Corrigendum

Owing to an error in the production process, the references in Table 1 of the article by Filipowicz and Kiss, Molecular Biology Reports 18: 149-156 have been cited incorrectly.
The table should have been as presented below.

Table 1. Vertebrate snoRNAs ${ }^{\text {a }}$

A. Transcribed from independent genes								
RNA	Size (nt)	Copies/cell (HeLa)	5^{\prime} end	Conserved boxes ${ }^{\text {b }}$	Antibody precipitation	High order complexes	Cleavage/ processed RNA	References
U3	206-228	2×10^{5}	$\mathrm{m}_{3} \mathrm{GpppN}$	A, B, C, C^{\prime}, D	$\alpha-\mathrm{Fb}$	70-80S	$\begin{aligned} & 5^{\prime} \mathrm{ETS} \\ & \operatorname{ITS} 1-5.8 \mathrm{~S}(\mathrm{XI}) \end{aligned}$	[2, 3, 8-15]
U8	136-140	4×10^{4}	$\mathrm{m}_{3} \mathrm{GpppN}$	C, D	$\alpha-\mathrm{Fb}$	80-90S	$5.8 \mathrm{~S} \& 28 \mathrm{~S}$	[10, 18, 19]
U13	105	1×10^{4}	$\mathrm{m}_{3} \mathrm{GpppN}$	C, D	$\alpha-\mathrm{Fb}$	40S		[10]
7-2/MRP	265-277	3×10^{4}	pppN		α-Th/To	$65 \mathrm{~S}^{\text {c }}$		[20-24]
B. Intron encoded snoRNAs								
RNA	Species	Size (nt)	Gene	Intron	Boxes	$x-\mathrm{Fb} \mathrm{Ab}$ precipitation	RNA/RNP Complexes	References
U14	Hs, rodents	87-96	hsc70	5,6,8	$\mathrm{C}^{\prime}, \mathrm{D}$	+	18S	[25, 26]
U15	Hs	146-148	S3	1,5 or 6	$\mathrm{C}^{\prime}, \mathrm{D}$	+		[27, e]
U16	Hs, Xl	106	L1	3	C, D	+		[28, f]
U17 (E1)	Hs	207-205	RCC 1	1,2	-	-	40 S	[29]
$\mathrm{U} 17{ }_{\mathrm{xs} 8}{ }^{\text {d }}$	Xl	218	S8	1-6	-	-		[g]
U18	X1	65-70	L1	2,4,7,8	C, D			[f, h]
U20	Hs, rodents	≈ 80	Nucl.	11	C, D	+	Compl. to 18S	[h]
U21	Gg		L5	5	C, D	+		[h]
Likely to be intron-encoded								
U19	Hs	200	?		-	-	655	[i]
Y	Hs	125	?		$\mathrm{C}^{\prime}, \mathrm{D}$	+		[10, 27, e]
E2	Hs	154	?		-	-		[30]
E3	Hs, Mm	135	eIF-4A	8	-	-		[30, 31]

${ }^{\text {a }}$ Abbrev.: Hs, human; X1, Xenopus; Gg, chicken; Mm, mouse; Fb, fibrillarin; Nucl, nucleolin. Only more recent key references are included; for other refs, see [2-4].
${ }^{\mathrm{b}}$ Distinguishing between the $\mathrm{C} \& \mathrm{C}^{\prime}$ boxes in RNAs other than U3 is somewhat arbitrary (see [27]).
${ }^{c}$ Analysis of HeLa cell nucleolar extracts indicates association with 65 S rather than 80 S [24] complexes (T.K. \& W.F., unpublished).
${ }^{\text {d }} \mathrm{U} 17{ }^{\mathrm{XS}} 8$ RNAs are approx. 80% similar to the human U17 RNA and are probably its Xenopus counterparts despite being encoded in a different gene.
${ }^{e}$ K. Tycowski and J.A. Steitz, pers. comm.
${ }^{\mathrm{f}}$ I. Bozzoni, pers. comm.
${ }^{\mathrm{g}}$ F. Amaldi, pers. comm.
${ }^{h}$ J.P. Bachellerie, M. Nicoloso, B. Michot, M. Azum and M. Caizergues-Ferrer, pers. comm.
${ }^{\mathrm{i}}$ T.K. and W.F.. unvublished results.

