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Approximated Solutions of Equations with L 1 Data. 
Application to the H-Convergence 

of Quasi-Linear Parabolic Equations (*). 

ANDREA DALL'AGLIO 

1. - I n t r o d u c t i o n .  

We would like to present in this paper some results about elliptic and parabolic 
PDE's with L 1 data. In particular we are concerned about recovering a notion of 
uniqueness of the solution. We will also show some applications of these results to the 
theory of H-convergence of parabolic quasi-linear equations with sub-quadratic and 
quadratic growth with respect to the gradient (and indeed this is the problem which 
motivated our research). 

Let Y2 r R N be an open bounded set, N I> 2. We are interested in elliptic problems 
of the form 

A(u )  = - div a(x, Vu) = f + h 
(1.1) [ u(x)  = 0 on S t ) ,  

and in the corresponding parabolic problems 

i n t ~ ,  

8u _ d i v a ( x , t ,  V u ) = f + h  in Q = ~ g x ( 0 ,  T),  

(1.2) u(. ,  0) = w(.) in Q ,  

u(x,  t) = 0 on F = 8t9 x (0, T).  

Here the function a(x, ~): ~9 x RN- -~R  N (the function a(x, t, ~): t9 x (0, T) x RN--. 
R N in the parabolic case) is a Carath~odory function which is strongly monotone and 

has a growth of order p - i with respect to ~, p being a number such that p > 2 - 1 / N  
(p > 2 - 1 / ( N  + 1) in the parabolic case). The model of a we have in mind is a(x, ~) = 

= a(~) = I ~1 p - 2 ~, which corresponds to the p-laplacian: A(u )  = - .4 p (u). 
About the data, we will assume (in the elliptic case) that the right hand side of the 

(*) Entrata in Redazione il 28 maggio 1994. 
Indirizzo dell'A.: Universit& degli Studi di Firenze, Dipartimento di Matematica ~,Ulisse 

Dini., Viale Morgagni 67/a, 50134 Firenze, Italy. 
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equation in (1.1) is the sum of a ,`variational, part f e  W -1' p' (t~) = (Wol';(tg)) ' and a 
,`non-variational, part h e L 1 (t~). We remark that, for p ~< N, L 1 (t~2) is not embedded 
in W -I'p' (tg). For the parabolic problems, we will assume f e  LP'(0, T; W-I 'P ' (~)) ,  
h eL l (Q) ,  while the initial datum w will belong to LI(Q).  

The study of linear elliptic equations with L 1 data has been started by STAMPAC- 
CILIA (in [St]) by means of duality methods, while in the nonlinear case existence re- 
suits have been found by BOCCARD0 and GALLOUET in [BG]. More precisely they 
proved, for f =  0, the existence of at least a solution (in the sense of distributions) 
of problem (1.1) which belongs to the Sobolev space Wol'q(tg) for every q < ~ = 
= N(p - 1)/(N - 1). The proof of this result is achieved in two steps: first of all an a 
priori L q estimate on the gradients of the solutions of (1.1) is proved; then the func- 
tion h is approximated by regular functions, and the previous step is used to show 
that the solutions of the approximated problems converge to a solution of (1.1). How- 
ever there is no uniqueness of the solution in the space W~'q(t~) or even in 

W 1, q(t~) (see [Se] and [P] for a counterexample), but we observe that it is possi- 
~e~to select a solution which is ,,better than the others,, .since it is the only solution 
which is found by means of approximations: we will call it Solution Obtained as Limit  
of Approximations, or simply SOLA. 

A similar situation holds in the parabolic case. BOCC~DO and G~LLOUi~T (in [BG]) 
proved, if f =  O, the existence of a solution of (1.2) in the spaceLq(0, T; W~,q(~)), for 
every q < ~, where ~ = p - N / ( N  + 1) (this bound must be slightly modified for large 
p, see Section 4). We will show that the solution of problem (1.2) that one finds by the 
approximation method does not depend on the approximation chosen for the non reg- 
ular data. Moreover we will prove that if  a solution of (1.2) is regular enough (that is, 
if its gradient belongs to LP(Q)), then this solution is the SOLA of (1.2). This result, 
which is particularly usefill in the applications, is trivial in the elliptic case, since, 
from the equation, we immediately obtain h ~ W -~' p' (tg). On the contrary it requires 
some effort in the parabolic case, since we have little information on the regularity of 
the time derivative. 

We will be interested in applying these results to the H-convergence of quasi-lin- 
ear PDE's. Thus it will be useful to recall the definition and the basic properties of lin- 
ear H-convergence. For a > 0, fi > 0, let :~(a, fi; ~ )  be the class of matrices a(x) = 
= [ a i j ( x ) ] i , j = l  . . . . .  N, whose elements are L | (t~) functions, satisfying 

>1 al [ 2, 

for every ~ e R N, for a.e. x e ~9. 
Following the notation traditionally used in homogenization theory, we will con- 

sider a sequence {a~ }~E of matrices in g~(a, fi; ~9), s being the element of an in- 
finitesimal positive sequence E (the typical case in homogenization theory is a~ (x) = 
=a(x/e),  where a(y)eg~(a ,  fi; R N) is a periodic matrix with period [0, 1]N). 
To every matrix a~ we can associate the elliptic differential operator A~v = 
= - div (a~ (x) Vv). 
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DEFINITION 1.1. - We will say that the sequence {a~ }~E H-converge to a matrix 
a0 e g~(a, fi; tg), and we will write 

H 

a ~  - -~  a 0 , 

if for every f e  H-1 (to) the weak solutions u~ e H~ (~9) of the elliptic equations 

A ~ u ~ = f  in t9, (1.3) 

satisfy 

(1.4) u~----~Uo weakly in H~(t~), a~Vu~ ~aoVuo weakly in (L2(~2)) N , 

where Uo is the solution of Aouo =f  in to. 

The concept of H-convergence was introduced for symmetric matrices by SPAGNO- 
LO in [Spi], [Sp2] under the name of G-convergence. Later on, MURAT and TARTAR ex- 
tended the theory to nonsymmetric matrices (see [MT]). This type of convergence is 
the abstract generalization of the homogenization theory (see [BLP] and [SP]). One of 
the main results in this theory is the compactness of the class g~(a, fl; ~c2) with re- 
spect to the H-convergence. 

A difficulty one encounters when dealing with H-convergence is the fact that the 
convergence of u~ to Uo is in general only weak in H~ (to). This is a source of problems 
especially if one tries to study equations with additional nonlinear terms depending 
on the gradient, since the weak convergence does not allow to pass to the limit in 
these terms. To overcome this problem, a sequence of corrector matrices {p~ }~E is 
introduced. This sequence, which depends on to and {a~ } ~ z ,  satisfies 

p~--~I weakly in (L2(to)) ~2 , a~p~ --"ao weakly in (Le(to)) N~ , 

div(a~p~)-odiv(ao~) strongly in H- l ( tg ) ,  for every ~ e R  N , 

where I is the identity matrix. The columns of the matrices p~ are the gradients of sol- 
utions of appropriate elliptic problems. By means of these matrices it is possible to 
,(recover, in some sense the strong convergence of the gradients. More precisely MU- 
RAT and TARTAR proved that 

(1.5) Vu~ - p~ Vu0 --) 0 strongly in (L 1 (~,~))N. 

In Section 3 we will study the behaviour of SOLA's of linear equations with L 1 (to) 
data when the operators H-converge: the main result we will obtain is given by Theo- 

H 
rein 3.1, which states that, if a~ ~ a0, and h~ ~ ho weakly in L 1 (~9) then the SOLA's u~ 
of the equations A~u~ = f +  h~ converge weakly in wl 'q(to) (for every q < ~) to uo, 
SOLA of Aouo = f +  ho. Moreover we will show that a corrector result of the form 
(1.5) holds. 



210 ANDREA DALL'AGLIO: Approximated solutions of equations, etc. 

A similar situation holds for the H-convergence of parabolic operators of the 
form 

9v 3v div (at (x) Vv). t~ v = -~ + A~ v - ~t 

Let us consider the parabolic Cauchy problems: 

[ t~u~=f  in Q, [ $oUo=f in Q, 

(1.6) u~(x, o) = w(x) in t~, t uo(x, O) = w(x) in ~9, 

u ~ = 0  on F,  Uo=0  on F.  

For every f e L 2 ( 0 ,  T; H- l ( t~) )  and w eL2(tg) ,  each of the problems (1.6) has a 
unique solution in the space 

{ 3u eL2(O'T;H-1  } ~(0 ,  T; t)) -- veL2(O, T; HI(t~)) such that - ~  (t~)) . 

The following result extends to parabolic equations the properties stated for elliptic 
equations: 

g 

PROPOSITION 1.1 (see [CS], [BFM]). - Assume that a~ -~ao. Then, for every 
f e L 2 (O, T; H-1(~9)), and .for every w EL2(t~), the solutions u~, Uo of (1.6) satis- 
fy 

(1.7) u~--~Uo weakly in L2(O, T; HI(Q)),  

(1.8) Vu~-p~Vuo--~O strongly in (LI(Q)) N . 

The statement (1.7) basically says that the elliptic H-convergence and the parabol- 
ic H-convergence, which can be defined starting directly from problems (1.6), coin- 
cide(*). The corrector result (1.8) was proved in [BFM]. 

We will consider the asymptotic behavior of the SOLA's of problems of the 
form 

-5[-'+ A~u~ = f +  ~ in Q, 

(1.9) u~ (., O) = w(')  in D, 

u~(x, t) = 0 on F, 

under the assumptions that the linear operators A~ H-converge to Ao, and that h~ --* ho 

(*) It is important, however, to emphasize that things can be different if the matrices a~ 
which define the operators $~ depend also on t: in this case the equivalence between the parabolic 
H-convergence on one hand, and the elliptic H-convergence for every t ~ (0, T) on the other 
hand, does not hold: see, e.g., [CS], [Sp3], [ZKO]. 
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weakly in LI(Q). We will show that the SOLA's of (1.9) converge_weakly in 
Lq(0, T; Wol' q (~2)) (for every q < ~) to the SOLA of the corresponding limit problem. 
Moreover we will prove a corrector theorem for these equations. 

A vast class of problems related to H-convergence deals with parabolic quasi-lin- 
ear problems of the form 

f au~ 

- ~ -  - div(a~ (x)Vu~) + He (x, t, u~, Vu~) = f in Q, 

(1.10) u~ (., 0) = w(.) in ~2, 

u~ (x, t) = 0 on F, 

H 
where at --~ a0 and {H~ } is a sequence of Carath~odory functions. The typical question 
in this setting is: does the solutions u~ of (1.10) converge to a solution Uo of an equation 
of the same kind? Since the functions H~ depend on Vu~, the weak convergence of the 
gradients does not allow to pass to the limit in the nonlinear term. However, if a cor- 
rector result like (1.8) holds also for solutions of our quasi-linear equations, then we 
can show that, if u~ converges to u0 weakly in L2(0, T; H i (~2)), then Uo is a solution 
of 

f u~ div(ao(X)VUo) + H0(x, t, Uo, VUo) =f in Q, 8t 
u 0 ( ' , 0 ) = w ( ' )  in ~2, 

Uo (x, t) = 0 on F, 

where Ho(x, t, s, ~) is the weak Ll-limit of H~(x, t, s, p~). In [BBM] this has been 
done for quasi-linear elliptic equations with quadratic growth for H~ with respect to 
the gradient. 

It is important to remark that, if the nonlinear term H~ depends on the gradient, 
then, even if H~ = H does not change with s, the limit function Ho can be different 
from H, as it can be showed by easy one-dimensional counterexamples. 

In Section 6 the corrector result for parabolic equations with L 1 data will be used 
to study the H-convergence of quasi-linear parabolic equations of the form (1.10), 
where the functions H~(x, t, s, ~) are Carath~odory functions with quadratic or sub- 
quadratic growth with respect to the variable ~. More precisely we will consider two 
different situations: -- the case in which the functions H~(x, t, s, ~) have sub-quadratic growth 
with respect to ~, and have the same sign as s, but without any growth restriction 
with respect to s (case of unbounded solutions); 

- -  the case in which the Hjs  have quadratic growth in ~, plus some regularity 
hypotheses on the data which assure that the solutions of (1.10) are bounded. 

The key of the proof is the extension to quasi-linear equations of a corrector re- 
sult. The method that we will use to prove such a result is based on the result about 
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SOLA's, since a solution of problem (1.10) can be considered, in particular, as a sol- 
ution of the equation 

9--T-v + At v = f -  H~ (x, t, u~, Vu~), 
at 

in which the r.h.s, f -  H~(x, t, u~, Vu~) belongs to LP'(0, T; W-I'P'(Y2)) + LI(Q). 
A different approach to the problem of uniqueness of solutions of elliptic equa- 

tions with L 1 data has been studied in [BBGGPV] by defining an entropy solution. 
During the writing of this paper we were informed that LIONS, MURAT and BLAN- 
CHARD have studied the problem of uniqueness for elliptic and parabolic equations 
with L 1 data, through the notion of renormalized solution (see [LM], [Mu] and 
[B1M]). 

This paper originated as a chapter of the author's Ph.D. thesis [D]. The plan of the 
paper is as follows. In Section 2 we will introduce the SOLA's of elliptic equations and 
prove that the map h ~ u which associates to every datum h the corresponding SOLA 
in continuous from Ll(t~) (endowed with the weak topology) to W~' q(~2) strong for 
every q < ~. In Section 3 we will deal with the behavior of the SOLA's with respect to 
the H-convergence of linear operators. In Section 4 and 5 the same scheme will be ap- 
plied to parabolic equations. Finally, in Section 6, we will give two applications of the 
theory to the study of the H-convergence of quasi-linear parabolic equations. 

Acknowledgements. The author wishes to thank LucIo I30CCARDO, LUIGI ORSINA 
and FRANCOIS MURAT. This research has been supported by the Italian Governement 
MURST 40% and 60% funds. 

2. - SOLA's o f  nonl inear ell iptic equations.  

In this section we will prove the existence and the uniqueness of a SOLA of an el- 
liptic equation with an L 1 datum, and will study its behavior with respect to the weak 
convergence of the datum. Let ~2 be a bounded, open subset of R N, N I> 2. We are in- 
terested in nonlinear elliptic equations of the type 

(2.1) A(u) = -diva(x,  Vu) = f  + h in tg, 

with homogeneous Dirichlet boundary conditions. Let p be a real number such 
that 

1 (2.2) 2 -  ~ < p ~ < N ,  

and let a(x, ~): ~2 • RN---~R N be a Carath~odory function (i.e., continuous with re- 
spect to ~ for a.e. x e Q, and measurable with respect to x for every $ e R N) such that, 
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for a.e. x e t), for every ~, y e R N 

(2.3) a(x, ~ ). ~ >1 al~l  p , 

(2.4a) (a(x, ~) - a(x, ~) ) ' (~  - ~]) >I a l l ~  - ~]l p i f2<- . .p<, .N,  

1 -,712 
(2.4b)(a(x, ~) - a(x, ~])). (~ - 77) >I a l  

(1 + Ill + 1,11) 2.p 

(2.5) ]a(x, ~)1 <~ k(x)  +f i l~]  p-1 , 

1 i f 2 - ~ < p < 2 ,  

where a, a I and fl are positive constants, and k(x) is a function belonging to L p' (~9) 
(p'  = p / ( p  - 1)). We point out that  these assumptions are satisfied, for instance, by  
the p-Laplacian operator  - A p  (i.e. in the case a(x, ~ ) =  a ( ~ ) =  I~IP-2~).  On the 
right hand side, we assume 

(2.6) f e W - ~ , p ' ( ~ 9 ) ,  h e L l ( ~ ) .  

REMARK 2.1. - Note that  i f p  > N we have L1 (t~) c W-I 'P ' ( t~) ,  and then the exis- 
tence of solutions for (2.1) follows from the classical results on operators acting be- 
tween Sobolev spaces in duality (see [L]); this explains the upper bound on p given by 
(2.2). As far as the lower bound on p is concerned, see Remark 2.2 below. 

In a general setting, the existence of solutions is guaranteed by  the following the- 
orem (see [BG]). 

THEOREM 2.1. - Let f =  0, h e g~(t~). Then there exists a solution u of  (2.1), with  
u e Wlo'q(Q) for  every q < ~ = N ( p  - 1) / (N - 1). 

REMARK 2.2. - The assumption p > 2 - 1 I N  implies N ( p  - 1) / (N - 1) > 1. More- 
over, assumption (2.5) yields a(x, Vu) e L1 (tg). I f p  ~< 2 - 1 /N ,  we have ~ ~< 1. In this'" 
case the solution is not in general in Wllo~ 1 (~9). A definition of a solution if p ~< 2 - 
- 1 /N ,  and the proof of its existence and uniqueness, have been given in [BBGG- 
PV]. 

In order to define a ,<good- unique solution (SOLA) of (2.1), we shall use the fol- 
lowing result. 

PROPOSITION 2.1. - Suppose that p >I 2. Let f i y e  W-I'P'(~r~), such that f - f e  
e L I ( ~ ) ,  and let h, Ft be two regular funct ion  (to f i x  the ideas, suppose that they be- 
long to L | (t~)). Let  us consider the solutions u, ~ of  

(2.7) A(u )  = f  + h ,  A(~)  = f +  h.  
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Then, for  every q < ~ = N ( p  - 1)/(N - 1): 

(2.8) llu - ~llwa,~(o) ~ ~ ( l l f - ? §  h - ZYIIL'(O)), 

where ~ is a positive funct ion  such that 

(2.9) l im ~ ( s )  = 0 .  
8 - + 0  + 

PROOF. - Let  us define, for k > 0, the function ~k(s) = min{( I s l  - k )+ ,  1} sign s 
(here t+ denotes the positive part  of t) and the set Bk = { x e  t~: k ~< I n ( x ) -  
- g(x) I < k + 1}. We use ~k(u  - g) as test  function in (2.7), and we use assumption 
(2.4a) to obtain 

a~ j" IV(u -~)l~dx ~ ~ I f - ? +  h -  #,I l~%(u -~)Idx ~ l l f - ? +  h -  ~IIL,(,,) �9 
Bk 

Then we continue as in[BG], Lemma 1, keeping track explicitly of J l ( f - ? ) +  h -  
- -  ]~IILI(Q) to show that  ( 2 . 8 )  holds. I t  is easy to see that  there exist two positive constant 
Cl and c2, depending only on a t ,  N, p, q, and ~9, such that  ~(s)~< cls 1/p if 
0 < s < c  2. �9 

If  2 - 1 / N  < p < 2, the proof of a result of the same type as Proposition 1.1 is a lit- 
tle more complicated. 

PROPOSITION 2.2. - A s s u m e  that 2 - 1 I N  < p < 2. Let fi ?, h, h, u, ~ as in Proposi- 
tion 2.1. Then, for  every q < ~ = N ( p  - 1)/(N - 1), we have: 

llu - ~II~0',~(,~) ~ A(llfllw-~,,'(~), II?II~-~,,'(~), llhllLl(~), llhllL1(o), l i f t - ? )  + h -  ~IIL~(~)), 

where A is a funct ion  (that depends also on a, a 1, q, P, N,  t'2) that tends to zero when 
II(f - ? )  + h - h~li~(o) tends to 0 and all the other norms  remain  bounded. 

PROOF. - First  of all, using hypothesis (2.3) and the technique of[BG], we 
obtain: 

(2.10) IlVulI(L~(O))N ~ ~ ,  llV~ll(.(o))~ ~ Cl, 

for every q < ~, where cl is a constant depending on a,  N, p, Ilfllw 1, (~), I l f l l ~ - l .  (~), 
Ilhllii, Ilfitllil. On the other hand, ff we use the same test functions as in the preceding 
proof, by assumption (2.4b) we obtain 

IV(u - ~7)t2 dx <- II(f - ? )  + h - hNLl(a) , 
~11 (I + lVul + lW l )  ~-~ B~ 
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and so, by the Hblder inequality, 

IV(u - ~7)lq 
- f (1 + IVui + ]Vu~ q(~-')/~ (1 + IVul + IV~l)q(~-")l~dx <- f iV(u u)lqdx=8 

Bk k 

,'b I lL  1(57) 

B 

Therefore, using the Hblder inequality for series and (2.10) 

(2.11) IIV(u-~)l~dx= 2 J l V ( u - ~ ) l q d x -  < k=O 
Y2 B k 

k~0[meas (Bk)] (p - q)/p ~< 

[ +o[meas(B k ]p/2 ,'711~4~ Y_, )](p q)/~ -< oil(f- f )  + h - ~) k = 

where O is a quantity which is bounded ff lifliw-~,p,(~), II?lIw-l.p,(~), NhllL'(~), and 
ll]~llL-,(~), are bounded. Let  us consider the series on the right hand side of (2.11). I f  
q* = N q / ( N  - q), we have 

[meas(Bk)](p-q)/p <. [measBoj(p-q)/p + ~ _, , 1 
k = o k = I k t q * c p  - q))/P 

- q)/p 

~< [meas t~] (p - q)/p + 1 l u - ~1 q* dx 
= 1 k ( q * ( P - q ) ) / q  

The series on the right hand side is convergent because the assumption q < ~ = 
= N(p  - 1)/(N - 1) is equivalent to q* (p - q)/q > 1. Hence (2.11) and the Sobolev in- 
equality imply 

(2.12) f IV(u - u ) l q d x  <~ 
~7 

t -- ,VHLI(~ ) 

Now it is easy to check that  q * ( p -  q)/2q < 1, and so I iV(u-  ~)ll(Lq(9))~ is bounded. 
Suppose now that  Ilfllw-l.p,(~), [i?l[w-l,p'(ffj), IlhllLl(9), and II]~IIL-I(~) are bounded by 

a constant, so that  we can drop O. From (2.12), and the inequality s ' ~< s + 1 (s > 0, 
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~7 = q* (P - q)/2q), we obtain 

I , V ( u - u ) , q d x  <- e4H(f - f )  + h -  h'lqL/~2(~)[2 + I , V ( u - u ) , q d x } .  
Q 

Then. if N( f -Y)  + h - ]~IIL~(Q) is small enough, we have 

~,11/2 

and this concludes the proof, n 

THEOREM 2.2. - I f  f ~ W - 1, p' ($9), h e L 1 ($9), there exists a unique SOLA u of (2.1), 
with u in W~'q($9) for every q < (1 = N(p - 1)/(N - 1). 

PROOF. - Let {hn}n~N be a sequence of regular functions such that h~ converges to 
h strongly in L1($9), and let u~ e W 1' P ($9) be the solutions of the equations A(u~) = 
= f + ha. By Proposition 2.1 (or Proposition 2.2 if p < 2), applied with f = f it is easily 
seen that {Un}~N is a Cauchy sequence in W]' q ($9), for every q < ~, and that its limit 
in the same space is a solution of (2.1). 

Moreover, this solution does not depend on the approximating sequence {h~}. 
Actually, if {hn}n~ N and {]~}n~N are two sequences of regular functions such that 
h~--->h, h~-oh strongly in L1($9), and if u~ and ~ are the solutions in WI'p($9) of 
A(u~) = f +  h~, A(~a) = f +  ]~ respectively, then {u~}, {Un} converge respectively to u 
and ~, which are solutions of (2.1). From Proposition 2.1 (or Proposition 2.2), applied 
with f = f w e  easily obtain that u ~ -  ~.---) 0 strongly in W~'q($9). Hence, u = ~ .  

Let us suppose that the right hand side of (2.1) is decomposed in a different man- 
ner, i.e., that: 

(2.13) f +  h = f  + h in 0~'($9), 

with fi yeW-I 'P ' ($9) ,  h,I~eLl($9).  We remark that from (2.13) it follows that 
f - f =  h - h e W-I'P'($9) A L1($9). Let {ha}~N and {fle~}~N be two sequences of 
regular functions such that h~ -~ h, hn --~ h strongly in L 1 ($9). As usual, let us consider 
the solutions u~, ~ �9 W~'P($9) of the equations A(uO = f +  h~, A(~n) = f +  ha re- 
spectively. As it has been shown, un and ~ converge in Wo 1' q($9) to u and ~ respect- 
ively, solutions of (2.1). As before, we apply Proposition 2.1 (or Proposition 2.2) to 
prove that u = ~7. �9 

The following result tells us that a solution which is ,,regular enough, is the 
SOLA. 

THEOREM 2.3.-  Let f e W -I'p~ (Q), h e L 1  ( Q ) ,  and let u be a solution of (2.1); sup- 
pose that u e  W~'P($9). Then u is the SOLA of (2.1). 

PROOF. - It is enough to observe that ueWlo'P($9) implies h=A(u)- feW-l 'P ' ($9) ,  



ANDREA DALL'AGLIO: Approximated solutions of  equations, etc. 217 

and therefore we are in the variational setting. �9 

Assume now that f e  W-I'P'(tg), and that {h~}~E is a sequence of Ll( tg)  func- 
tions. Let u~ be the SOLA of 

N(p  - 1) 
(2.14) A ( u ~ ) = f  + h~ , u~e W~'q(Q) for every q < (t = N - 1  

In the following theorem we will prove a continuous dependence result with respect 
to the weak-L ~ convergence of the right hand side of (2.14). 

THEOREM 2.4. - I f  h~-~ho weakly in L~(~9), then 

u~---~uo strongly in W~'q(t~), for  every q < ~, 

where uo is the SOLA of A ( u o ) = f  + ho. 

PROOF. - For the sake of simplicity, let us suppose that p ~> 2. If 2 - 1IN  < p < 2 
the proof is the same, the only difference being the use of Proposition 2.2 instead of 
Proposition 2.1. For k ~ N, define the function 

(2.15) 
k i f s > k ,  

Tk(s) = s if Isl <<. k ,  

- k  if s <  - k ,  

and consider the solution u~e  W~'P(~2) of A ( u ~ ) = f +  Tk(h~). Since, for every k, 
Tk (h~) E L ~ (~9) r W -1' p' (tg), for every s and k there exists a unique solution u~. Now 

Z and u~, we see that Ilu~- u~lIw~,~(~)<~ take 1 > k. Applying Proposition 2.1 to u~ 
<<- ~(llT~(h~) - Tk(h~)]lL~(~)) for every q e (1, ~). On the other hand, we can write 

{Ih~l >k} 

Since the functions he are equi-integrable, the right hand side can be made arbitrarily 
small, uniformly with respect to e, if we choose k large enough. It follows that Ilu[ - 
- u~llw],q(~) ~< ~(~k), where {rlk} is a sequence of positive numbers that converges to 

k zero as k tends to infinity. If we let 1 tend to + ~,  we obtain []u~ - u~ IIwo~.~(~) ~< ~(~]k). 
By (2.9), this implies that the convergence of u~ to u~ in W0 ~' q (~)  as k ~ + ~ is uni- 
form with respect to ~, that is 

lira sup  Jlu  - u:flw  o .  (2.16) k-~ + ~ 

Since ITk(h~)l <k ,  for every fixed k it is possible to find a subsequence of 
{TIr still denoted by the same symbol, and a function ~'k such that 

s--*0 

(2.17) Tk(h~) -- y~ *-weakly in L ~ (~ ) .  
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Moreover, by means of a diagonal argument, we can assume that (2.17) holds for every 
k e N. An immediate consequence of (2.17) is that 

(2.18) 
u k  ~ ---~ 0 > u0 k strongly in W01'P(~), for every k e N ,  

where u0 k is the solution of A(uo k) = f + Y k. We remark that, in general, we do not have 
Yk = Tk(ho). However, ~k ---) h0 strongly in L 1 ($9) as k --) ~. Indeed, by the weak lower 
semicontinuity of the norm, we have: 

I]ho - skliL~(~)<~ liminf IIh~ - Tk(h~)i]L~(~)<- sup [ ih~l <~ ~]k. 
e-->O s~E IIhEiJ> k} 

By (2.18), since u0 is a SOLA, this implies that 

(2.19) u~k-~+>~u o strongly in W]'q(t~), for every q < ~. 

Now we can write 

By (2.17) and (2.19), the first and third term can be made arbitrarily small if we choose 
k large enough. Once we have fixed k, we will use (2.18) and the fact that q < p to 
choose e so that the second term is as small as we want. The proof of the theorem is 
then finished. �9 

3. - H - c o n v e r g e n c e  o f  SOLA's  o f  l inear  e l l ipt ic  e q u a t i o n s .  

In this section we will study the behavior of the SOLA's of linear elliptic equations 
with L1(~9) data, with respect to the H-convergence of the operators. In this section 
we will restrict ourselves to the linear case, and will therefore assume PH = 2. We will 

assume that {a~} is a sequence of matrices in g~(a, fl; t~) such that a~ -~a0 (see Sec- 
tion 1). Let p~ be the correction matrices associated with a~. We assume that 

(3.1) IIp~iI(L~(~))N ~ ~ el .  

This regularity hypothesis, which has been considered also in[BoM1],[BD], 
and [BBM] and is satisfied, for instance, in the case of periodic homogenization, can be 
weakened by using a different corrector technique, as in [BBDM]. We have the fol- 
lowing result. 

H 
THEOREM 3.1. - Let f e H -1 (s and suppose that a~ ---~ao and that {hs}s~E is a se- 

quence of L l ( ~2 ) functions such that h~---~ho weakly in L I ( ~ ). Let  u~ and Uo be re- 
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spectively the SOLA's of the equations A~uE = f + h~, Aouo = f +  ho. Then 

~---~ 0 

(3.2) u~ " Uo weakly in W~' q (Q), 

(3.3) Vu~ - p~Vuo A_~2> 0 strongly in (Lq(t))) y , 

for every q < (t = N / ( N  - 1). 

PROOF. - Let us define Tk(s) as in (2.15), and consider the solutions u~ e Ho ~ (~9) of 
the equations At u~ = f + Tk (h~). Using Proposition 2.1 as in the proof of Theorem 2.4, 
we obtain 

(3.4) u~k-~ +) ~ u~ strongly in H~ (t~), unifol~nly with respect to s .  

Then we extract a subsequence such that Tk (h~) converges *-weakly in L ~ (~9) to a 
function ~'k for every k ~ N. Therefore by the standard properties of the H-conver- 
gence, for every fLxed k we have 

~--~0 

(3.5) u~ -~ Uo k weakly in wl 'q( tg) ,  

(3 .6)  V u ~  - p~ V u o  k ~-~ o > 0 strongly in ( L 1 ( 5 2 ) )  g , 

where Uo ~ e Ho 1 (~9) is the solution ofAouo k = f +  ~'k. Moreover, as in the proof of Theo- 
rem 2.4, one can check that Yk--*ho strongly in LI(tg)  as k - *  + ~ .  This yields 

kk.---) + ~  
(3.7) Uo > Uo strongly in Wol'q(tg). 

Let r e W -1' q' (~9). We can write 

+ I(~, u ~ -  ~ 

By (3.4) and (3.7) we can choose k so large that the first and third term of the right 
hand side are arbitrarily small. Once we have fixed k, we can use (3.5) to conclude that 
the second term tends to zero as s tends to zero. Hence, (3.2) is proved. The proof of 
(3.3) is similar. Indeed we can write 

tlVu~- p~ VUo I[<L,<.))~-< IlVu~- Vu~ ]1<5~(.)>~ + 

+ IlVu~ - p.Vu0~ll(~,(.))~ + IIp.ll(~o(.))~llVuo ~ - VUoll(.(~))~ �9 

Hence, using (3.1), (3.4), (3.6) and (3.7) one shows that Vu~-  p~Vuo--> 0 strongly in 
(LI (~) )  N. Since IIVu~ - p~ VUo [l(Lq(O))N iS bounded for every q < (], (3.3) holds true, and 
Theorem 3.1 is proved. �9 
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4. - SOLA's  o f  n o n l i n e a r  parabol ic  e q u a t i o n s  w i t h  L 1 data. 

The aim of this section is to extend to parabolic equations results of the same kind 
of those proved for elliptic equations in the preceding sections. Let ~2 c R N be a 
bounded, open set, N I> 2. Let T be a positive, real number. We will denote by Q the 
cylinder ~2 • (0, T), and by F = a~2 • (0, T) the lateral surface of Q. If t e (0, T) we 
will define Qt as the cylinder ~9 • (0, t). We will suppose that p is a real number such 
that: 

1 N ( N  + 2) 
(4.1) 2 < p ~< 

N + I  N + I  

(see Remarks 4.1 and 4.2 for an expanation of these bounds). 
Let a(x, t, ~): t) • (0, T) • RN ~ R N be a Carath~odory function such that, for 

almost every (x, t~ e Q, for every ~, ~] e R N, 

(4.2) a(x, t, ~). ~ >i a I ~1 p , 

(4.3a) ( a ( x , t , ~ ) - a ( x , t ,  7?)) . (~-~?)>~al l~-y lp  if 2,.<p < + ~ ,  

(4.3b) (a(x, t, ~) - a(x, t, ~7))'(~ - ~) >I al 
(1+ + I l) 

1 
i f 2  N + l < P < 2 ,  

(4.4) la(x, t, ~)1 <<- K(x, t) + fil~l p - l ,  

where a, a l  and fi are positive constants, and k(x, t) is a function belonging to 
LP'(Q). 

As in the elliptic case, we define the differential operator A(u) = - d i v a ( x ,  t, Vu). 
We are interested in the study of parabolic problems of the following type: 

- ~  + A(u) = f + h in Q, 

(4.5) u(. ,  0) = w(.), 

u(x, t) 0 on r .  

We will assume the following hypotheses on the data f, h, and w: 

f~LP ' (0 ,  T; W-I'P~($2)), h ~ L I ( Q ) ,  w e L l ( Q ) .  

It is well known that if the right hand side of equation (3.5) belongs to 
LP'(0, T; W-I 'P ' ( t )))  and the initial datum w is in L2(~)  then there exists a unique 
solution u belonging to L p (0, T; W01' p (~9)) (see [L]). On the other hand, if the data are 
L 1 (tg) functions, or even bounded Radon measures, existence results for these non- 
linear problems have been proved by BOCCARDO and GALLOUET in [BG]. In that paper 
it is proved (in the case f = 0) that, if h and w are bounded Radon measures resp. on Q 
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and ~2, then there exists a solution u of (4.5) such that 

(4.6) N ueLq(O, T; Wl 'q(~))  for every q < ~ = p  N +  1 " 

REMARK 4.1. - We note explicitly that the condition p > 2 - 1/ (N + 1) implies that 
p - N / ( N  - 1) > 1, so that we always have ~ > 1. 

REMARK 4.2. - In [BG], as in the proof of Proposition 4.1 below, the Sobolev embed- 
ding WI' q (~9) r (~9) (where q* = N q / ( N  - q)), which holds for q < N, is used. I f p  
is larger than N ( N  + 2)/ (N + 1), then p - N / ( N  + 1) > N, and so the condition q < N 
it is not automatically satisfied. However, in this case, using the embedding 
W01' q (~2) r  ~ (tg) if q > N, one could repeat every proof changing the bound q < p - 

- N / ( N  + 1) with the (slightly stronger) bound q < (p - 2 + V ~ +  4)/2. Hence, for- 
mula (4.6), and all the statements below, can be modified removing the upper bound 
on p in (4.1) and choosing 

= min {p 
N + I '  2 " 

Anyway, all we will need to remember about ~ is that ~ > 1 and that p > ~ > p - 1, so 
that, by means of (4.4), a(x, t, Vu) e (LI(Q)) N. 

As in the elliptic case, we are interested to the definition of solutions as limit of 
approximations, or SOLA's. The first step is to give the parabolic counterpart of 
Propositions 2.1 and 2.2. 

PROPOSITION 4.1. - Let fi  f e L p' (0, T; W -~'p' (tg)) be such that f - f e L 1 ( Q). Let h, 
h, w, ~ be regular datc~ and define u, ~ as the solutions of problems (4.5) and 

(4.7) t 3~ + A ( ~ ) = f + h  
O) = ) , 

~(x, t) 0 on F, 

in Q, 

respectively. Then, for every q < 

J[V(u - < A ,  

where A depends on II(f - f )  + h - hllLl(Q), llW-- WlILI(~), IIfHLP'(O,T; W-I,P'(~)), 
tt?HLP'(O,T; W 1'P'(~9)), Ha]ILl(Q), H]~HLI(Q), ]lWllLl('), ]1~1[L1(9), a, a i ,  N, p, q, and Q. 
The dependence of  A on the various norms is such that, i f  II(f - ] )  + h - fit]lLl(Q ) + 
+ ]Iw - wl[i~(~) tends to zero, and all the other norms are bounded, then A converges 
to zero. 
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PROOF. - We follow the method of [BG]. Let  k > 0, and consider the truncation 
8 

functions Tk(s) defined as in (2.15), and the function ~ 1 ( s ) =  ~ T l ( o ) d a .  For  
0 

v e (0, T), we use the function T1 (u - ~7)X(0, ~)(t) as test  function in (4.5), (4.7); we eas- 
ily obtain 

I ~ l ( (U  - -  U)(X, v))dx - I ~ l ( ( w  - ~ ) (x ) )dx  + 
Y2 

t 
+ | [a(x, t, Vu) - a(x,  t, V~7)]V(u - ~ ) d x d t  = 

Bo N Q~ 

= I ( f - ~ f +  h - h) T l ( u  - ~ ) d x d t  <~ l l f - Y +  h -  fitlIL~(Q ) , 
Q~ 

where, for k �9 N, we have defined Bk = {(x, t) �9 Q: k <~ I(u - ~)(x, t) I < k + 1}. By 
means of hypotheses (4.3a), or (4.3b), and since I s l -  1/2 ~< ~1(s)<~ ]sl,  we ob- 
tain: 

1 
II(u - ~)( . ,  V)IIL~(~ ) <~ IIf -- y + h - hIIL~(Q) + IIW -- WlIL~(a) + ~ m e a s t g .  

Since this estimate holds for every v e (0, T), if we define ~ = I I f - y +  h - hIILI(Q) + 
q - I I W -  ~b~l]Ll(9), we can write: 

(4.8) Ilu -UNL~(O, T; L~(Q))~< Q + l m e a s t g .  
2 

If  we choose cfk (u - ~) (defined as in the proof of Proposition 2.1) as test  function, we 
obtain: 

I ~fl k ((u - ~)(x,  T))  dx  - i F k ((w - ~) (x) )  dx  + 
~2 Q 

+ I[a(x ,  t, Vu) - a(x,  t, V~)]-V(u - ~ ) d x d t  <<. Hf-2~+ h - / ~ L ' ( Q ) ,  
Bk 

8 

where we have defined ~flk(s) = I cpk(a)da.  Since 0 ~< ~k(s)  ~< lsl ,  using again (4.3a), 
or (4.3b), we get o 

(4.9) a 1 ~ I V(u - ~) I p dx dt <~ ~ if p ~ 2,  
Bk 

r I V(u - ~7) 12 1 
(4.10) a l  J - -  < p  < 2 (l  + l ~ , l  -~ lV~l )e_p  d x d t  <~ _ i f 2  N + I  

Bk 
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If  p I> 2, from (4.9), by the HSlder inequality, we obtain 

~-ov 

i i V ( u - u ) i q d x d t =  f i V ( u - u ) i q d x d t  + Z I IV(u-u)iqdxdt< 
k = l  

Q Bo Bk 

-{-oo 

<~ a ~ q/p (meas Q)( p - q)/p Q q/p + a ~ q/P Q q/p ~, (meas Bk) (p - q)/P ~< 
k = l  

<. clQ q/p 1 + k=l ~" k~(P-q)/p I u - ul dxdt  , 

where r = (N + 1) q/N. Let  us study the right hand side. By means of the HSlder in- 
equality for series: 

+~ 1 [ !  ~,rdxdt] (p-q)/p [ j  ](P-q)/P[;~ I ] q/p 
k r ( p _ q ) / p  }U -- <- ]U -- ~] 'dxd t  = kr(p_q)/p . 

k = l  B 

By the hypotheses on r and q, we easily obtain that  r(p - q)/q > 1, so that  the latter 
series is finite. Hence 

(4.11) {[ r]pq 1 IV(u-~)lqdxdt<<.c2~ q/p 1+ I ] u - u l  dxdt  
Q Q 

Since 1 < r < q*, the interpolation inequality implies that, for almost every 
t ~ (0, T), 

, t ~lll-e II(u - u)( ' ,  t)llL~(a) <<- I](U -- ~)(',  t)ll~(~)ll(U -- U)(" J,rL~'(~) , 

where 0 �9 (0, 1) is such that  1/r = 0 + (1 + O)/q*. By simple calculations, rO = q/N, 
r(1 - 0) = q, so that  

T 

t~ lrr(1 - o) In - ~1 r d x d t  .< ~ H(u - ~ ) ( . ,  t)ll;~(~) fl(u - ~ ) ( ,  , , , . . (~)  ~t -< 
Q o 

T 

~< II(u - ~)llq/N(o. T; L~(Q)) f I](U -- ~7)(', t)llqLq.(~)dt. 
o 

By (4.8) and the Sobolev embedding we deduce: 

f l u -  ~]*dxdt ~ c3(Q + 
Q 

meas~)q/N~2 ] V(u  - ~ )  ] q dx dt. 
O 
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Inequality (4.11) can be rewritten as 

iiV(u_~)lqdxdt<~eaoqlp[1T(Q+ measff2)(q(p-q))/Np [ i V ( u  _ ~)lqdxdt](p-q)lp] 
- - - 7 - -  I " Q Q 

Since (p - q)/p < 1, the left hand side is bounded. Moreover, if ~) is small enough, we 
have 

I l V ( u - ~ ) l q d x d t  <~ cseq/p, 
Q 

where c5 is a positive constant that depends on Q, a 1, N,  p, q. This concludes the proof 
of Proposition 4.1 in the case p >I 2. 

If 2 - II(N + 1) < p < 2, the proof is slightly more complicated. As first step, 
using the techniques of[BG], we obtain for u and ~, 

(4.12) llVull(.(Q))~ < c6, tlwlI(.(Q))N ~< c7 for every q < ~, 

where c6 is a positive constant that depends on liflIL~'(0, T; W-I,~ '(~)), llhllL~(Q), IIWlILI(,), 
Q, a, N, p, and q, while c7 depends on the norms off, h and ~ in the same spaces. Using 
(4.10) and (4.12), we have 

IV(u - U ) l  2 (1 + IVul + IVui)q(2-P)ledxdt <<- 
I (1 + IVut + Iv-~q(~-,)/~ I iV(u-u) l  qdxdt = . . . . .  Bk k 

<. 
I ( 1  Bk 

I V(u - ~) 12 

+ IVul  + I V ~ l )  ~-~ 
dx dt ] q/2 I (1 + I Vul + I V~l) q(2- p)l(2- q) dx dt] (2 - 

Bk 

q)/2 
<. 

I (1 + I Vul + I V~l) q(2- p)l(2- q) dx dt] (2 
Bk 

- q)/2 

and, going on as in the proof of Proposition 2.2, 

Q 

By (4.12), the quantity ~ (1 + I Vul + I Vgl)qdx dt is bounded by some positive con- 

stant O, depending on q IlfilL" (o, r; W-I,p'(~)), It]IIL"(0, T; W-l,,'(a)), IIhHLI(Q), IIhllnl(o), 
IiWl[nl(~), and ]]?~HLI(Q), SO that 

[ + ~ ]p/e 

Q 

The series that appears in the right hand side can be studied exactly as in the ease 
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p I> 2, obtaining 

[k~o[measBk](p ] p/2 - (q(P-q. /~- +| -q)/P ~ Clo(1 + ilu :,.l(v(p-q))/2N I t V ( u  - ) = -- eCllL ~ (0, T; L~(Q)) " 

By (4.8), this implies: 

l)V(u - u))I~Lq(Q)) N <~ cn O~ q/2 (1 + (1 + e) (q(p - q))/2N ])V(u -- ~7 ~ H (q(p - q>>/2~ ]ll(Lq(Q)y �9 2 .  

Since q ( p -  q)/2 < q, I ]V(u-  ~)II(Lq(Q)# is bounded by a constant (depending on 
] I X N / .  <o, T; w -1,p' (if2)), I[?HL p' (o, T; W -1,p' (if2)), [Ih]li  I(Q),  I [hI[LI(Q),  I I W H L I ( . ) ,  [ ] W H L I ( . ) ,  a ,  a l ,  N, 
p, q, and Q). If  ~) is small enough, and all the other norms are bounded, then 
HV(u ,  ~)[I(Lq(Q)) N <~ c~2V~, and this concludes the proof of Proposition 4.1. �9 

THEOREM 4.1. - There exists a unique SOLA u (which belongs to 
Lq(O, T; W~' q(tg)) for every q < ~) of problem (4.5). 

PROOF. - Consider two sequences (h~}~ ~ and {w~}~N of regular functions such 
that h~---)h strongly in LI(Q), w~---)w strongly in LI(Q).  For n e N  let 
u . e L P ( 0 ,  T; WI'p(~9)) be the solutions of problems 

(4.13) f aun 

+ A(un) = f + hn 

un(' ,  O) = w~(.), 

U n (X ,  t) = 0 on F. 

inq,  

Applying Proposition 4.1 to these problems, we deduce that the sequence { U n }  n EN is a 
Cauchy sequence in W 1' q (Q), for every q < ~. Hence u~ converges in this space to a 
function u, which is a solution of problem (4.5). Indeed, it is easily seen that u satisfies 
the equation in the sense of distributions in Q (and obviously satisfies the boundary 
condition on F). To pass to the limit on the initial condition, we recall the estimate 
1]UnlIL~(O,T; L1(~2)) ~ el, which implies IlU~llL~(O,T; W-I,.(~)) <~ C2, for every r < N / ( N  - 
- 1 ) .  On the other hand, by (4.13) we obtain 9Un/at = f +  h ~ -  A(u~), and so 

II II Hu~(t + (5) - u~(t)l]w-l,~(~) = f ~ (s)ds 
W-I ,~(~)  t 

<<. 
t + ~  

I (llf(s)llw-l'~(~) + IIh~(s)llw-l'r(~) + IIA(u~)(s)tlw-l"r(~))ds" 
t 

If we choose r < q/(p - 1) (note that this implies that r < p', r < N / ( N  - 1)), and use 
hypothesis (4.4), then the last integral can be made small (uniformly with respect to n 
and t) if 5 is small. It follows, by a generalization of the Ascoli-Arzel~ theorem (see, 
e.g., [Si]), that {Un}~N iS relatively compact in C([0, T]; W-l'r(~9)); hence us con- 
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verges to u in this space, so that  un(. ,  0) tends to u( . ,  0) in W-I ' r (Q) ;  this implies 
that u satisfies the initial condition u( . ,  0) = w(.). 

Now, let {ft~}~N and {w~}~N be a different approximation of h and w respect- 
ively. As we have shown before, the solutions ~7~ of the parabolic problems with data 
fltn, ~ ,  converge in Lq(0, T; W0~' q (t~)) to a solution ~ of (4.5). Applying Proposition 
4.1 to Un - ~n, we have that Ilu~ - ~nllLq(O, T; W], q(~2)) ~ 0, and so u = ~. If  we assume to 
have a different decomposition of the right hand side of equation (4.5), i.e., if f + h = 
= f +  h, wheref,97e LP' (0, T; W-~' P' (tg)), and h, h e  L~ (Q), the solution found by any 
approximation is again the same, as it is shown by reasoning as in the proof of Theo- 
rem 2.2. [] 

Our next step, which is of fundamental importance for the applications, consists in 
proving that a solution of (4.5) which belongs to LP(0, T; W]'P(~2)) is the SOLA of 
(4.5). The proof of this fact is more complicated in the parabolic case than in the ellip- 
tic one, mainly because the time derivative 3u/at of a solution does not belong to any 
,,classical, dual distributional space, since (as it can be seen from the equation) it is 
the sum of a term belonging to the dual space L p' (0, T; W -1' p' (t~)), and a term in 
LI(Q). Due to this fact, it is not clear how to treat the term containing the time 
derivative au/gt after multiplication by a test function. Lemma 4.2 below will show 
what happens of that  term if Tk (u) is used as a test function. 

We begin by recalling an useful approximation lemma, that can be found in [BMP] 
(for p = 2) or [G] (in the general case); although in these works the initial datum w is 
supposed to be in LP($9), the proof works also under the weaker hypothesis 
W e Ll(t~). 

LEMMA 4.1. - L e t  u eLP(0,  T; Wol' P (~9)) be a function such that au/at = al + as 
in the sense of distributions, with aleLP'(O,T; W-I'P'(t~)), and a2eLl(Q);  
suppose that u(., O) = w(.) ~ L I(t~). Then there exists a sequence {u~}~N of func- 
tions such that u~, aUn/ateLP(O,T; Wlo'P(t~)) (note that this implies that 
us e C([0, T]; Wol'P(~9))), 

un---)u strongly in LP(0, T; W~'P(t~)), u~(. ,  0)--)w(.)  strongly in LI(~Q), 

aun L p, St = a ~ + a ~ e  (0, T; W-I'P'(Q))+LI(Q),  

where 

a~---->al strongly in LP'(0, T; W-I 'P ' (Q)) ,  a~-->a2 strongly in LI(Q). 

LEMMA 4.2. - Suppose that ueL~(O,T;  WI'p(tg)), and that 2u /a t=a l  + 
+ aeeLP'(O, T; W-I'P'(~r~)) -~-LI(Q), u( ' ,  0) e L I (~ ) .  Then ~k(u(', t)) ELI(Q)for 
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every t e [0, T], and 

§ f a Tk(u)dxdt = f f 
Q Q 9 

where O~ = f Tk (a) da and ((., �9 ))Q denotes the duality pairing between L p' (0, T; 
o 

W-I'P' (~)) and LP(O, T; W~'P(~2)). 

PROOF. - Let {u~} be the approximating sequence given by Lemma 4.1. Since u~ is 
,,regular>>, 

(4.14) ((a'~, Tk(u~)))q + f a~Tk(u~)dxdt = 
Q 

au~ f ~k(un(T))dx f ~k(u~(O))dx = ~ ~ t - ~  Tk(un)dxdt = i 

Q Q 

Since Tk(u~) --) Tk(u) strongly in LP(0, T; W~'P(t~)) and *-weakly in L ~ (Q), a~ --~ a l  
strongly in L p' (0, T; W -1' p' (~9)), and a~ --) a2 strongly in L 1 (Q), it is possible to pass 
to the limit in the 1.h.s. of (4.14). To finish the proof, we only have to pass to the limit in 
the r.h.s. To this aim we introduce the functions 

= [ r t))dx,  z(t) = [ r t ))dx.  zn (t) 
.r 

T2 Q 

We will show that z~ -~ z uniformly (and therefore pointwise) on [0, T]. First of all we 
observe that z~--) z strongly in L 1 (0, T). Indeed 

T T 

o 0 ~9 

and the last term tends to zero as n ~ + ~ by the Vitali theorem, since ~ k (u~) con- 
verges to q~k(u) in measure on Q, and [q~k(u,)-  ~k(u)[ ~< k([u,.[ + lul). Let 0 <~ 
~< t~ < t2 ~< T, and define Qtl, t2 -= ~ • ( t l ,  t2). For every n e N we have, since u~ is 
,~regular-: 

'Zn(t2)--Zn(tl)' = IJ[~k(Un(X, t2))--~k(Un(X, t l ) )Jdxl  = 

ifj i I = ~ (x, t)Tk(u~(x, t))dxdt <~ (a~(t), Tk(u~(t)))w-~,p'(9),w].~(~)dt + 
t t 

f ~ , 
+ la](x,  t)Tk(un(x, t))l dxdt <<. cllal I]LP (tl, t~; W-I,P'(9)) + k]]a~]}L~(Q~l,~)- 

Qtl, t2 
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Since the last term is small (uniformly with respect to n) if tl and t~ are close enough, 
the functions z~(t) are equi-continuous (and obviously equi-bounded, since z~(0)= 

= ~ ~k (u~ (0)) dx converges to ~ ~k (w) dx). By the Ascoli-Arzel~ theorem, the sequence 
~2 ~2 

{z~} is relatively compact in C([0, T]). This, together with the convergence in 
LI(0,  T), implies that z~ tends to z in C([0, T]). [] 

THEOREM 4.2. - Let  f e L ~' (0, T; W-I '  p' (s h e L 1 (Q), w e L 1 (~2), and let u be a 
solution of  (4.5) in the sense of distributions such that u e L p (0, T; W~' p (~2)). Then u 
is the SOLA of  (4.5). 

PROOF. - Once again, suppose that {h~}~N and {Wn}~N are sequences of regular 
functions that approximate h and w respectively. Let u~ be the solution of (4.13). As 
we have seen, u~ converges in Lq(O, T; w~'q(t2)), for every q < ~, to a function v, 
which is the SOLA of (4.5). We are going to prove that u = v. Formally, the idea is to 
use the function T1 ( u -  u~)x(0, ~)(t) as test function in (4.5) and (4.13). The function 
u - u ~  satisfies the hypotheses of Lemma 4.2, since u - u ~ e L P ( O ,  T; W]'P(~2)) 
by the hypothesis on u, and ( a / a t ) ( u - u ~ ) = - ( A ( u ) - A ( u ~ ) ) + ( h - h n ) e  
eLP'(O, T; W-I'P'(r2)) + L I ( Q ) .  By Lemma 4.2 

t 
- ( (A(u)  - A(u~) ,  T1 (U - u~)}}q~ + | ( h  - h~) T1 (u  - u~) dx dt = 

Q, 

= I 0 1 ( ( u - u ~ ) ( ~ ) ) d x -  f r  
Q ~2 

Since the fwst term is negative, we obtain 

I ~ 1 ((U -- U~)(V)) dx <<- I (h - h,,) T1 (u - u , )  dx dt + 
r2 Q~ 

+ I r  - w~)dx <<. [Ih - h~lln'(Q)+ I[W -- W~IILI(~) �9 

Hence ~-~+~lim I q~l ( (u-  u~)(v))dx = 0 for every r e  (0, T). It is easily seen that this 

implies that u~ converges to u in measure. Hence, u = v, and the proof is com- 
plete, m 

In view of the applications of the following section, our next step will be to study 
the behavior of the SOLA's of parabolic equations if the right hand side converges 
weakly in L 1 (Q). 
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THEOREM 4.3. - Letfe L p' (0, T; W -1' p' (t))), w e L 1 ( • ) ,  and suppose that {h~}~E 
is a sequence of functions in L I(Q) such that h~ --~ ho weakly in L I(Q). Let u~ and Uo 
be the SOLA's of the problems 

{ ~ +A(u~)=f+h~ 

u~(.,  O) = w( . ) ,  

u~ (x, t) = 0 on F, 

( 
in Q, I ~ t  + A(u~ = f + ho in Q, 

1 uo(', O) = w(.), 
uo(x,t)=O on F, 

respectively. Then u~--)Uo strongly in Lq(0, T; W~'q(Q)), for every q < (t. 

PROOF. - Let k e N, and consider the solutions u~ of the problems 

{ ~ t  +A(u~) =f+ Tk(h ~) 

u~ (., 0) = Tk (w)('), 

u ~ ( x , t ) = 0  o n F .  

i n q ,  

Since the right hand side of the equation belongs to LP'(0, T; W-I'P'(tg)), it is well 
known that there exists a unique solution u~ e L p (0, T; W 1' p (tg)) for every k. To con- 
clude the proof, it is enough to follow the lines of the proof of Theorem 2.4. [] 

5. - H-convergence  of  SOLA's o f  parabol ic  equat ions .  

Our next step will be, as announced, the study of the H-convergence of operators. 
We will assume that p = 2 and that the operators are linear. Moreover, we will re- 
quire that the matrices a~ that define such operators depend only the space variable x. 

H 
We define A~v = -div(a~(x)Vv), and suppose that at --~ao. Under these hypotheses 
the convergence (1.7) and the corrector result (1.8) hold. Aim of Theorem 5.1 below is 
to prove for the SOLA's an analogous result if the r.h.s, of the equation is weakly con- 
vergent in L I(Q). To prove this result, we will need an easy preliminary remark. 

REMARK 5.1. - If {fi}~E and {h~}~E are two sequences such thatfi--~fo strongly 
in L2(0, T; H-1(~9)), h~--~h0 weakly in Le(Q), and if w e L2(~9), then the solutions 
u~, uoeL2(O, T; H~(E2)) of 

f + A~ u~ = L + h~ in Q, - ~  + Ao uo = fo + ho 

u~(0) = w ,  %(0) = w ,  

in Q, 

satisfy u~-~Uo weakly in L 2 (0, T; H01 (~)),  Vu~-  p~ Vuo--) 0 strongly in L I(Q). To 
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prove this, we introduce the solutions z~ of the auxiliary problems 

t gz~ 
--~ + A~z~ = fo + ho in Q, 

u ~ ( O )  = w .  

By Proposition 1.1, z~ --~ Uo weakly in L e (0, T; Ho 1 (tg)), and Vz~ - p~ Vuo -~ 0 strongly 
in (LI(Q)) N. Since u~ - z~ converges to zero strongly in L2(0, T; H~(~)) ,  our state- 
ment is proved. 

THEOREM 5.1 . -  Let feL2(O, T; H-l(t~)), W ~Ll($r~), and let {h~}~E be a se- 
quence o f functions in L 1 ( Q) such that h~ --~ ho weakly in L 1 ( Q). Assume that { a~ } ~ ~ E 
is a sequence of matrices in g~(a, fl; ~ )  which H-converges to a matrix ao. Let p~ be 
the correction matrices for a~, and suppose that IIp~H(L~(Q))~ ~ < C. Let u~ and Uo be the 
SOLA's of the problems 

au~ 
- ~  +A~u~ = f +  he 

u~(.,  o) = w(.) ,  

u ~ ( x ,  t)  = 0 on F ,  

respectively. Then 

au ~ 
in Q, - -~  + Aouo = f +  ho in Q, 

uo( ' ,  0) = w(.) ,  

Uo (x, t) = 0 on F, 

(5.1) Ue--~U 0 weakly in Lq(O, T; Wl'q(ff2)), 

(5.2) Vu~-p~Vuo-->O strongly in (Lq(Q)) N , 

for every q < ~ = (N + 2)/(N + 1). 

PROOF. - Let us consider the solutions u~ of the problems 

[au~ k - ~ -  + A~u~ = f  +'Tk(h~) in Q, 

u~( . ,  0) = Tk(w)( ') ,  

u~(x,t)=0 onF. 
Then, as it is easily checked by Proposition 4.1, 

kk~ u~ +>~u~ strongly in Lq(O, T; Wol'q(~)), uniformly with respect to e.  

By diagonal selection, it is possible to extract a subsequence such that, for every fixed 
k e N ,  T~(h~)--~yk *-weakly in L~(Q). By Remark 5.1, we have, for every k: 

U ~  ~ ---> 0 > Uo k weakly in L 2 (0, T; H ] (~2)), 

Vu~-  p~Vuko .~--.o 0 strongly in LI(Q), 
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where uo k is the solution of 

+ Ao uo k = f  + 7k 

Uo k(-,  0) = Tk(w)( ' ) ,  

Uo k (x, t) = 0 on F. 

i n q ,  

On the other hand, as k--) + oo, 7 k o h o ,  Tk(w)--)w strongly in LI(Q), LI(tg) re- 
spectively and this implies 

Uo~k-~| strongly in Lq(0, T; Wl'q(t~)). 

At this point it is possible to proceed as in Theorem 3.1 to prove (5.1) and 
(5.2). �9 

6. - Some applications: H convergence of  parabolic equations with nonl inear 
first order terms. 

This section will be devoted to some applications of the theory developed in the 
preceding sections to the H-convergence of parabolic equations with nonlinear first 
order terms. The study of the elliptic problems of this type as been carried out 
in [BoM1], [BD], [BBM]. All these papers are based on approximation results with 
correctors (see [MT]), that are used in order to identify the weak limit of the lower or- 
der terms. We will follow the same scheme, that is, we will prove that a corrector re- 
sult also holds for the solutions of our nonlinear parabolic problems. The main idea of 
the proof is to consider the nonlinear lower order term as a datum, and to think the 
solutions of the original problems as solutions of linear problems with data in 
L 2 (0, T; H-1 (t~)) + L I(Q). The basic remark is that, due to their regularity, the sol- 
utions we consider are the SOLA's of these problems with non regular data. 

Throughout this section, we will assume that {a~ (x)}~ ~E is a sequence of matrices 
H 

in :~(a, fl; Y2) such that a~ -~ ao. We will denote by A~, A0 the linear elliptic operators 
associated to a~, ao respectively. Let p~ be the correction matrices associated to a~. We 
assume that 

(6.1) IIp  Jf(Lo(Q)  -< 

The following proposition, that has been proved in [BoM1] (see also [BBM]), is the 
main tool that will allow us to pass to the limit in the nonlinear term, as soon as we 
have obtained a corrector result for the solutions. 

PROPOSITION 6.1. -- Let {H~}~E be a sequence of Carath~odory functions 
H~(x, t, s, ~): t2 • (0, T) •  x RN---)R. Assume that He is such that, for every 
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s, ~ e R ,  for every ~, ~ e R  N, for almost every (x, t) ~ Q, 

(6.2) IH~(x,t,s,~)-H~(x,t,s,~)l <<'bl(Isl)( 1 + I~1 r-1 + I ~ l r - 1 ) l ~ - ~ l ,  

(6.3) IH~(x, t, s, ~) - H~(x, t, ~, ~)l <<- b2([ s - sl)( 1 + I~[r), 

(6.4) [H~(x, t, O, O) I <~ Co, 

where Co > O, 1 < ~ ~ 2, and b~, b2 are continuous, positive, increasing functions, 
with b2 (0) = O. Then there exists a subsequence (still denoted by the same symbol), 
and a function Ho(x, t, s, ~) which satisfies ((6.2)-(6.4)for e = 0 (up to a multiplica- 
tire constant) such that, for every s e R,  for every ~ e R N 

(6.5) H~(x, t, s, p~)--~Ho(x,  t, s, ~) weakly in LI(Q) .  

Moreover, i f  { z~ }~ ~ E is a sequence of functions such that z~--) z almost everywhere in 
Q, IIz~IILO(Q) <<- c2, and if  ~ E (L2(Q)) N, then 

(6.6) H~(x, t, z~, p~b)--~Ho(x, t, z, ~) weakly in L~(Q). 

We remark explicitly that, even if the functions H~ do not change with e, i.e., if 
H~ = H for every e, the limit Ho given by Proposition 6.1 is, in general, different 
from H. 

6 .1 . -  First application: H-convergence of quasi-linear parabolic equations with 
first order terms with sub-quadratic growth (unbounded solutions). 

We are going to study the following sequence of parabolic problems: 

{ S u ~  -~ -  + A~u~ + g~(x, t, u~, Vu~) = f in Q, 

(6.7) u~ (' ,  0) = w(.), 

u~(x, t) 0 o n F .  

We will assume t h a t f e  L 2 (0, T; H -1 (t~)), w E L 2 (t~), and that g~ (x, t, s, ~): ~9 • 
• (0, T ) x R x R N - - - - ) R  are Carath~odory functions such that, for almost every 
(x, t ) e Q ,  for every s, ~ e R  for every ~, ~ERN: 

(6.8) g~ (x, t, s, ~)s t> 0 

(6.9) g~(x, t ; . ,  ~) is an increasing function, 

(6.10) Ig~(x, t, s, $) - g~(x, t, s, ~)[ <~bl(Isl)(l+ I~17-1+ [ ~ l r - ~ ) l ~ - ~ [ ,  

(6.11) [g~(x, t, s, ~) - g~(x, t, ~, ~)[ ~< b2([s - ~[)(1 + I t ] r ) .  

In (6.10) and (6.11), y is a real number such that i < ~ < 2, b~ and b2 are as in the state- 



ANDREA DALL'AGLIO: Approximated solutions of equations, etc. 233 

ment of Proposition 6.1. We remark that no growth restriction is assumed with re- 
spect to s. 

REMARK 6.1. - Condition (6.8) implies that g~(x, t, 0, ~) = 0 almost everywhere on 
Q; hence, by (6.11), 

(6.12) Ig~(x, t, s, ~)] <~ be(Isl)(1 + I~lr), 

for almost every (x, t) �9 Q, for every s e R, for every ~ �9 R N. 

Under these hypotheses, we can apply Proposition 6.1 to the sequence {g~}, and 
extract a subsequence such that, for every ~ �9 (L 2 (Q))N, for every bounded sequence 
z~ in L ~ (Q) which converges almost everywhere in Q to a function z, we have 
g~(x, t, z~, p~r t, z, q~) weakly in L~(Q). It is easy to prove that the limit 
function go satisfies sign and monotonicity conditions similar to (6.8) and (6.9). 

Before giving the results of this section, we have to specify in which sense a func- 
tion u is solution of (6.7). 

DEFINITION 6.1. - We will say that a function u~ is a weak solution of problem (6.7) 
if u~ eLZ(O, T; H~(9)),  g~(u~, Vu~) e LI(Q), u~g~(u~, Vu~) e L I ( Q )  and 

~U~ 
(6.13) a--t- + A~u~ + g~(u~, Vu~) = f in 69'(Q), 

(6.14) u~ (., 0) = w(. ). 

Note that from (6.13) we obtain au~/at = ( f -A~u~)  -g~(u~, Vu~) in the sense of 
distributions, and the right hand side belongs to L 2 (0, T; H-1  (~)) + L 1 (Q). This ira- 
plies that u~ E C([O, T]; W -1' r(~9)) for r small enough, so that the initial condition 
(6.14) makes sense. The existence of a weak solution of problems of type (6.7) has been 
proved in [BoM2]. 

H 
Assume that at--~ao, and that hypotheses (6.8)-(6.11), and (6.1), hold. Let us con- 

sider a sequence { u ~ } ~  of weak solutions of (6.7). Using Lemma 4.2, we ob- 
tain: 

] ok(u (x, T))dx= I Ok(w(x))dx- Vu ) Tk(u )dxdt. 
Q Q 

If we let k tend to + ~,  the right hand side converges to 

1 

~a Q 

(we have used (6.8), the fact that u~g~(u~, Vu~)eLl (Q)  and the dominated conver- 
gence theorem to study the last term). Hence, by the monotone convergence theorem, 
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since C k(u~) increases to u~/2 as k tends to infinity, 

1 1 
f lug(x, T)12dx-  ~ f Iw(x)12dx + (<A~u~-f, 

Q 

In particular, using the ellipticity of the matrices: 

O 

u~>) + f g~(u~, Vu~)u~dxdt 
Q 

This implies, by (6.8), that 

(6.15) 

and 

(6.16) 

= 0 .  

1 

THEOREM 6.1. - The function uo is solution of the problem 

aUo 
- -~  + Aouo + go(x, t, uo, Vuo) = f in Q, 

(6.17) Uo(X, 0) = w(x), 

u o(x,t)  0 on F, 

where go is limit of g~ in the sense of Proposition 6.1. 

Since m can be chosen arbitrarily large, this implies that {ge}~E is equi-integrable, 
hence weakly compact in LI(Q). Therefore there exist uoeLe(O,T; Hol(Q)), 
h e L l ( Q )  such that (up to subsequences) u~---~uo weakly in L2(0, T; Ho1(t~)), 
g~(u~, Vu~)--~h weakly in LI(Q). 

C2 
<<. b2(m)(measE + (measE) 1-r/2c~) + -~ . 

1 
I g~ (u~, Vu~)u~dx dt <. [IfllL2(O, T; H-I(~))IlU~ IIL~(0, T; H]{~}) + ~ [IWlIL~(~} <~ C2. 

q 

Moreover, we can prove that the sequence {g~ (u~, Vu~)}~ ~E is relatively compact in 
L 1 (Q) weak. To see this, using (6.8), (6.12), (6.15) and (6.16), we obtain, for every mea- 
surable set E c Q, and for every m > 0, 

f lg (u ,Vu )ldxdt= f Ig (u ,Vu )ldxdt+ f Ig (u ,Vu )ldxdt<- 
E E n  { lu l l  .<m} E n  { lu l l  >m} 

1 f g~ (u~, Vu~) u~ dx dt <~ be ( m )(meas E + (measE) 1-7/211VU~]]~L2(Q))Y) "~ -~ 
q 
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PROOF. - We apply the theory, developed in the proceding sections, of SOLA's of 
equations with L 1 data. Indeed, the solutions us of (6.7) can be viewed as solutions of 
the problems 

~U s 
- ~  +A~us = f +  hs 

us(' ,  o) = w( . ) ,  

us (x, t) = 0 on F, 

inq, 

obtain 

us--~u weakly in Lq(0, T; W~'q(Q)), 

for every q < (~, where u is the SOLA of 

--~ + Ao u = f - h 

u(x, O) = w(x) ,  

u(x, t) = O o n F .  

Vus-psVu-+O strongly i n  (Lq(Q) ) ,  

inq, 

This implies that Uo = u. Moreover, since IlVus--psVuoII(L2(Q)~V <~ C3, then 

(6.18) Vu~-psVuo--~O strongly in (Lq(Q)) N, for every q < 2 .  

Now we only have to identify h. We will use the corrector result (6.18) to show that 
h = go (uo, VUo). To prove this, remark that, as a direct consequence of Proposition 6.1, 
we have 

(6.19) gs(Tk(us), p~Vuo)---~go(Tk(uo), Vuo) weakly in LI(Q), for every k e N .  

Using (6.1), (6.10) and the HSlder inequality, we obtain: 

Ilgs(Tk(u~), Vus) - gs(Tk(us), psVUo)IILI(Q) <<- 

~< b l (k) ]  (1 + IVuel 7-1 "Jr IpsVuol~-l)]Vu~ -psVuoldxdt  <<. 
Q 

<~ C5bl (k)[J( l + ]Vus ,2 + ,pzVuo ,2)dxdt] (r- 1)/2 Vus _ psVUo,,(L2/(8_r)(Q))N < ~ 

~< e6 52 (k)llVus - p~ Vuo I1(L2/(3- 7)(Q))N. 

where we have defmed he = - g s  (us, Vus). The right hand side of these equations is, 
as we have seen, the sum of a term belonging to the ,,natural. space 
L~(0, T: H-1(~9)), and of a term gs(us, Vu~), which is weakly convergent in LI(Q). 
Moreover, and this is the main point, us belongs to L ~ (0, T; H~ (t~)), so that, by Theo- 
rem 4.2, it is the SOLA of this equation. Thus, we can apply Theorem 5.1 to 
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Since 2/(3 - y) < 2, by (6.18) the last term vanishes as e -o 0. This, together with 
(6.19), yields 

(6.20) gE(Tk(u~), Vu~)--'go(Tk(uo), VUo) weakly in LI(Q), for every k e N .  

Therefore, for every k e N, we have, by (6.9): 

llgo(Tk(uo), VU0) IILI(Q) ~< liminf llg~(Tk(u~), VU~)ilLI(Q) 
e .--> O 

~< liminfiLg~(u~, W~)IIL,(Q)< + 
e ---> 0 

If we let k tend to infinity, the monotone convergence theorem implies that 
go(Uo, Vuo)eLl(Q). Moreover, if @ eL~(Q), we can write: 

+lfo[g~(Tk(u~),Vu~)-go(Tk(Uo),VUo)]dpdxdt] + 

+ ] I go (Tk (uo), VUo) - go (uo, Vuo) l Ir I dx dt. 
Q 

Let us study the first term of the right hand side of (6.21). Using the hypotheses on g~ 
and (6.17) we get: 

f Ig~(u~, VuD - gE(Tk(u~), Vu~) I Ir < f Ig (u , VuE)l dxdt <~ 

k jg~(u~, Vu~)u~dxdt <~ k 
q 

Since go enjoys the same properties of gE (i.e., the sign condition and the monotonici- 
ty), we can write for the third term: 

f tgo(T~(uo), Vuo) - go(uo, Vuo)t Ir <~ IlOltL| I Igo(uo, Vuo)idxdt. 
O {lu] >k} 

J 

Both these terms can be made arbitrarily small if k is large enough. Hence (6.20) and 
(6.21) imply that the weak limit of g, (u~, VuE) in L 1 (Q) is go (Uo, Vuo). Finally we note 
that it is possible to prove, as in [BD], that go (uo, Vu0) Uo e L 1 (Q), and so Uo is a weak 
solution of the problem according to Definition 6.1. This concludes the proof of Theo- 
rem 6.1. �9 
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6.2. - Second application: Quasi-linear parabolic equations with quadratic growth 
(bounded solutions). 

Let H~(x, t, s, ~): t9 x (0, T) x R x R N be a sequence of Carath6odory functions 
satisfying (6.2)-(6.4), with $ = 2, and 

(6.22) IH~(x, t, s, ~)1 ~< co(1 + I~1 e) 

for some Co > 0. 
Let f e  L ~ (0, T; W -1' ~ (~9)). Let us consider the problems 

(6.23) 

au~ 
--~ +A~u~ + H~(x, t, u~, Vu~) = f  

u~ (x, O) = O, 

u~ (x, t) = 0 on s  

inq, 

In this case, the nonlinear term has a quadratic growth, so that we assume more 
regularity on the datum f. However, we no longer need the sign condition on H~. 
These equations have been studied by various authors (see, e.g., [BMP], [Mo], [OP], 
[G]). The following result has been proved in lOP]. 

THEOREM 6.2. - For every ,~ced ~ there exists a solution u~eL~(Q)A 
ALe(O, T; H~ (~)) of problem (6.23). 

Moreover, as a consequence of the proof of Theorem 6.2, we have the following 
estimates: 

Ilu II  (Q) liu ll.(o, ; 
for some positive constants c~ and c~ independent of e. Hence, up to subsequences we 
can assume that 

u~--*Uo weakly in L2(0, T; H~(~9)), and *-weakly in L ~ (Q). 

Using the theory of SOLA's, we can show the following result: 

THEOREM 6.3. - The function uo is a solution of 

{ ~ t  ~ + Aouo + Ho (x, t, 

Uo (x, 0) = 0, 

Uo (x, t) = 0 on s  

Uo, Vuo) = f  in Q, 

where Ho is limit of H~ in the sense of Proposition 6.1. 
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PROOF. - As in the preceding application, we can consider the functions us as sol- 
utions of the equations 

auE 
(6.24) a--t- + A~u~ = f - h~ e L 2 (0, T; H -1 (tg)) + L 1 (Q), 

where h~ = H~(u~, Vu~). The function u~ belongs to L2(0, T; H]( t ) ) ) ,  and so, by 
Proposition 4.2, it is the SOLA of (6.24). To apply the theory developed in the preced- 
ing section, we have to show that the sequence {H~ (us, Vu~)} is weakly relatively 
compact in L 1 (Q). To see this, we use the following Meyers type regularity result for 
these quasi-linear equations. 

THEOREM 6.4 (see [GS], [B]). - There exist a real number p > 2, and a positive con- 

stant c~ such that 

ilVu il(.(Q)z v s  

By means of Theorem 6.4, it is easily seen that  the functions H~ (u~, Vu,) are 
bounded in L 1§ ~ (Q) ((~ > 0), hence relatively compact in L 1 (Q) weak. Thus, it is pos- 
sible to extract a subsequence such that H~(u~, Vu~)--~h weakly in LI(Q). By Theo- 
rem 5.1, uo is the SOLA of the equation 

3u0 
a---t + Ao uo = f - h .  

Our last step consists in the identification of h. Again by Theorem 5.1, and by Theo- 
rem 6.4, it is easy to prove that 

Vu~ - p~Vuo --) 0 strongly in (L2(Q)) N . 

Starting from this corrector result, we deduce (exactly as in [BBM]) that 

H~(x, t, u~, Vu~)-~Ho(x,  t, u0, Yuo) weakly in LI (Q) ,  

and this concludes the proof. [] 
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