On Improved Regularity of Weak Solutions of Some Degenerate, Anisotropic Elliptic Systems (${ }^{*}$).

Tilak Bhattacharya - Francesco Leonetti

Summary. - We consider a (possibly) vector-valued function $u: \Omega \rightarrow \mathbb{R}^{N}, \Omega \subset \mathbb{R}^{n}$, minimizing the integral $\int_{\Omega}\left(\left|D_{1} u\right|^{2}+\ldots+\left|D_{n-1}\right|^{2}+\left|D_{n} u\right|^{p}\right) d x, 2-2 /(n+1)<p<2$, where $D_{i} u=\partial u / \partial x_{i}$, or some more general functional retaining the same behaviour; we prove higher integrability for $D u: D_{1} u, \ldots, D_{n-1} u \in L^{p /(p-1)}$ and $D_{n} u \in L^{2}$; this result allows us to get existence of second weak derivatives: $D\left(D_{1} u\right), \ldots, D\left(D_{n-1} u\right) \in L^{2}$ and $D\left(D_{n} u\right) \in L^{p}$.

0. - Introduction.

Let Ω be a bounded domain in $\mathbb{R}^{n}, n \geqslant 2$; u be such that $u: \Omega \rightarrow \mathbb{R}^{N}, N \geqslant 1$. We consider an integral functional of the type

$$
\begin{equation*}
I(u)=\int_{\Omega} F(D u(x)) d x . \tag{0.1}
\end{equation*}
$$

Here F satisfies an anisotropic growth condition, namely,

$$
\begin{equation*}
a \sum_{i=1}^{n}\left|\xi_{i}\right|^{q_{i}}-b \leqslant F(\xi) \leqslant c \sum_{i=1}^{n}\left|\xi_{i}\right|^{q_{i}}+d, \quad \forall \xi \in \mathbb{R}^{n N} \tag{0.2}
\end{equation*}
$$

where a, b, c and d are positive constants and $1<q_{i}, i=1, \ldots, n$. The isotropic case, that is $q_{i}=q \forall i$, has been deeply studied [12]. In the last few years the anisotropic case, in which at least one of the q_{i} 's differs from the others, has been attracting some attention: in [13], [15] it is shown that minimizers of (0.1) may be singular, if no restriction is assumed on the q_{i} 's. On the other hand, if the exponents q_{i} are not too far apart, some regularity results for minimizers of (0.1) have been proven in [10], [11] and [16]. Let us point out that[10], [11] and[16] deal with scalar min-

[^0]imizers $u: \Omega \rightarrow \mathbb{R}$, that is, $N=1$. Vector-valued mappings $u: \Omega \rightarrow \mathbb{R}^{N}$ have been considered in [14], where $q_{i} \geqslant 2$. In the present paper we take $1<q_{i} \leqslant 2$ and, under additional restrictions on F, we prove higher regularity results for local minimizers of (0.1). A typical example of a functional, in this class, is
\[

$$
\begin{equation*}
I(u)=\int_{\Omega} \frac{1}{2} \sum_{i=1}^{n-1}\left|D_{i} u\right|^{2}+\frac{1}{p}\left(\alpha+\left|D_{n} u\right|^{2}\right)^{p / 2}, \quad 0 \leqslant \alpha \leqslant 1 . \tag{0.3}
\end{equation*}
$$

\]

Here $D u=\left(D_{1} u, \ldots, D_{n} u\right), 1<p<2$. The main effort of this work is to obtain results when, in (0.3), $\alpha=0$, namely, the degenerate case. In a previous paper [4] we studied (0.3) when $\alpha \neq 0$, and deduced higher integrability and higher differentiability results for minimizers. However, the results of the current work do not follow from this earlier paper. Please see the Remark 4 at the end of Theorem 4 in section 1.

We introduce notations and the main results in section 1; section 2 contains some preliminary lemmas necessary for our work. The proofs of the theorems appear in section 3, 4 and 5 .

1. - Notation and main results.

Let Ω be a bounded open set of $\mathbb{R}^{n}, n \geqslant 2, u$ be a (possibly) vector-valued function, $u: \Omega \rightarrow \mathbb{R}^{N}, N \geqslant 1$; we consider integrals

$$
\begin{equation*}
I(u)=\int_{\Omega} F(D u(x)) d x, \tag{1.1}
\end{equation*}
$$

where $F: \mathbb{R}^{n N} \rightarrow \mathbb{R}$ is in $C^{1}\left(\mathbb{R}^{n N}\right)$ and satisfies, for some positive constants c, m,

$$
\begin{gather*}
|F(\xi)| \leqslant c\left(1+\sum_{i=1}^{n-1}\left|\xi_{i}\right|^{2}+\left|\xi_{n}\right|^{p}\right), \tag{1.2}\\
\left|\frac{\partial F}{\partial \xi_{i}^{\alpha}}(\xi)\right| \leqslant c\left(1+\xi_{i} \mid\right) \quad \text { if } i=1, \ldots, n-1, \tag{1.3}\\
\left|\frac{\partial F}{\partial \xi_{n}^{\alpha}}(\xi)\right| \leqslant c\left(1+\left.\xi_{n}\right|^{p-1}\right) \tag{1.4}
\end{gather*}
$$

and

$$
\begin{align*}
\sum_{j=1}^{n} \sum_{\beta=1}^{N}\left(\frac{\partial F}{\partial \xi_{j}^{\beta}}(v)\right. & \left.-\frac{\partial F}{\partial \xi_{j}^{\beta}}(\lambda)\right)\left(v_{j}^{\beta}-\lambda_{j}^{\beta}\right) \geqslant \tag{1.5}\\
& \geqslant m \sum_{j=1}^{n-1}\left|v_{j}-\lambda_{j}\right|^{2}+m\left(1+\left|v_{n}\right|^{2}+\left|\lambda_{n}\right|^{2}\right)^{(p-2) / 2}\left|v_{n}-\lambda_{n}\right|^{2}
\end{align*}
$$

for every $\lambda, \nu, \xi \in \mathbb{R}^{n N}, \alpha=1, \ldots, N$. Here, $\lambda=\left\{\lambda_{i}^{\alpha}\right\}, \xi=\left\{\xi_{i}^{\alpha}\right\},\left|\lambda_{i}\right|^{2}=\sum_{\alpha=1}^{N}\left|\lambda_{i}^{\alpha}\right|^{2}$, etc.

About p, we assume that

$$
\begin{equation*}
1<p<2 . \tag{1.6}
\end{equation*}
$$

We say that u minimizes the integral (1.1) if $u: \Omega \rightarrow \mathbb{R}^{N}, u \in W^{1, p}(\Omega)$ with $D_{i} u \in L^{2}(\Omega), i=1, \ldots, n-1$, and

$$
\begin{equation*}
I(u) \leqslant I(u+\phi) . \tag{1.7}
\end{equation*}
$$

for every $\phi: \Omega \rightarrow \mathbb{R}^{N}$ with $\phi \in W_{0}^{1, p}(\Omega)$ and $D_{i} \phi \in L^{2}(\Omega), i=1, \ldots, n-1$. We will prove the following higher integrability result for $D_{n} u$:

Theorem 1. - Let $u: \Omega \rightarrow \mathbb{R}^{N}$ satisfy $u \in W^{1, p}(\Omega)$ with $D_{i} u \in L^{2}(\Omega), i=1, \ldots, n-1$, where

$$
\begin{equation*}
2-2 / n<p<2 . \tag{1.8}
\end{equation*}
$$

If F satisfies (1.2), $\ldots,(1.5)$ and u minimizes the integral (1.1), then

$$
\begin{equation*}
D_{n} u \in L_{\mathrm{loc}}^{2}(\Omega) . \tag{1.9}
\end{equation*}
$$

The higher integrability result (1.9) for $D_{n} u$ allows us to improve on the integrability of $D u$ in the following way:

Theorem 2. - Under the assumptions of Theorem 1 we have

$$
\begin{gather*}
D_{i} u \in L_{\mathrm{loc}}^{r}(\Omega), \quad i=1, \ldots, n-1 \quad \forall r<\frac{2 n}{n-1}, \tag{1.10}\\
D_{n} u \in L_{\mathrm{loc}}^{t}(\Omega), \quad \forall t<\frac{p n}{n-1} .
\end{gather*}
$$

Let us explicitly remark that (1.8) implies $2<p n /(n-1)<2 n /(n-1)$; moreover, when $n=2$, (1.8) is just $1<p<2$ and we have the following

Corollary 1. - Under the assumptions of Theorem 1, we get

$$
\text { if } \quad n=2 \quad \text { then } \quad u \in C_{\text {loc }}^{0, \alpha}(\Omega) \text { for some } \alpha>0 \text {. }
$$

The higher integrability result (1.10) contained in Theorem 2 allows us to get the existence of second weak derivatives:

Theorem 3. - Under the assumptions of Theorem 1, if p verifies the additional restriction

$$
\begin{equation*}
2-2 /(n+1)<p<2, \tag{1.12}
\end{equation*}
$$

then

$$
\begin{gather*}
D\left(D_{i} u\right) \in L_{\mathrm{loc}}^{2}(\Omega), \quad i=1, \ldots, n-1, \tag{1.13}\\
D\left(\left(1+\left|D_{n} u\right|^{2}\right)^{(p-2) / 4} D_{n} u\right) \in L_{\mathrm{loc}}^{2}(\Omega), \tag{1.14}\\
D\left(D_{n} u\right) \in L_{\mathrm{loc}}^{p}(\Omega) . \tag{1.15}
\end{gather*}
$$

Remark 1. - Condition (1.12) is stronger than (1.8).
Remark 2. - A straightforward application of Sobolev imbedding theorem gives us hölder continuity of u also in dimension three, more precisely, we have

Corollary 2. - Under the assumptions of Theorem 1, if p verifies the additional restriction (1.12), then

$$
\begin{gathered}
\text { when } \quad n=2 \quad \text { we have } u \in C_{\mathrm{loc}}^{0, \beta}(\Omega), \quad \forall \beta<1 ; \\
\text { when } \quad n=3 \quad \text { we have } u \in C_{\mathrm{loc}}^{0,1-1 / p}(\Omega)
\end{gathered}
$$

Remark 3. - For $1<p<2$, let us consider the integrals

$$
\begin{gather*}
I(u)=\int_{\Omega}\left(\frac{1}{2} \sum_{i=1}^{n-1}\left|D_{i} u(x)\right|^{2}+\frac{1}{p}\left|D_{n} u(x)\right|^{p}\right) d x \tag{1.16}\\
I(u)=\int_{\Omega}\left(\frac{1}{2} \sum_{i=1}^{n-1}\left|D_{i} u(x)\right|^{2}+\frac{1}{p}\left(1+\left|D_{n} u(x)\right|^{2}\right)^{p / 2}\right) d x \tag{1.17}
\end{gather*}
$$

they verify (1.2), $\ldots,(1.5)$. In [4] the following regularity result has been proven:
Theorem 4. - Let $F \in C^{2}\left(\mathrm{R}^{n N}\right)$ and (1.2), ...,(1.4) hold; in addition, let us assume that, for some positive constants M_{1}, M_{2},

$$
\begin{align*}
M_{1}\left(\sum_{i=1}^{n-1}\left|\lambda_{i}\right|^{2}+\left(1+\left|\xi_{n}\right|^{2}\right)^{(p-2) / 2}\left|\lambda_{n}\right|^{2}\right) & \leqslant \sum_{i, j=1}^{n} \sum_{\alpha, \beta=1}^{N} \frac{\partial^{2} F}{\partial \xi_{j}^{\beta} \partial \xi_{i}^{\alpha}}(\xi) \lambda_{i}^{\alpha} \lambda_{j}^{\beta} \leqslant \\
& \leqslant M_{2}\left(\sum_{i=1}^{n-1}\left|\lambda_{i}\right|^{2}+\left(1+\left|\xi_{n}\right|^{2}\right)^{(p-2) / 2}\left|\lambda_{n}\right|^{2}\right),
\end{align*}
$$

for every $\lambda, \xi \in \mathbb{R}^{n N}$. About p, we assume that

$$
\begin{cases}1<p<2 & \text { if } n=2,3 \tag{1.18}\\ 98 / 97<p<2 & \text { if } n=4 \\ 2-4 / n<p<2 & \text { if } n \geqslant 5\end{cases}
$$

Then, for a vectorvalued function $u \in W^{1, p}(\Omega)$ with $D_{i} u \in L^{2}(\Omega), i=1, \ldots, n-1$, minimizing the integral (1.1), we get

$$
\begin{equation*}
D_{n} \in L_{\mathrm{loc}}^{2}(\Omega), \tag{1.19}
\end{equation*}
$$

$$
\begin{equation*}
D\left(D_{i} u\right) \in L_{\mathrm{loc}}^{2}(\Omega), \quad i=1, \ldots, n-1 \quad \text { and } \quad D\left(D_{n} u\right) \in L_{\mathrm{loc}}^{p}(\Omega) \tag{1.20}
\end{equation*}
$$

Remari 4. - Clearly, the left-hand side of (1.5) implies (1.5). The functional (1.17) satisfies (1.5); however, the integral (1.16) which satisfies (1.5) does not satisfy (1.5). Also note that (1.8) implies (1.18). We may summarize as follows: Theorem 4 requires good integrands such as (1.17), but a less restrictive range for p. Theorem 1, on the other hand, allows for lesser restrictions on the integrands (e.g., degeneracies are allowed), but requires more restrictions on p.

Remark 5. - Higher integrability properties contained in Theorem 1 and 2 are proven by a technique of [7]: we gain a fractional order derivative of $\hat{V}(D u)$, a suitable function of $D u$, thereby improving its integrability; also see [3], [4],[6], [14].

2. - Preliminaries.

For a vector-valued function $f(x)$, define the difference

$$
\tau_{s, h} f(x)=f\left(x+h e_{s}\right)-f(x),
$$

where $h \in \mathbb{R}$, is the unit vector in the x_{s} direction, and $s=1,2, \ldots, n$. For $x_{0} \in \mathbb{R}^{n}$, let $B_{R}\left(x_{0}\right)$ be the ball centered at x_{0} with radius R. We will often suppress x_{0} whenever there is no danger of confusion. We now state several lemmas that are crucial to our work. In the following $f: \Omega \rightarrow \mathbb{R}^{k}, k \geqslant 1 ; B_{\varrho}, B_{R}, B_{2 \varrho}$ and $B_{2 R}$ are concentric balls.

Lemma 2.1. - If $0<\varrho<R,|h|<R-\varrho, 1 \leqslant t<\infty, s \in\{1, \ldots, n\}, f, D_{s} f \in L^{i}\left(B_{R}\right)$, then

$$
\int_{B_{e}}\left|\tau_{s, h} f(x)\right|^{t} d x \leqslant|h|^{t} \int_{B_{R}}\left|D_{s} f(x)\right|^{t} d x .
$$

(See [12, page 45], [5, page 28].)
Lemma 2.2. - Let $f \in L^{t}\left(B_{2 \varrho}\right), 1<t<\infty, s \in\{1, \ldots, n\}$; if there exists a positive constant C such that

$$
\int_{B_{e}}\left|\tau_{s, h} f(x)\right|^{t} d x \leqslant C|h|^{t},
$$

for every h with $|h|<\varrho$, then there exists $D_{s} f \in L^{t}\left(B_{Q}\right)$. (See [12, page 45], [5, page 26].)
Lemma 2.3. - If $f \in L^{2}\left(B_{3 \varrho}\right)$ and for some $d \in(0,1)$ and $C>0$

$$
\sum_{s=1}^{n} \int_{B_{e}}\left|\tau_{s, h} f(x)\right|^{2} d x \leqslant C|h|^{2 d},
$$

for every h with $|h|<\varrho$, then $f \in L^{r}\left(B_{e^{/ 4}}\right)$ for every $r<2 n /(n-2 d)$.

Proof. - The previous inequality tells us that $f \in W^{b, 2}\left(B_{\ell / 2}\right)$ for every $b<d$, so we can apply the imbedding theorem for fractional Sobolev spaces. [2, chapter VII].

Lemma 2.4. - For every t with $1 \leqslant t<\infty$ there exists a positive constant C such that

$$
\int_{B_{R}}\left|\tau_{s, h} f(x)\right|^{t} d x \leqslant C \int_{B_{2 R}}|f(x)|^{t} d x,
$$

for every $f \in L^{t}\left(B_{2 R}\right)$, for every h with $|h|<R$, for every $s=1,2, \ldots, n$.
Lemma 2.5. - For every $\gamma \in(-1 / 2,0)$ we have

$$
(2 \gamma+1)|a-b| \leqslant \frac{\left|\left(1+|a|^{2}\right)^{\gamma} a-\left(1+|b|^{2}\right)^{\gamma} b\right|}{\left(1+|a|^{2}+|b|^{2}\right)^{\gamma}} \leqslant \frac{c(k)}{2 \gamma+1}|a-b|
$$

for all $a, b \in \mathbb{R}^{k}$. (See[1].)

3. - Proof of Theorem 1.

Since u minimizes the integral (1.1) with growth conditions as in (1.2), \ldots, (1.4), u solves the Euler equation,

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u(x)) D_{i} \phi^{\alpha}(x) d x=0 \tag{3.1}
\end{equation*}
$$

for all functions $\phi: \Omega \rightarrow \mathbb{R}^{N}$, with $\phi \in W_{0}^{1, p}(\Omega)$ and $D_{1} \phi, \ldots, D_{n-1} \phi \in L^{2}(\Omega)$. Let $R>0$ be such that $\overline{B_{4 R}} \subset \Omega$ and let B_{Q} and B_{R} be concentric balls, $0<\varrho<R \leqslant 1$. Fix s take $0<|h|<R$ and let $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a «cut off» function in $C_{0}^{2}\left(B_{R}\right)$ with

$$
\eta \equiv 1 \text { on } B_{\varrho}, \quad 0 \leqslant \eta \leqslant 1, \quad|D \eta| \leqslant C_{1} /(R-\varrho) \text { and } \quad|D D \eta| \leqslant C_{1} /(R-\varrho)^{2} .
$$

Using $\phi=\tau_{s,-h}\left(\eta^{2} \tau_{s, h} u\right)$ in (3.1) we get, as usual

$$
\begin{aligned}
& 0=\sum_{i=1}^{n} \sum_{a=1}^{N} \int \frac{\partial F}{\partial \xi_{i}^{a}}(D u) \tau_{s,-h}\left(D_{i}\left(\eta^{2} \tau_{s, h} u^{\alpha}\right)\right) d x= \\
&=\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \int \tau_{s, h}\left(\frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u)\right)\left(2 \eta D_{i} \eta \tau_{s, h} u^{\alpha}+\eta^{2} \tau_{s, h} D_{i} u^{\alpha}\right) d x
\end{aligned}
$$

so that

$$
\begin{align*}
&(I)=\int_{B_{R}} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \tau_{s, h}\left(\frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u)\right) \tau_{s, h} D_{i} u^{\alpha} \eta^{2} d x= \tag{3.2}\\
&=-\int_{B_{R}} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \tau_{s, h}\left(\frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u)\right) 2 \eta D_{i} \eta \tau_{s, h} u^{\alpha} d x=(I I) .
\end{align*}
$$

We apply (1.5) so that
(3.3) $m \int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u(x)\right|^{2} \eta^{2}(x) d x+$

$$
+m \int_{B_{R}}\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{(p-2) / 2}\left|\tau_{s, h} D_{n} u(x)\right|^{2} \eta^{2}(x) d x \leqslant(I) .
$$

Set
(3.4) $\widehat{V}(\xi)=\left|V\left(\xi_{n}\right)\right|+\sum_{i=1}^{n-1}\left|\xi_{i}\right|, \quad V\left(\xi_{n}\right)=\left(1+\left|\xi_{n}\right|^{2}\right)^{(p-2) / 4} \xi_{n}, \quad \forall \xi \in \mathbb{R}^{n N}$.

Clearly,

$$
\begin{equation*}
\left|\tau_{s, h} \hat{V}(D u)\right| \leqslant\left|\tau_{s, h} V\left(D_{n} u\right)\right|+\sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right| \tag{3.5}
\end{equation*}
$$

and

$$
\hat{V}(D u) \in L^{r} \quad \text { if and only if }\left\{\begin{array}{l}
D_{i} u \in L^{r}, \quad i=1, \ldots, n-1, \tag{3.6}\\
D_{n} u \in L^{r p / 2} .
\end{array}\right.
$$

Using Lemma 2.5 we find

$$
\begin{equation*}
C_{2}\left|\tau_{s, h} D_{n} u(x)\right| \leqslant \frac{\left|\tau_{s, h} V\left(D_{n} u(x)\right)\right|}{\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{(p-2) / 4}} \leqslant C_{3}\left|\tau_{s, h} D_{n} u(x)\right| \tag{3.7}
\end{equation*}
$$

for some positive constants C_{2}, C_{3} depending only on N and p. Then, since $\eta=1$ on $B_{\underline{Q}}$,

$$
\begin{align*}
& m \int_{B_{e}}\left|\tau_{s, h} \hat{V}(D u)\right|^{2} d x \leqslant \tag{3.8}\\
& \leqslant m C_{4} \int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+m C_{4} \int_{B_{R}}^{n-1} \sum_{i=1}^{n}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \leqslant\left(1+C_{3}^{2}\right) C_{4}(I),
\end{align*}
$$

for some positive constant C_{4}, depending only on n. Now, let us estimate (II) in (3.2): using growth conditions (1.3), (1.4) and the properties of the "cut off» function η, we have

$$
\begin{align*}
(I I) \leqslant \frac{4 n c C_{1}}{R-\varrho} \int_{B_{R}}\left(\sum_{i=1}^{n-1} \mid D_{i} u(x\right. & \left.+h e_{s}\right)\left|+\left|D_{n} u\left(x+h e_{s}\right)\right|^{p-1}+1+\right. \tag{3.10}\\
& \left.+\sum_{i=1}^{n-1}\left|D_{i} u(x)\right|+\left|D_{n} u(x)\right|^{p-1}\right)\left|\tau_{s, h} u(x)\right| d x .
\end{align*}
$$

Now, changing variables and recalling $|h|<R$, we get

$$
\begin{equation*}
\int_{B_{R}}\left|D_{i} u\left(x+h e_{s}\right)\right|^{2} d x=\int_{B_{R}+h e_{s}}\left|D_{i} u(y)\right|^{2} d y \leqslant \int_{B_{2 R}}\left|D_{i} u(y)\right|^{2} d y \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{R}}\left|D_{n} u\left(x+h e_{s}\right)\right|^{2(p-1)} d x=\int_{B_{R}+h e_{s}}\left|D_{n} u(y)\right|^{2(p-1)} d y \leqslant \int_{B_{2 R}}\left|D_{n} u(y)\right|^{2(p-1)} d y ; \tag{3.12}
\end{equation*}
$$

let us remark that $0<2(p-1)<p$, so the integrals in (3.12) are finite. We use Hölder's inequality in (3.10) and we apply (3.11), (3.12) in order to get

$$
\begin{equation*}
\left.(I I) \leqslant C_{5}\left(\left.| | B_{R}\left|+\sum_{i=1}^{n-1} \int_{B_{2 R}}\right| D_{i} u\right|^{2} d x+\int_{B_{2 R}}\left|D_{n} u\right|^{2(p-1)} d x\right) \int_{B_{R}}\left|\tau_{s, h} u\right|^{2} d x\right)^{1 / 2} \tag{3.13}
\end{equation*}
$$

for some positive constant C_{5} independent of h. Let us treat the last integral in (3.13); recalling that $D_{s} u \in L^{2}$ for $s=1, \ldots, n-1$, we may use Lemma 2.1 in order to get

$$
\begin{equation*}
\int_{B_{R}}\left|\tau_{s, h} u\right|^{2} d x \leqslant|h|^{2} \int_{B_{2 R}}\left|D_{s} u\right|^{2} d x, \quad \forall s=1, \ldots, n-1 \tag{3.14}
\end{equation*}
$$

Since $D_{n} u \in L^{p}$ and $p<2$, the last integral in (3.13), corresponding to $s=n$, is dealt with as follows. We write

$$
\begin{equation*}
\int_{B_{R}}\left|\tau_{n, h} u\right|^{2} d x=\int_{B_{R}}\left|\tau_{n, h} u\right|^{a}\left|\tau_{n, h} u\right|^{2-a} d x, \tag{3.15}
\end{equation*}
$$

where $0<a<2$ is to be choosen later. Let us assume that, for some $\sigma \in[p, 2)$

$$
\begin{equation*}
D_{n} u \in L_{\text {loc }}^{\sigma}(\Omega) \tag{3.16}
\end{equation*}
$$

Now we use Hölder's inequality in (3.15) with exponents σ / a and $\sigma /(\sigma-a)$, provided $a<\sigma$:

$$
\begin{equation*}
\int_{B_{R}}\left|\tau_{n, h} u\right|^{2} d x \leqslant\left(\int_{B_{R}}\left|\tau_{n, h} u\right|^{\sigma} d x\right)^{a / \sigma}\left(\int_{B_{R}}\left|\tau_{n, h} u\right|^{(2-a) \sigma(\sigma-a)} d x\right)^{(\sigma-a)) / \sigma} . \tag{3.17}
\end{equation*}
$$

Because of (3.16), we may apply Lemma 2.1 in order to get

$$
\begin{equation*}
\left(\int_{B_{R}}\left|\tau_{n, h} u\right|^{\sigma} d x\right)^{\alpha / \sigma} \leqslant|h|^{a}\left(\int_{B_{2 R}}\left|D_{n} u\right|^{\sigma} d x\right)^{\alpha / \sigma} . \tag{3.18}
\end{equation*}
$$

If

$$
\begin{equation*}
(2-\sigma) \sigma /(\sigma-a) \leqslant \sigma^{*}=\sigma n /(n-\sigma), \tag{3.19}
\end{equation*}
$$

then, (3.16), Sobolev imbedding theorem and Lemma 2.4 allows us to write

$$
\begin{equation*}
\left(\int_{B_{R}}\left|\tau_{n, h} u\right|^{(2-a) \sigma /(\sigma-a)} d x\right)^{(\sigma-a) / \sigma} \leqslant C_{6}\left(\int_{B_{2 R}}|u|^{(2-a) \sigma /(\sigma-a)} d x\right)^{(\sigma-a) / \sigma}, \tag{3.20}
\end{equation*}
$$

for some positive constant C_{6} independent of h. Collecting the previous inequalities, we get
(3.21) $\int_{B_{R}}\left|\tau_{n, h} u\right|^{2} d x \leqslant|h|^{a}\left(\int_{B_{2 R}}\left|D_{n} u\right|^{\sigma} d x\right)^{\alpha / \sigma} C_{6}\left(\int_{B_{2 R}}|u|^{(2-a) \sigma((\sigma-a)} d x\right)^{(\sigma-a) / \sigma}$.

Thus, noting that $a<2$ and $|h|<R \leqslant 1$, (3.14) and (3.21) give us

$$
\begin{equation*}
\int_{B_{R}}\left|\tau_{s, h} u\right|^{2} d x \leqslant C_{7}|h|^{a}, \quad \forall s=1, \ldots, n-1, n, \tag{3.22}
\end{equation*}
$$

for some positive constant C_{7} independent of h. Eventually, inserting (3.22) into (3.13), we get

$$
\begin{equation*}
(I I) \leqslant C_{8}|h|^{a / 2} \tag{3.23}
\end{equation*}
$$

for some positive constant C_{8} independent of h. Let us recall the restrictions on a : $0<a<\sigma$ and (3.19); when exploiting (3.19), we get

$$
\begin{equation*}
a \leqslant \frac{n+2}{\sigma}\left(\sigma-\frac{2 n}{n+2}\right)=a_{0} . \tag{3.24}
\end{equation*}
$$

Since we assumed (1.8), we have $2>\sigma \geqslant p>2-2 / n \geqslant 2 n /(n+2)$, so $0<a_{0}<\sigma$ and we can take

$$
\begin{equation*}
a=a_{0}=\frac{n+2}{\sigma}\left(\sigma-\frac{2 n}{n+2}\right) \tag{3.25}
\end{equation*}
$$

in the previous calculations. Let us put together (3.8), (3.2) and (3.23):

$$
\begin{equation*}
m \int_{B_{e}}\left|\tau_{s, h} \bar{V}(D u)\right|^{2} d x \leqslant C_{8}|h|^{\alpha / 2} \tag{3.26}
\end{equation*}
$$

for every $s=1, \ldots, n$, for every $h:|h|<R$; this inequality allows us to apply Lemma 2.3 and we get

$$
\begin{equation*}
\hat{V}(D u) \in L^{r}\left(B_{Q / 4}\right), \quad \forall r<\frac{2 n}{n-\alpha / 2} . \tag{3.27}
\end{equation*}
$$

Since $B_{\varrho / 4}$ has only to verify $\varrho<R \leqslant 1$ and $\overline{B_{4 R}} \subset \Omega$, we also have $L_{\text {loc }}^{r}(\Omega)$ in (3.27); moreover, because of (3.6), we arrive at

$$
\begin{equation*}
D_{m} u \in L_{\mathrm{loc}}^{t}(\Omega), \quad \forall t<\frac{p n}{n-a / 2}=\bar{t}(\sigma) \tag{3.28}
\end{equation*}
$$

Let us summarize as follows: we have proved that, if for some $\sigma \in[p, 2)$

$$
\begin{equation*}
D_{n} u \in L_{\mathrm{loc}}^{\sigma}(\Omega), \tag{3.16}
\end{equation*}
$$

then

$$
D_{n} u \in L_{\mathrm{loc}}^{t}(\Omega), \quad \forall t<\widehat{t}(\sigma)=\frac{2 p n \sigma}{(n-2) \sigma+2 n} .
$$

Now, we want to estimate how much we gave gained, that is, $\bar{t}(\sigma)-\sigma$:

$$
\begin{align*}
\hat{t}(\sigma)-\sigma=\sigma \frac{2 n(p-1)-(n-2) \sigma}{(n-2) \sigma+2 n} \geqslant p & \frac{2 n(p-1)-(n-2) 2}{(n-2) 2+2 n}= \tag{3.29}\\
& =p \frac{2 n(p-(2-2 / n))}{(n-2) 2+2 n}=\delta(n, p)
\end{align*}
$$

since we assumed (1.8), we have $\delta(n, p)>0$. Eventually, we have proved that, under (1.8), there exists $\delta=\delta(n, p)>0$ such that

$$
\begin{equation*}
D_{n} u \in L_{\mathrm{loc}}^{\sigma}(\Omega), \quad p \leqslant \sigma<2, \Rightarrow D_{n} u \in L_{\mathrm{loc}}^{\sigma+\delta / 2}(\Omega) . \tag{3.30}
\end{equation*}
$$

Thus (3.30) allows us to start a bootstrap argument that, after a finite number of steps, gives us

$$
\begin{equation*}
D_{n} u \in L_{\mathrm{loc}}^{2}(\Omega) ; \tag{1.9}
\end{equation*}
$$

this ends the proof.

4. - Proof of Theorem 2.

We argue as in the proof of Theorem 1: starting from (3.1) we arrive at (3.13); now we have the result of Theorem 1 :

$$
\begin{equation*}
D_{n} u \in L_{\mathrm{loc}}^{2}(\Omega), \tag{1.9}
\end{equation*}
$$

so we get (3.14) also for $s=n$:

$$
\begin{equation*}
\int_{B_{R}}\left|\tau_{s, h} u\right|^{2} d x \leqslant|h|^{2} \int_{B_{2 R}}\left|D_{s} u\right|^{2} d x, \quad \forall s=1, \ldots, n-1, n . \tag{4.1}
\end{equation*}
$$

We put together (3.8), (3.2), (3.13) and (4.1): for some positive constant C_{9}, independent of h, we have

$$
\begin{equation*}
m \int_{B_{e}}\left|\tau_{s, h} \hat{V}(D u)\right|^{2} d x \leqslant C_{9}|h| \tag{4.2}
\end{equation*}
$$

for every $s=1, \ldots, n$, for every $h:|h|<R$. Now, a straightforward application of Lemma 2.3 yields

$$
\begin{equation*}
\hat{V}(D u) \in L^{r}\left(B_{\varrho / 4}\right), \quad \forall r<\frac{2 n}{n-1} \tag{4.3}
\end{equation*}
$$

Since $B_{\varrho / 4}$ has only to verify $\varrho<R \leqslant 1$ and $\overline{B_{4 R}} \subset \Omega$, we also have $L_{\text {loc }}^{r}(\Omega)$ in (4.3). Looking back to (3.6), we get
(4.4) $D_{i} u \in L_{\mathrm{loc}}^{r}(\Omega), \quad i=1, \ldots, n-1, \quad \forall r<\frac{2 n}{n-1}$ and $D_{n} u \in L_{\mathrm{loc}}^{t}(\Omega), \quad \forall t<\frac{p n}{n-1}$.

This ends the proof.

Proof of Corollary 1. - We explicitly remark that (1.8) implies $2<p n /(n-1)<$ $<2 n /(n-1)$ so that (4.4) tells us that $D u \in L_{\text {loc }}^{2+\varepsilon}$ for some $\varepsilon>0$ and, when $n=2$, the Sobolev imbedding theorem ends the proof.

5. - Proof of Theorem 3.

First of all, we havè $p /(p-1)<2 n /(n-1)$ if and only if $2-2 /(n+1)<p$, so that (4.4) and (1.12) yield

$$
\begin{equation*}
D_{i} u \in L_{\mathrm{loc}}^{p /(p-1)}(\Omega), \quad \forall i=1, \ldots, n-1 \tag{5.0}
\end{equation*}
$$

Now, we argue as in the proof of Theorem 1: starting from (3.1), we arrive at (3.8); in order to get differentiability for $D_{n} u$, that is (1.15), we have to estimate $\tau_{s, h} D_{n} u$. We use the left-hand side of (3.7), Hölder's inequality with $2 /(2-p)$ and $2 / p$ in order to get

$$
\begin{align*}
& \int_{B_{R}}\left|\tau_{s, h} D_{n} u(x)\right|^{p} \eta^{p}(x) d x \leqslant \tag{5.1}\\
& \leqslant C_{2}^{-p} \int_{B_{R}}\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{p(2-p) / 4}\left|\tau_{s, h} V\left(D_{n} u(x)\right)\right|^{p} \eta^{p}(x) d x \leqslant \\
& \leqslant C_{2}^{-p}\left(\int_{B_{R}}\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{p / 2} d x\right)^{(2-p) / 2} \times \\
& \times\left(\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u(x)\right)\right|^{2} \eta^{2}(x) d x\right)^{p / 2} .
\end{align*}
$$

Now, splitting the integral and changing variables yield

$$
\begin{aligned}
& C_{2}^{-p}\left(\int_{B_{R}}\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{p / 2} d x\right)^{(2-p) / 2} \leqslant \\
& \leqslant C_{10}\left(\int_{B_{2 R}}\left(1+\left|D_{n} u(y)\right|^{p}\right) d y\right)^{(2-p) / 2}=C_{11},
\end{aligned}
$$

for some positive constants C_{10}, C_{11} independent of h, so that

$$
\begin{equation*}
C_{11}^{-2 / p}\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p} \leqslant \int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x, \tag{5.2}
\end{equation*}
$$

then, using (5.2), (3.8) and (3.2) we arrive at

$$
\begin{align*}
& \frac{m C_{4}}{2} C_{11}^{-2 / p}\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p}+\frac{m C_{4}}{2} \int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+ \tag{5.3}\\
& \quad+m C_{4} \int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \leqslant\left(1+C_{3}^{2}\right) C_{4}(I)=\left(1+C_{3}^{2}\right) C_{4}(I I) .
\end{align*}
$$

We recall that, from (3.2)

$$
(I I)=-\int \sum_{i=1}^{n} \sum_{a=1}^{N} \tau_{s, h}\left(\frac{\partial F}{\partial \xi_{i}^{a}}(D u)\right) 2 \eta D_{i} \eta \tau_{s, h} u^{a} d x ;
$$

this integral is now handled in a different way: in the proof of Theorem 1 we estimate the difference $\tau_{s, h}\left(\left(\partial F / \partial \xi_{i}^{a}\right)(D u)\right)$; now we shift the difference operator $\tau_{s, h}$ from $\left(\partial F / \partial \xi_{i}^{a}\right)(D u)$ to $2 \eta D_{i} \eta \tau_{s, h} u^{a}$:

$$
\begin{align*}
&(I I)=-\int \sum_{i=1}^{n} \sum_{a=1}^{N} \tau_{s, h}\left(\frac{\partial F}{\partial \xi_{i}^{a}}(D u)\right) 2 \eta D_{i} \eta \tau_{s, h} u^{\alpha} d x= \tag{5.4}\\
&=-\int \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u) \tau_{s,-h}\left(2 \eta D_{i} \eta \tau_{s, h} u^{a}\right) d x .
\end{align*}
$$

We use the growth conditions (1.3), (1.4) and Hölder's inequality with $p /(p-1), p$ in (5.4) in order to get

$$
\begin{align*}
&\left(1+C_{3}^{2}\right) C_{4}(I I) \leqslant C_{12}\left(\int_{B_{2 R}}\left(1+\sum_{i=1}^{n-1}\left|D_{i} u\right|^{p /(p-1)}+\left|D_{n} u\right|^{p}\right) d x\right)^{(p-1) / p} \tag{5.5}\\
& \cdot\left(\int_{B_{22}}\left|\tau_{s,-h}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{1 / p},
\end{align*}
$$

for some positive constant C_{12} independent of h. Now we use the higher integrability result of Theorem 2 as stated in (5.0):

$$
\begin{equation*}
\left(\int_{B_{2 R}}\left(1+\sum_{i=1}^{n-1}\left|D_{i} u\right|^{p(p-1)}+\left|D_{n} u\right|^{p}\right) d x\right)^{(p-1) / p}=C_{13}<\infty . \tag{5.6}
\end{equation*}
$$

Let us apply Lemma 2.1:

$$
\begin{align*}
& \left(\int_{B_{2 R}}\left|\tau_{s,-h}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{1 / p} \leqslant \tag{5.7}\\
& \quad|h|\left(\int_{B_{3 R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{1 / p}=|h|\left(\int_{B_{R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{1 / p},
\end{align*}
$$

since $\eta=0$ outside B_{R}. Taking into account (5.3), (5.5), (5.6) and (5.7), we arrive at

$$
\begin{array}{r}
\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p}+\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \leqslant \tag{5.8}\\
\leqslant C_{14}|h|\left(\int_{B_{R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{1 / p}=(I I I),
\end{array}
$$

for some positive constant C_{14}, independent of h. Now, using the inequality $2 a b \leqslant$ $\leqslant \varepsilon a^{2}+b^{2} / \varepsilon$, that holds true for every $\varepsilon>0$, we have

$$
\begin{equation*}
(I I I) \leqslant \frac{C_{14}^{2}|h|^{2}}{\varepsilon}+\varepsilon\left(\int_{B_{R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{2 / p} \tag{5.9}
\end{equation*}
$$

The integral in the previous inequality is dealt with as follows:

$$
\begin{align*}
\left(\int_{B_{R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{1 / p} \leqslant & \left(\int_{B_{R}}\left|D_{s}(2 \eta D \eta) \tau_{s, h} u\right|^{p} d x\right)^{1 / p}+ \tag{5.10}\\
& +\left(\int_{B_{R}}\left|2 \eta D \eta \tau_{s, h} D_{s} u\right|^{p} d x\right)^{1 / p}=(A)+(B) .
\end{align*}
$$

Now we keep in mind the properties of the «cut off» function η and we use Lemma 2.1 in order to get

$$
\begin{equation*}
(A) \leqslant C_{15}\left(\int_{B_{2 R}}\left|D_{s} u\right|^{p} d x\right)^{1 / p}|h|=C_{16}|h|, \tag{5.11}
\end{equation*}
$$

for some positive constants C_{15}, C_{16} independent of h. On the other hand, recalling the
properties of η and using Hölder's inequality, we have

$$
\begin{align*}
& (B) \leqslant C_{17}\left(\int_{B_{R}}\left|\tau_{s, h} D_{s} u\right|^{p} \eta^{p} d x\right)^{1 / p} \leqslant C_{17}\left(\sum_{i=1}^{n} \int_{B_{R}}\left|\tau_{s, h} D_{i} u\right|^{p} \eta^{p} d x\right)^{1 / p} \leqslant \tag{5.12}\\
& \leqslant \\
& \leqslant C_{18}\left(\sum_{i=1}^{n-1} \int_{B_{R}}\left|\tau_{s, h} D_{i} u\right|^{p} \eta^{p} d x\right)^{1 / p}+C_{18}\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{1 / p} \leqslant \\
& \quad \leqslant C_{19}\left(\sum_{i=1}^{n-1} \int_{B_{R}}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x\right)^{1 / 2}+C_{18}\left(\iint_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{1 / p},
\end{align*}
$$

for some positive constants C_{17}, C_{18}, C_{19}, independent of h. We insert (5.11) and (5.12) into (5.10), we use the resulting inequality in (5.9) and we keep in mind (5.8): we get

$$
\begin{aligned}
& \left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p}+\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \leqslant \\
& \quad \leqslant \frac{C_{20}|h|^{2}}{\varepsilon}+\varepsilon C_{20}\left(|h|^{2}+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x+\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p}\right)
\end{aligned}
$$

for some positive constant C_{20}, independent of h and ε, so taking $\varepsilon=1 /\left(2 C_{20}\right)$, we finally get

$$
\begin{gather*}
\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \leqslant C_{21}|h|^{2}, \tag{5.13}\\
\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x \leqslant C_{21}^{p / 2}|h|^{p}, \tag{5.14}
\end{gather*}
$$

for some positive constant C_{21}, independent of h. Since $\eta=1$ on $B_{e} \subset B_{R}$, we can apply Lemma 2.2 and, after recalling (3.4) for the definition of $V\left(D_{n} u\right)$, we get (1.13), (1.14), (1.15), thus ending the proof.

REFERENCES

[1] E. Acerbi - N. Fusco, Regularity for minimizers of non-quadratic functionals: the case $1<p<2$, J. Math. Anal. Appl., 140 (1989), pp. 115-135.
[2] R. A. Adams, Sobolev Spaces, New York (1975).
[3] T. Bhattacharya - F. Leonetit, $W^{2,2}$ regularity for weak solutions of elliptic systems with nonstandard growth, J. Math. Anal. Appl., 176 (1993), pp. 224-234.
[4] T. Bhattacharya - F. Leonetti, Some remarks on the regularity of minimizers of integrals with anisotropic growth, Comment. Math. Univ. Carolinae, 34 (1993), pp. 597611.
[5] S. Campanato, Sistemi ellittici in forma divergenza. Regolarità all'interno, Quaderni Scuola Normale Superiore, Pisa (1980).
[6] S. Campanato, Hölder continuity of the solutions of some nonlinear elliptic systems, Adv. Math., 48 (1983), pp. 16-43.
[7] S. Campanato - P. Cannarsa, Differentiability and partial hölder continuity of the solutions of nonlinear elliptic systems of order $2 m$ with quadratic growth, Ann. Scuola Norm. Sup. Pisa, 8 (1981), pp. 285-309.
[8] F. De Thelin, Regularité de la solution d'une equation fortement (ou faiblement) non linéaire dans R^{n}, Ann. Fac. Sc. Toulouse, 2 (1980), pp. 249-281.
[9] F. De Thelin, Local regularity properties for the solutions of a nonlinear partial differential equation, Nonlinear Analysis T.M.A., 6 (1982), pp. 839-844.
[10] N. Fusco - C. Sbordone, Local boundedness of minimizers in a limit case, Manuscripta Math., 69 (1990), pp. 19-25.
[11] N. Fusco - C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations, 18 (1993), pp. 153-167.
[12] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Studies, 105, Princeton University Press, Princeton (1983).
[13] M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math., 59 (1987), pp. 245-248.
[14] F. Leonetti, Higher integrability for minimizers of integral functionals with nonstandard growth, J. Differential Equations, 112 (1994), pp. 308-324.
[15] P. Marcellini, Un exemple de solution discontinue d'un problème variationnel dans le cas scalaire, preprint Istituto Matematico «U. Dini», Università di Firenze (1987/88), n. 11.
[16] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 105 (1989), pp. 267- 284.
[17] J. Naumann, Interior integral estimates on weak solutions of certain degenerate elliptic systems, Ann. Mat. Pura Appl., 156 (1990), pp. 113-125.
[18] J. P. Raymond, Theoremes de regularité locale pour des systèmes elliptiques dégénérés et des problèmes non differentiables, Ann. Fac. Sc. Toulouse, 9 ((1988), pp. 381- 412.
[19] P. Tolksdorf, Everywhere-regularity for some quasilinear systems with a lack of ellipticity, Ann. Mat. Pura Appl., 134 (1983), pp. 241-266.
[20] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), pp. 126-150.

[^0]: (*) Entrata in Redazione il 21 luglio 1994.
 Indirizzo degli AA.: T. Bhattacharya: Indian Statistical Institute, 7SJS Sansanwal Marg, New Delhi 110 016, India; F. Leonetti: Dipartimento di Matematica, Università di L'Aquila, 67100 L'Aquila, Italy.

 This work has been supported by MURST and GNAFA-CNR.

