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ABSTRACT. Although there has been a decrease in the number 
of anesthesia-related critical incidents, there are still opportu- 
nities for further improvement. We discuss the potential of 
integrated monitoring and artificial neural networks as a 
means of vigilantly watching for patterns in multiple variables 
to detect incidents and reduce false alarms. We estimate that 
half the anesthesia-related events could be detected with inte- 
grated monitoring using only 5 variables. A review of research 
using artificial intelligence/expert systems indicates limited 
potential for success using these tools alone for integrated 
monitoring in the operating room. We present artificial neural 
networks as an approach that is more suited to the type of 
multivariable monitoring and pattern recognition required. 
Along with rule-based artificial intelligence, these now have 
the potential to help develop innovative monitoring in the 
operating room. 

KEY WORDS. Equipment: monitors; alarms. Complications: an- 
esthesia. 

There have been many  studies of  operating room deaths 
and mishaps, with clear indications that a significant 
number  o f  preventable critical incidents have taken 
place [1,2]. Several investigators refer to falling mal-  
practice litigation and liability insurance costs as an indi- 
cation that new monitors  and monitor ing standards 
have decreased the number  o f  incidents [3-5]. Many  
anesthesiologists feel this decrease is related to the in- 
troduction and widespread use of  pulse oximetry  and 
capnography [2,6]. However ,  there is still ample oppor-  
tunity for further improvemen t  as the potential o f  inte- 
grated monitor ing is exploited. We discuss the potential 
o f  integrated monitor ing and neural networks as a 
means o f  vigilantly watching for patterns of  change in 
the integrated database for the generation of  intelligent 
alarms. 

PROBLEMS IN ANESTHESIA MONITORING 
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Vigilance 

Decreased vigilance is a contributing factor in many 
preventable anesthesia-related critical incidents and acci- 
dents. Vigilantly observing a repetitious event for possi- 
ble deviation is not a human strength nor should we 
attempt to make it one. Currently,  the anesthesiologist 
is expected to watch multiple variables for meaningful 
changes (individually or in combination), integrate this 
information with other knowledge and experience, and 
continually make decisions concerning present status, 
appropriate interventions, and expected results. Alarm 
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systems have been developed to enhance vigilance by 
alerting the anesthesiologist when changes have oc- 
curred and pointing to the need to more carefully exam- 
ine the monitored variables. 

False Alarms 

The growing number of  monitors in the operating 
room, however, may actually be decreasing patient- 
directed vigilance. There is now an unacceptable num- 
ber of  isolated alarm situations and a cacophony of  
audio warnings. False alarms remain a significant prob- 
lem. Studies o f  spurious alarms have revealed that 40 to 
75% of all alarms are false. Typically, 1 alarm sounds 
every 4.5 to 18.8 minutes of  operating time [7,8]. Indi- 
vidual monitors average 1 alarm every 34 minutes [9]. 

One way to reduce the number of  false alarms is to 
cease considering warning devices in isolation and to 
develop a rational and integrated framework for moni- 
toring and alarming [10]. Currently, each new monitor 
that is added to the monitoring array comes with its 
own separate alarms, which are independent of  all other 
alarms. When all variables and alarm limits are consid- 
ered together, the integrated system has the potential 
for detecting most problems without generating so 
many false alarms. 

To increase noise immunity (interference or artifacts), 
alarm delays are usually added. Fewer false alarms may 
be possible by automatically changing alarm limits dur- 
ing a procedure. The Figure shows relative changes in 
the "acceptable range" of  heart rate during induction 
(intubation), maintenance, and recovery. Shifts also can 
occur with drug administration, incision, etc. Auto- 
mated event recognition and limit adjustment, using 
multivariable analysis, could provide these corrections. 
Recognition of  intubation has been accomplished using 
measured variables from clinical monitors interfaced to 
a personal computer [11]. Recorded data from 20 gen- 
eral surgical cases were used to test a rule-based algo- 
rithm for detecting changes in oxygen level, breathing 
rate, and heart rate to identify preoxygenation, start 
of  intubation, and completion of  intubation. Fifteen of  
19 intubations were recognized (second intubation at- 
tempts were missed), producing a 42% reduction in 
"low CO2" false alarms. Determination of  appropriate 
limits could be further enhanced using information on 
initial patient status and diseases. 

Proliferation o f  Monitoring 

Another approach to reducing false alarms is to reduce 
the number of  monitors. Davis suggests that it may be 
better to monitor only one very fundamental variable: 

Recove.~~ 
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Heart Rate 
Example of changes in the acceptable range of a variable during a 
procedure. Multiple variable analysis is required to automatically 
identify different periods and adjust alarm limits. 

brain tissue oxygenation [4]. Weingarten, however, 
suggests that monitoring a single variable has limita- 
tions that could delay identification of  a potentially di- 
sastrous event [12]. In addition, one of  the primary 
functions of  a monitor is to announce or help identify 
the basic cause of  a problem. 

We examined 10 published reports of  operating room 
critical incidents, accidents, and deaths since 1975 to 
determine the percentages of  anesthesia-related critical 
incidents that could have been detected with knowledge 
of patient airway variables [3,4,13-20]. From each re- 
port we estimated the number of  anesthesia-related crit- 
ical incidents and the number that could have been de- 
tected with integrated monitoring of  5 airway variables: 
anesthetic agent concentration, oxygen concentration, 
carbon dioxide concentration, flow, and pressure. We 
determined that 47% of 1882 anesthesia-related critical 
incidents could have been detected. Ten to 25% of  the 
incidents were categorized as unavoidable and not iden- 
tifiable with current monitored devices. Thus, our esti- 
mates indicate that integrated monitoring of  the 5 pa- 
tient airway variables could potentially identify and 
warn when 50 to 60% of  the preventable anesthesia 
mishaps occur. 

Beneken and Blom suggest a minimum of 3 moni- 
tored variables for simple cases, increasing to 10 or 
more for complex surgery and 30 or more when derived 
measurements are included [21]. They also indicate that 
monitoring only a few signals (with minimal signal pro- 
cessing) is too simplistic, while monitoring 30 or more 
variables (without additional processing) is incompre- 
hensible, and that the use of  models or interrelation 
among variables is simply impossible with current sig- 
nal processing capability. Meijler has analyzed the anes- 
thesia delivery process and provides a perspective on 
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monitoring and the anesthesiologist's activities in the 
operating room as they relate to the development of  a 
data acquisition and display system [22]. Her system 
provides some integration of  alarm functions, but was 
primarily designed for multivariable acquisition and 
display. The continuing discussion of  monitoring stan- 
dards and the effectiveness of  monitoring modalities in- 
dicate less than universal acceptance of  available tech- 
nology [23-27]. 

Pace cautions that monetary (insurance) incentives 
may be driving the use of  monitoring while we still 
await the data to show their effectiveness [28]. How- 
ever, cost-benefit analyses of  monitoring versus safety 
show the economic advantages of  using selected moni- 
tors [29]. Effective monitoring may cost as little as $7 
per case [30]. 

INTEGRATION OF MONITORING AND ALARMS 

Definition 

Integrated monitoring is the simultaneous and interde- 
pendent evaluation of  multiple measurements to pro- 
duce an ongoing status assessment and to identify the 
source of  a real or potential problem. This integration 
is currently accomplished by the anesthesiologist, who 
assesses patient status and makes decisions based on in- 
put from multiple monitors. However, the need for 
vigilance and to simultaneously follow many variables 
makes the task more suitable for computer technology 
than for humans. 

Some limited integration of  monitoring already has 
been achieved in hardware. One device combines the 
signals from a noninvasive blood pressure monitor and 
a pulse oximeter to avoid pulse oximeter alarms when 
the pressure cuff in inflated. Another includes multiple 
sourcing for heart rate (electrocardiography, plethys- 
mography and invasive pressure) to avoid false heart 
rate alarms and to report accurate heart rate even when 
one or more of  the signals are lost. Time averaging and 
trending of  selected variables is also a way of  facilitating 
human integration and summarizing multiple measured 
variables [31]. 

Simultaneous monitoring and display of  multiple 
variables is a step forward, but does not correct the 
alarm problems unless the information is combined and 
used for noise immunity,  more accuracy, or derived 
variables. An example of  noise immunity is the use of  
multiple sources of  heart rate data (electrocardiograph, 
pulse oximeter, and blood pressure wave) to preclude 
an alarm if  one signal is noisy or disappears. This multi- 
ple sourcing along with identifying abnormal rates of 

change has been shown to reduce false alarms and in- 
crease true positive alarms for heart rate [32]. 

Improved accuracy and an indication of  measurement 
reliability can be provided by using information from 
other monitored variables. Noninvasive blood pres- 
sure (NIBP) measurements (oscillometric) assume mean 
blood pressure at the point of  maximum oscillations. 
This assumption loses accuracy at higher pressures but 
could be corrected from pressure readings [33]. A 
model built into the calculations for NIBP could pro- 
vide corrections for pressure and for arterial stiffness, 
which also affects pressure determinations. At the very 
least, an indication of  the reliability of  the measure- 
ments is possible. Oxygen saturation from pulse oxime- 
try is also pressure dependent and can be made more 
accurate (RS Clark, Department of  Medical Informa- 
tics, University of Utah, personal communication, 
1990). 

Anesthesia should be viewed as a whole: patient, 
anesthetist, operating room personnel, and multiple 
pieces of  equipment. Anesthesia delivery systems are 
far from optimal [34], with redundant data available 
from a variety of  monitors. New integrated systems 
have been suggested [35-39]. Our challenge is to use a 
systems level design to develop the decision-making 
rules to more effectively use these data and reduce false 
alarms. 

Forms of Integration: Hierarchy 

Alarm hierarchy is a way to integrate data, showing the 
relative importance of  each alarm and giving textual 
informative messages about each alarm [40]. Some new 
anesthesia systems already include a 3-tiered alarm sys- 
tem [41]. Specific alarm signals, having spectral rich- 
ness, frequency modulation, and temporal patterning, 
can be used to convey priority [42]. However, totally 
acceptable alarm strategies have been lagging from 
industry due to the multiplicity of  manufacturers in- 
volved, the medical liability issues, and the general dif- 
ficulty in designing reliable and broadly functional 
alarm systems [43]. 

Multiple Variable Analysis 

Multiple variable analysis has been used to identify 
problems related to the anesthesia machine and its 
proper connection to the patient. Monitoring gases, 
pressures, and flows in the breathing circuit provides a 
number ofwaveforms from which multiple features can 
be extracted and combined, using rule-based artificial 
intelligence, to identify specific problems. Feature ex- 
traction is the identification of  one or more characteris- 
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tics from a measurement, e.g., end-tidal CO 2 concen- 
tration as derived from the CO 2 waveform. Derived 
features include maximum or minimum values, de- 
rivatives, integrals, time durations, etc. For example, 
breath-by-breath and total anesthetic uptake have been 
determined by continuously integrating agent concen- 
tration [44,45]. Measurements and derived features can 
be combined for multivariable analysis. The goat is to 
discriminate between real problems, artifact, and nor- 
mal variations in the signal. The complexity of  rule- 
based logic expands rapidly with large numbers of  input 
variables and potential events, and research has concen- 
trated on a specific set o f  problems, usually related to 
the gas delivery and patient interface. 

Artificial Intelligence~Expert Systems 

Integrated monitoring requires the simultaneous evalu- 
ation of  numerous primary and derived variables. For 
all but the simplest of  medical applications, their wide 
ranges and diverse variations make it almost impossible 
to use rule-based expert systems to identify specific ab- 
normal situations. Systems using rule-based artificial in- 
telligence have been developed for medicine but not 
adopted, even though this technology has been readily 
integrated into other fields [46]. At the University of  
Arizona, anesthesia-related incidents were created in an- 
imals to identify predictable changes in physiologic and 
machine variables for use in an intelligent alarm system 
[47]. Results showed unpredictable variability in many 
physiologic variables. Beneken and Blom found that the 
analysis of  decision rules followed by an anesthesiolo- 
gist became too demanding a project [21], and Blom 
suggests that expert systems cannot handle the huge 
data flow necessary for comprehensive and generalized 
patient monitoring [48]. However, in specific limited 
surgical situations and/or  narrowly defined monitoring 
tasks, rule-based expert systems have been successfully 
applied [48-53]. 

Specific Applications of Artificial Intelligence 

The anesthesia bioengineering group at the University 
of  Utah has developed a computer-assisted anesthesia 
work station that combines 17 monitored variables and 
extracted features to detect faults in the breathing circuit 
and anesthesia machines [54]. This system includes a 
central display, assistance in controlling and monitoring 
anesthesia delivery, and rule-based analysis of  multiple 
variables to detect changes in the delivery system. In 
laboratory tests with 26 different critical events the 
alarm system produced 88% correct responses. Only 

8 false-positive alarms occurred during 20 hours of  
testing. 

At the University of  Arizona, 6 clinical monitors 
were interfaced to a personal computer and operating 
room data were collected at 5-second intervals through 
21 procedures [11]. The data were used to formulate 
rules for recognition of  incidents such as intubation and 
false heart rate alarms using multivariable analysis and 
abnormal rate of  change. Heart rate alarms were sig- 
nificantly improved. True-positive alarms were in- 
creased when compared with an electrocardiogram 
monitor (p = 0.022) or pulse oximeter (p = 0.04) and 
false-negative alarms were significantly reduced when 
compared with an electrocardiogram monitor (p = 
0.0005) or pulse oximeter (p = 0.02) [32]. 

At the University of  Florida rule-based logic has been 
used with 3 measured variables (CO 2, pressure, and 
flow) and multiple extracted features to monitor the 
integrity of  the anesthesia circle breathing system [53]. 
This system was tested on an anesthesia simulator and 
correctly identified 93% of  the simulated malfunctions. 

At Stanford University researchers have imple- 
mented a logical alarm reduction mechanism using cal- 
culated probabilities for differential diagnosis based on 
available data and prior probabilities of  diseases [52]. 
Statistical inference was used to identify predetermined 
probabilities of  specific incidents using multiple vari- 
ables in multidimensional space with previously identi- 
fied diseases or problems. In an operating room evalua- 
tion, the system, which looks for 9 specific problems 
for patients on a mechanical ventilator, correctly identi- 
fied 71% of  the test cases. 

Another example of  combining multiple primary 
variables and extracted features is a prototype ventilator 
monitor and alarm system developed for the NASA 
space station [50]. Eight transducer signals and 15 de- 
rived variables are processed with rule-based logic to 
identify and interpret critical events. This system, used 
in a less complex and demanding environment than the 
operating room, had a 99.2% success rate in identifying 
critical events when tested on healthy volunteers. 

Summary of Rule-based Systems 

Work on artificial intelligence in medicine has stim- 
ulated creative thinking about the problems of  anesthe- 
sia monitoring, and some ideas from this research 
have been incorporated into new anesthesia equipment. 
However, none of  the systems has been sufficiently suc- 
cessful to warrant complete acceptance as a system. 
There are many reasons for this. 

A recent tutorial by Rennels and Miller explains the 
difficulties in incorporating artificial intelligence sys- 
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tems into medicine and why knowledge-based expert 
systems have remained in the prototype stage in medi- 
cine while these tools have been used successfully in 
other domains [46]. They cite social factors and diverse, 
incomplete, and anecdotal medical knowledge, all of  
which must be integrated into a defined accessible struc- 
ture. Successful expert systems are typically imple- 
mented in situations in which complete knowledge 
exists. 

Rule-based expert systems, performing multivariable 
analysis, require a priori human determinations of  ap- 
propriate variables and features, alarm limits, acceptable 
probabilities for disease identification, etc. An expert 
system can be thought of  as "a computer program that 
contains and can apply specialized knowledge," i.e., 
knowledge-based consultation, with knowledge in this 
context distinguished from data [55]. Complex medical 
problem solving may be better suited to pattern recog- 
nition methods than to rule-based analysis. This is one 
of  the key differences between rule-based expert sys- 
tems and neural networks [56]. The latter are able to 
assimilate data and provide meaningful alarms and rec- 
ommendations on a real-time basis without first analyz- 
ing and summarizing the data. 

NEURAL NETWORKS IN ANESTHESIA: A FIRST EXAMPLE 

Neural networks represent an expanding field of  com- 
puterized decision theory, being developed and success- 
fully implemented mainly for image and voice recogni- 
tion. Extensive software and dedicated hardware are 
being created, which very welt may be applied to pa- 
tient monitoring during anesthesia because of  their 
speed and their ability to recognize complex relation- 
ships in data. One might visualize a model created when 
the airway pressure, airway flow, and CO2 concentra- 
tion are plotted in three dimensions. This model has a 
characteristic appearance when all is normal. The model 
changes form when a critical event occurs. In prelimi- 
nary studies, we created a breath-to-breath model using 
39 features extracted from airway flow, pressure, and 
CO2 sensor signals [57,58]. We showed that from these 
features a neural network can detect that a change has 
occurred and can specifically identify, from 14 listed 
critical events, the one that caused the change. We be- 
lieve that a neural network can be developed to detect 
and specifically diagnose many other critical events and 
that it will do so much more effectively than can thresh- 
old or expert system-based alarms. 

The first neural network used for integrating anesthe- 
sia data was developed at the University of  Utah, where 
three signals (CO 2, pressure, and flow) were monitored 
at the mouthpiece in an attempt to identify alarm condi- 

tions and incidents [57,58]. Twenty-five features, such 
as duration, slope, and magnitude, were extracted on a 
breath-by-breath basis from the three analog wave- 
forms and used as inputs to a three-layered neural net- 
work (one hidden layer). The network had 25 input 
cells, 40 cells in the hidden layer, and 14 output cells. 
The network was programmed in Pascal and ran on an 
IBM PC with 1 Mbyte RAM. Once trained, the pro- 
gram produced its results in 60 milliseconds and dis- 
played responses on a breath-by-breath basis. Analysis 
of  multiple breaths was required to avoid artifactual re- 
sponses. 

The system was trained with data from an oil/water 
lung model [59] using 45 repetitions of  13 critical 
events. Training the network required approximately 
24 hours on a DEC MicroVax II (Digital Equipment, 
Maynard MA) to repeatedly cycle through the 585 sim- 
ulated critical events and corresponding alarm condi- 
tions. After training, the system was 99.5% accurate in 
identifying the 13 critical events recreated on the lung 
model. 

The network was trained further with 57 repetitions 
of the 13 critical events reproduced on 5 mongrel dogs. 
With controlled ventilation the system was 95% accu- 
rate in identifying the events. When tested with spon- 
taneous breathing the system was 87% accurate. Dur- 
ing 44 hours of  clinical testing the system detected 57 
critical events. The neural network correctly reported 
94.7% of the events [60]. 

These are impressive results for a first attempt to use 
this tool for an integrated breathing circuit alarm sys- 
tem. There are many possibilities for increasing the ac- 
curacy and the breadth of  uses for this system. These 
include using the digitized analog signals as direct inputs 
to the network, additional training perhaps including 
more spontaneous breathing, and expanding the num- 
ber of input signals used. Some of  these studies are al- 
ready under way. 

POTENTIAL OF INTEGRATED MONITORING 

It is unlikely that neural networks will by themselves 
produce a panacea to the problem of integrated moni- 
toring. Logic rules will be required to encompass the 
wide variety of  patients, diseases, and surgical situations 
seen during anesthesia. Also, techniques for error re- 
duction can be used to increase the accuracy of both 
individual measurements and the integrated informa- 
tion. However, we believe that the addition of  pattern 
recognition capability using neural networks will allow 
the development of  systems that will meet the stringent 
and complex requirements of  the medical environment. 

As a beginning, neural networks might be trained to 
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recognize "normal , "  "minor  changes," and "prob-  
lems." This might  be viewed as a vigilance alert with 
green, orange, and red lights to indicate "all is well ," 
"some things may need your  attention," or "panic 
t ime." The key to such an alarm will be a low rate o f  
false negatives. 

Neural networks can be more  easily updated to incor- 
porate new information since the retraining process is 
simpler than rewriting the rules in an artificiaI intelli- 
gence system and making sure that the changes are con- 
sistent with existing rules. Training a new neural net- 
work  with a subset o f  data and operating the two 
networks in parallel may  be a possibility. It is possible 
that neural networks  trained on data f rom a complex 
simulator will per form appropriately when evaluated in 
the operating room. This would allow extensive train- 
ing (more accuracy) with a ,,vide variety o f  data, and 
facilitate field modifications and updates. 

System performance during missing or spurious data 
will need to be evaluated. H o w  does the network re- 
spond? Can it be trained to recognize and ignore arti- 
fact, at least tor a period of  time, just  as humans do? 
Can expert system techniques be used with a neural 
network to address these problems? Obviously,  there 
are many  unanswered questions that await the ideas and 
creative intelligence o f  others. 

CONCLUSION 

Preventable incidents in anesthesia remain a problem 
that can be ameliorated by new monitor ing capabilities. 
Increased vigilance and reliable alarms must  be part o f  
successful monitoring.  Integrated monitor ing and pat- 
tern recognition software provide an opportuni ty for 
significant monitor ing improvements .  

Neural  networks provide a new way of  integrating 
information currently available in the operating room. 
We can expect their implementat ion in a variety of  m o -  
dalities, such as interference reduction, preprocessing o f  
data, feature identification, and integrated monitoring. 
However ,  they should be viewed as an addition to cur- 
rent methods and not as an "end all." Final systems will 
combine capabilities o f  thresholding, expert systems, 
statistical rules, neural networks,  and perhaps new, as 
yet undiscovered, methodology.  
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