Annali di Matematica pura ed applicata
(IV), Vol. CLXX (1996), pp. 241-255

On Improved Regularity of Weak Solutions
of Some Degenerate, Anisotropic Elliptic Systems (*).

TILAK BHATTACHARYA - FRANCESCO LEONETTI

Summary. — We consider a (possibly) vector-valued function u: Q - RY, Q c R*, minimizing
the integral f(|D1u]2+ et | Dy 1|2+ | Dyu|PYda, 2—2/(n+ 1) <p <2, where D;u = u/dx;,

2
or some more general functional retaining the same behaviour; we prove higher integrability
forDu: Dyu,...,D,_ue LP?~Vand D,u e L?;this result allows us to get existence of sec-
ond weak derivatives: D(Dyu), ..., D(D, _1u) € L? and D(D,u) e L?.

0. - Introduction.

Let 2 be a bounded domain in R”, % = 2; u be such that u: 2 > RY, N = 1. We
consider an integral functional of the type

0.1) I(w) = j F(Du(x)) dw .

Q

Here F satisfies an anisotropic growth condition, namely,
0.2) a2 lgil%‘—bSF(§)SC.21|§Z-|%+d, VEe RW,
i=1 1=

where a, b, ¢ and d are positive constants and 1 < g;, ¢ =1, ..., n. The isotropic case,
that is ¢; = q Vi, has been deeply studied[12]. In the last few years the anisotropic
case, in which at least one of the g/s differs from the others, has been attracting
some attention: in[13],[15] it is shown that minimizers of (0.1) may be singular, if
no restriction is assumed on the g¢/s. On the other hand, if the exponents ¢; are
not too far apart, some regularity results for minimizers of (0.1) have been proven
in[10],{11] and[16]. Let us point out that[10],{11] and[16] deal with scalar min-
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imizers u: Q — R, that is, N = 1. Vector-valued mappings u: 2 — RY have been
considered in[14], where g; = 2. In the present paper we take 1 < g; < 2 and, under
additional restrictions on F, we prove higher regularity results for local minimizers
of (0.1). A typical example of a functional, in this class, is

n—1
0.3) 1<u)=j % P IDiu|2+%(a+ |D,u|>", o0<a<l.
9 b=

Here Du = (Dyu, ..., D,u), 1 <p < 2. The main effort of this work is to obtain results
when, in (0.3), a = 0, namely, the degenerate case. In a previous paper[4] we studied
(0.3) when o = 0, and deduced higher integrability and higher differentiability results
for minimizers. However, the results of the current work do not follow from this earli-
er paper. Please see the Remark 4 at the end of Theorem 4 in section 1.

We introduce notations and the main results in section 1; section 2 contains some
preliminary lemmas necessary for our work. The proofs of the theorems appear in sec-
tion 3, 4 and 5.

1. - Notation and main results.

Let 2 be a bounded open set of R”, n = 2, 4 be a (possibly) vector-valued function,
u: 2 ->RY, N = 1; we consider integrals

1.1) I(u) = fF(Du(x)) dr,

Q

where F: R™ 5 R is in C*(R™) and satisfies, for some positive constants ¢, m,

n—1
(1.2) |F(&)| < 0(1 + gl |&:1% + |£.17),
(1.3) aél(g)‘<c(1+§|) ifi=1,. -1,
1
(14) agn@l c(1+&,177
and

OF PN Y
w5) ]zlﬂzl(agﬂu agﬁu)( )2

k3
>m_2 |v; = 412+ m(l + |v,|* + A |DP 22y, — 4,12,

for every 1, v, Ee RN, a=1,...,N. Here, A = {A¢}, & = {£¢}, |1;]2 = E IA%]%, e
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About p, we assume that
(1.6) l1<p<2.

We say that » minimizes the integral (1.1) if u: Q >RY, uwe W'?(Q) with
Diuel?(Q),i=1,...,n—1, and

1.7 Itw) < I(u + ¢).
for every ¢: 2 — RY with ¢ € WP(Q) and D¢ e L2(Q), i=1,...,n ~ 1. We will
prove the following higher integrability result for D, u:

THEOREM 1. — Let u: Q—RY satisfy ue W(Q) with DueL?Q), i=1,..n—1,
where

1.8) 2-2/n<p<2.
If F satisfies (1.2), ...,(1. 5) and u minimizes the integral (1.1), then
(1.9) D,ueLE(Q).

The higher integrability result (1.9) for D, u allows us to improve on the integra-
bility of Du in the following way:

THEOREM 2. — Under the assumptions of Theorem 1 we have

(1.10) Dinell(2), i=1,..,n—1 vr<—21b—1,

pn

(1.11) D,uelLi. (), Vi < .
n—1

Let us explicitly remark that (1.8) implies 2 < pn/(n — 1) < 2n/(n — 1); moreover,
when n =2, (1.8) is just 1 < p <2 and we have the following
COROLLARY 1. — Under the assumptions of Theorem 1, we get
if n=2 then wueCh®(Q) for some a>0.
The higher integrability result (1.10) contained in Theorem 2 allows us to get the

existence of second weak derivatives:

THEOREM 3. ~ Under the assumptions of Theorem 1, if p verifies the additional
restriction

(1.12) 2-2/n+1)<p<2,

then

(1.13) DD;uw)e L (2), 1i=1,...,n—1,
(1.14) D((1 + ll?nulz)“”z’/“Dnu) e L. (2),

(1.15) D(D,u) e L{.(2).
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REMARK 1. — Condition (1.12) is stronger than (1.8).

REMARK 2. — A straightforward application of Sobolev imbedding theorem gives
us holder continuity of u also in dimension three, more precisely, we have

COROLLARY 2, — Under the assumptions of Theorem 1, if p verifies the additional
restriction (1.12), then

when n=2 we have ueCLP(Q), VB<1;

when n=3 we have ue Ch! ~P(Q).

REMARK 3. — For 1 < p <2, let us consider the integrals

(1! 2, 1
(1.16) I(w) —J (2 21 | D;ulx)|® + ) |Dnu(w)ip)doc,
‘ 1 "ol 1
(1.17) I(u) = J’ (— > IDu@)|P+ (1 + anu(m)|2)”/2) di:
P 2 =1 p

they verify (1.2), ...,(1. 5). In[4] the following regularity result has been proven:

THEOREM 4. — Let F e C2(R™) and (1.2), ...,(1. 4) hold; in addition, let us assume
that, for some positive constants My, M,,
N 2
S FF
af=1 35 OE¢

n—1 n
(1.5) Ml(_zl M‘ilz + (14 |§n[2)(12~2)/2 I/lnlz) < ‘ Zl (E)if‘lf B
i= W

n—1
AR ERC S INE

for every 4, £ R™. About p, we assume that

1<p<?2 ifn=2,3,
1.18) 98/97 <p <2 fn=4;
2—-4/n<p<2 ifn=2b.

Then, for o vectorvalued function ue Wh?(Q) with Diue L*(2), i=1,...,n—1,
minimizing the integral (1.1), we get

(1.19) D,eLi.(Q),

(1.20) 'D(Diu) el (2), i=1,...,m—-1 and D(D,u)eL} (2).
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REMARK 4. — Clearly, the left-hand side of (1.5") implies (1.5). The functional (1.17)
satisfies (1.5”); however, the integral (1.16) which satisfies (1.5) does not satisfy (1.5").
Also note that (1.8) implies (1.18). We may summarize as follows: Theorem 4 requires
good integrands such as (1.17), but a less restrictive range for p. Theorem 1, on the
other hand, allows for lesser restrictions on the integrands (e.g., degeneracies are
allowed), but requires more restrictions on p.

REMARK 5. — Higher integrability properties contained in Theorem 1 and 2 are
proven by a technique of [7]: we gain a fractional order derivative of V(Du), a suitable
function of Du, thereby improving its integrability; also see[8],[4],[6],[14].

2. — Preliminaries.

For a vector-valued funection f(x), define the difference
To, 0 J(@) = flx + hey) — f(x),

where k € R, is the unit vector in the x, direction, and s =1, 2, ..., n. For z;, € R, let
Bg () be the ball centered at x, with radius R. We will often suppress x, whenever
there is no danger of confusion. We now state several lemmas that are crucial to our
work. In the following f: Q - R¥, k > 1; B,, Bg, Bs, and B,p are concentric balls.

LEMMA 21. - If0<go <R, |h| <R —-9,1st<»,se{l,...,n},f, D, fe L'(Bg),
then

[17osf@]tde< |R]* [ 1D, f@)| du.
By

Bg

(See[12, page 45],[5, page 28).)

LeMmMA 2.2. - Let fe Lt(BZQ), 1<t< o, se{l,...,n}; if there exists a positive
constant C such that

[lewf@lde < cinl,
B(’

for every hwith |h| < o, then there exists D, fe L'(B,). (Se¢[12, page 45), [5, page 261.)

LEMMA 2.8. - If fe L*(Bs,) and for some de(0,1) and C>0

S [laa @< clp,
s= B,

for every h with |h| < o, then fe L”(Byy) for every r < 2n/(n — 2d).
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PROOF. — The previous inequality tells us that fe W 2(B,) for every b < d, so we
can apply the imbedding theorem for fractional Sobolev spaces. [2, chapter VII].

LEMMA 24. — For every t with 1<t< « there exists a positive constant C such that

jlmf(w)ltdwc[ | (@) da,

Bap

for every fe L'(Byg), for every h with |h| <R, for every s=1,2,...,n

LEMMA 25. — For every y e (—1/2,0) we have

1+ ]e)®ae~-(1+ ]b]z)ybi e(k)
(1+ |a|®+ |6]% 2y+1

2y +1)|a-b| < la — 8],

for all a, beR*. (See[1].)

3. - Proof of Theorem 1.

Since % minimizes the integral (1.1) with growth conditions as in (1.2), ...,(1. 4),
solves the Euler equation,

3.1) [ 2 21 o (Du) D, @ dz =0
o 1

for all functions ¢: @ —RY, with ¢ e W}?(Q) and Dy ¢, ..., D, _ ¢ € L?(2). Let
R > 0 be such that B,z ¢ Q and let B, and Bp, be concentric balls 0<go<R<1 Fixs
take 0 < |k| <R and let #: R"——)R be a «cut off» function in C&(Bg) with

n=lonB,, 0<7<1, |Dp|<C/(R-g) and |IDDy| < C, /(R — o).

Using ¢ =7, _, (%7, nu) in (3.1) we get, as usual

n N
0=3 3 [ Eoor 0w -

i=1 a=1

n N
=> > jrs’h( 357 (Du))(ZnD nrg, u® + 0t R Diu®)da,
so that

3.2) (1>=j > erh

i=1 a=1 ( age (Du)) K hDiuanz do =
Bg

-] 121 axlfs b ( 387

(Du)) 2nD;nt, ude = II).
Bp
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We apply (1.5) so that
n~1
83) m J S |7, 1 Diule) |2n? (@) de +
B i=1
+m J (1+ |D,u@)|®+ |D,ulzx + hey) |2 )P~ P2 |7, . Dyu®)|?n?(x)de < (I).
Br

Set

N n—1
B4 V(&) = |V(E,)| + ,; &, V) =+ &P e, VEeRW.

Clearly,
" n—1
3.5) |7s, , V(IDW)| < |75, V(D w)| + 21 |75 o Diu
and
56) FDw L if and only if | DS i Lesn=1,
. u) e and on
y D,ueL™?.

Using Lemma 2.5 we find

|7, VD, u(x))]
A+ | D, u(@) |2+ | D, u(x+ he,) | 2P ~ 24

B7)  Colry Dyulzx)| < <Gy |7y, Dyulz)|,

for some positive constants C;, C; depending only on N and p. Then, since # =1 on
B

e

38 m j |7, 5 V(Dw)|2ds <
B

e

7—1
smc4j |7, » V(D w) |22 da +mc4j Z [t aDul*n?de < (1+ CHCD),
Bgr By

for some positive constant Cy, depending only on n. Now, let us estimate (ZI) in (3.2):
using growth conditions (1.3), (1.4) and the properties of the «cut off» function 7, we
have

4ncC,

610 UD< 5—

n—1
j( .21 |D;ul® + heg)| + |Dyule + he)|P "1+ 1+

Bg

n—=1
+ _2‘,1 [D;u(x)| + |Dyu(@)|P =1 |7, yul@)| da .
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Now, changing variables and recalling |k| < R, we get
(3.11) [ Diue + heplPde = | [Duu(y)|tdy < [ 1Dauyp|Pay
B}z Bg+hes Bop
and
8.12) f;Dnu(xMes)[ﬂP-”dw:, [ IDau(p)|*P Yy < f |D, u(y)| X~ Vdy;
By By + e, Br

let us remark that 0 <2(p — 1) <p, so the integrals in (8.12) are finite. We use
Holder’s inequality in (3.10) and we apply (3.11), (3.12) in order to get

n-~1 12
6.13) D <C; 13R1+§1 f]Diujzdx+J \D, |22 dy flrs’hutzdx :

Bag Bog Bp

for some positive constant C; independent of /. Let us treat the last integral in (3.18);
recalling that D,ueL? for s=1,...,n ~ 1, we may use Lemma 2.1 in order to
get

(3.14) j}rs,hui2dxs |h|? j;Dsufzdx, Vs=1,..,m~1.
By Bop

Since D,u e L? and p < 2, the last integral in (3.13), corresponding to s =, is dealt
with as follows. We write

(3.15) f [T 0 |de = f [T, 12" |7y pw|® ™ da,
B Br
where 0 < ¢ < 2 is to be choosen later. Let us assume that, for some oe[p, 2)
(3.16) D,uwe L3 (82).
Now we use Hélder’s inequality in (3.15) with exponents o/a and o/(o — ), provided

o <ag:

8.17) J' [rn,hulzdmé J [rn,hu]”dx oa f 'Tn’hul(z—a)a/(a~a)dw
Bp Bp Br

(6~ aYo

Because of (3.16), we may apply Lemma 2.1 in order fo get

3.18) [ 120 sulode " < |hje [ 1D,u)"do “
BR BZR

If

(3.19) (2 —-0)of(o~ 0) < 0¥ =onf(n~ o),
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then, (3.16), Sobolev imbedding theorem and Lemma 2.4 allows us to write
(o - a)o (o —a)o
(3.20) J' |7, p 2| &~ 270" Dy <G J || @ @oto=a) gy ,
Bg Bsg
for some positive constant Cg; independent of k. Collecting the previous inequalities,

we get

821 f|rn,hu|2dxs K

Bg

a/o e
JIDnuladx) Ce( J |u|(2—a)g/(g_a)dx)( ay '

Bzg Bar

Thus, noting that o <2 and 2| <R <1, (3.14) and (3.21) give us
(8.22) j|rs,hu|2dxsc7|h|a, Vs=1,..,n—1,m,
Br

for some positive constant C; independent of h. Eventually, inserting (3.22) into (3.13),
we get

(3.23) (II) < Cg | 1| **

for some positive constant Cs independent of k. Let us recall the restrictions on a:
0 <a <o and (3.19); when exploiting (3.19), we get

n+2 2n \ _
8.24) e — (a~n+2)—ao.

Since we assumed (1.8), we have 2> 02 p>2—2/n = 2n/(n + 2), 80 0 < ay < 0 and
we can take

(3.25) a=ao=n+2(a— 2n )

g n+2

in the previous calculations. Let us put together (3.8), (8.2) and (3.23):

(3.26) mj |7, » V(Dw)|2da < Cy ||

By

for every s =1,...,n, for every h:|h| < R; this inequality allows us to apply Lem-
ma 2.3 and we get

2n
n—af2’

Since B,y has only to verify ¢ < R <1 and By c Q, we also have L], (2) in (3.27);
moreover, because of (3.6), we arrive at

(3.2Mm V(Du) e L™ (Byy), VYr<

-
n - a/2 = #0).

(3.28) D,ueLi (), Vt<
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Let us summarize as follows: we have proved that, if for some o€ [p, 2)
(316) ( Dnu € ngc (Q) ’
then

2pno

P (02 Vi<t(o)= ——— .
DnueLloc( )’ t t(O’) (?’L—2)0'+27L
Now, we want to estimate how much we gave gained, that is, o) — o:

2n(p—-1)—(n—-2)o - 2n(p-1)-(n—-2)2
(n—-2Yo+2n =b (n-2)2+2n h

(329) Ho)—o=0

_ 2n(p-(2—2/n))_6( );
PTG T2 v o OV

since we agsumed (1.8), we have d(n, p) > 0. Eventually, we have proved that, under
(1.8), there exists 6 = d(n, p) > 0 such that

(3.30) DoueLl(Q), p<o<2, = DyueLl ?(Q).

Thus (3.30) allows us to start a bootstrap argument that, after a finite number of
steps, gives us

(19) Dnu € Ll%c (Q) ’

this ends the proof. ®m

4. - Proof of Theorem 2.

We argue as in the proof of Theorem 1: starting from (3.1) we arrive at (3.13); now
we have the result of Theorem 1:

1.9 D,ueLi(Q),

S0 we get (3.14) also for s =n:

4.1) J' |7, yu)?de < |h|? J |Dyu|?de, Vs=1,..,n~-1,n.
Bp Bor

We put together (8.8), (3.2), (8.13) and (4.1): for some positive constant Cy, indepen-
dent of &, we have

42) mj |7, 1 V(Du) | 2dw < Cy |k},

B,
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for every s=1,...,n, for every k:|h] < R. Now, a straightforward application of
Lemma 2.3 yields

2n

4.3) V(Du) e L"(Byy), Vr<
Since By has only to verify o < B < 1 and Bz C 2, we also have L{,, (2) in (4.3). Look-
ing back to (3.6), we get

n
n—1

2n
-1

and D,uelLl.(2), Vt<

44) Dijuel(. (), i=1,...,n—1, ¥Vr< -
This ends the proof. =

PrROOF OF COROLLARY 1. — We explicitly remark that (1.8) implies 2 < pn/(n — 1) <
< 2n/(n — 1) so that (4.4) tells us that Du e L2, ¢ for some & > 0 and, when % = 2, the
Sobolev imbedding theorem ends the proof. =

5. — Proof of Theorem 3.

First of all, we have p/(p — 1) <2n/(n — 1) if and only if 2 —2/(n + 1) < p, so
that (4.4) and (1.12) yield

(5.0) DiueLlf?~9(Q), Vi=1,..,n—1.

Now, we argue as in the proof of Theorem 1: starting from (3.1), we arrive at (3.8); in
order to get differentiability for D, u, that is (1.15), we have to estimate 7, ,D,u. We
use the left-hand side of (3.7), Holder’s inequality with 2/(2 — p) and 2/p in order to
get

(.1) j |75 1 Dytu(@)|P7” (@) dov <
Bg

<Ci7 [ W+ |Dyu@)|* + [Dyute + he) |PPEP4 |z, , VD, u@)|P P (@) do <
Bp

R

< C;P( [@+1D,u@+ |D,ue + hes)lz)mdx)(z"”’/z X
B

X( J {7, VD, u(®)) |22 (x) dx e
Bp
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Now, splitting the integral and changing variables yield

CZ’P( [ @+ IDu@|® + | Dy + heS)IZ)”/de)(z_p)/Z <
Bg

(2-p)2
S.Clo( f(l'{" IDnu(y)|P)dy) ! =Cy
Bar

for some positive constants Cyy, C;; independent of £, so that

2/
52) Cﬁ””( | Irs,thuI”n’“dx> '< [ ra VD0 e,

Bg B

then, using (5.2), (3.8) and (3.2) we arrive at

2
g mTC4 J]rs’hV(Dnu)iznzdm+

Bg

(5.3) m2(74 clzzfp( j |z, wDyu|Py? da

Bg

n—1
+mCy [ 3 |, 1 DiulPnide < (1+CHCD = (1+ CHC,UD).

Bg

We recall that, from (3.2)

o&?

this integral is now handled in a different way: in the proof of Theorem 1 we estimate
the difference z, ,((3F/2£§)(Du)); now we shift the difference operator 7, , from
(OF /SEF)(Du) to 2nD;nrs u’:

] N
a=-|2 21rs,h(a—F(Du))anmrs,huadx;

_ SRR or @ g =
G4) U= - j El glrs,h P (Dw)| 2y Dyr, ude =

n1 N aF
= —J ;1 02'1 57 (Du)t, _,(2nDinr, u®) dic.

We use the growth conditions (1.3), (1.4) and Hélder’s inequality with p/(p — 1), p in
(5.4) in order to get

(p—1)p

J

Ber

n—1
1+ X |Du|PP=Y+ ]Dnulp)dx
=1

(65) (1+CHC I < Clz(

’ J‘ izs, —h(an’?rs,hu)lpdx v s
Bog
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for some positive constant C,, independent of h. Now we use the higher integrability
result of Theorem 2 as stated in (5.0):

n-1 (p—1Dip
(5.6) J (1 + Z:l |Diu|7’/(1)—1) + anu]p) dx =Cp< ™.

Bor
Let us apply Lemma 2.1:

5.7 (f |rs,_h(annrs,hu)de)“”s

Bzr

/ 1/
|h|( J‘ le(an”rs,hu)lpdx)lp= lh’l( J |Ds(27707713,hu)|pd90) p;
Bp

Bsr

since # = 0 outside Bp. Taking into account (5.3), (5.5), (5.6) and (5.7), we arrive
at

2/ n-1
(5.8) (J |rs,thu|p,7de) Py f {7, 1, VD, w) |2 nde + J .21 |7, nDyu|?n?de <
B t=

I3 Bg Bg

Bg

S Cl4 |h|( J |Ds(277DnTs,hu)|pdx)1/p = (III)y

for some positive constant Cy,, independent of k. Now, using the inequality 2ab <
< £a? + b% /e, that holds true for every £ > 0, we have

2 2
(5.9) (ID) < 9‘—43@— + g(

A

[ 1D.2n D7z, w7 do o
Br

The integral in the previous inequality is dealt with as follows:

610) [ [ ID,@nDyz, 0 |de)”” <

Bg

[ |DS(2nDn)rs,hu|de)”’” +
Bg

+
Bg

1
J ‘2’7D77 rs,hDsulpdx) = (4) + (B).
Now we keep in mind the properties of the «cut off» funetion # and we use Lemma 2.1

in order to get

5.11) (A) < Cy
Bor

J !Dsulpdw)””lm = Gl

for some positive constants Cy5, Cjs independent of &. On the other hand, recalling the
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properties of # and using Holder’s inequality, we have

1/ L2 1/p
(5.12) (B)s017( j ]rs,hDsuwpdx) ”scn( 3 j|ts,hDiu|”n”dx) <
i= B

Bg

p 1/p
+ Clg( I |T8’thu|p7]pdx) <
B,

R

n—1
S C1s( _21 J |Ts,hDiulp77pdx)
i= B

Br

n—1 5 2 12 Up
< 019 i§1 j Ifs’hDiul n dx + Clg J’ |Ts’thqu77pd.’E y
Bg

for some positive constants Cy;, Cis, Ci9, independent of 4. We insert (5.11) and (5.12)
into (5.10), we use the resulting inequality in (5.9) and we keep in mind (5.8): we
get

Bp

2/ n—-1
(Jlrs,thulpn”dx) "y J Irsth(Dnu)lznzdac+J 2 |tg wDiu|*n?de <
i=1
Br Br

Cyo |1 |? 7l 2
L LN Irs,hDiulznZdw( [ |rs,thu|pnde) "),
Bg

&€
By

for some positive constant Cy, independent of kand ¢, so taking ¢ = 1/(2Cy ), we fi-
nally get

-1
(5.13) f|rs,hV(Dnu)|2n2dx+J 3 |7, Diul*ytdw < Cy |12,
By B

(5.14) j|zs,thu|Pnpdxscg{2|h|P,

Bg

for some positive constant Cj; , independent of k. Since » = 1 on B, ¢ Bg, we can apply
Lemma 2.2 and, after recalling (3.4) for the definition of V(D,u), we get (1.13), (1.14),
(1.15), thus ending the proof. =
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