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Resonance at Two Consecutive Eigenvalues 
for Semilinear Elliptic Equations (*). 

PIERPAOL00MARI - FABIO ZANOLIN 

Abstract. - The solvability of the Dirichlet problem for a semilinear elliptic equation is studied 
in some situations where the classical resonance conditions of Landesman and Lazer may 
faiL 

1. - I n t r o d u c t i o n .  

Let  Q be a bounded domain in R ~, with a smooth boundary, and let g: Q x R - ~ R  

be a nonlinear function satisfying the Carath~odory conditions. We consider the 
Dirichlet problem 

(1.1) -Au  = g(x, u) + h(x), in Q, 

(1.2) u = 0, on bdryQ, 

where h e L p (~9), for some suitable p >i 2, is given. 
I t  is well known that, when g grows at most linearly with respect to its second 

variable, the solvability of (1.1)-(1.2) depends on the interaction of the ratio g(x, s ) / s  
with the spectrum ~ = {)w: N = 1, 2, ... } of - A in Ho ~ (Q). The conditions imposed on 
g are usually classified as nonresonant or resonant, according as they yield the solv- 
ability of (1.1)-(1.2) for every h or not. Of course, in the linear case g(x, s) = As, such 
conditions reduce to A ~t ~ or to A = AN E z; accordingly, by the Fredholm alternative, 
(1.1)-(1.2) has a solution for every h, or has a solution if and only if h e E~i,  where EN 
denotes the eigenspace corresponding to the eigenvalue A~. Many papers have been 
devoted to the obtention of nonresonance conditions (see e.g. [Do], [B-N], [A-M], 
[B-DF], [M-Wa], [DF-G], [Gos], [C-O]), as well as of resonance conditions (see e.g. 
[L-L], [A-L-P], [B-B-F], [F-F]). Here, we are concerned with the latter situation, 
that  is with the resonant case. Namely, for a pair of consecutive eigenvalues 
AN < AN + 1, w e  a s s u m e  
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( i l ) ) w S 2 ~ S g ( x , s ) < ~ ) W + 1 8 2 ,  for I s }>~r>O and a.e. x e ~ ,  

and 

(i2) h e E ~  C1 E~+ 1. 

Comparing with the linear case, one could expect that 01) and (i2) imply the existence 
of solutions for (1.1)-(1.2). Yet, generally speaking, this is not true, even if (il) is as- 
sumed to hold for every s and a.e. x e t~, as is shown by a counterexample in [I-N]. 
Therefore, some further conditions on the behaviour of g must  be imposed. Here, to 
conclude solvability, in addition to (il) and (i2), we assume, if N > 1, 

(i 3) ess in f sg (x , s ) - )~NS2- -~  + ~ ,  as s ~  + ~  or s - o - s ,  
x e . (2 '  

and 

( i 4 ) )~N+I  s 2  - -  ess sup sg(x, s)---> + ~,  as s--> + ~ or s---> - ~ ,  

where t~' and ~" are sufficiently large subsets of ~. While, if N = 1, we assume 
either 

(i~) e s s i n f s g ( x , s ) -  ;~ls~--> + ~ ,  as Is] ~ + ~ ,  
XE~2' 

where t~' is a sufficiently large subset  of t~, or 

(i~) sg(x,s)--~lS2>~O, for s e R  and a.e. x e ~ .  

The special assumptions considered with respect  to the first eigenvalue ;~1 are due to 
the fact that  each nonzero eigenfunction in E1 has a definite sign in ~, while in EN, 
with N > 1, each nonzero eigenfunction changes sign on subsets of ~ of positive mea- 
sure. We recall that (i~) was already assumed in [DF-N], [I-N-W], [Gu], [D-T], but  it 
was always coupled with a nonresonance condition with respect  to the second eigen- 
value ,~2- 

We point out that, under (il) , (i3) , (respectively (i~), or (if)) and (i4), it may happen 
that 

g_ (x) = lim sup (g(x, s) - )~N s )  : O, a.e. in t~, 
8 - - - >  - -  ~ 

and 

as well as 

and 

g+ (x) = lira inf (g(x, s) - ~ys) = 0, 
8 ---> -~- cc  

a.e. in t~, 

1"- (x) = lira sup ( )~N  + 1S - -  g(x, s)) = 0, a.e. in t~, 
8 - - - >  - - c ~  

y + ( x ) = l i m i n f ( ~ y + l s - g ( x , s ) ) = O ,  a.e. in D. 
8 - - - >  + oc 
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So that the classical Landesman-Lazer conditions [L-L] may fail, both at the eigen- 
value ,~N and at the eigenvalue ,~N +2, since they require respectively 

fg+v+- fg_v > fhv (=0, by(i2)),  
D ~2 .(2 

for all (0 ~ ) v e EN,  and 

f ~ ' + w + - f T - w - > f h w  ( = 0 ,  by (i2)), 
~ 62 ~j 

for all (0 ~ ) w e EN + 1, where u + = max {u, 0} and u - = m a x  { - u, 0} (the element of 
volume dx is omitted in the above integrals). 

On the other hand, conditions (il), (i3), (respectively (i~)) and (i4) imply the val- 
idity of the Ahmad-Lazer-Paul conditions [A-L-P], with respect to ),N and )~N+ 2. 
Namely, if G(x, s) denotes the primitive I g(x, t)dt ,  we have 

[0, s] 

lim f (G(x, v(x)) - () N/2)]v(x)12)dx + IJvll-~ + ~ = ( b y  ( i 3 ) ) ,  

where v e EN,  and 

lira f ( (2N+I /2 ) IW(X) I  2 -- a(x ,  w ( x ) ) ) d x  = + ~ (by (i4)) I]wjt-~ + ~ 
f2 

where w e EN+I (here, II'l] denotes any norm in EN and EN+ ~). Yet, to the best of our 
knowledge, it remains an open problem to establish the existence of solutions to (1.2)- 
(1.2), under (il), (i2) and the Ahmad-Lazer-Paul conditions, both at 2N and at ;%- + 2. So 
that our results can be regarded as (partial) contributions in this direction. Other pa- 
pers related to these questions are [T], [Gon], [Ca], [Co]. 

Actually, our results are more in the spirit of those obtained in [F-K] (see 
also [He], [F-H], [Dr], [W], [Hi]). But, in all these papers resonance occurs only at 
the eigenvalue )~N, since the function g is required to satisfy a nonresonance condition 
with respect to the eigenvalue )~N+ 2, namely, it is always assumed that, for some 
~'> O, 

sg(x ,s )<~O~N+I--~)S~,  for Is I ~ > r > 0  and a.e. xEt~.  

On the contrary, under our assumptions double resonance (at)~N and at ),N+ 2) may 
arise. 

Moreover, as a consequence of our main theorems, in the case g(x, s ) =  g(s), 

g(0) = 0 and g e CI(R) ,  we can replace conditions (il), (i3) and (in) with the 
following 

(i5) ~N <<- g' (s) <~ )~N + I , f or  s ~ R , 

and again conclude solvability, for any h satisfying (i2). In this way, we complete 
some known results, which relate the solvability of (1.1)-(1.2) to the location of the 
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range R(g') of g' with respect  to the spectrum ~. Indeed, it is well-known ([Do], [M1]) 
that  if c lR (g ' )N  z = 0, then (1.1)-(1.2) is uniquely solvable for every h, whereas if 
intR(g')  N z ~ ~, then there exist h such that (1.1)-(1.2) has more than one sol- 
ution [Da]. Now we can say that if intR(g')  N z = 0, then (1.1)-(1.2) has at least one 
solution for any h satisfying (i~), even if R(g') N ~ ~ ~. In this way we also extend to a 
more general framework a result in [Di], obtained in the study of periodic solutions of 
a second order ordinary differential equation, by a technique which strongly relies 
upon the one dimensional character of the problem. It is also worthy to mention that, 
even if, under (i5), G is a convex function, our result is independent from those ob- 
tained by methods based on convex analysis, like e.g. in [M-Wi]. 

Finally, we observe that  using the theorems stated in the next section one can 
easily obtain some nonresonance results for problem (1.1)-(1.2), which recover previ- 
ous ones contained in [0-Z1], [O-Z3]. 

2. - T h e  e x i s t e n c e  r e s u l t s .  

The case of 2m-th order elliptic equations. 

Let ~ be a bounded domain in R n, with a boundary of class C 2"~, with m >i 1, and 
let 

2 u  = ~ ( -1) lJ l  DJ(ai j (x)D~u) ,  
0 4  I~:[, IJl <~m 

be a symmetric uniformly strongly elliptic differential operator of order 2m, acting on 
functions u defined on s The coefficients a~j are real value functions defined on cl t), 
with aij e C Ljl (clS), for 0 ~< li I , ]j] ~< m. We are concerned with the weak solvability 
of the Dirichlet problem 

2 u  = f (x ,  u) + h(x),  in ~ ,  

~ u ] O n i = O ,  for O < i < ~ m - 1 ,  on bd ry t ) ,  

where O/On denotes the differentiation with respect  to the outward normal to the 
boundary. We assume that h �9 L 2 (;2) and f :  t) • R --) R satisfies the Carath~odory 
conditions and 

(h~) there exist a > 0 and b e L 2 (~) such that If(x, s) I <<- a l s I + b(x), for  s �9 R 
and a.e. x �9 t). 

In order to study the above problem, we consider the operator L: D ( L ) c  L2(,Q) 
--)L2(t)), with domain D ( L ) = H 2 m ( t ) ) A H ~ ( - Q ) ,  induced by 2. I t  is known (see 
e.g. [F],[DF]) that  L is a (densely defined) self-adjoint linear operator, having a 
closed range R(L) and a spectrum ~(L) made up of an increasing sequence {AN } of real 
eigenvalues, with ~ :  ~ + ~ ,  as N ~ + ~ .  Moreover, the corresponding eigenspaces 
N ( L -  ),y) are finite dimensional. 
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From now on, we suppose that  0 is an eigenvalue and we denote by ,~1 the minimal 
positive eigenvalue (this is a model situation which one can always reduce to in the 
study of resonance problems between two consecutive eigenvalues 2N < 2N+1). We 
also indicate by K: R ( L )  ---> R ( L )  the right inverse of L, which is compact. For  each re- 
al valued function u defined on ~2, we define t~- (u) = {x E ~: u(x)  < 0} and t2 + (u) = 
= {x  ~ t~: u(x)  > 0}. The following assumptions are then considered: 

(he) f o r  every v e N ( L )  - {0}, the sets t9 • (v) have both posi t ive  m e a s u r e  

and 

(h3) f o r  every w e N ( L -  [~1)-  {0}, the sets t)+-(w) have both posi t ive  mea-  

sure. 

THEOREM 1 . -  Le t  (hi), (h2), (h3) and  

(h4) O <<- sf(x,  s) <<- ,~l s2, f o r  Is] ~ > r > 0  and  a.e. x e t2, 

hold. Moreover,  a s s u m e  that  there exist  subsets  t2' and  ~2" o f  [2, w i th  

(h~) meas (t2' A t~- (v)) > 0 and  meas (t)' (3 t2- (v)) > 0, f o r  every v e N ( L )  - 

- {0}  

and  

(h6) meas (tg" (3 D-  (w)) > 0 and  meas (t2" (3 t2- (w)) > 0, f o r  every w e N ( L  - 

- {0} ,  

such that  

and  

(hT) ess inf sf(x,  s) --~ + co, as s ~ + ~ or s ~ - co, 
xe.Q'  

(hs) ,~, s 2 - ess sup sf(x,  s) ~ + ~ , as s --~ + oo or s --~ - ~ . 
xe ( . 2"  

T h e n  equat ion  

(2.1) L u  = f ( x ,  u)  + h ,  

has at least one solut ion u e H2m(E2) f3 H~([2) ,  f o r  each h e L2(t~) such that  

(hg) h e N ( L )  • A N ( L  - [.t 1 ) • 

REMARK 1. - A preliminary version of Theorem 1 has been presented in [0]. Its 
proof combines topological degree methods with some technical arguments intro- 
duced in [O-Z1] and refined in [O-Z3]. The main effort is devoted to the obtention of a 
priori bounds for the L 2-norm of the term f ( x ,  u; )~) (cf. relation (2.15)). We also point 
out that, even if here we confine ourselves to selfadjoint problems, nevertheless our 
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technique can be adapted to the t reatment  of some classes of nonselfadjoint problems 
as  well. Some results in this direction are contained in [O-Ze] and [A-O-Z]. 

P R O O F .  - We use the Leray-Schauder continuation theorem as stated in [Me, Th. 
IV.5]. We set A: L2(s ~L2(.(2), A = ,JI, with ,~ e]0, ;~1[, and N: L2(t2)-->Le(~2), 
N u  =f( . ,  u) + h, u e Le (~2). Clearly, L is a Fredholm mapping of index zero, A and N 
are L-completely continuous and the kernel N ( L  - A )  = {0}. Then equation (2.1) will 
have a solution u ~ D(L) ,  if a constant R > 0 can be found such that, for every u ~ D ( L )  

satisfying, for some )~ ~ ]0, 1[, the equation 

(2.1~,) 

it results 

(2.2) 

L u  = (1 - ),)Au + )~Nu,  

lulL~<R. 

Henceforth, in the process of this proof, the L e-scalar product (., ")L ~ and the L 2-norm 
I IL ~ will be simply denoted by (',-) and I'], respectively. Setting 

f ( x ,  s; )~) = (1 - ~)~s + ~f(x,  s) ,  

equation (2.1~) can be rewritten in the form 

(2.1~.) L u  = f ( x ,  u; )~) + )~h. 

Using (h4), (hT) and (hs), we can easily construct (see e.g. [O-Z~]) two continuous, non- 
decreasing and sublinear functions ~-+: R--> [0, + ~ [  such that 

- ( s ) < < . s f ( x , s ) ,  for I sl >Ir and a.e. x e t 2 ' ,  

and 

with 

s f ( x , s ) < ~ : ~ l s 2 - ~ + ( s ) ,  for Is[ ~ > r a n d  a.e. xe~9",  

~ + ( s ) ~ + 2 ,  as s ~ + ~ ,  and ~ •  for s~<O, 

if (hT) and (h s) hold at + o~ (the other eases being treated similarly). Accordingly, 
conditions (h4), (hT) and (hs) can be formulated as 

~ - ( Z ~ , ( x ) s ) < . s f ( x , s ) < < . ~ l s 2 - ~ + ( Z ~ z , ( x ) s ) ,  for Is[ ~>r and a.e. x ~ 2 ,  

where 7~t~' and ~,, stand for the characteristic functions of t2' and 5", respectively. 
Hence, it follows 

(2.3) ~-  (y~, (x) s) <<. s f (x ,  s; )~) <<- ,~1 s 2 - ~+ (7~z' (x) s) , 

for I sl >/r, a.e. x ~ $2 and )~ e [0,1]. 
We claim that (2.3) and (hi) yield, for some function c e L ~ (~)), 

(2.4) sf (x ,  s; ),) >>- (1/[-~) l f (x ,  s; )~)]2 + ~+ (Z~. , (x) f (x  ' s; )~)) - c (x) ,  
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for s ~ R, a.e. x ~ ~q and ;~ e [0,1], with 9 § : R ---) [0, + oo [ a continuous sublinear func- 
tion such tha t  

,~+ (s) --) + oc, as s --~ + 00, and ~q+ (s) = 0, for s ~< 0. 

In fact, by (2.3), we have 

sign ( s ) f (x ,  s; ,t) = ]fix, s; ),)1 ~< ,~1 Is I, 

for Is[ I> r, a.e. x e ~  and )~e [0,1]. Multiplying (2.3) by (1/ ,~l)f(x,  s; )O/s = 
= (1/;.q)]f(x,  s; ~ ) l / ] s [ ,  we get  

(2.5) sf(x, s; )0 >I (1/,,~1) IJ(x, s; ~)t 2 + =+ (Z~.~,,(x)s)lf(x , s; )~)I/(,ul Isl), 

for Is [ /> r, a.e. x e t) and ,t e [0, 1]. Suppose s I> r and x e ~9". We prove that ,  for some 
constant  Cl > 0, 

(2.6) sf(x, s; ;~) >>- (1/,~1)If(x, s; A)12 + (1 /2 )~+( l f lx ,  s; A) I/[~ 1 ) - cl, 

for s i> r, a.e. x e t)" and ), e [0, 1]. Indeed,  ff (x, s, ),) is such tha t  

(0 <~)f(x, s; )~) < (1/2),a~s, 

it is 

sf(x, s; )0 >1 (2/,,~z)lf(x, s; ),)l 2 >t (1/[xl) l f(x,  s; ),)l 2 + (1/2)~ + ( f (x ,  s; ;~)/,ul) - C l ,  

recalling that ,  since ~+ is sublinear,  there  exists a constant  c~ > 0 such tha t  
(1/2) ~§ (~/;Xl) ~< (1/Ix1) ~2 + cl, for every ~. Whereas ,  if (x, s, )~) is such tha t  

[.~s >~ f (x ,  s; )0 >>- ( 1 / 2 ) ~ s  (i> 0), 

by (2.5) and ~+ non-decreasing,  we get  

sf(x, s; ~) >>- (1/~ 1 )If(x, s; ~)]2 + (1/2) a + ( f (x ,  s; ~)/,a~ ). 

Hence,  (2.6) follows, set t ing fl+ ($) = (1/2) ~+ (~/~1). Note that ,  for s < - r and a.e. 
x e t~, or s i> r and a.e. x e t2 - t~", (2.5) simply reads  as 

sf(x,  s; Z) >1 (1/[.~)If(x, s; ),)]2, 

by the propert ies  of ~+. Hence (2.6) holds for Is I /> r, a.e. x et2. Finally, (2.4) is 
proved, using (h~). 

By (2.4), we also derive, for every u e D(L )  and )~ e [0, 1], 

(2.7) u ( x ) f ( x ,  u(x); ),) 1> (1/,u~)l f ( x ,  u(x); ),)1 ~ + ~+ (X~.~" (x ) f ( x ,  u(x); A)) - c(x),  

for a.e. x ~ t). In t eg ra t ing  (2.7) on t~ and using the propert ies  of ~+, we find 

(2.8) (u, f(., u; )0)/> (1//z~)If(., u; )012 + ( f l+ ( f ( x ,  u(x); , t ) )dx - C(X) dx  , 
d 

for every u e D(L)  and ), e [0, 1]. 
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Let u ~ D(L)  be a possible solution to (2.1),), for some Z e ]0, 1[. Denote by 

P, Q: L 2 ( ~ ) - - ~ L 2 ( ~ ) ,  

the orthogonal projections onto N(L)  and N ( L -  ~-~1), respectively, and set, for 
simplicity, 

= f(', u; s 

Clearly, it is 

Applying the 
K L  = I - P ,  

P9 = 0. 

operator K to both sides of (2.1~.), we get, as 9, h e R ( L )  and 

(2.9) u - P u  = Kp + )~Kh. 

We want to bound 19 I. Multiplying (2.9) by 9, and using 9 ~ R(L)  = N(L)  l ,  K sym- 
metric and (hg), we find 

(u - Pu ,  9) = (u, 9) = (K?, 9) + )~(Kh, 9) = 

= (KQ~ + K( I  - Q) 9, Q9 + (I - Q) 9) + )~(Kh, Q? + (I - Q) 9) = 

= (KQg, Q~) + 2(KQ~, (I  - Q) 9) + (K(I  - Q) :2, (I - Q) 9) + )~(h, KQ9) + )~(Kh, (I - Q) "z) : 

= (1/~1)l Qg[ 2 + (2/,~1)(Q9, (I - Q) 9) + (K(I  - Q) 9, (I - Q) 9) + 

-~" ()~/,0~ 1 )(h, Q~) + )~(Kh, (I - Q) 9) = 

= (1/t~1)l Q~ 12 + (K(I  - Q) 9, (I - Q) 9) + ),(Kh, (I  - Q) 9) .  

Denoting by i~2 the smallest (positive) eigenvalue of L greater  than ,,~1, we obtain, 
using the Cauchy-Schwarz inequality, 

(2.10) (u, 9) ~< (1/,'~l)IQgl 2 + (1/,~e)l(I - Q)gi  2 + IKh[ I ( I -  Q)9  

On the other hand, by (2.8), as ~4 I> O, we get 

(2.11) (1 / /~) lq~t  2 + ( 1 / , ~ ) l ( I  - q ) ? l  2 - ~ c (x )gx  = (1/,,~)1912 - f c (x )dx  <~ (u, 9). 
~(2 t2 

A comparison between (2.10) and (2.11) yields 

(,~[x _ , a ; 1 ) ] ( I _  Q)?[2 _ iKhl  [(i _ Q)?l  - [ c (x )dx  <~ O, 

~2 

and then, for some constant c2 > 0, 

(2.12) I( I -  Q) 91 ~< c2. 
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Hence, using (2.8) and (2.10) again, we have 

(2.13) ( ~ + ( f ( x , u ( x ) ; ; O ) d x < < - ( , ~ 2 ~ - : x { ~ ) l ( I - Q ) 9 1 2 §  IKhl [ ( I - Q ) p l  + 

§ [ c(x)dx o § IKhl § [ le(x)l dx = C 3 �9 

~2 ~2 

Now, we assume the existence of a sequence (u,~ } of solutions to (2.1~), with )~ = )~,, 
such that  

where ?~ =f( . ,  u~ ; )~n )- Then, since N(L -,'~i ) is finite dimensional, possibly passing 
to a subsequence, we get, as n--)  + 0r 

QZn/IQ~;~ [ ~ w e N(L  - ~ ) ,  

and hence, by (2.12), 

Moreover, possibly passing to a further subsequence, 

9~ (x)/[Q?n I --) w(x),  as n -+ + ~ ,  a.e. in [2. 

Further,  by (hs) and I wl = 1, the sets ~2 § (w) have both positive measure. Thus, we 
have, in particular, 

~ n ( x ) - - > + ~ ,  as n ~ + o r  

in ~2 + (w) and then 

(2.14) 3 + ( ~ ,  (x))  ~ + ~ ,  as  n ~ + 00, 

in [2" N [2 + (w), with [2" n [2 + (w) having' positive measure by (h0. On the other hand, 
as ,2 + i> 0, it is by (2.13) 

C 3 ;  

~2" N .L;- (w) ~2" 

so that, by Fatou's lemma, we could conclude that  the function 

lira inf 9 + (~n (')), 

is integrable on [2" N [2+ (w): thus contradicting (2.14). This implies the existence of a 
constant c4 > 0, independent of u and ), such that  

(2.15) [~[L ~ = If(x, U; Z) IL~ <~ C4. 
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Since K: R(L)---> R(L) is continuous, from (2.9) and (2.15), we derive 

(2.16) l u - P u [  <~ (1/ ,~)l~ I + )~lKhl <~ (1/[.~)c4 + IKh{ = c5. 

Now, in order to bound I Pul ,  assume, by contradiction, that  there exists a se- 

quence {Un} of solutions to (2.1~), with )~ = ~ ,  such that  

]pun] -~ + ~ ,  as n ~ + o z .  

Since N(L) is finite dimensional, arguing as above, we get, possibly for a subse- 

quence, 

Un(X)/]Pun ] ~ v ( x ) ,  as n ~  + ~ ,  a.e. in ~ ,  

for some v e N(L), with Iv] = 1, Since, by (he) and Ivl = 1, the sets t~ • (v) have both 

positive measure, we obtain, in particular, 

Un(X) - -~+~ ,  as n - - ~ + ~ ,  

in t~ § (v) and then 

(2.17) - (un (x)) --> + ~ ,  as n ~ + ~ ,  

in t~' A t9 + (v), with ~ '  A t~ + (v) having positive measure by (hs). From the right hand 
side of (2.3), using (hi), we derive, for some function d e L l(t~), 

~- (~ ,  (x) s) - d(x) <<. sf(x, s; )~), 

for s E R, a.e. x e ~ and ~ e [O, 1]. Accordingly, using P9 = 0, we obtain 

~ -  ( U n ( X ) ) d x  -- ~ d ( x ) d x  ~ (U n , f ( ' ,  Un; An)) :" (Un, ~ )  ": 
J 

(.2' (.2 

= (Pu~, 9n) + ((I - P) un, ~n) = ((I - P) Un, ~n) <~ [ ( I  - -  P) un ] ]?n ] �9 

This implies, by (2.15), (2.16) and ~- I> 0, 

f f (un<x))dx co, 
for some constant cG > 0: thus contradicting (2.17), by Fatou's lemma. Finally, we 
conclude the existence of a constant c7 > 0, independent of u and )~, such that  

IPul <~ c7. 

Hence, (2.2) follows, for any R > c5 + c7. Q.E.D. 

REMARK 2. - If  (h2) fails, then condition (hs) and (hT) can be replaced for in- 

stance by 

e s s i n f s f ( x , s ) ~ + ~ ,  as I s l - ~ + ~ -  
Xe(.2 

A similar condition can be assumed, in place of (h6) and (hs), if (hu) fails. 
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Theorem 1 takes a particularly simple form when f (x ,  s) = f(s)  does not depend on 
the x-variable. In such a case one can choose ~9' = ~" = ~, so that  (hs) and (h6) are ful- 
filled by (he) and (h3), and (hG) and (hs) read respectively 

(h~) sf(s) ~ + ~ , as s--~ + ~ or s ~ - ~ , 

and 

(h~) ,~1 s 2 - sf(s) ---) + ~ , as s --> + ~ or s ---> - 

Accordingly, we can state the following result. 

COROLLARY 1. - A s s u m e  (he) and  (hs). Suppose  that  f ( x ,  s ) = f ( s )  and  let 

(h~) 0 ~< sf(s) <~ [.r 2, f o r  ]s] >I r > O, 

(hl) and  (h~) be satisfied. Then  equat ion  (2.1) has at least one solut ion 

u e H2"~(D) N H~(~9), f o r  each h e L2(~2) sat is fy ing (hg). 

A further consequence of Theorem 1 is the following Corollary 2, which extends to 
elliptic equations a similar result obtained in [D], for the periodic problem for a sec- 
ond order ordinary differential equation by a phase-plane analysis argument which of 
course cannot be transferred to the present situation. 

COROLLARY 2. - Let  (h2) and  (hs) hold. A s s u m e  that  f (x ,  s ) = f ( s ) ,  f ( 0 ) =  0, 
f e  C 1 (R) and  

(kl) 0 ~ f ' (s) <~ t~l , f o r  s e R . 

Then  equat ion  (2.1) has at least one solut ion u ~ H2~(t ) )  (~ H ~ ( ~ ) , f o r  each h ~ L 2 (t~) 

sa t i s fy ing  (hg). 

PROOF. - At first we notice that  (kl) implies (hi). Moreover, from (kl), it follows 
that  f ' ( s )  -- 0, for all s, or f ' ( s )  = ~1, for all s, or there are points sl, s2 such that  
0 < f ' ( s l ) ,  f ' ( s 2 ) <  ~1. Since the first two situations are trivial, let us consider the 
third one. By continuity, there exist s* e R, ~ > 0, $ > 0 such that  

<~ f ' ( s )  <~ ~1 - ~, 

for every s c [ s * - ~ , s * + ~ ] .  Let  s* t>0  be and take s > s * + $ ; w e  have 

~ < f ( s ) =  f f ' ( t ) d t  + f f ' ( t ) d t  + f f ' ( t ) d t  <~[~ls-  z~. 
[0, s*]  Is*, s* + ~] [s* + ~, s] 

Hence, we easily conclude that  (hl) and (hl)  hold. Similarly one works, if 
s* < 0. Q.E.D. 

REMARK 3. - Dealing with second order elliptic operators, the above stated re- 
sults, where (h2) and (h3) are assumed, model more efficiently the case where 0 and ~1 
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are higher order eigenvalues. In the following subsection we will restrict to this kind 
of operators and study the situation where 0 is the first eigenvalue, so that (he) 
fails. 

The case of  second order elliptic equations: 

Let t? be a bounded domain in R ~ (n I> 2), with a boundary of class C 2, and 
let 

z u  = - Y~ a/ax~ (a~j(x) ~u/Sx~)  + ao (x) u ,  
i , j  = 1, ..., n 

be a symmetric uniformly strongly elliptic second order differential operator,  acting 
on real valued functions u defined on O, The coefficients a~j are real valued functions 
defined on c112, with aij ~ Ci(clO), for i , j  = 1 . . . .  , n, and ao E C~ ao(x)>1 0 on 
cl O. Under these assumptions, it is well-known that the first eigenvalue ),~ of 2 in 
H0 ~ (/2) is simple and that there exists a corresponding smooth eigenfunction r with 
r > 0 in ~ and 8r  < 0 on bdry/2. Let us consider the Dirichlet problem 

,,~U - -  )~1 U = f ( X ,  U )  ~- h ( x )  , i n  s 

u = 0, on bdryt?.  

We assume that h E LP(~), with p > n, and f :  t) x R ~ R  satisfies the Carath~odory 
conditions and 

(h~) there exist a > 0 and b e LP([2), with p > n, such that If(x, s)[ ~< a[s I + 
+ b(x), for  s ~ R and a.e. x ~ t?. 

As well-known, ~ -  )~1 induces a (densely defined) self-adjoint linear operator 
D(L) r L 2 ([2) --> L 2 (~), with domain D(L) = H 2 (t?) A H~ (t?). Since the kernel N(L) of 
L is one dimensional and is spanned by the function r all nonzero eigenfunctions in 
N(L) have a definite sign on t~, so that (h2) fails. While, setting [~1 "~ ~2 -- )~1 > 0, )~2 be- 
ing the second eigenvalue of 2, all nonzero eigenfunctions in N(L  - l~) change sign 
on subsets of f2 of positive measure, and hence (h~) holds. Of course, all the other 
structural assumptions previously considered are satisfied. The following theorems 
complete, for second order elliptic operators, the results stated in the previous 
subsection. 

THEOREM 2 .  - Let (h{), 

(h~) 0~<sf(x,s) ,  for s e R and a. e. x e t2 , 

and 

(h~') sf(x,s)<<.,xls2, for  [sl >>-r>O and a.e .  x ~ [ 2 ,  

hold. Moreover, assume that there exists a subset t)" of t2, such that (h6) and (hs) are 
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fulfilled. Then  equat ion 

(2.18) L u  = f ( x ,  u) + h ,  

has at least one solut ion u E W e, p (t2) A H~ (~) , for  each h e L p (t2), w i th  p > n, satisfy- 

ing  (hg). 

PROOF. - We start  observing that, using (hi) and h e LP(~9), with p > n, by the L p- 
theory for the Dirichlet problem [A] and a standard bootstrap argument, each sol- 
ution u e H 2 (~) N H~ (~) to 

(2.19>,) L u  = f (x ,  u; ),) + )&, 

for some ), e [0,1], belongs to W2'P(~9) and hence to C~(cl~). Here, as in the proof of 
Theorem 1, we set, for some ,~ el0, ,,~[, 

f (x ,  u; )~) = (1 - )~)vs + ) f (x ,  s).  

Then, we proceed as in that proof up of to the point where 

(2.20) l u - P u  I L ~ < C5, 

is obtained. In order to get (2.2), we assume by contradiction that there exists a se- 
quence {u,, } in W 2' p (t}) A H~ (t2) of solutions to (2.19)), with )~ = ),~ �9 [0, 1[, such that, 
a s  n- - ->  + zc,  

U n ]L2---> + ~ , 

and then 

U ~  !Cl  ---'-) + ~ , 

Using again (h~) and h e L ;  (~2), with p > n, by the L; - theory  and the compact imbed- 
ding of We';(D) in C i (c1~2), we obtain that, possibly passing to a subsequence, 

(2.21) u n / [ u ~  [ c l ~ v ,  in C1(c1~2), 

with Iv[el = 1. From (2.20), we  also deduce that 

( u ~ - P u ~ ) / t u n ! c ~ O ,  in L2 (f2), 

and then v - Pv  = 0, i.e. v ~ N(L) .  Since Iv It1 = 1, we have that either v > 0 in ~ and 
~v/On < 0 on bdry ~2, or v < 0 in ~2 and 5v/On > 0 on bdry  f2. Assuming, for instance, 
that the first eventuality holds, we deduce, from (2.21), that u~ > 0 in f2, for all large 
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n. Now, taking the L2-scalar product of (2.19~) by v, we obtain, recalling that 
)~ e [0, 1[, 

0 ~-- f f(x,  Un; ~n)V(X)dX ~-(1 - -  ~n)Y f Un(X)?2(x)dx -~ 

u,(x))v(x)dx > 

thus contradicting (hE), when n is large. Q.E.D. 

We recall that the sign condition (hE) was already considered in [DF-N], [I-N-W], 
[Gu], [D-T], but it was always coupled with some stronger nonresonance condition at 
the second eigenvalue f~l. The next Corollary 3 illustrates better such a difference in 
the case of an autonomous nonlinearity f. 

COROLLARY 3. - Suppose that f (x ,  s) = f (s)  and let 

(hi4 v) 0 ~< sf(s), for  s E R ,  

(h v) s f ( s ) < ~ l  s2, for  Isl > I r > O ,  

and (h~) be satisfied. Then equation (2.18) has at least 
u E W2'P(t~) N H~ (~2), for  each h ~ LP(~2), with p > n, satisfying (hg). 

one solution 

COROLLARY 4. - Assume  that f (x ,  s) = f(s), f(0) = 0, f e C 1 (R) and (kl) holds, Then 
equation (2.18) has at least one solution u e W2'P (t)) A H~ (~2), for  each h e LP(~), 
with p > n, satisfying (hg). 

PROOF. - It sufficies to observe that (h~ v) and (h v) are fulfilled and then to work as 
in the proof of Corollary 2, in order to apply Corollary 3. Q.E.D. 

The one-dimensional case. 

In order to explain better the meaning of conditions (hs), (h6), (h7), (hs) and the 
role of the sets ~ § we present now the simplified stements which can be obtained in 
the one-dimensional case. Let us consider the two-point boundary value problem 

(2.21) - u "  - ;~N u = f (x ,  u) + h(x),  x e ]0, ~[, 

(2.22) u(0) = u(~) = 0. 

We recall that, here, AN = N 2, for N = 1,2, ..., and the corresponding eigenspace is 
spanned by the function sin(Nx). We assume that f:]0, ~.[ •  satisfies the 
Carath~odory conditions. Then a careful reading of the proof of the preceding results 
(in particular observing that h ~ L 1 (0, 7~) sufficies) shows that the following theorems 
hold. 
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PROPOSITION 1. - Let N > 1 be. Suppose that (hi) and 

O<<-s f ( x , s )<- (2N+l ) s  2, for Isl > i r > O  and a.e. xe ]O,~[ ,  

hold. Moreover, assume that there exist subintervals J'  and J" of  ]0, 7:[, with 

meas (J') > 7:/N and meas (J") > =/(N + 1), such that 

and 

ess inf sf(x, s) ~ + ~ , 
~ E J '  

(2N + 1) s 2 - ess sup sf(x, s) ---> + 
x ~ J "  

a s  s - - ->  ~ - o z  o r  s . - - >  - ~z 

Then problem (2.21)-(2.22) has at least one 

h E L ~ (0, =) such that 

a s  s---)  + ~  or s ~ - o o  

solution u ~ W 2' ~ (0, 7@ for each 

I h(x) sin (Nx) dx = 0 = f h(x) sin ((N + 1) x) dx .  

]0, =[ ]0, r.[ 

and 

PROPOSITION 2 .  - Let  (hi), 

0 ~ sf(x, s), for  s e R and a.e. x e ]O, =[ , 

s f (x ,s)<~3s 2, for  lsl ~ > r > 0  and a.e. x e ] 0 , = [ ,  

hold. Moreover; assume that there exist a subinterval J" of  ]0,=[, with 

meas (J") > ~/2, such that 

3s 2 - e s s s u p s f ( x , s ) ~ + ~ ,  as s ~ + ~ or s ~ - 
X ~ J "  

Then problem (2.21)-(2.22) has at least one solution u e W2'~(0, 7~), for each 
h ~ L l (0, 7:) such that 

h(x) sin (x) dx = 0 = ~ h(x) sin (2x) dx.  
J 

]o, =[ ]o, =[ 

A counterexample. 

We conclude this paper  showing that  the assumptions considered in the above 
theorems are, in some sense, sharp. Le t  us consider the two point boundary value 
problem 

(2.23) - u"  - 4u = f (x ,  u) + h(x),  x e ]0, =[, 

(2.24) u(0) = u(~) = 0, 
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where h(x) = c sin x, with c < O, and f(x, s) is defined as follows 

f ( x , s ) = s i n ( 2 x ) ~ ,  for xe]O,~/2[ ,  s~>O, 

= O, otherwise. 

Observe that  the functions f and h satisfy the following conditions: 

O<~sf(x,s)<~5s 2, for Is I />1 and xs ]O ,~ [ ,  

5 s 2 - e s s s u p s f ( x , s ) = 5 s 2 - s V ~ + ~ ,  as s -~  + ~ ,  
x e 10, r.[ 

and 

f h(x) sin (2x) dx 
]0, =[ 

Concerning the condition 

l" 
= 0 = I h(x) sin (3x) dx. 

J 

]0, =[ 

ess inf sf(x, s) ~ + ~ ,  as s --, + 
x e J '  

we note that  it can be satisfied only on subsets J '  of ]0, ~[, with meas (J') < =/2. Thus 
all the assumptions of Proposition 1 are fulfilled, for N = 2 and J" = ]0, ~[, with the 
only exception of the condition: meas (J') > ~/N. On the other hand, it can be easily 
checked that  problem (2.23)-(2.24) possesses no solution. Indeed, any possible sol- 
ution u(x) of (2.23)-(2.24) must satisfy 

I f(x, u(x)) sin (2x) dx = 0 
]0, =[ 

and therefore, by definition of f, u(x)<<. 0, on ]0, ~/2[, which in turns implies 
that  

- u"  - 4u = c sin x,  on ]0, =/2[. 

This yields a contradiction by a direct inspection of the linear equation. 
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