + O~ u ~ f ( t ) ,  

u(O) = Uo. 

0 < t ~ < T ,  

Here, 0 ~ is the inverse of the 0 operator in a Banach space X which has been already 
defined in the proof of Theorem 2.6. We know that 0~(0~)= {0}, O~ 0 = X and that 
~(0~) =C and the resolvent ( ~ -  A) -1 vanishes for all ~ e C. So that, e x p ( - z O ~ ) =  
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= 0, ~ > 0, and exp ( - 0 0 ~ )  = 1. Moreover, for a n y f e  e([0, T]; X) and any uo e X, the 
function u(t) = 0 for t > 0 and u(0) = u0 is the strict solution of (6.1). Of course this 
example is too artificial and too extreme, but this shows us significantly what hap- 
pens in the evolution equations with multivalued linear operators. In fact, if we re- 
gard (6.1) as a diffusion equation, then O~ has <,infinite diffusion, and every solution 
vanishes at once for t > 0. 

EXAMPLE 6.2 (Stokes equation). - Let  

(6.2) 

Su /S t  - vAu + Vp =f( t ,  x) 

div u = 0 

u = O  

u(0, x) = Uo (x) 

in (0, T] • t2, 

in (0, T] x t2, 

on (0, T] x 0t2, 

in t2, 

be the Stokes equation in an open set t2 c R n with a smooth boundary at2. u = 
= (u~ (t, x), . . . ,  u,~ (t, x)) and p = p(t, x) are unknown functions, f(t,  x) is a given func- 
tion and Uo (x) is an initial function. Our problem is to formulate this equation in the 
L 2 (t2) space. Set X = (L 2 (t2))n and 

{ X: = the closure of {u e (Co ~ (t2))~; d ivu  = 0 in/2} in X,  

X~ {Vp; p e N  ld2)}. 

I t  is known that  X is an orthogonal direct sum of X: and X~. Let  P denote the orthogo- 
nal projection P: X---)X:. We define a multivalued linear operator A in X by 

Ion(A) = (H2(m) n (Hi (t)))" n <,  
[ A n :  - A u  + X~. 

Then it is possible to write the Stokes equation in the form 

du /d t  + vAu ~ f ( t ) ,  

u(O) = Uo, 

O < t < ~ T ,  

with f :  [0, T] ---) X and uo ~ X~. 
This formulation is essentially equivalent to the classical one. As it is well known, 

the Stokes equation is also written in the form 

du /d t  + ,A~ u = Pf( t ) ,  0 < t <~ T ,  

u(O) = Uo, 

as an abstract equation in X~, using the operator A.~ defined by 

AVe(As) = O~(A ) , 

s = - P A u .  
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Since (~ - v A ) u 3 f  is equivalent to (~ - vA~)u = P f  and (1 - P)(v/lu - f )  eX~ for 
u e 5~(A), ()~ - vA) u 9 f  if and only if (~ - vA~) u = Pf. Therefore we have: 

p(A) = ,z(A~) and (;~ - vA) -~ = (~ - vA~)-~P for ~ e p(A). 

Consequently, e x p ( - z v A ) =  exp( -zvA~)P  for z >  0. In particular, it is verified 
that  

exp ( - zvA) g ~ g, as r ---> 0, for the function g e 0~(A) = X~, 

exp ( - z~A) h = 0, for r > 0, for the function h e A0 = X~. 

EXAMPLE 6.3. 

(6.3) { a(m(z) v ) /a t  - 3v = f ( t ,  x) 

V = 0  

1 ~  ~ ( x )  v(t, x) = Uo (x) 

in (0, T] • t2, 

on (0, T] • ~D, 

i n D .  

Here, t~ is a bounded open set in R ~ with a smooth boundary a~, re(x) is a given non 
negative function defined in t~ such that  

(6.4) m e L ~ ([2) , re(x) >t O. 

f( t ,  x) is also a given function, Uo (x) is an initial function, and v = v(t, x) is the un- 
known function. We consider this problem in the spaces H -~ (t~) and L 2 (t~). I1" I[-1, I1" II 
and I1" []1 denote respectively the norms of H -~ (t~), L 2 (D) and H~ (t~). (., .) and <-,. } de- 
note respectively the scalar products in LZ(t]) and in Hol(t~) • H-~(D). 

Let  us first consider (6.3) in H-2  (t~). As we have already seen in Section 5, (6.3) 
can be written as .an equation with multivalued operator 

d u / d t  + A u  ~ f ( t ) ,  

u(O) = Uo, 

in H-l( t2) .  Here, A = L m  -1 is determined by 

O < t < ~ T ,  

(6.5) { ~(A) = {my; v ~ H~ (~)} 

A u  = {Lv; v e H~ (t~) such that  m v  = u } ,  

where L is - h with the Dirichlet boundary condition in H -~ (t~) and m -~ denotes the 
inverse of the multiplication of m(x)  which is a bounded operator from H~ (~9) to 
L 2 (~). 

In order to apply Theorem 3.2, let us verify that  our A satisfies Condition (H.P). 
Since (~(L) = H~ (~) and L-1  e ~(H-1 (~), H01 (s A - 1  = T = m L  -~ e 2 ( H - i  (~)), so 
that  from Lemma 5.1 (2 - A) -1 = T ( 2 T  - 1) -1 = m ( 2 m  - L)  -1. We then consider the 
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sesquilinear form a~ (u, v) on H~ (tg) 

for each A e C. It  is verified that, for any 0 < r < ~/2 and some c > 0, there exists 
> 0 such that  

la~iu, u)l ~> ~(tIull~ + IAIllx/~ull2), u~Hd(t~), 
holds uniformly for every A e Z  = {2 e C; larg2] t> r or [A[ ~< c}. Then the Lax-Mil- 
gram Theorem yields (a~ (u, v) = <(Am - L)u ,  v}) that  Am - L has a bounded inverse 
from H - 1  (~) to H01(t~) for A e2: as well an estimate 

- 1  2 (6.6) I A I l [ V ~ ( A m - L ) - l f l l 2 + [ [ O ~ r n - L )  flll<~CIIfll2_~, f e H - l ( t ~ ) ,  A c E .  

Therefore, noting that  L ( A m -  L ) - I +  1 = A m ( A m -  L) -1, we conclude that, under 
(6.4), ~(A)~E and the resolvent satisfies: 

(6.7) (I(A - A)- l f l [ -1  = [[re(Am - L)- l f l [_l  ~< CHf[I_~/[A[, f e  H-~(t~), ~ e 2 ,  

(6.8) [I(2-A)- l f[ I=I[V~Vr-m(Am-L)- l fJ[<~C[[f[[_I / I )~]  1/~, f e H - l ( t ) ) ,  A c E .  

In addition, if we define the part  of A in the space L 2 (t)) by 

A o u = A u A L 2 ( t ) )  with O~(Ao)= { u e O ( A ) ; A u A L 2 ( ~ ) ~ O } ,  

then A0, in view of (6.8), satisfies similarly p(Ao)~2 and 

(6.9) ][(2 - AOJ~-II'H2(L, (4)) ~< C/[A] 1/2 , A e Z .  

To obtain a better estimate for Ao than (6.9) we have to assume more regularity on 
mix). Let  m e e 1 (~), re(x) >1 0, and let for some 0 ~< p < 1 

(6.10) ]Vm(x)[ ~< Cm(xY on x e ~ .  

Then from a~(u, mu) = (f, mu) with u = (Am - L ) - l f ,  f e L2(t~), we have: 

AIIm~ll ~ - I1~/~ v~[I ~ = if ,  .~u)  + (Vu, u v . ~ ) .  

Since i6.10) implies that  lYre(x)] = a(x)m(xY with some a(x)~ L ~ (~), it follows 
that  

] )~l[mu][ 2 - [IVm Vu[[ 2 [ ~< I[f[[ IImu[[ + CHmul[ P Hull 1 - ~ [IVut[; 

so that  from (6.6), if ]arg A I I> r then 

I A I Ilmuil 2 -'~ < []f[I ][mu][ 1 -~ + C[[fl[ 2 - e; 

and hence it follows together with (6.9) that  

t[(2 - A o ) - l f ] [  = It. ult ~< cl[f][/I;~l ~/<~-~), f e L l ( f 2 ) ,  A a S .  
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EXAMPLE 6.4. - Let  us next consider a dual equation of (6.3): 

t 
m(x)  au/Ot  - Au = m(x)g( t ,  x) in (0, T] x t~, 

(6.11) u = 0 on (O, T] • ~ ,  

u(0, x) = Uo (x) in t?. 

Here, re(x) is the same function as in (6.3) and is assumed to satisfy (6.4). g(t, x) is a 
given function and u = u(t, x) is the unknown function. We shall consider this prob- 
lem in the spaces Hl(t~) = { H - 1 ( / 2 ) }  ' and L2(t~). 

In H0 ~ (~?) we can write (6.11) in the form 

d u / d t  + B u  ~ g(t) , 0 < t <<. T ,  

u(O) = Uo, 

where B = m - l L  is a multivalued operator given more precisely by 

IO)(B) = {u e H~ (5); there exists some v e H I (~) such that  L u  = m y } ,  

(6.12) [ B u  = {v e H~  (~); L u  = m v } .  

Here, L denotes as above - ~1 with Dirichlet boundary conditions in H - 1  (~) and m -1 
denotes the inverse of the multiplication by re(x), which is b0~nded from Ho ~ (~) to 
L2(t~). Since B - i  = S = L - l m e  ~(H~(D)), we have from Lemma 5.1: (A - B) -i  = 
= (AS - 1)- 1S = ()<m - L) -  1 m. Further ,  we already observed that, if A e 2, Am - L has 
a bounded inverse from H-l ( t~)  to H i  (~). Hence if we consider, for u e Ho 1 (~) and 
r e H - 1  (t~), the scalar product 

<(Am - L)  -~ mu ,  r = (mu,  (-~m - L)  -~ r = <u, m(~m - L) -~ r 

then, under (6.4), (6.7) implies that  

I[(A - B)-~uI[i = [[(Am - L) -~mul l l  <<. CNuI[~/[A[, u e Ho~ (~), for A ~ 2 .  

We next extend B to a multivalued operator Bo in L 2 (t~) by 

I ~ ( B  o) = {u e H~ (~); there exists some f e  L 2 (t?) such that  L u  = m f } ,  

(6.13) [Bou  = m - i L u  = { f e  L2(~); L u  = m f }  ; 

here m -~ is the inverse of the multiplication operator m: L 2 ( ~ ) - - ~ L 2 ( ~ ) .  Since 
B o l e  2(L2(t~)), it is seen by the same duality a rgument  that  (6.9) implies 

II(A - B0)-~II~(L~(~))~< c/Izl ~ ~ z .  

I t  is also possible as in Example 6.4 to prove that  under the conditions m e C~(~) and 
(6.10) that  the resolvent ( A -  Bo) -~ satisfies the better estimate 

I l u<  - < ClIAI A 
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EXAMPLE 6.5. 

(6.14) { d(m(t)  v ) /d t  + Lv  = f ( t ) ,  

lira re(t) v(t) = Uo. 
t --~ O 

O < t < ~ T ,  

Here, L is a univalent linear operator in a Banach space X satisfying Condition (H.P). 
re(t) >1 0 is a given non negative function on the interval [0, T], f( t)  is a given function 
with values in X, u0 is an initial value, v = v(t) is the unknown function. 

Putting u = re(t)v, we rewrite the equation in the form 

d u / d t  + A ( t ) u  ~ f ( t ) ,  0 < t < T ,  

u(O) = Uo, 

where A(t)  = Lm( t )  -1, 0 <<. t <~ T, are multivalue operators in X. More precisely, A(t)  
is given by 

A(t) = L m ( t ) -  

A(t)  0 

with 69(A(t)) = (~(L) if re(t) ~ O, 

with O~(A(t)) = {0} if re(t) = O. 

(6.15) 
m �9 c ~ ([0, T]; R ) ,  

[m t (t) I <~ Cm(t) for all 0 ~< t ~< T, 

with some 0 < v ~< 1; here mr(t) denotes the derivative of re(t). Take a number d such 
that d >t re(t) for all 0 ~< t ~< T, and choose a sufficiently small number ~ > 0 such that, 
f o r a r e g i o n 2 = { 2 e C ; R e 2  <~(IIm)~ ] +1)~}, U d ' X c Z c ~ ( L )  holds, w h e r e Z  

O<~d'<~d 

is the region in the Condition (H.P). Then, since 

()~ - A ( t ) ) -  1 ~_. re(t) L - ~ (2m(t) L - ~ - 1)- 1 - -  m(t)(~m(t)  - L)  - 

it is verified that 

( m(t)l)~l ) ~ 
1[(2 -A(t))-~l l~(x)  <~ i m ( t ) 1 - ~  m(t)12 ] + 1 [2[-8< M 2 � 9  

(]21 + ly '  

hence the Condition (D.P). On the other hand, clearly (6.15) implies T( t )=  A(t) - 1=  
= m ( t ) L - 1 � 9  CI([0, T]; 2(X)) with dT(t ) /d t  = m t ( t ) L  -1. Moreover, it follows that 

il(2T(t) - 1)-1 dT(t)/dt[lr(x) = Ilmt(t)(2m(t) - L)-l]lr(x) ~< 
C m ( t )  v 

<< 

(m(t)lAl + 1) 8 (}A I + 1) ~' 

where ~ = rain {/~, v}. 

for 2 e 2 ,  

In order to apply Theorem 5.2, let us verify the Conditions (D.P) and (D.C.1). We 
assume that 
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EXAMPLE 6.6. 

(6.16) t 
a(m(t,  x) v)/Ot - Av = f( t ,  x) 

v = O  

lim re(t, x) v(t, x) = uo (x) 
lt-~0 

in (O, T] • t2, 

on (O, T] • at2, 

in t2. 

re(t, x ) a u / a t  - Au = re(t, x)g(t ,  x) in (0, T] • ~ ,  

(6.17) u = 0 on (0, T] • ate, 

u(0, x) = u0 (x) in t~. 

Here, f2 c R ~ is a bounded open set with smooth boundary 3t~. re(t, x) >I O is a given 

non negative function such that 

(6.18) re(t) = re(t, .) e L ~ (t~) for all O ~< t ~< T, with ilm(t)llL o (~) <<- C. 

v = v( t ,x)  (resp. u = u( t ,x ) )  is the unknown function of the problem (6.16) (resp. 
(6.17)). We consider (6.16) (resp. (6.17)) in the space H - I ( ~ )  (resp. H~(t~)). These 

problems are writ ten respectively in the form 

d u / d t  + A ( t ) u  ~ f ( t ) ,  0 < t <<. T ,  

u(O) = Uo, 

d u / d t  + B(t) u a g(t), 

u(O) = Uo. 

O < t < ~ T ,  

Here, A(t)  (resp. B(t)), 0 ~< t ~< T, are multivalued operators in H - 1  (f2) (resp. Ho 1 (t~)) 
defined analogously to (6.5) (resp. (6.12)). As has been proved in Example 6.3 (resp. 
Example 6.4), ~(A(t)) (resp. p(B(t))) contain a region Z = {~ ~ C; I arg ~ J /> r or I Z I ~< 

c} with any 0 < r < =/2 and with some c > 0, and there the estimate 

I1(  - A ( t ) ) - l l l = ( n - ' ( , ) )  c/lxl,  ( r e s p .  I1(  - C/l l, x 

holds, i.e. under (6.18), (D.P) (resp. (D.P)') in Section 5 is satisfied. 
In order to apply Theorem 5.2 (resp. Theorem 5.3), therefore, it suffices to verify 

that T ( t ) = A ( t )  - 1 =  m ( t ) L  -1 (resp. S ( t ) =  B(t) - 1 =  L - i r a ( t ) )  satisfies (D.C.1) (resp. 

(D.C.1)'). Let  us assume in addition to (6.18) that  

I m E ~1([0, T]; L I (~ ) ) ,  

(6.19) [ lint (t, x) I <~ Cm(t, x) v for all 0 ~< t ~< T and a.e. x ~ ~ .  

with some exponent O < v ~< 1; here mt denotes the derivative of re(t). Using Sobolev 
embedding theorem H 1 (~)C LP~(~), where p~ = ~ if n = 1, p~ is any finite number 
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/> 1 if n = 2, p~ = 2n/(n  - 2) if n 1> 3; we observe that  

I (T(t) r u} ] <~ ]}m(t)llL~(~ ) ]}L - ~ r <~ 

<C]lm(t)]tL,,( )lfC[I-1itul[1, for CEH- I ( t g )  and u e H J ( t ~ ) ,  

where q~ = 1 if n = 1, q~ is any number > 1 if n = 2, qn = n/2  if n > 3 (note that  al- 
ways 2/pn + 1/q~ = 1). This shows that  IIT(t)llr(H-,(~)) <~ C[[m(t)[IL~.(~)for 0 ~< t ~< T. Sim- 
ilarly, we observe that  ]IS(t)]]~(H~(~))<~C]]m(t)]IL~.(~). On the other hand, since 
m t e  e([0, T]; Lq(~)) for any 1 < q < ~ from (6.19), m �9 C1 ([0, T]; Lq(t~)), 1 < q < ~;  
we conclude that  T � 9  e 1([0, T]; 2(H-1(~9))) with dT/dt  = m t ( t ) L - 1  and 
S �9 C 1 ([0, T]; 2(Ho ~ (t)))) with dS/d t  = L - l m  t (t) respectively. To show (D.C.1) let us 
consider, recalling that  ( 2 T ( t ) -  1) -! = L ( 2 m ( t ) - L )  -1 for ~ � 9  the scalar prod- 
uct 

i((~T(t) - 1) -~ dT/dtr u}[ = 

= ](L -1 r mt (t)(-~m(t) - L ) -~Lu)  ] <~ C]IL -1 r ]}m(ty (-~m(t) - L) -~ Lull. 

Using (6.8), we obtain that  it is bounded by 

IIr L) -1Lull~l](-~m(t)- L) -1Lull 1 -"~< C[~ I-~/~[1r []ul[1 �9 

Hence 

I[(~T(t) - 1)-ldT(t)/dtr ~< C[~I-~/211r r �9 H-1(ig), Z � 9  

The Condition (D.C.1)' on S(t) is also verified in a similar way. In fact, noting 
that  

(ZS(t) - 1) - ~ dS(t)/dt = (s -1 re(t) - 1) -~L -1 mt (t) =- (~m(t) - L) -1 m t  (t), 

we observe that  

II(IS(t) - 1) -1 dS(t)u/dtlll <~ C])~I-~/2[lulll, u �9 H~ (t~), ~ �9 z .  
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