Skip to main content
Log in

Ergebnisse und Konzepte ökomorphologischer Untersuchungen an Vögeln

Results and concepts in the ecomorphology of birds

  • Published:
Journal für Ornithologie Aims and scope Submit manuscript

Zusammenfassung

Die Ökomorphologie der Vögel wird mit Schwerpunkt auf eigene Arbeiten übersichtsartig dargestellt. Der Analyse von morphologischen Meßwerten aus systematisch eng definierten Gruppen (Gattungen, Familien) wird dabei der Vorzug gegeben. In allen Beispielen wurden die Daten, soweit es sich um Meßstrecken und keine Zählwerte handelte, auf die fettfreie Körpermasse bezogen, d. h. durch ihre Kubikwurzel dividiert, und mit Ausnahme von Variablen, die Null oder negative Werte annehmen können, logarithmiert. Für Hauptkomponentenanalysen bevorzugten wir Korrelationsmatrizen gegenüber Kovarianzmatrizen

Die meisten Beispiele beziehen sich auf eigene Messungen an Zweigsängern, kleinen Drosseln und Meisen. Die Meßstrecken für den Standardsatz von 32 Merkmalen werden beschrieben.

Die Probleme der morphometrischen Analyse und funktionellen Deutung werden auf verschiedenen Organisationsstufen dargestellt. Wie Unterschiede zwischen nahe verwandten Arten mit Hilfe der Diskriminanzanalyse bearbeitet werden können, wird an den Artenpaaren Weiden- und Sumpfmeise (Parus montanus, P. palustris), Provence- und Sardengrasmücke (Sylvia undata, S. sarda) und vier Laubsängerarten (Phylloscopus collybita, P. trochilus, P. bonelli, P. sibilatrix) demonstriert. In allen Fällen trennen sich die Arten gut nach Merkmalen, die mit der Habitatnutzung zusammenhängen. Variation innerhalb von Gattungen wird am BeispielSylvia undParus analysiert. Bei den Grasmücken kann die erste Hauptkomponente der morphologischen Variation mit den unterschiedlichen Zugstrecken der einzelnen Arten und der Vegetation der Bruthabitate erklärt werden, die zweite mit unterschiedlichen Fortbewegungsweisen (Hüpfen gegenüber Schlüpfen, Flugtechniken). Bei den Meisen ist die Struktur der Habitate für die Interpretation der ersten Komponente wichtig, die zweite Komponente wird hauptsächlich vom unterschiedlichen Schnabelgebrauch bestimmt. Unterschiede zwischen verschiedenen Gattungen derselben Familie werden am Beispiel der Zweigsänger herausgearbeitet. Die Gattungen sind morphologisch gut voneinander abgegrenzt, wobei in der ersten Komponente vor allem Unterschiede im Bau des hinteren Bewegungsapparates ausschlaggebend sind. Die zweite Komponente vertritt in erster Linie die morphologischen Anpassungen an verschiedene Zugweglängen. Eine Clusteranalyse desselben Datensatzes gibt die morphologischen Ähnlichkeiten innerhalb und zwischen den Gattungen gut wieder, aber keine Gelegenheit zur ökologischen Interpretation. Die hauptsächliche morphologische Variation einer Gemeinschaft von Kleinvogelarten in einem SW-deutschen Rastgebiet betrifft in erster Linie den Fortbewegungsapparat (Gegensatz zwischen Flugjägern und schlüpfenden und halmkletternden Arten). Die systematische Heterogenität von Vogelgemeinschaften erschwert die ökomorphologische Analyse.

Die morphologische Variation innerhalb von Gattungen betrifft nicht alle Merkmale gleichermaßen. Standvögel bzw. wenig ziehende Arten variieren untereinander mehr in den Schnabelmaßen, Baumbewohner (Meisen, Laubsänger) entwickeln mannigfaltige Formen der Hinterextremität, die Erfordernisse des Zuges bestimmen den Flügelbau der Gattungen, die ziehende Arten enthalten. Zwischen den einzelnen Funktionskomplexen gibt es zahlreiche Wechselwirkungen. Werden mächtige Flugmuskeln ausgebildet, besteht die Tendenz zu leichterer Beinmuskulatur und vice versa. Untersuchungen an Fruchtfressern belegen, daß die Interaktionen zwischen Fressen und Gebrauch der Beine Korrelationen der Merkmale von Schnabel und Hinterextremität zur Folge haben. Daß innerhalb von Funktionskomplexen die Unvereinbarkeit mancher Ansprüche die realisierbaren Anpassungen einschränkt, zeigt sich z. B. bei den Grasmücken, bei denen Langstreckenzug und Habitatnutzung in Wechselwirkung stehen. Merkmale können innerhalb einzelner Gattungen ganz unterschiedlich kombiniert werden, was große Probleme bei der Generalisierung funktioneller Zusammenhänge aufwirft.

Die Korrelation ökologischer und morphologischer Merkmale, wird an einigen inner- und zwischenartlichen Beziehungen abgehandelt. Besonders wird auf die Rolle des Verhaltens für das Zustandekommen derartiger Korrelationen hingewiesen. Die Art und Weise mit der der Schnabel gebraucht wird, kann seine Form beeinflussen, jahreszeitliche Änderungen von Verhalten und Morphologie können Hand in Hand gehen; Geschlechtsunterschiede und sozialer Status sind weitere Einflußgrößen. Wertvolle Einsichten können gewonnen werden, wenn morphologische und ethologische Daten von mehreren Arten vorliegen. Regressionsanalyse und Kanonische Korrelation sind die analytischen Werkzeuge, die am Beispiel von kleinen Drosseln und Tyrannen eingesetzt wurden, um die quantitativen Zusammenhänge zwischen Nahrungserwerbstechniken und Morphologie aufzudecken.

Wichtig ist es, Beziehungen zwischen Ökologie und Verhalten mit Hilfe morphologischer Gegebenheiten zu erklären. Neben breit angelegten Feldstudien sind dafür experimentelle Arbeiten notwendig. Beispiele dazu werden vorgestellt.

Viele ökomorphologische Arbeiten, besonders solche über ganze Vogelgemeinschaften, kranken daran, daß die Zahl der Merkmale zu gering und ihre funktionelle Bedeutung unklar ist. Die vertretene Arbeitsrichtung kann wertvolle Anregungen sowohl für Morphologen als auch Ökologen geben. Für künftige Untersuchungen wichtige Themen sind das Problem des gleichzeitigen Wirkens verschiedener Selektionskräfte, die Bedeutung morphologischer Gegebenheiten als einschränkende Randbedingungen für das Verhalten, modifikatorische Einflüsse auf Merkmalsausprägungen, das Generalisten-Spezialisten-Problem und die Konvergenz.

Summary

This paper gives an overview of the ecomorphology of birds; particular points are illustrated with analyses primarily of our own data. The preferred method is to analyse morphological data from systematically close knit groups (genera, families).

In all the examples presented, data, insofar as they were measurements rather than counts, were corrected for size by dividing them by the cube root of the lean body weight. With the exception of variables which could take on values of zero or less, they were then transformed to their logarithms. In Principal Component Analyses (PCA), correlation matrices were favoured over covariance matrices to weigh characters equally.

Most examples refer to our own measurements of external and skeletal characters in Old World warblers, Sylviidae, chat-like thrushes, and tits. Fig. 1 shows the standard set of 32 measures used.

The various problems of morphometrical analysis and functional interpretation are treated at different levels of organization, i.e. within species, between species, among genera, and in bird communities. Stepwise Discriminant Analysis was used to elucidate the differences between the willow tit and the marsh tit,Parus montanus andP. palustris, and to search for the most relevant characters (Tab. 1). Although the measurements were not adjusted for size, shape characteristics dominate the canonical axes. Willow tits have longer, more graduated tails and smaller feet than marsh tits. A plot (Fig. 2) of the canonical scores of separate analyses of hindlimb and forelimb characters shows the relationship between inter-species and intra-species variation. The Dartford warbler and Marmora's warbler,Sylvia undata andS. sarda, are differentiated by their flight apparatus and their hindlimbs, which reflects the preference of the Dartford warbler for low vegetation and for skulking in a cluttered habitat. The same analysis applied to four species ofPhylloscopus warblers reveals size and shape differences in the first canonical axis, which are mainly associated with long-distance movements, and morphological differences in the second, which correlate with increased use of arboreal habitats (Fig. 3). To analyse variation within genera,Sylvia with 11 species andParus with 6 species served as examples; PCAs of within species means of 32 characters were carried out. The first component of morphological variation of the warblers can be explained by differences in migratory behaviour and the vegetation of their breeding habitats, and the second by the diversity of locomotory habits which include the contrast between hopping and skulking and the ability to take off quickly or to break efficiently on the wing (Tab. 2, Fig. 4). In the first component of a PCA ofParus the contrast between square tails combined with large feet and long graduated tails with small feet dominates (Fig. 5). This component reflects differences in habitat structure while the second is mainly associated with the morphology of the bill and its diverse use. A PCA of sylviids demonstrates the importance of hindlimb characters for separating the various genera along the first component (Fig. 6). The second for the most part represents mainly differences in long distance migration. Cluster Analysis of the same data describes intergeneric and intrageneric similarities quite well, but is not amenable to straightforward ecological interpretation (Fig. 7). An analysis of the community of migrants in a southwest-German stopover-site illustrates several important points. Most of the morphological variation represented by the first and the second PC, which together explain 60% of the total variance, concerns characters related to locomotion. The first component expresses the contrast between aerial hunters on the low end and species which climb vertical stalks on the high end (Fig. 8). The systematic heterogeneity of the species set hampers more definitive interpretations.

Morphological variation within genera does not affect all characters equally. The demands of migration determine variation in wing morphology of those genera containing migratory species. Genera comprised of residents and short distance migrants vary more only in bill measurements, whereas canopy dwellers (Parus, Phylloscopus) develop a variety of hindlimb features (Tab. 3). There are many interactions between single functional complexes of morphological characters. Important constraints arise for birds due to the problem of flight and weight. For example, there is a general tendency to appoint less mass to the hindlimb when flight musculature is well developed (Fig. 9). As other studies of fruit-eating birds demonstrate, interactions between grasping for fruits with the bill and the use of perches lead to correlations between bill and hindlimb characteristics. The incompatibility of some character combinations restrains the set of possible adaptations even within functional complexes. In warblers of the genusSylvia, for example, features suited for long distance migration are not congruent with certain modes of habitat use (Fig. 10). Yet characters within functional complexes may show diverse correlation structures in different systematic groups, so that the functional interpretation of the variation of single characters depends on the context of covariation with other characters (Fig. 11). This aggravates generalizations and poses a principal difficulty for the application of ecomorphological methods to problems of community ecology.

Correlations between morphology and ecology can only be understood if the relevant behaviour is known. Bill shape can be modified according to specific feeding techniques. Seasonal variation in behaviour can match changes in morphology. Sexual differences and social status are other variables which may influence ecomorphological relationships. Valuable insights can be gained when morphological, ecological and ethological data about several species are available. Regression Analysis and Canonical Correlations can be used to describe the relationships and to select the appropriate characters for interpretation and further studies (Fig. 12). Examples for relations between feeding techniques and morphology are presented in Figs. 13, 14 and 15. Besides such studies of correlations, experimental corroboration of the causal interplay of behaviour, morphology, and ecology is needed. Some examples for such studies are reviewed.

In conclusion, it must be stressed that many ecomorphological studies, particularly those concerned with community ecology, fail to recognize the importance of selecting a representative set of characters which also have some functional meaning. The results of studies of the type advocated here may stimulate ecologists as well as morphologists. More ecomorphological work needs to be devoted to the role of morphology in constraining behaviour, to the problem of morphological changes caused by differential use, to the generalist-specialist continuum, and to convergent evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Abe, N., &O. Kurosawa (1976): Morphological differences between marsh titParus palustris and willow titP. montanus in Hokkaido. Misc. Rep. Yamashina Inst. Orn. 8: 192–205.

    Google Scholar 

  • Alatalo, R. V., &R. H. Alatalo (1979): Resource partitioning among a flycatcher guild in Finland. Oikos 33: 46–54.

    Google Scholar 

  • Ders., &L. Gustafsson (1988): Genetic component of morphological differentiation in coal tits under competitive release. Evolution 42: 200–203.

    PubMed  Google Scholar 

  • Dies. &A. Lundberg (1984): Why have young passerine birds shorter wings than older ones? Ibis 126: 410–415.

    Google Scholar 

  • Alexander, Mc N. R. (1982): Locomotion of animals. Glasgow.

  • Amadon, D. (1943): Bird weights as an aid in taxonomy. Wilson Bull. 55: 164–177.

    Google Scholar 

  • Andersson, M., &R. A. Norberg (1981): Evolution of reversed sexual size dimorphism and role partitioning among predatory birds, with a size scaling of flight performance. Biol. J. Linnean Soc. 15: 105–130.

    Google Scholar 

  • Austin, G. T. (1976): Sexual and seasonal differences in foraging of ladder-backed woodpeckers. Condor 78: 317–323.

    Google Scholar 

  • Austen, M. J. W. (1988): Ecomorphology of North American woodwarblers. Unpubl. Mast. Th. Univ. Western Ont., London.

  • Bairlein, F. (1981): Ökosystemanalyse der Rastplätze von Zugvögeln. Ökol. Vögel 3: 7–137.

    Google Scholar 

  • Ders.,B. Leisler &H. Winkler (1986): Morphologische Aspekte der Habitatwahl von Zugvögeln in einem SW-deutschen Rastgebiet. J. Orn. 127: 463–473

    Google Scholar 

  • Baker, M. C. (1979): Morphological correlates of habitat selection in a community of shore birds (Charadriiformes). Oikos 33: 121–126.

    Google Scholar 

  • Barel, C. D. N., G. C. Anker, F. Witte, R. J. C. Hoogerhoud &T. Goldschmidt (1989): Constructional constraint and its ecomorphological implications. Acta Morphol. Neerl.-Scand. 27: 83–109.

    CAS  PubMed  Google Scholar 

  • Beecher, W. J. (1962): The bio-mechanics of the bird skull. Bull. Chicago Acad. Sci. 11: 10–33.

    Google Scholar 

  • Benkman, C. W. (1987): Crossbill foraging behavior, bill structure, and patterns of food profitability. Wilson Bull. 99: 351–368.

    Google Scholar 

  • Ders. (1988a): On the advantages of crossed mandibles: an experimental approach. Ibis 130: 288–293.

    Google Scholar 

  • Ders. (1988b): Seed handling ability, bill structure, and the cost of specialization for crossbills. Auk 105: 715–719.

    Google Scholar 

  • Ders., &A. K. Lindholm (1991): The advantages and evolution of a morphological novelty. Nature 349: 519–520.

    Google Scholar 

  • Berthold, P., &H. Berthold (1973): Zur Biologie vonSylvia sarda balearica undS. melanocephala. J. Orn. 114: 79–95.

    Google Scholar 

  • Ders., &R. Schlenker (1975): Das „Mettnau-Reit-Illmitz-Programm“ — ein langfristiges Vogelfangprogramm der Vogelwarte Radolfzell. Vogelwarte 28: 97–123.

    Google Scholar 

  • Bilo, D. (1971): Flugbiophysik von Kleinvögeln. I. Kinematik und Aerodynamik des Flügelabschlages beim Haussperling (Passer domesticus L.). Z. vergl. Physiol. 71: 382–454.

    Google Scholar 

  • Ders. (1972): Flugbiophysik von Kleinvögeln. II. Kinematik und Aerodynamik des Flügelaufschlages beim Haussperling (Passer domesticus L.). Z. vergl. Physiol. 76: 426–437.

    Google Scholar 

  • Blechschmidt, H. (1929): Messende Untersuchungen über die Fußanpassungen der Baum- und Laufvögel. Gegenbaur's Morphol. Jb. 61: 517–547.

    Google Scholar 

  • Blondel, J., F. Vuilleumier, L. F. Marcus &E. Terouanne (1984): Is there ecomorphological convergence among mediterranean bird communities of Chile, California, and France? Evol. Biol. 18: 141–213.

    Google Scholar 

  • Boag, P. T., &P. R. Grant (1981): Intense natural selection in a population of Darwin's finches (Geospizinae) in the Galapagos. Science 214: 82–84.

    CAS  PubMed  Google Scholar 

  • Bock, W. J. (1961): Salivary glands in gray jays (Perisoreus). Auk 78: 355–365.

    Google Scholar 

  • Ders. (1964): Kinetics of the avian skull. J. Morphol. 114: 1–42.

    Google Scholar 

  • Ders. (1966): An approach to the functional analysis of bill shape. Auk 83: 10–51.

    Google Scholar 

  • Ders. (1977): Toward an ecological morphology. Vogelwarte 29, Sonderh.: 127–135.

    Google Scholar 

  • Ders. (1990): From biologische Anatomie to ecomorphology. Netherl. J. Zool. 40: 254–277.

    Google Scholar 

  • Bookstein, F. L. (1989): „Size and shape“: A comment on semantics. Syst. Zool. 38: 173–180.

    Google Scholar 

  • Ders.,B. Chernoff, R. Elder, J. Humphries, G. Smith &R. Strauss (1985): Morphometrics in evolutionary biology. Acad. Nat. Sci. Philadelphia, Spec. Publ. 15.

  • Bortz, J. (1979): Lehrbuch der Statistik. Für Sozialwissenschaftler. Berlin, Heidelberg, N.Y.

  • Brandl, R., &H. Utschick (1985): Size, ecology and wading birds: A nonparsimonious view. Naturwiss. 72: 550–552.

    Google Scholar 

  • Brown, R. H. J. (1963): The flight of birds. Biol. Rev. 38: 460–489.

    Google Scholar 

  • Brown, J. L., E. R. Brown &S. D. Brown (1982): Morphological variation in a population of grey-crowned babblers: correlations with variables affecting social behavior. Behav. Ecol. Sociobiol. 10: 281–287.

    Google Scholar 

  • Burnhauser, A. (1978): Nischenüberlappung und Nischentrennung zwischen Zilpzalp (Phylloscopus collybita) und Fitislaubsänger (Ph. trochilus) im Mitteleuropäischen Brutgebiet (Aves: Muscicapidae), unter besonderer Berüchsichtigung räumlicher Komponenten. Dipl. Arb. Univ. München.

  • Burton, P. J. K. (1974): Anatomy of head and neck in the Huia (Heteralocha acutirostris) with comparative notes on other Callaeidae. Bull. Brit. Mus. (Nat. Hist.) Zool. 27: 1–47.

    Google Scholar 

  • Carothers, J. H. (1982): Effects of trophic morphology and behavior on foraging rates of three Hawaiian honeycreepers. Oecologia 55: 157–159.

    PubMed  Google Scholar 

  • Ders. (1986): Homage to Huxley: On the conceptual origin of minimum size ratios among competing species. Am. Nat. 128: 440–442.

    Google Scholar 

  • Carrascal, L. M., E. Moreno &J. L. Telleria (1990): Ecomorphological relationships in a group of insectivorous birds of temperate forests in winter. Holartic Ecol. 13: 105–111.

    Google Scholar 

  • Cody, M. L. (1978): Habitat selection and interspecific territoriality among the Sylviid warblers of England and Sweden. Ecol. Monogr. 1978: 351–396.

    Google Scholar 

  • Ders. (1985): An introduction to habitat selection in birds. In:M. L. Cody, Habitat selection in birds: 3–56. London.

  • Ders., &H. A. Mooney (1978): Convergence versus nonconvergence in Mediterranean-climate ecosystems. Ann. Rev. Ecol. Syst. 9: 265–321.

    Google Scholar 

  • Ders., &H. Walter (1976): Habitat selection and interspecific interactions among Mediterranean Sylviid warblers. Oikos 27: 210–238.

    Google Scholar 

  • Collins, B. G., &D. C. Paton (1989): Consequences of differences in body mass, wing length and leg morphology for nectar-feeding birds. Austral. J. Ecol. 14: 269–289.

    Google Scholar 

  • Commisso, F. W. (1988): Ecomorphology of locomotion of the parulid hind limb. Acta XIX Congr. Int. Orn. Ottawa, 2254–2264.

  • Conover, M. R., &D. E. Miller (1980): Rictal bristle function in willow flycatcher. Condor 82: 469–471.

    Google Scholar 

  • Cracraft, J. (1971): The functional morphology of the hind limb of the domestic pigeon,Columba livia. Bull. Am. Mus. Nat. Hist. 144: 173–268.

    Google Scholar 

  • Crome, F. H. J. (1985): An experimental investigation of filter-feeding on zooplankton by some specialized waterfowl. Austral. J. Zool. 33: 849–862.

    Google Scholar 

  • Curio, E. (1977): Some aspects of individual variation in birds. Vogelwarte 29, Sonderh.: 111–120.

    Google Scholar 

  • Davis, J. (1957): Comparative foraging behavior of the spotted and brown Towhees. Auk 74:129–166.

    Google Scholar 

  • Diaz, M. (1990): Interspecific patterns of seed selection among granivorous passerines: effects of seed size, seed nutritive value and bird morphology. Ibis 132: 467–476.

    Google Scholar 

  • Diesselhorst, G. (1971): Zur Ökologie von Samtkopfgrasmücke (Sylvia melanocephala) und Sardengrasmücke (Sylvia sarda) im September in Sardinien. J. Orn. 112: 131–137.

    Google Scholar 

  • Dilger, W. C. (1956): Adaptive modifications and ecological isolating mechanisms in the thrush generaCatharus andHylocichla. Wilson Bull. 68: 171–199.

    Google Scholar 

  • Dyer, M. (1976): On the function of rictal bristles, with reference to Nigerian birds. Nigerian Orn. Soc. Bull. 12: 45–48.

    Google Scholar 

  • Eaton, S. W., D. P. O'Connor, M. B. Osterhaus &B. Z. Anicete (1963): Some osteological adaptations in Parulidae. Proc. XIII Int. Orn. Congr. Ithaca: 71–83.

  • Ebenman, B. (1986): Sexual size dimorphism in the great titParus major in relation to the number of coexisting congeners. Oikos 47: 355–359.

    Google Scholar 

  • Eber, G. (1961) Vergleichende Untersuchungen am flugfähigen TeichhuhnGallinula chl. chloropus und an der flugunfähigen InseralleGallinula nesiotis. Bonn. zool. Beitr. 12: 247–315.

    Google Scholar 

  • Elzen, R. van den,H. L. Nemeschkal &H. Classen (1987): Morphological variation of skeletal characters in the bird family Carduelidae: I. General size and shape patterns in African canaries shown by principal component analyses. Bonn. zool. Beitr. 38: 221–239.

    Google Scholar 

  • Engels, W. L. (1940): Structural adaptations in thrashers (Mimidae: genusToxostoma) with comments on interspecific relationships. Univ. Calif. Publ. Zool. 42: 341–400.

    Google Scholar 

  • Fitzpatrick, J. W. (1985): Form, foraging behavior, and adaptive radiation in the Tyrannidae. Orn. Monogr. 36: 447–470.

    Google Scholar 

  • Fjeldså, J. (1981): Comparative ecology of Peruvian grebes — a study of the mechanisms of evolution of ecological isolation. Vidensk. Medd. dansk naturh. Foren. 143: 125–249.

    Google Scholar 

  • Fleming, C. A. (1985): Wattlebird. In:B. Campbell &E. Lack, A dictionary of birds: 645–646. Calton.

  • Ford, J. (1980): Morphological and ecological divergence and convergence in isolated populations of the red-tailed black-cockatoo. Emu 80: 103–120.

    Google Scholar 

  • Fretwell, S. (1968): Habitat distribution and survival in the field sparrow (Spizella pusilla). Bird Banding 39: 293–306.

    Google Scholar 

  • Ders. (1972): Populations in a seasonal environment. Monogr. Popul. Biol. 5, Princeton.

  • Futuyma, D. J., &G. Moreno (1988): The evolution of ecological specialization. Ann. Rev. Ecol. Syst. 19: 207–233.

    Google Scholar 

  • Gaston, A. J. (1974): Adaptation in the genusPhylloscopus. Ibis 116: 432–450.

    Google Scholar 

  • Glutz v.Blotzheim, U. N. (1962): Die Brutvögel der Schweiz. Aarau.

  • Gosler, A. (1987a): Sexual dimorphism in the summer bill length of the great tit. Ardea 75: 91–98.

    Google Scholar 

  • Ders. (1987b): Pattern and process in the bill morphology of the great titParus major. Ibis 129: 451–476.

    Google Scholar 

  • Grant, P. R. (1979): Ecological and morphological variation of Canary Island blue tits,Parus caeruleus (Aves: Paridae). Biol. J. Linnean Soc. 11: 103–129.

    Google Scholar 

  • Ders. (1981): The feeding of Darwin's finches onTribulus cistoides (L.) seeds. Anim. Behav. 29: 785–793.

    Google Scholar 

  • Ders. (1986): Ecology and evolution of Darwin's finches. Princeton.

  • Ders.,B. R. Grant, J. N. M. Smith, I. J. Abbott &L. K. Abbott (1976): Darwin's finches: population variation and natural selection. Proc. Nat. Acad. Sci. USA 73: 257–261.

    CAS  PubMed  Google Scholar 

  • Gray, R. D. (1987): Faith and foraging: A critique of the „Paradigm argument from design“. In:A. C. Kamil, J. R. Krebs &H. R. Pulliam, Foraging behaviour: 69–138. N.Y.

  • Gustafsson, L. (1988): Foraging behaviour of individual coal tits,Parus ater, in relation to their age, sex and morphology. Anim. Behav. 36: 696–704.

    Google Scholar 

  • Hailman, J. P. (1986): The heritability concept applied to wild birds. Current Orn. 4: 71–95. N.Y.

    Google Scholar 

  • Hartman, F. A. (1961): Locomotor mechanisms of birds. Smithsonian Misc. Coll. 143: 1–91.

    Google Scholar 

  • Herrera, C. M. (1978): Individual dietary differences associated with morphological variation in robinsErithacus rubecula. Ibis 120: 542–545.

    Google Scholar 

  • Hespenheide, H. A. (1973): Ecological inferences from morphological data. Ann. Rev. Ecol. Syst. 4: 213–229.

    Google Scholar 

  • Ders. (1975): Prey characteristics and predator niche width. In:M. L. Cody &J. M. Diamond: Ecology and evolution of communities: 158–180. Cambridge.

  • Hoerschelmann, H. (1966): Allometrische Untersuchungen an Rumpf und Flügel von Schnepfenvögeln (Charadriidae und Scolopacidae). Z. Zool. Syst. Evol. forsch. 4: 209–317.

    Google Scholar 

  • Hogstad, O. (1977): Seasonal change in intersexual niche diffenrentiation of the Three-toed WoodpeckerPicoides tridactylus. Ornis Scand. 8: 101–111.

    Google Scholar 

  • Holm, E., &K. Laursen (1982): Observations and experiments on the oral apparatus and its function in some warbler species (Sylviidae). Zool. Anz., Jena 209: 224–246.

    Google Scholar 

  • Homberger, D. G. (1980): Funktionell-morphologische Untersuchungen zur Radiation der Ernährungs- und Trinkmethoden der Papageien (Psittaci). Bonner zool. Monogr. 13.

  • Howe, R. W., T. C. Moermond &K. A. Rusterholz (im Druck): Ecomorphology and avian feeding behavior. Acta XX Congr. Int. Orn.

  • Hulscher, J. B. (1985): Growth and abrasion of the oystercatcher bill in relation to dietary switches. Netherl. J. Zool. 35: 124–154.

    Google Scholar 

  • Ders., &B. J. Ens (im Druck): Somatic modifications of feeding system structures due to feeding on different foods with emphasis on changes in bill shape in oystercatchers. Acta XX Congr. Int. Orn.

  • Hummel, D. (1980): The aerodynamic characteristics of slotted wing-tips in soaring birds. Acta XVII Congr. Int. Orn. Berlin: 391–396.

  • Ders. (im Druck): On the aerodynamics of the tail in birds. Acta XX Congr. Int. Orn.

  • Hutchinson, G. E. (1959): Homage to Santa Rosalia or Why are there so many kinds of animals. Am. Nat. 93: 145–159.

    Google Scholar 

  • Hutto, R. (1981): Seasonal variation in the foraging behavior of some migratory Western wood warblers. Auk 98: 765–777.

    Google Scholar 

  • Huxley, J. (1932): Problems of relative growth. London.

  • Illies, J. (1970): Die Gattung als ökologische Grundeinheit. Faunist. ökol. Mitt. 3: 369–372.

    Google Scholar 

  • Inger, R. F. (1958): Comments on the definition of genera. Evolution 12: 370–384.

    Google Scholar 

  • James, F. C. (1982): The ecological morphology of birds: a review. Ann. Zool. Fenn. 19: 265–275.

    Google Scholar 

  • Dies. (1983): Environmental component of morphological differentiation in birds. Science 221: 184–186.

    CAS  PubMed  Google Scholar 

  • Jehl, R. Jr., &B. G. Murray Jr. (1986): The evolution of normal and reverse sexual size dimorphism in shore birds and other birds. Current Orn. 3: 1–86. N.Y.

    Google Scholar 

  • Jennrich, R. I. (1977a): Stepwise discriminant analysis. In:K. Enslein, A. Ralston &H. S. Wilf, Statistical methods for digital computers. 3: 76–95. N.Y.

  • Ders. (1977b): Stepwise regression. dito 58–75.

  • Jenkins, F. A. Jr., K. P. Dial &G. E. Goslow Jr. (1988): A cineradiographic analysis of bird flight: The wishbone in starlings is a spring. Science 241: 1495–1498.

    PubMed  Google Scholar 

  • Jordano, P. (1987): Frugivory, external morphology and digestive system in Mediterranean sylviid warblersSylvia spp. Ibis 129: 175–189.

    Google Scholar 

  • Karr, J. R., &F. C. James (1975): Ecomorphological configurations and convergent evolution on species and communities. In:M. L. Cody &J. M. Diamond, Ecology and evolution of communities: 258–291. Cambridge.

  • Kartaschew, N. N. (1960): Die Alkenvögel des Nordatlantiks. N. Brehm-Büch. 257. Wittenberg.

  • Koepcke, H. W. (1971/1973): Die Lebensformen. Krefeld.

  • Kokshaysky, N. V. (1973): Functional aspects of some details of bird wing configuration. Syst. Zool. 22: 442–450.

    Google Scholar 

  • Ders. (1977): Some scale dependent problems in aerial animal locomotion. In:T. J. Pedley, Scale effects in animal locomotion: 421–435. London.

  • Kooloos, J. G. M., A. R. Kraaijeveld, G. E. J. Langenbach &G. A. Zweers (1989): Comparative mechanics of filter feeding inAnas platyrhynchos, Anas clypeata andAythya fuligula (Aves, Anseriformes). Zoomorphol. 108: 269–290.

    Google Scholar 

  • Lederer, R. J. (1972): The role of avian rictal bristles. Wilson Bull. 84: 193–197.

    Google Scholar 

  • Ders. (1975): Bill size, food size, and jaw forces of insectivorous birds. Auk 92: 385–387.

    Google Scholar 

  • Ders. (1980): Prey capture by flycatchers and the importance of morphology to behavior. Sociobiol. 5: 43–46.

    Google Scholar 

  • Ders. (1984): A view of avian ecomorphological hypotheses. Ökol. Vögel 6: 119–126.

    Google Scholar 

  • Leisler, B. (1975): Die Bedeutung der Fußmorphologie für die ökologische Sonderung mitteleuropäischer Rohrsänger (Acrocephalus) und Schwirle (Locustella). J. Orn. 116: 117–153.

    Google Scholar 

  • Ders. (1977a): Die ökologische Bedeutung der Lokomotion mitteleuropäischer Schwirle (Locustella). Egretta 20: 1–25.

    Google Scholar 

  • Ders. (1977b): Ökomorphologische Aspekte von Speziation und adaptiver Radiation bei Vögeln. Vogelwarte 29: Sonderh.: 136–153.

    Google Scholar 

  • Ders. (1980a): Morphological aspects of ecological specialization in bird genera. Ökol. Vögel 2: 199–220.

    Google Scholar 

  • Ders. (1980b): Ökomorphologische Freiland- und Laboratoriumsuntersuchungen. Acta XVII Congr. Int. Orn. Berlin: 202–208.

  • Ders. (1981): Die ökologische Einnischung der mitteleuropäischen Rohrsänger (Acrocephalus, Sylviinae). I. Habitattrennung. Vogelwarte 31: 45–74.

    Google Scholar 

  • Ders., &E. Thaler (1982): Differences in morphology and foraging behaviour in the goldcrestRegulus regulus and firecrestR. ignicapillus. Ann. Zool. Fenn. 19: 277–284.

    Google Scholar 

  • Ders.,G. Heine &K. H. Siebenrock (1983): Einnischung und interspezifische Territorialität überwinternder Steinschmätzer (Oenanthe isabellina, O. oenanthe, O. pleschanka) in Kenia. J. Orn. 124: 393–413.

    Google Scholar 

  • Ders., &H. Winkler (1985): Ecomorphology. Current Orn. 2: 155–186. N.Y.

    Google Scholar 

  • Ders.,H. W. Ley &H. Winkler (1989): Habitat, behaviour and morphology ofAcrocephalus warblers: an integrated analysis. Ornis Scand. 20: 181–186.

    Google Scholar 

  • Lemel, J. (1989): Habitat distribution in the great titParus major in relation to reproductive success, dominance, and biometry. Ornis Scand. 20: 226–233.

    Google Scholar 

  • Lennerstedt, I. (1974): Pads and papillae on the feet of nine passerine species. Ornis Scand. 5: 103–111.

    Google Scholar 

  • Ders. (1975): A functional study of papillae and pads in the foot of passerines, parrots and owls. Zool. Scripta 4: 111–123.

    Google Scholar 

  • Ders. (1985): Foot papillae and pads. In:B. Campbell &E. Lack, A dictionary of birds: 237–239. Calton.

  • Löhrl, H. (1970): Unterschiedliche Bruthöhlenansprüche von Meisenarten und Kleibern als Beitrag zum Nischenproblem. Verh. dtsch. Zool. Ges. 64: 314–317.

    Google Scholar 

  • Lüdicke, M. (1933): Wachstum und Abnutzung des Vogelschnabels. Zool. Jb. Abt. Anat. Ontog. Tiere 57: 465–534.

    Google Scholar 

  • Lundberg, A., R. V. Alatalo, A. Carlson &S. Ulfstrand (1981): Biometry, habitat distribution and breeding success in the pied flycatcherFicedula hypoleuca. Ornis Scand. 12: 68–79.

    Google Scholar 

  • MacArthur, R. (1971): Patterns of terrestrial bird communities. In:D. S. Farner &J. R. King, Avian Biology 1: 189–221. London.

    Google Scholar 

  • Matthysen, E. (1989): Seasonal variation in bill morphology of nuthatchesSitta europaea: dietary adaptations or consequences? Ardea 77: 117–125.

    Google Scholar 

  • Miles, D. B., &R. E. Ricklefs (1984): The correlation between ecology and morphology in deciduous forest passerine birds. Ecology 65: 1629–1640.

    Google Scholar 

  • Ders.,R. E. Ricklefs &J. Travis (1987): Concordance of ecomorphological relationships in three assemblages of passerine birds. Am. Nat. 129: 347–364.

    Google Scholar 

  • Moermond, T. (1990): Foraging behavior: The influence of food accessibility on food choice and habitat selection. Proc. Int. 100. DO-G Meeting: 341–344.

  • Ders., &J. S. Denslow (1985): Neotropical avian frugivores: patterns of behavior, morphology, and nutrition, with consequences for fruit selection. Orn. Monogr. 36: 865–897.

    Google Scholar 

  • Ders.,J. S. Denslow, D. J. Levey &E. C. Santana (1986): The influence of morphology on fruit choice in neotropical birds. In:A. Estrada &T. H. Fleming, Frugivores and seed dispersal: 137–146. Dordrecht.

  • Dies. (1987): The influence of context on choice behavior: fruit selection by tropical birds. In:M. L. Commons, A. Kacelnik &S. J. Shettleworth, Quantitative analyses of behavior, VI Foraging: 229–254. Hillsdale.

  • Morrisson, M. L. (1982): The structure of Western warbler assemblages: Ecomorphological analysis of the black-throated gray and hermit warblers. Auk 99: 503–513.

    Google Scholar 

  • Morse, D. H. (1980): Foraging and coexistence of spruce-woods warblers. Living Bird 1979/80: 7–25.

    Google Scholar 

  • Mosimann, J. E. (1970): Size allometry: Size and shape variables with characterizations of the lognormal and generalized gamma distribution. J. Am. Stat. Ass. 65: 930–945.

    Google Scholar 

  • Moulton, M. P., &S. L. Pimm (1987): Morphological assortment in introduced Hawaiian passerines. Evol. Ecol. 1: 113–124.

    Google Scholar 

  • Nachtigall, W. (1985): Warum die Vögel fliegen. Hamburg.

  • Ders., &B. Kempf (1971): Vergleichende Untersuchungen zur flugbiologischen Funktion des Daumenfittichs (Alula spuria) bei Vögeln. I. Der Daumenfittich als Hochauftriebserzeuger. Z. vergl. Physiol. 71: 326–341.

    Google Scholar 

  • Nemeschkal, H. L., & R. van denElzen (1990): Funktionskreise im Skelettsystem der Cardueliden — ein morphometrischer Ansatz. Proc. Int. 100. DO-G Meeting: 37–41.

  • Newton, I. (1967): The adaptive radiation and feeding ecology of some Britisch finches. Ibis 109: 33–98.

    Google Scholar 

  • Niemi, G. (1985): Patterns of morphological evolution in bird genera of New World and Old World peatlands. Ecology 66: 1215–1228.

    Google Scholar 

  • Noordwijk, A. J. van, J. H. van Balen &W. Scharloo (1980): Heritability of ecologically important traits in the Great Tit. Ardea 68: 193–203.

    Google Scholar 

  • Norberg, R. A. (1983): Optimal locomotion modes of foraging birds in trees. Ibis 125: 172–180.

    Google Scholar 

  • Ders. (1986): Treecreeper climbing; mechanics, energetics, and structural adaptations. Ornis Scand. 17: 191–209.

    Google Scholar 

  • Norberg, U. M. (1979): Morphology of the wings, legs and tail of three coniferous forest tits, the goldcrest, and the treecreeper in relation to locomotor pattern and feeding station selection. Phil. Trans. Royal Soc. London (B) 287: 131–165.

    Google Scholar 

  • Dies. (1981): Allometry of bat wings and legs and comparison with bird wings. Phil. Trans. Royal Soc. London (B) 292: 359–398.

    Google Scholar 

  • Dies., &R. A. Norberg (1988): Ecomorphology of flight and tree-trunk climbing in birds. Acta XIX Congr. Int. Orn. Ottawa: 2271–2282.

  • Oehme, H. (1959): Untersuchungen über Flug und Flügelbau von Kleinvögeln. J. Orn. 100: 363–396.

    Google Scholar 

  • Osterhaus, M. B. (1962): Adaptive modifications in the leg structure of some North American Warblers. Am. Midl. Nat. 68: 474–486.

    Google Scholar 

  • Palmgren, P. (1936): Bemerkungen über die ökologische Bedeutung der biologischen Anatomie des Fußes bei einigen Kleinvogelarten. Ornis Fenn. 13: 53–58.

    Google Scholar 

  • Ders. (1937): Beiträge zur biologischen Anatomie der hinteren Extremitäten der Vögel. Acta Soc. Fauna Flora Fenn. 60: 136–161.

    Google Scholar 

  • Partridge, L. (1976): Some aspects of the morphology of blue tits (Parus caeruleus) and coal tits (Parus ater) in relation to their behaviour. J. Zool., London, 179: 121–133.

    Google Scholar 

  • Paszkowski, C. A., &T. C. Moermond (1984): Prey handling relationships in captive oven birds. Condor 86: 410–415.

    Google Scholar 

  • Pennycuick, C. J. (1985): Flight. In:B. Campbell &E. Lack, A dictionary of birds: 218–223. Calton.

  • Ders. (1989): Bird flight performance. Oxford.

  • Peters, D. S. (1989): Warum die Läufer unter den Sperlingsvögeln ihre Hinterzehe behalten. Natur u. Mus. 119: 177–183.

    Google Scholar 

  • Perrins, C. M. (1979): British tits. London.

  • Pierce, V., &T. C. Grubb Jr. (1981): Laboratory studies of foraging in four bird species of deciduous woodland. Auk 98: 307–320.

    Google Scholar 

  • Pöysä, H. (1983): Morphology-mediated niche organization in a guild of dabbling ducks. Ornis Scand. 14: 317–326.

    Google Scholar 

  • Price, T. D., P. R. Grant, H. L. Gibbs &P. T. Boag (1984): Recurrent patterns of natural selection in a population of Darwin's finches. Nature 309: 787–789.

    CAS  PubMed  Google Scholar 

  • Puttick, G. M. (1981): Sex-related differences in foraging behaviour of curlew sandpipers. Ornis Scand. 12: 13–17.

    Google Scholar 

  • Raikow, R. J. (1973): Locomotor mechanisms in North American ducks. Wilson Bull. 85: 295–307.

    Google Scholar 

  • Ders. (1985): Locomotor system. In:A. S. King. &J. McLelland, Form and function in birds. 3: 57–147. London.

  • Ders.,,L. Bicanovsky &A. H. Bledsoe (1988): Forelimb mobility and the evolution of wing-propelled diving in birds. Auk 105: 446–451.

    Google Scholar 

  • Raspet, A. (1960): Biophysics of bird flight. Science 132: 191–200.

    CAS  PubMed  Google Scholar 

  • Rayner, J. M. V. (1988): Form and function in avian flight. Current Orn. 5: 1–66. N. Y.

    Google Scholar 

  • Ricklefs, R. E. (1977): A discriminant function analysis of assemblages of fruit-eating birds in Central America. Condor 79: 228–231.

    Google Scholar 

  • Ders., &G. W. Cox (1977): Morphological similarity and ecological overlap among passerine birds on St. Kitts, British West Indies. Oikos 29: 60–66.

    Google Scholar 

  • Rising, J. D., &G. F. Shields (1980): Chromosomal and morphological correlates in two New World sparrows (Emberizidae). Evolution 34: 654–662.

    PubMed  Google Scholar 

  • Ders., &K. M. Somers (1989): The measurement of overall body size in birds. Auk 106: 666–674.

    Google Scholar 

  • Rüger, A. (1972): Funktionell-anatomische Untersuchungen an Spechten. Z. wiss. Zool. 184: 63–163.

    Google Scholar 

  • Rüggeberg, T. (1960): Zur funktionellen Anatomie der hinteren Extremität einiger mittel-europäischer Singvogelarten. Z. wiss. Zool. 164: 1–118.

    Google Scholar 

  • Rüppell, G. (1971): Flugbiologische Anpassungen felsbrütender Vögel auf Spitzbergen. Natur u. Mus. 101: 69–76.

    Google Scholar 

  • Ders. (1975): Vogelflug. München.

  • Savile, D. B. O. (1957): Adaptive evolution in the avian wing. Evolution. 11: 212–224.

    Google Scholar 

  • Schluter, D. (1988a): Morphological adaptation and diet in the Galapagos ground finches. Acta XIX Congr. Int. Orn. Ottawa: 2283–2290.

  • Ders. (1988b): Character displacement and the adaptive divergence of finches on islands and continents. Am. Nat. 131: 799–824.

    Google Scholar 

  • Schulenberg, T. S. (1983): Foraging behaviour, ecomorphology and systematics of some antshrikes (Formicariidae:Thamnomanes). Wilson Bull. 95: 505–521.

    Google Scholar 

  • Selander, R. K. (1966): Sexual dimorphism and differential niche utilization in birds. Condor 68: 113–151.

    Google Scholar 

  • Shennan, N. M. (1985): Relationships between morphology and habitat selection by male sedge warblerAcrocephalus schoenobaenus. Ring. & Migr. 6: 97–101.

    Google Scholar 

  • Sherry, T. W. (1982): Ecological and evolutionary inferences from morphology, foraging behavior, and diet of sympatric insectivorous neotropical flycatchers (Tyrannidae). Ph. D. diss. Univ. Calif., Los Angeles.

    Google Scholar 

  • Simberloff, D. S. &W. Boecklen (1981): Santa Rosalia reconsidered: size ratios and competition. Evolution 35: 1206–1228.

    PubMed  Google Scholar 

  • Smith, J. N. M., &R. Zach (1979): Heritability of some morphological characters in a song sparrow population. Evolution 33: 460–467.

    PubMed  Google Scholar 

  • Smith, T. B. (1987): Bill size polymorphism and intraspecific niche utilization in an African finch. Nature 329: 717–719.

    Google Scholar 

  • Ders. (1990a): Resource use by bill morphs of an African finch: evidence for intraspecific competition. Ecology 71: 1246–1257.

    Google Scholar 

  • Ders. (1990b): Patterns of morphological and geographic variation in trophic bill morphs of the African finchPyrenestes. Biol. J. Linnean Soc. 41: 381–414.

    Google Scholar 

  • Ders., &S. A. Temple (1982): Feeding habits and bill polymorphism in Hook-billed Kites. Auk 99: 197–207.

    Google Scholar 

  • Sneath, P. H. A., &R. R. Sokal (1973): Numerical taxonomy. The principals and practise of numerical classification. San Franscisco.

  • Snow, B. K., &D. W. Snow (1972): Feeding niches of hummingbirds in a Trinidad valley. J. Anim. Ecol. 41: 471–485.

    Google Scholar 

  • Snyder, N. F. R., &J. W. Wiley (1976): Sexual dimorphism in hawks and owls of North America. Orn. Monogr. 20.

  • Steinhausen, D., &K. Langer (1977): Clusteranalyse. Einführung in Methoden und Verfahren der automatischen Klassifikation. Berlin.

  • Swennen, C., L. L. M. de Bruijn, P. Duiven, M. F. Leopold &E. C. L. Marteijn (1983): Differences in bill form of the oystercatcherHaematopus ostralegus; a dynamic adaptation to specific foraging techniques. Netherl. J. Sea Res. 17: 57–83.

    Google Scholar 

  • Sokal, R. R., &F. J. Rohlf (1981): Biometry. N. Y.

  • Spring, L. (1971): A comparison of functional and morphological adaptations in the common murre and thick-billed murre. Condor 73: 1–27.

    Google Scholar 

  • Steinbacher, G. (1935): Funktionell-anatomische Untersuchungen an Vogelfüßen mit Wendezehen und mit Rückzehen. J. Orn. 83: 214–282.

    Google Scholar 

  • Stephens, D. W., &J. R. Krebs (1986): Foraging theory. Princeton.

  • Stolpe, M. (1932): Physiologisch-anatomische Untersuchungen über die hintere Extremität der Vögel. J. Orn. 80: 161–247.

    Google Scholar 

  • Storer, R. W. (1966): Sexual dimorphism and food habits in three North American accipiters. Auk 83: 423–436.

    Google Scholar 

  • Stork, H. J. (1968): Morphologische Untersuchungen an Drosseln. Eine Analyse von Anpassungsstrukturen im Körperbau von sechs europäischen Arten der GattungTurdus L., Z. wiss. Zool. 178: 72–185.

    Google Scholar 

  • Thaler-Kottek, E. (1990): Die Goldhähnchen. N. Brehm-Büch. 597, Wittenberg.

  • Dies. &K. Thaler (1982): Nahrung und ernährungsbiologische Unterschiede von Winter- und Sommergoldhähnchen (Regulus regulus, R. ignicapillus). Ökol. Vögel 4: 191–204.

    Google Scholar 

  • Tiainen, J. (1982): Ecological significance of morphometric variation in three sympatricPhylloscopus warblers. Ann. Zool. Fenn. 19: 285–295.

    Google Scholar 

  • Ulfstrand, S., R. W. Alatalo, A. Carlson &A. Lundberg (1981). Habitat distribution and body size of the great titParus major. Ibis 123: 494–499.

    Google Scholar 

  • Valen, L. van (1965): Morphological variation and width of ecological niche. Am. Nat. 99: 377–390.

    Google Scholar 

  • Vaurie, C. (1980): Taxonomy and geographical distribution of the Furnariidae (Aves, Passeriformes). Bull. Amer. Mus. Nat. Hist. 166: 1–357.

    Google Scholar 

  • Weber, E. (1982): Einführung in die Faktorenanalyse. Stuttgart.

  • Wheelwright, N. T. (1985): Fruit size, gape width, and the diets of fruit-eating birds. Ecology 66: 808–818.

    Google Scholar 

  • Wiens, J. A. (1982): On size ratios and sequences in ecological communities: are there no rules? Ann. Zool. Fenn. 19: 297–308.

    Google Scholar 

  • Ders. (1989): The ecology of bird communities. Vol. 1. Cambridge.

  • Ders. (1991): Ecomorphological comparisons of the shrub-desert avifaunas of Australia and North America. Oikos 60: 55–63.

    Google Scholar 

  • Ders., &J. T. Rotenberry (1980): Patterns of morphology and ecology in grassland and shrubsteppe environments. Ecol. Monogr. 50: 287–308.

    Google Scholar 

  • Willson, M. F., J. R. Karr &R. R. Roth (1975): Ecological aspects of avian bill-size variation. Wilson Bull. 87: 32–44.

    Google Scholar 

  • Williams, A. J. (1974): Site preferences and interspecific competition among guillemotsUria aalge (L.) andUria lomvia (L.) on Bear Island. Ornis Scand. 5: 113–121.

    Google Scholar 

  • Winkler, H. (1988): An examination of concepts and methods in ecomorphology. Acta XIX Congr. Int. Orn. Ottawa: 2246–2253.

  • Ders. (1990): Verhalten als Mittler zwischen Morphologie und Habitat. Proc. Int. 100. DO-G Meeting: 345–350.

  • Ders., &W. J. Bock (1976): Analyse der Kräfteverhältnisse bei Klettervögeln. J. Orn. 117: 397–418.

    Google Scholar 

  • Ders., &B. Leisler (1985): Morphological aspects of habitat selection in birds. In:M. L. Cody, Habitat selection in birds: 415–434. London.

  • Dies. (im Druck): On the ecomorphology of migrants. Ibis.

  • Wodner, D. (1980): Die Weidenmeise (Parus montanus) auf dem Eichsfeld — Vergleich zur Sumpfmeise (Parus palustris). Beitr. Vogelkde. 26: 179–198.

    Google Scholar 

  • Wortmann, B. (1972): Zur biologischen Anatomie der Hinterextremität von Limikolen. Z. wiss. Zool. 183: 253–349.

    Google Scholar 

  • Wyles, J. S., J. G. Kunkel &A. C. Wilson (1983): Birds, behavior, and anatomical evolution. Proc. Nat. Acad. Sci. USA 80: 4394–4397.

    CAS  PubMed  Google Scholar 

  • Zbinden, N., &J. Blondel (1981): Zu Raumnutzung, Territorialität und Legebeginn mediterraner Grasmücken (Sylvia melanocephala, S. undata, S. cantillans, S. hortensis) in Süd-Frankreich. Orn. Beob. 78: 217–231.

    Google Scholar 

  • Ziswiler, V. (1965): Zur Kenntnis des Samenöffnens und der Struktur des hörnernen Gaumens bei körnerfressenden Oscines. J. Orn. 106: 1–48.

    Google Scholar 

  • Zweers, G. A. (1982): Pecking of the pigeon (Columba livia L.). Behaviour 81: 173–230.

    Google Scholar 

  • Ders. (1982): Drinking of the pigeon (Columba livia L.). Behaviour 80: 274–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Dr. Hans Löhrl zum 80. Geburtstag gewidmet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leisler, B., Winkler, H. Ergebnisse und Konzepte ökomorphologischer Untersuchungen an Vögeln. J Ornithol 132, 373–425 (1991). https://doi.org/10.1007/BF01640381

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01640381

Navigation