
Tutorial 

ARTIFICIAL INTELLIGENCE RESEARCH 
IN ANESTHESIA AND INTENSIVE CARE 
Glenn D. Rennels, MD, PhD, ~ 
and Perry L. Miller, MD, PhD-[- 

Rennels GD, Miller PL. Artificial intelligence research in anesthesia 
and intensive care. 

J Clin Monit 1988;4:274-289 

ADS~gl". This article describes several research directions ex- 
ploring the application of artificial intelligence techniques in 
anesthesia and intensive care. Artificial intelligence can be 
loosely defined as the discipline of  designing computer sys- 
tems that exhibit "intelligent" behavior. This article first in- 
troduces artificial intelligence and computer science research 
and discusses why medicine has proved to be a challenging 
domain for applying artificial intelligence techniques. A dis- 
cussion of the central research themes that arise in medical 
artificial intelligence, many of which are common to different 
projects and to different medical settings, is followed by a 
description of specific research projects that apply artificial 
intelligence techniques in anesthesiology, ventilatory manage- 
ment, and cardiovascular management. Finally, further com- 
ments are made on the current state of the field. 
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Computers  and computer-related technology are in- 
creasingly evident in both  the operating room and in- 
tensive care unit. It is clear that the use o f  computers  in 
these areas will become increasingly sophisticated. The 
computer  has the potential not only to gather, store, and 
display data, but  also to play an active role in assisting 
the physician with the clinical decisions involved in pa- 
tient care. A number  o f  research projects are currently 
underway that will contribute to this expanded role for 
the computer  in clinical medicine. This article gives an 
overview o f  several such projects, all exploring the ap- 
plication o f  ARTIHCIAL INTELLIGENCE (AI) techniques in 
anesthesia and intensive care. 
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AI RESEARCH AND CLINICAL MEDICINE 

Over  the past 25 years, AI research has emerged as a 
subfield o f  computer  science. The  discipline o f  AI is 
difficult to define precisely, but  can be loosely defined as 
a scientific field that at tempts to develop computer  sys- 
tems that behave in ways that appear to exhibit "intelli- 
gence." Implicit in this definition is the assumption that 
a computer  that performs solely numeric computations,  
such as a statistical analysis, is not  performing AI. AI 
research frequently involves trying to understand h o w  
humans reason, often in the presence o f  ambigui ty  and 
incomplete data. 

AI researchers have tackled a wide range of  very dif- 
ferent problems,  including playing complex games such 
as chess, at tempting to interpret the meaning o f  written 
and spoken English, identifying objects in a visual 
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scene, and performing tasks such as medical diagnosis. 
These are complex tasks, and AI research progress has 
been a gradual, incremental process. For example, 20 
years ago experienced, nonexpert chess players could 
usually defeat AI chess-playing programs. Today, there 
are only a small number o f  players in the world who can 
defeat the best chess programs [1]. Progress in medical 
AI research will also be a gradual process. 

The field of  AI can be somewhat arbitrarily divided 
into (1) basic AI research, which focuses on theoretical 
issues, some of  which are discussed later in this article; 
and (2) applied AI research, where the emphasis is on 
developing EKVERT SXSTEMS to solve real-world prob- 
lems. 

An expert system is a computer system designed to 
give advice in a domain such as medicine. Such a system 
is typically constructed by computer specialists who in- 
teract with a human expert in the field. These individ- 
uals work to make the expert's knowledge concrete and 
explicit so that it can be incorporated into the computer. 
The goal is to allow the machine to make expert-level 
judgments and recommendations in the field or, more 
practically, to allow the machine to serve as an "intelli- 
gent assistant" bringing the expert's encoded knowl- 
edge to a user to help the user perform more effectively. 
A by-product o f  building medical expert systems is that 
it forces physicians to analyze and better understand the 
clinical decision-making process. All the computer sys- 
tems described in this article are expert systems. 

The Nature of Computer Science Research 

The AI research projects described in this article are 
examples of  basic computer science research. This type 
of  research is different from the more familiar labora- 
tory and clinical research typically seen in medicine. 
Computer  science research often involves using the 
computer as a "laboratory" to explore ideas. When con- 
fronting a complex computational problem, it is very 
difficult to develop a well-formulated solution by think- 
ing about the problem in the abstract. The computer 
provides a vehicle to let the computer scientist obtain 
feedback concerning his ideas. 

As a result, many computer science research projects 
involve "exploratory programming."  In such a project, 
the computer scientist attempts to gain more under- 
standing about a particular problem, and about how 
that problem might be solved, by constructing a partial 
solution in the form of  a computer program. The goal 
o f  this research is not  to develop completely opera- 
tional, workable computer programs. Rather, the goal 
is to gain concrete feedback as to what the problems are 
and how they might be solved. 

A successful project, therefore, is often one that gives 
new insights into the nature of  the problem, allows the 
construction of  new tools, or allows one to explore the 
limitations of  existing tools. It is only by an iterative 
process of  exploratory programming that many of  the 
complex problems confronted by AI researchers ca ,  be 
fully understood. Partly for this reason, the systems we 
describe are not  operational systems in clinicat use. 
Rather, they are research prototypes developed to ex- 
plore the underlying problems of  letting the computer 
assist the physician in patient care. 

Medical Computer Science: Confronting the 
Complexity of Medicine 

Medicine has provided a challenging domain for the 
development of  AI-based systems. Indeed, much of  the 
early expert system research during the t970s was per- 
formed in areas o f  medicine. A wide range of  different 
medical systems were developed and, in the process, a 
number of  AI-based tools were developed [2,3]. During 
the 1980s, this technology has spread rapidly to a wide 
range of  fields outside of  medicine and has generated 
considerable commercial and industrial activity [4]. At 
the same time, however, the application of  AI in medi- 
cine has remained in the research prototype stage. 

This situation is somewhat ironic. Medicine has 
proved to be a productive domain for developing pow- 
erful computer-based tools. At the same time, it has 
been much easier to apply those tools in more struc- 
tured, less complex domains than medicine, such as in 
the diagnosis of  faults in a manufactured device. 

Why is medicine so complex? One way to answer this 
question is to compare medical diagnosis with diagnosis 
of  faults in, say, an automobile. In a manufactured de- 
vice, each component has a specific, well-understood 
function, and the various faults that occur can be under- 
stood in terms of  these known functions. In medicine, 
however, the underlying mechanisms of  a disease are 
seldom fully understood. As a result, to perform med- 
ical diagnosis, a wide range of  diverse knowledge may 
be required. This knowledge includes (1) known links 
between diseases and the various signs and symptoms of  
those diseases, (2) knowledge of  possible or partial 
causal mechanisms of  certain diseases, (3) anecdotal 
case-based knowledge, (4) a wide-ranging knowledge 
of  the clinical literature, and (5) knowledge of  social 
issues relevant to illness and its treatment, 

To assist the physician in as sophisticated a fashion as 
possible, a computer system ideally should be able to 
integrate all these different types of  information. This 
task is much more difficult than the diagnosis of a man- 
ufactured device. 
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MEDICAL A! RESEARCH: UNDERLYING THEMES 

Before a discussion of  specific projects, it is useful to 
understand some of  the research themes that medical AI 
is exploring. This section outlines certain of  these 
themes. Although our emphasis is on AI research in 
anesthesia and intensive care, we also discuss certain 
important AI research projects in other areas of  medi- 
cine. 

Knowledge Representation 

Perhaps the most fundamental area of  basic AI research 
concerns knowledge representation: developing flexible 
ways to represent complex real-world knowledge in the 
machine. A wide range of  approaches have been ex- 
plored. One of  these approaches, the use of  it-TriEr 
RULES, merits special discussion, since it has been widely 
used [5]. 

An If-Then rule is a simple programming construct 
consisting o f  two parts. The first part is an If  clause, 
which contains a test. The second part is a Then clause, 
which contains one or more actions the computer is to 
perform if  that test is true. 

A well-known early medical expert system that pio- 
neered the use of  If-Then rules is MYCIN [6], devel- 
oped at Stanford to perform diagnosis and recommend 
treatment for infectious disease. An example of  one of  
MYCIN's  If-Then rules follows [6]. 

If 

Then 

(1) the stain o f  the organism is grampos, 
(2) the morphology of  the organism is coccus, 

and 
(3) the growth conformation of  the organism is 

clumps, 
there is suggestive evidence (0.7) that the iden- 
tity of  the organism is Staphylococcus. 

This rule is designed to help MYCIN identify a par- 
ticular organism. The I f  clause tests the variety of  fea- 
tures o f  the organism, and the Then clause makes a ten- 
tative conclusion as to its identity. One major advantage 
of  the If-Then rules is that they can be translated into 
English in a fairly straightforward fashion by a rule 
translation program. (The rule above is shown in its 
translated form.) 

The use of  If-Then rules makes it relatively easy for a 
medical expert to inspect and understand the computer's 
internal logic. This contrasts with programs written 
with programming languages such as FORTRAN or 
BASIC, which often are difficult even for experienced 
programmers to understand. There are several potential 

benefits of  representing the knowledge in a medical ex- 
pert system that uses If-Then rules: 

1. The medical expert can inspect the knowledge, iden- 
tify potential errors, and suggest changes. 

2. Each rule can be thought of  as a small "chunk" of  
knowledge. In theory, these small chunks of  knowl- 
edge can be added incrementally to a system, thereby 
incrementally enhancing its performance. 

3. The use of  If-Then rules may enhance a system's 
ability to explain its recommendations, as discussed 
later. 

If-Then rules are used in several o f  the RULE-BASED 
SYSTEMS we discuss. In addition to If-Then rules, other 
widely used AI approaches to knowledge representation 
include frames [7] and augmented transition networks 
[81. 

Models of Medical Reasoning 

The rule-based approach to knowledge representation 
provides the computer with a set of  decision rules, but 
provides only a fairly superficial understanding of  the 
medical domain. Other AI projects are exploring how a 
more profound appreciation of  the underlying medical 
domain might be incorporated into the machine to en- 
hance its reasoning. 

CAUSAL MODELING. An active area of  research involves 
the development of  CAUSAL MODELS tO be used by the 
computer in reasoning about medical problems. A 
causal model outlines the underlying causal relation- 
ships between the components of  a complex system, as, 
for example, between the various components of  the 
cardiovascular system. AI researchers then explore how 
the model can help the machine reason flexibly about 
cardiovascular function and pathophysiology. 

A pioneering AI system that explored causal models 
is ABEL [9], which models causal relationships involv- 
ing acid-base and electrolyte problems and explores 
how these causal links can help the system reason about 
the underlying pathophysiology of  acid-base and elec- 
trolyte disorders. An interesting aspect of  ABEL's de- 
sign is that it demonstrates how a computer can reason 
causally about a medical problem at different levels of  
abstraction. 

QUALITATIVE CAUSAL MODELING. In addition to being 
causal models, a number of  AI systems are also qualita- 
tive models. A QUALITATIVE CAUSAL MODEL iS o n e  in 
which the various system variables are expressed in 
qualitative terms. For example, the value of  a variable 
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(such as blood pressure, cardiac output, or systemic vas- 
cular resistance) might be very low, low, normal, high, 
or very high, rather than a numeric value. 

Many AI researchers believe that this qualitative ap- 
proach allows the program to approximate better the 
character of expert clinical reasoning, in which medical 
problems often may be conceptualized in qualitative 
terms. For example, a physician may believe that "low" 
cardiac output and "high" blood volume are consistent 
with a certain type of heart failure. An additionaljustifi- 
cation for using a qualitative model is that the same 
(numeric) variable value may be viewed as high in one 
clinical setting but normal in another. For example, a 
heart rate of  120 beats/min may be considered normal if 
blood pressure has recentty fallen to abnormally low 
values, but considered abnormal in other clinical set- 
tings. 

REASONING FROM T HE CLINICAL LITERATURE.  Another r e -  

search project, the Roundsman computer system, ex- 
plores how- computer-based clinical advice might be 
based not on a pathophysiologic model of the body, but 
rather on a critical intepretation of the clinical literature 
[10], The motivation for this literature-based approach 
is that drugs and techniques often are used clinically 
long before underlying mechanisms are fully under- 
stood. In such situations, the clinical literature is an im- 
portant source of knowledge for assessing the risks of 
alternative management plans. Such assessment requires 
judgment, since virtually all studies have some method- 
ologic weakness. Also, if clinicians used only studies 
that perfectly matched their patient, they would rarely 
find even one such study. 

The Roundsman system generates a prose discussion 
that assesses the difficulties of applying relevant clinical 
studies (known to the system) to the particular patient 
being evaluated by the physician. This system has been 
applied to the management of breast cancer. Anesthesia- 
related applications might involve, for example, using 
the clinical literature to help assess the risk ofperiopera- 
tive myocardial infarction in a particular patient with 
preexisting coronary disease, or the risk of general anes- 
thesia in a hypertensive patient who also has moderately 
severe chronic obstructive pulmonary disease. 

Explanation by the Computer of  Its Conclusions 

One exciting result of the MYCIN project was that an 
expert system could, to a certain extent, use its If-Then 
rules to explain its actions and recommendations [11]. 
For example, if MYCIN has used the rule shown previ- 
ously to conclude that an organism is probably Staphy- 
lococcus, and the user asked why, MYCIN could use the 

English translation of the rule to indicate that the organ- 
ism was probably Staphylococcus because (1) its stain is 
grampos, (2) its morphology is coccus, and (3) its 
growth conformation is clumps. 

RULE-BASED E X P L A N A T I O N .  The RULE-BASED E X P L A N A -  

T I O N  allows the machine to make its internal logic much 
more transparent to the physician user. Explanations 
created by translation of  If-Then decision rules, how- 
ever, may not fully address all of  the physician's ques- 
tions. Researchers in the MYCtN project concluded 
that adequate explanations for the MYCIN system 
could not be derived from the existing MYCIN pro- 
gram [12]. Computer-based explanation, it was argued, 
often requires that the computer system have a higher- 
level, more strategic view of the medical task than is 
necessary for the computer to achieve good perfor- 
mance. 

Another well-known project that addresses the prob- 
lems of  explanation is XPLAIN [13], which was de- 
signed to help explain the reasoning of the Digitalis 
Therapy Advisor system described later. The XPLAIN 
researchers argue that although the Digitalis Therapy 
Advisor might be able to perform well by following If- 
Then rules, robust explanations required that the system 
have a more profound model of the actions of antidys- 
rhythmic drugs and of heart disease. 

CRITIQUING. The development of expert systems that 
critique patient care represents a different approach to 
computer-based explanation [14]. Rather than try to tell 
a physician what to do, a CRITIQUII~C SYSTEM first asks 
the physician to outline his proposed approach and then 
discusses the relative merits of that plan as compared 
with other approaches that might be reasonable. From 
the standpoint of  computer science research, critiquing 
can be seen to be a different form of computer-based 
explanation. By starting with the physician's proposed 
plan, a critiquing system structures its advice and expla- 
nation around the physician's thinking in a natural way. 
The ATTENDING and VQ-ATTENDING systems, 
discussed later, illustrate this approach. 

Temporal Reasoning 

Many expert systems gather information and offer rec- 
ommendations at a single moment in the patient's clini- 
cal course. For example, the INTERNIST-1 system, 
which has successfully diagnosed difficult Clinicopatho- 
logical Conference cases from the New EnglandJournaI of 
Medicine, diagnoses from one "snapshot" of the patient 
[15]. Similarly, MYCIN gathers data, diagnoses the 
cause of an infection, and recommends antibiotics for a 
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given moment  in time [6]. Since medical care, especially 
in the operating room and the intensive care unit, takes 
place over time, it is desirable to develop computer  sys- 
tems that can evaluate a patient's clinical status and re- 
sponse to treatment over time. Several systems dis- 
cussed later have addressed this problem. 

A related research problem is how to design a com- 
puter system to scan a clinical t ime-ordered database 
(such as an anesthetic record or intensive care unit flow- 
sheet) and summarize the clinical course, as a physician 
might do. TEMPORAL MODELING is also a basic research 
topic in areas o f  AI beyond medicine [16,17] because, 
for example, intelligent robots will require this capabil- 
ity i f  they are to reason about the environment in which 
they operate. 

Integrating Information from Multiple Sources 

An active AI research area concerns the problems o f  
assessing information from multiple sources in an inte- 
grated fashion. For example, in the intensive care unit, 
there are (1)real- t ime physiologic data f rom a host o f  
monitors, (2) intermittent laboratory data, (3) diverse 
clinical observations that can be made by inspecting the 
patient, and (4) a varied patient history that might be 
relevant to a particular clinical question. Examples are 
seen in several systems discussed later. The problem of  
how to design a computer  system to integrate this di- 
verse information, taking full advantage o f  all the infor- 
mation and its interrelationships, is an important  area 
for basic AI research. 

Validation and Evaluation 

Another major area for basic research concerns how best 
to "validate" the knowledge in an expert system to as- 
sure that it is accurate, complete, and consistent, and 
how to evaluate the system's clinical efficacy [18]. In 
addition, a number  o f  projects are exploring how  the 
computer  itself can assist actively in the validation pro- 
cess. Researchers have only scratched the surface of  the 
broad spectrum of  issues that might be addressed in 
validating and evaluating medicat expert systems. 

AI RESEARCH IN ANESTHESIA AND INTENSIVE CARE 

We have outlined certain fundamental topics o f  AI re- 
search. The  list is far f rom comprehensive. Next  we 
describe the major systems that explore these research 
topics in the domains of  anesthesiology and intensive 
c a r e ,  

To help the reader put  the computer  systems dis- 
cussed into perspective, Table 1 presents a capsule out- 

Table 1. Artificial Intelligence Systems in Anesthesia 
and Intensive Care 

Selected System 
System Name Medical Domain Attributes 

Harrison's system Anesthetic man- If-Then rules; ex- 
agement planation capa- 

bility 
ATTENDING Anesthetic man- Augmented transi- 

agement tion networks; 
critiquing 

Ventilator Man- Ventilatory man- If-Then rules; 
ager agement temporal mod- 

eling; qualitative 
modeling 

VQ-ATTEND- Ventilatory man- If-Then rules; 
ING agement augmented tran- 

sition networks; 
critiquing; 
goat-directed 
reasoning 

Smart respiratory Ventilatory man- If-Then rules; 
alarms agement clinical evalua- 

tion 
Digitalis Therapy Cardiovascular Integrating infor- 

Advisor management marion from 
multiple sources 

Congestive Heart Cardiovascular Truth mainte- 
Failure Manage- management nance system; 
ment System causal model- 

ing; temporal 
modeling 

Ventricular At- Dysrhythmia Temporal model- 
rhythmia Man- management ing; integrating 
agement Ad- information 
visor from multiple 

s o u r c e s  

line o f  each system, indicating the system's domain, 
together with a rough characterization o f  certain salient 
features. 

A I  Research in Anesthesia 

HARRISON'S SYSTEM. Harrison and Johnson [19,20] built a 
system designed to assist an anesthetist in planning in- 
traoperafive management. The system produces a set o f  
recommendations based on the clinical details input by 
the user. These recommendations fall into three catego- 
ries: (1) avoid action X (e.g., "avoid vasopressors"), (2) 
use action X (e.g., "use cricoid pressure"), and (3) espe- 
cially recommend action X (e.g., "peripheral infusion 
line essential"). 

In its internal design, Harrison's system uses If-Then 
rules, most  preforming a one-to-one linking o f  an input 
value (a clinical feature) to an output value (a recom- 
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mendation f rom one o f  the three categories listed 
above). There are approximately one thousand such 
rules. The system's output  therefore consists of  a set o f  
recommendations,  each of  which is " tr iggered" by an 
input detail. Thus, although this system is rule-based, 
there is little ability to form complex chains of  infer- 
ences. 

In an initial F O R T R A N  implementation, there is also 
the ability to handle contradictory recommendations by 
writing rules o f  the form: 

I f  output  X and output  Y have triggered, 
Then replace these by output  Z. 

Such "interaction rules" were largely unimplemented, 
however,  and in general it is left to the user to interpret 
the set o f  recommendations,  some o f  which may be 
contradictory. The program is viewed as a reminder to 
the user that certain actions might need consideration. 
Comprehensive assessment o f  the reminders is left to 
the user. 

Building on Harrison's initial system, Dodson, Harri- 
son, and Rector [21] developed a "medical treatment 
planner" for anesthetic management,  written in the 
P R O L O G  programming language. This system is rule- 
based with the ability to construct a "chain o f  infer- 
ences." (That is, rule 1 might  conclude fact X; fact X 
might then be used by rule 2 to conclude fact Y, and so 
on.) The length o f  such INfErENCE CrlAINING is quite 
short, at most just a few rules. In addition to Harrison's 
original rules, this P R O L O G  implementation includes 
" taxonomic"  knowledge and an explanation facility: 

1. The taxonomic knowledge allows Dodson and Har- 
rison's system to classify its knowledge, for exam- 
ple, to conclude that a central nervous system de- 
pressant premedication could be either a narcotic 
premedication, an anxiolytic premedication, or a 
hypnotic premedication. This capability lets the sys- 
tem builders write rules that are more general, for 
example, a rule mentioning "central nervous system 
depressant premedication" would apply to all such 
agents. 

2. The  explanation facility is in many respects patterned 
after that o f  the M Y C I N  system. The user can ask, 
for example, why  a central nervous system depres- 
sant premedication has been suggested, or why it has 
not been suggested. The system then inspects the 
various rules that have been triggered and from these 
rules constructs an explanation. It is also possible for 
the user to inspect (interactively) all rules that pertain 
to a particular drug or technique, and also to inspect 

all conclusions made by the system in the course o f  a 
particular consultation. 

In summary, Harrison's system is a RULE-BASED CON- 
SULTATION system for anesthetic management, designed 
primarily to serve as a " reminder"  to the anesthesiolo- 
gist, reimplemented to include taxonomic knowledge 
and an explanation capability. 

THE A T T E N D I N G  SYSTEM. The A T T E N D I N G  com- 
puter system [14,22] explores the critiquing approach to 
providing computer-based advice for anesthetic man- 
agement. To  use A T T E N D I N G  the physician first in- 
puts details describing the patient and the operation, as 
well as a plan for preanesthetic medication and induc- 
tion, intubation, and maintenance o f  anesthesia. This 
information is entered by a process o f  menu selection. 
The computer  then assembles an English prose discus- 
sion o f  that plan. 

For example, if  the physician describes a M-year-old 
man with a history o f  severe asthma who requires an 
operation in the setting of  possible hypovolemia and 
suggests induction o f  anesthesia with thiopental, 
A T T E N D I N G ' s  critique includes the following para- 
graph. (This paragraph is pieced together from words 
and sentence fragments tailored to the particular patient 
and plan.) 

In regard to induction, induction using thiopentat could 
have two possible risks. First, in a patient with asthma, there is 
the conceivable risk of bronchospasm. Second, there is the 
possible risk of hypotension in the presence of hypovolemia. 
An alternative approach to induction using thiopental would 
be induction with ketamine. This has the advantage of helping 
avoid hypotension since ketamine is supportive of blood pres- 
sure, and of suppressing bronchospasm since ketamine is a 
bronchodilator. 

This paragraph illustrates how A T T E N D I N G  is de- 
signed to identify and discuss the pros and cons of  the 
physician's proposed plan as well as any reasonable al- 
ternatives. It is left to the physician to select the final 
plan. 

A T T E N D I N G  represents the alternatives of  anes- 
thetic management as a set o f  networks by using the 
augmented transition network (ATN) formalism [8]. 
As shown in Figure 1, an A T N  consists o f  states and arcs 
between states. The arcs represent actions, such as gen- 
eral anesthesia, rapid-sequence intubation, or the use o f  
halothane. A path through the set of  networks repre- 
sents a complete anesthetic plan for premedication, in- 
duction, intubation, and maintenance o f  anesthesia. 

"Higher- level"  networks outline anesthetic alterna- 
tives such as general anesthesia versus regional anesthe- 
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ANE: 
GA PREMED 

NO PREMED 

GA= 
INTUBATION 

~) tNTUBATION 

MAINTENANCE INDUCTION POP 

INTUBATION: 

AWAKE 

INDUCTION = 

INHAL 

KETAMINE 

POP 

RAPIDSEQ : 

~__~_,,,,,,_~ RELAXANT 
M A I N T E N A N C E = ~  

PANCURONIUM 

/ CURARE / 
( / POP 

SUCCINYLCHOLINE 

INHAL ~ POP 

ENFLURANE 

HALOTHANE 

POP 

Fig 1. Augmented transition network used by A T T E N D t N G .  
The bold line outlines the path through the network of states (cir- 
cles) corresponding to the user's proposed plan. This path indicates 
a plan to use general anesthesia (GA), involving intubation via a 
rapid-sequence technique (RAPIDSEQ) with succinylcholine; 
maintenance with nitrous oxide (N20), a relaxant (curare), and 
the inhalational (INHAL) anesthetic enflurane; and induction with 
thiopental. The exact ordering of the arcs in the network is largely 
arbitrary. A "POP" arc indicates the end of the path through a 
network. PREMED -- premedication; MASKCRIC = mask 
induction with cricoid pressure; NORMINT = "normal" tech- 
nique for intubation. (From Miller [22]. Used with permission.) 

sia. "Lower-level" networks then spell out the various 
subdecisions (and subdecisions within subdecisions) that 
must be made. 

With this ATN scheme, ATTENDING can examine 
the physician's proposed plan (a particular path through 
the networks) and analyze alternate paths that might 
present fewer risks. Each arc has a list of  potential risks 
(of the corresponding technique in different patients). In 
ATTENDING's  analysis, these risks are first assessed 
roughly. This initial risk analysis may later be refined by 
"contextual preference rules." The physician's plan, 
along with any alternatives that ATTENDING con- 

dudes worthy of  discussion, are then passed to a prose- 
generation module that assembles an English prose dis- 
cussion of  the plan. 

In summary, the emphasis of  the ATTENDING sys- 
tem is to center the system's advice around the physi- 
cian's approach and to bring the salient pros and cons 
to the physician's attention. It is anticipated that this 
critiquing approach will prove particularly useful in 
domains, such as anesthesia, that allow considerable 
latitude for practice variation and subjective clinical 
judgment. 

A I  Research in Ventilator M a n a g e m e n t  

THE V E N T I L A T O R  M A N A G E R  SYSTEM. Ventilator Manager 
(VM) is a prototype system designed to assist physicians 
and nurses in managing patients receiving mechanical 
ventilatory support [23,24]. VMis  designed to monitor 
respiratory and related cardiovascular variables in real 
time. In so doing, it attempts to identify equipment 
malfunctions and to suggest possible therapeutic inter- 
ventions. VM was developed between 1978 and t980, 
before the current generation of  ventilators became 
widely used. 
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Fig 2. An example of how Ventilator Manager presents a sum- 
mary o f i ts  conclusions about a patient receiving mechanical respi- 
ratory support• The computer printout summarizes, over time, the 
presence (=) or absence of various cardiovascular and respiratory 
assessments, together with the patient's actual "state" (Patient Lo- 
cation) and VM's recommended state for the patient (Goal Loca- 
tion). C = controlled ventilation; A = assisted ventilation; V = 
spontaneous ventilation. (From Buchanan and Shortliffe [eds]. 
Rule-Based Expert Systems [18], © 1984, Addison-Wesley 
Publishing Co, Inc, Reading, MA. Reprinted with permission.) 

V M  produces its ou tpu t  in two forms,  as shown  in 
Figures 2 and 3. O n e  form is a s u m m a r y  of  the conclu-  
sions d r a w n  by  the system. The  other  is a sequence o f  
c o m m e n t s  and suggest ions.  

The  nuances  o f  this d o m a i n  were well  appreciated by  
the researchers, and this is reflected in the design issues 
they chose to pursue: 

. 

. 

. 

V M  represents no t  j u s t  poin t -es t imate  values o f  say, 
b lood  pressure, bu t  also tempora l  trends such as a 
significant recent rise in the mean  arterial pressure• 

V M  assumes that data wil l  be valid for on ly  a certain 
per iod o f  t ime and wil l  no t  rely on  "o ld"  data to 
make  r ecommenda t ions .  
V M  uses a quali tat ive representa t ion for patient  vari-  
able values such as respiratory rate or expired carbon 
dioxide. A n  interest ing facet o f  V M ' s  use o f  qualita- 
tive values is that, for example,  a "h igh"  value o f  

expired carbon dioxide mi gh t  be evaluated differ- 

ent ly depend ing  on the part icular clinical situation. 
In general, the sys tem's  in terpre ta t ion  of  whether  
part icular  values are too high, acceptable, etc., is a 
funct ion  o f  bo th  the pat ient ' s  clinical state and the 
physician 's  therapeutic  goals. 

1640.. 
** SUGGEST CONSIDER PLACING PATIENT ON T-PIECE IF 
** PA02 > 70 O N  FI02 < = .4 
** PATIENT AWAKE AND TRIGGERING VENTILATOR 
** ECG IS STABLE 

[measure ofbtood gas status] 

. .  1650 . . . .  1700 . . . .  1710 . . . .  1720 . . . .  1730 . . . .  1740 . . . .  1750 . .  
•.  1800 . .  
** HYPERVENTILATION 
** PATIENT HYPERVENTILATING. 
** SUGGEST REDUCING EFFECTIVE ALVEOLAR VENTILATION. 
** TO REDUCE ALVEOLAR VENTILATION, REDUCE TIDAL VOLUME, 
** REDUCE RESPIRATION RATE, OR 
** INCREASE DISTAL DEAD SPACE TUBING VOLUME 

1810 . .  
SYSTEM ASSUMES PATIENT STARTING T-PIECE 

1813 . . . .  18t5 . . . .  1817•• 
HYPOVENTtLATION 

. .  1819 . . . .  t 8 2 2 . .  
** HYPOVENTILATION 

Fig 3. Sequence of comments and suggestions produced by the Ven- 
tilator Manager system regarding a patient receiving mechanical re- 
spiratory support• PA02 = arterial oxygen tension; FI02 = in- 
spired oxygen fraction; ECG = electrocardiogram• (From 
Buchanan and Shortliffe [eds]. Rule-Based Expert Systems 
[18], © 1984, Addison-Wesley Publishing Co, Inc, Reading, 
MA. Reprinted with permission.) 
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VM uses If-Then rules that were developed in collab- 
oration with intensive care specialists and that fall into 
four categories: 

1. Status rules. Status rules make judgments about the 
patient's cardiovascular and respiratory status, for 
example, whether the patient's respiratory rate is ac- 
ceptable. The English translation o f  an If-Then rule 
used by VM to check whether hemodynamics are 
stable is shown below: 

. 

. 

. 

Status rule: Status. Stable hemodynamics. 
Definition: Defines stable hemodynamics based on 

blood pressures and heart rate. 
Applies to patients on Volume, CMV,  Assist, 

T-piece. 
Comment: Look at mean arterial pressure for 

changes in blood pressure and systolic 
blood pressure for maximum pres- 
sures. 

I f  (1) heart rate is acceptable, 
(2) pulse rate does not change by 20 

beats/min in 15 minutes, 
(3) mean arterial pressure is acceptable, 

and 
(4) mean arterial pressure does not 

change by 15 torr in 15 minutes, 
Then the hemodynamics are stable. 

Transition rules. Transition rules attempt to recognize 
when the patient has been changed to a different ven- 
tilator setting or different device. VM cannot assume 
that physicians will always inform the system when 
this occurs. 
Instrument rules. Instrument rules attempt to identify 
artifactual readings, an important  concern in the in- 
tensive care unit because, for example, ventilator 
tubing can become reversed or disconnected. 
Therapy rules. Therapy rules recommend action 
based on the conclusions drawn f rom the first three 
categories o f  rules. In making its recommendations, 
VM is "deterministic" in that it makes no attempt to 
weigh the pros and cons o f  competing options. (The 
deterministic nature of  VM's  therapy rules contrasts 
with V Q - A T T E N D I N G ' s  approach, in which eluci- 
dating the pros and cons o f  various actions is a cen- 
tral research focus.) Types o f  therapy recommenda- 
tions include (1) changing ventilator settings, (2) 
changing ventilator modes, and (3) checking equip- 
ment that may be malfunctioning. 

Figure 4 outlines VM's approach to therapy recom- 
mendation. At any time the system considers the patient 

condition 
jk 

on CMV > 30 min. 
Hypoventiiation is absent 
Hemodynamios are stable 

condition 
kj 

Respiratory late acceptable 
TVOT not acceptable 

Fig 4. State transition diagram for the Ventilator Manager system. 
Circles represent therapy states. Rules infer transition (T) be- 
tween states. Transient states (boxes) suggest changes in ventilator 
setting. RR = respiratory rate; TV = tidal volume; TVOT = 
tidal volume out. 

to be in one o f  the therapy states. When VM finds con- 
ditions that might  allow transition f rom one state to 
another, it prints a recommendation that the patient 
might be started on the therapy corresponding to the 
destination state. For example, the system can move 
from the controlled mandatory ventilation (CMV) state 
in Figure 4 to the assist mode  state if  certain conditions 
are met, such as (1) the patient has been on CMV for at 
least 30 minutes, (2) hypoventilation is absent, and (3) 
the hemodynamics are stable. 

Similarly, state transition in the reverse direction, 
f rom assist mode to CMV,  is possible if  other condi- 
tions are met, such as (1) respiratory rate is acceptable 
and (2) the t idal-volume-out (TVOT)  value is not ac- 
ceptable. 

Other  major states include not monitored, T-piece, 
and extubated. Finally, transient states are used to sug- 
gest changes in ventilator setting, rather than changes in 
ventilator modes. Transient states can be reached from 
major states but automatically return the system back to 
the therapy state. For example, f rom the assist mode 
state, certain conditions may move the system to the 
transient state, " ~' RR [respiratory rate] or 1' TV  [tidal 
volume]"  (see Fig 4). Arriving in this transient state 
causes the system to print a message: "Suggest increas- 
ing respiratory rate or increasing tidal volume."  Im- 
mediately after this action, the system automatically tra- 
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Table 2. Suggested Ventilator Changes in Example of 
VQ-A TTENDING a 

Ventilator Setting 

Variable Current Proposed 

Inspired oxygen fraction 0.6 0.6 
Tidal volume (cm 3) 800 800 
Respiratory rate 

(breaths/min) 8 11 
Positive end-expiratory 

pressure (cm H20) 10 12 
Ventilator mode Assist/control Assist/control 
Added dead space (cm 3) 0 0 

aAdapted from Miller [25]. 

verses the arc back to the assist mode. Thus, transient 
states are unlike therapy states in that the system never 
remains in a transient state, but automatically traverses 
the return arc. 

VM was one o f  the first medical AI systems designed 
to help manage a patient over time. In addition, the 
development o f  qualitative values for variables was a 
novel attempt to deal with the fact that numeric values 
often can be meaningfully interpreted only after assess- 
ing the wider clinical context. 

TrIE V Q - A T T E N D I N G  SYSTrM. V Q - A T T E N D I N G  is 
a prototype expert system designed to critique aspects 
o f  ventilator management  [25]. To use V Q - A T T E N D -  
ING, a physician first enters a limited amount  of  basic 
medical information describing a patient who is receiv- 
ing mechanical respiratory support. The physician also 
enters current arterial blood gas data, together with cur- 
rent and proposed ventilator settings. V Q - A T T E N D -  
ING then produces an English prose analysis discussing 
the appropriateness o f  the proposed settings. 

V Q - A T T E N D I N G  extends the critiquing approach 
beyond anesthesiology to a domain of  quite different 
character. In addition, the V Q - A T T E N D I N G  project 
explores how treatment goals can be made an active part 
o f  an expert system's design. 

The following example illustrates the goal-directed 
nature o f  V Q - A T T E N D I N G ' s  advice. In this example 
a patient with increased intracranial pressure has arterial 
blood gas data showing a pH o f  7.60, oxygen tension 
o f  40 m m  Hg, and carbon dioxide tension o f  44 mm 
Hg. The physician has suggested ventilator changes as 
shown in Table 2. V Q - A T T E N D I N G ' s  critique of  the 
oxygenation component  o f  this plan is as follows: 

In regard to oxygenation, the primary goal in this patient's 
management is to achieve an adequate PaO2. Secondary goals 

INFER "ACTIVE" OXYGENATION 
TREATMENT GOALS 

DISCUSS THE "ACTIVE" | 
OXYGENATION GOALS 

1 
USE THE "ACTIVE" OXYGENATION GOALS 
TO DRIVE THE LOGIC WHICH ANALYZES 
OXYGENATION ASPECTS OF THE PLAN 

AND CONSTRUCTS THE OXYGENATION CRITIQUE 

E 
Fig 5. Schematic overview of VQ-A TTENDING's operation. 
(From Miller [25]. Used with permission.) 

are to avoid the risk of oxygen toxicity, and to avoid the risk 
associated with high PEEP. The urgency of the primary goal, 
however, may override the secondary considerations. 

You have suggested leaving the FiO2 at 0.6. In view of the 
urgency of the patient's hypoxemia, it may be worthwhile to 
use an FiO2 of 1.0, at least until the patient's oxygenation 
status has stabilized. Maintaining an FiO2 greater than 0.6 over 
extended periods, however, may result in oxygenation toxic- 
ity. You have proposed a small increase in PEEP. In a patient 
with increased intracranial pressure, increased PEEP may 
exacerbate this problem. In view of this patient's poor oxy- 
genation, an increase in PEEP may ultimately prove neces- 
sary, but in this patient, you might first assess the effect of an 
FiO2 of 1.0. 

As shown in Figure 5, V Q - A T T E N D I N G  next pro- 
duces an analysis o f  the ventilation component  o f  the 
plan. Notice that V Q - A T T E N D I N G  first discusses the 
oxygenation treatment goals it considers to apply to 
the patient's management. It infers these goals with the 
use o f  If-Then rules. In the second paragraph, the sys- 
tem then discusses the management choices that might 
help achieve the goals. The inferred set o f  treatment 
goals plays a central role in the internal logic, which 
produces the critiquing analysis seen in the second para- 
graph. Thus, treatment goals play a key role both in 
V Q - A T T E N D I N G ' s  internal analysis and in its prose 
critique o f  the physician's plan. 

From the standpoint o f  AI research, the V Q - A T -  
T E N D I N G  project makes two main contributions: it 
extends the critiquing approach to a new domain and it 
explores a more goal-oriented, strategic design. VQ-  
A T T E N D I N G  separates its knowledge o f  ventilator 
management into two parts: (1) strategic knowledge 
about treatment goals (e. g., to achieve adequate arterial 
oxygenation) and (2) tactical knowledge about the man- 
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agement alternatives used to achieve those goals (e.g., 
to increase FiO2). 

VQ-ATTENDING's  goal-directed design raises sev- 
eral questions: First, are there particular medical do- 
mains where strategic reasoning of  this sort is especially 
useful? Second, how should a computer system deal 
with possible conflicts between goals? Third, what 
should the system do if the physician has different goals 
from those the system considers appropriate? (One ap- 
proach would be to let the system critique the physi- 
cian's plan at the level of  goals as well as at the level of 
tactics.) The prototype implementation of  VQ-AT- 
TENDING is a first step in exploring these issues. It 
seems clear, however, that the ability for a computer to 
counsel a physician rel ~arding overall strategy as well as 
tactics is highly desirable in many areas of medicine. 

SMART RESPIRATORY ALARMS. Scientists at Pacific Medical 
Center in San Francisco have developed a smart respira- 
tory alarm system [26]. This system's knowledge, ex- 
pressed by using If-Then rules, monitors the signals 
generated by a bedside ventilator. The program is de- 
signed to recognize twenty-three separate alarms, each 
belonging to one of  three categories: 

1. Monitoring equipment malfunctions. For example, one 
rule (presumably reflecting the characteristics of the 
ventilator used) states: 

If 

Then 

(1) the gas sample tube is connected, 
(2) FiO2 and expiratory oxygen fraction 

(FeO2) are not above 0.21, and 
(3) oxygen uptake = 0, 
the system should print the message "No 02 

signal." 

2. Ventilator-related alarms. For example, a rule designed 
to detect endotracheat cuff leaks states: 

If 

Then 

(1) the patient is being mechanically venti- 
lated, 

(2) the expiratory tidal volume is less than 
three-fourths of  the inspiratory tidal vol- 
ume, and 

(3) the expiratory tidal volume decreased 
over 10% in the time interval since the 
last measurement, 

the computer should print the message: "Pa- 
tient not getting full volume. Check for cuff 
leak." 

3. Patient-related alarms. For example, patients recover- 
ing from the hypothermia induced during heart sur- 

gery may be shivering or frightened. One rule looks 
for these possibilities by scanning for extreme in- 
creases in metabolic rate. The rule states: 

/f 

Then 

the peak oxygen uptake and the peak carbon 
dioxide production each exceed 500 ml/min, 
the computer should print the message: 
"Oxygen uptake is high. Is patient frightened 
or shivering?" 

Ventilator signals are obtained from a gas sampling 
system placed between the Y of the ventilator tubing 
and the patient. Primary data gathered include flow, 
pressure, and oxygen and carbon dioxide tensions at the 
outlet of  the endotracheal tube. These primary data ele- 
ments are processed to determine secondary monitoring 
variables, such as tidal volume inspired, tidal volume 
expired, respiratory rate, PEEP, and also an index of 
how much the patient is fighting the ventilator. 

Performance of  the smart alarm system was evaluated 
in 157 postcardiac surgery patients over a six-month 
period. The nurses caring for those patients were inter- 
viewed to determine their opinions of  the 476 alarms 
that had occurred. The types of  alarms those nurses 
considered most useful occurred infrequently (fewer 
than six times per month). The smart alarm was viewed 
as a useful backup in those infrequent situations. 

A I  Research in Cardiovascular Management 

THE DIGITALIS T H E R A P Y  ADVISOR.  The Digitalis Therapy 
Advisor [27] is designed to assist in the clinical use of 
digitalis. The program differs from previous programs 
that have dealt with digitalis therapy [28,29] because the 
Digitalis Therapy Advisor focuses on clinical endpoints 
rather than on serum levels of  digitalis. The desired 
therapy is defined by clinical goals: improvements in the 
clinical problem (therapeutic benefits) balanced against 
toxic manifestations. 

The program is built around a patient-specific model 
(PSM), which indudes such variables as the patient's 
age, weight, and the clinical reason for using digitalis. 
The program uses a pharmacokinetic equation to pre- 
dict the body stores of  digitalis at a given time. (If clini- 
cal information indicates that the digitalis level is much 
lower than predicted by the equation, the program at- 
tempts to correct the PSM by, for example, altering the 
oral absorption variable.) 

Subsequent dosing adjustments are made primarily 
on the basis of  clinical feedback rather than on the basis 
of measured serum levels. If the clinical indication for 
administering digitalis is heart failure, the system will 
ask about signs indicating clinical improvement or 
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worsening (e.g., pulmonary congestion). On the other 
hand, if the initial reason for giving digitalis is a dys- 
rhythmia, an entirely different set of clinical variables is 
the focus for assessing response to therapy (e.g., slow- 
ing of atrial fibrillation). AI techniques are especially 
relevant in this problem because these clinical findings 
are not strictly numeric, and their evaluation is a matter 
of expert judgment rather than, say, pharmacokinetics. 

The Digitalis Therapy Advisor was evaluated in 1976 
by collecting patient histories and progress notes for one 
month and running the program on these patients retro- 
spectively. Nineteen patients were reviewed, represent- 
ing every patient receiving digitalis in the cardiology 
service of  Tufts-New England Medical Center Hospi- 
tal (excluding patients on routine, stable maintenance 
schedules). The computer program detected all 4 pa- 
tients in whom toxicity developed and always detected 
it before thephysicians handling the patients had. There 
were no false positives (that is, the program's suggest- 
ing toxicity when there was none) among the other 15 
patients. These encouraging results must not obscure 
the fact that the program's focus is narrow (as is the case 
with many experimental AI programs). For example, 
the program does not take into account many coexisting 
diseases or conditions (e.g., pacemakers) that may com- 
plicate the clinical situation. 

The principal research contribution of the Digitalis 
Therapy Advisor then, is not simply that it follows the 
patients over time, but that it uses clinical information 
as input. This requires that the program evaluate clinical 
findings as well as straight numeric measurements and 
that the pursuit of therapeutic benefit is tempered by 
any clinical sign(s) of toxic manifestations. This system 
was one of the first to smoothly integrate "soft" clinical 
information with a mathematical model ofpharmacoki- 
netics. 

CONGESTIVE HEART FAILURE MANAGEMENT. A develop- 
mental system at the Massachusetts Institute of Tech- 
nology uses a causal, qualitative model of human patho- 
physiology to provide advice for the management of 
congestive heart failure (CHF) [30-33]. To use the pro- 
gram, the physician enters clinical findings and labora- 
tory data. (It is necessary to use the restricted vocabu- 
lary of  the computer program rather than flee-form 
text, but the information can be entered in whatever 
order the user desires.) This information is used to set 
qualitative values for variables in the physiologic model 
(discussed in more detail below) and to trigger If-Then 
rules that may conclude that certain disease states are 
present. The system then uses the physiologic model to 
assess the completeness and consistency of possible di- 
agnoses and to search for interventions that might im- 

. . . . .  A 

Physiological Model 

t t 
Diagnosis Therapy 

Fig 6. Outline of the design of the congestive heart failure, system. 
A qualitative physiologic model forms the backbone of the system. 
The model receives input describing a particular patient, and is 
then able to assist (with appropriate explanations) in assessing 
diagnosis and therapy for that patient. (Adapted fiom Long et al 
[33] © I984 IEEE.) 
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Fig 7. Small subset of causaI nodes and links used by the conges- 
tive heart failure management system. Connecting arrows represent 
the influence of one pathophysiologic state (node) on another. In 
this example, the presence of angina is known at the outset and the 
system tries to confirm or deny (causally) contributing problems. 
(Adapted fiom Long et aI [33] © t984 IEEE.) 

prove cardiac function. Figure 6 gives an overview of  
the system's operation. 

The CHF management system's causal model is rep- 
resented by nodes (physiologic states of the cardiovas- 
cular system relevant to heart failure) that are linked 
together by relations (Fig 7). There are causal relations 
between states and time dependency relations between 
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states. There are several hundred nodes in the system, 
only a subset of which are "active" (relevant to the pa- 
tient described) at any one time. The CHF management 
system searches along causal chains (between abnormal 
findings and possible causes) to find a coherent interpre- 
tation of the patient's pathophysiology. 

Management advice is also generated by inspection of 
these causal chains for possible therapeutic interven- 
tions. In so doing, the computer can vary a variable 
(e.g., increase peripheral vascular resistance) and auto- 
matically propagate the effects of this change through- 
out the model. In this way, the computer itself can 
experimentally evaluate the effects of different in- 
terventions in a particular patient. As effects are propa- 
gated, the justification for any variable change is stored 
by a module called the truth maintenance system. This 
allows the system to explain its reasoning. An additional 
role of the truth maintenance system is to identify ambi- 
guities and contradictions in the model's variable values. 
The CHF management system will note these ambi- 
guities and try to resolve them. 

Several features of the system are worthy of special 
note: 

1. The physiologic model is a qualitative model. All variable 
values are qualitative rather than numeric. For ex- 
ample, the value of  cardiac output may be "low" or 
"high" rather than a number. 

2. Temporal relationships are central to the program's rea- 
soning. Temporal relationships are integrated into the 
causal model. In addition, just as cardiovascular vari- 
ables are represented qualitatively, temporal duration 
also is represented by qualitative values. Qualitative 
temporal values are useful because, for example, al- 
though the exact time when low cardiac output 
started may not be known, it may be possible to say 
that it has been present for days, but less than one 
week. Even such inexact time information is often 
useful in diagnostic and therapeutic reasoning. In ad- 
dition to duration, to determine causality it is impor- 
tant to represent the temporal order of events, and 
for this reason the system superimposes a partial or- 
dering on temporal events, even when exact times 
are unknown. 

3. Cost and risk. The CHF management system also al- 
lows cost and risk to play an active role in resolving 
diagnostic ambiguities and in recommending ther- 
apy. For example, the diagnostic module assesses the 
costs and risks of different measurements to help se- 
lect those that might clarify the diagnosis at mini- 
mum risk. (Thus, less invasive procedures are pre- 
ferred). These utility considerations are rudimentary, 
but they demonstrate that the system designers rec- 
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Fig 8. The Ventricular Arrhythmia Management Advisor system. 
(Adapted from Long et al [35] © 1983 IEEE.) 

ognize the importance of cost and risk considerations 
in medical reasoning. 

The CHF management system is currently under ac- 
tive development. From an AI research standpoint, this 
project is exploring the use of a qualitative causal model 
to drive a system's reasoning about management of 
heart failure and the use of temporal information about 
clinical findings to augment the causal reasoning. 

VENTRICULAR DYSRHYTHMIA MANAGEMENT. T h e  Digitalis 
Therapy Advisor is the precursor to the Ventricular 
Arrhythmia Management Advisor (VAMA) project 
[34,35]. As illustrated in Figure 8, VAMA is designed to 
accept real-time electrocardiographic input, as well as a 
large variety of other clinical information, and offer rec- 
ommendations for the management of ventricular dys- 
rhythmias. 

Like the Digitalis Therapy Advisor, VAMA is de- 
signed around the central concept of using clinical infor- 
mation as feedback to guide drug therapy. The tradeoff 
between therapeutic benefit and toxicity plays a major 
role in this program's analysis as well. VAMA general- 
izes the approach of the Digitalis Therapy Advisor in at 
least three ways: 

1. VAMA considers a wider range of cardiac drugs than 
just digitalis. 

2. By using a pharmacokinetic model, VAMA exam- 
ines not only steady-state drug levels (as does the 
Digitalis Therapy Advisor) but also temporal phar- 
macokinetic trends. For example, VAMA might con- 
sider the time elapsed since a lidocaine bolus and 
conclude that the plasma concentration is in a slowly 
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increasing phase and has not yet reached the steady- 
state phase. This allows VAMA to make dosing rec- 
ommendations at times preceding the steady-state 
phase. 

3. VAMA considers diverse sources of  information in 
its determination of  therapy recommendations: (1) 
cardiac rhythm analysis (one component of  which is 
a commercial dysrhythmia monitor), (2) the patient's 
clinical history, (3) clinical laboratory data (e.g., se- 
rum drug levels), and (4) a clinician's observations of  
the patient's state. 

The remainder of  this discussion focuses on two im- 
portant aspects of  the VAMA system: its integration of  
multiple sources of  knowledge and its ability to consider 
temporal trends. 

The integration of  information from multiple sources 
is a major challenge for AI research. Anesthesiologists 
and intensive care physicians are acutely aware that mul- 
tiple sources of  data must be continually integrated into 
an overall patient assessment. The anesthesiologist con- 
tinually "scans" a variety of  data sources: the patient, 
electrocardiogram, blood pressure, ventilator settings, 
oximeter values, actions of  the surgeon, condition of the 
operating field, volatile agents, time elapsed since in- 
travenous drug administration, patient history, and so 
forth. The experienced clinician learns to integrate 
these, and also to prioritize abnormal observations. AI 
research such as the VAMA project seeks to understand 
this human ability in order to design computer systems 
that can assist the physician in this process rather than 
simply generating yet more data to be analyzed. 

In VAMA, the diverse sources of information are in- 
tegrated by intermediate subprograms. For example, 
the patient history, laboratory reports, and user-sup- 
plied information about the current clinical state are in- 
tegrated into a PSM. A therapy advisor module then 
draws upon the PSM, the system's pharmacokinetic 
model, and the results of  the dysrhythmia evaluation 
unit to make recommendations. 

VAMA's ability to consider the temporal trends of  
plasma drug levels allows it to handle intravenous infu- 
sion rates as well as drug boluses. For example, in one 
actual patient the cardiac care unit team observed that 
dysrhythmias persisted while a lidocaine drip was run- 
ning, and they responded to this situation by increasing 
the drip rate. When VAMA considered this patient ret- 
rospectively, it used temporal aspects of  the pharmaco- 
kinetic model to recognize correctly that the plasma 
concentration was probably still rising slowly toward 
the steady-state level. To reach the steady-state concen- 
tration sooner, it was best to bolus rather than to in- 
crease the infusion rate. (After the cardiac care unit team 
had increased the drip rate, the serum level eventually 

surpassed the therapeutic range and the patient became 
somewhat toxic.) 

In summary, VAMA is a developmental AI research 
project with the goal of building a computer system for 
dysrhythmia management of  cardiac care unit patients. 
VAMA generalizes the capabilities of  the Digitalis Ther- 
apy Advisor in several ways. The salient research issues 
are the ability to consider temporal trends and the im- 
proved capability to integrate diverse sources of  infor- 
mation into a comprehensive clinical picture. 

CURRENT STATUS OF THE FIELD 

It is important to emphasize that the computer systems 
described here are research prototype systems. None are 
in clinical operation. Some of the systems have been 
tested on retrospective data from a small number of  
patients, or by limited testing in the clinic. 

Although the development of  practical systems is cer- 
tainly an ultimate goal, the immediate goal of  these 
projects has been to explore the AI research problems 
involved in giving computer-based clinical advice and 
to begin to develop solutions. Major problems remain 
at both the research and practical level, many of which 
have barely been touched. These problems include (1) 
linking the systems to real-world data collection where 
many practical issues, such as dealing with artifacts [36], 
are extremely important; (2) dealing comprehensively 
with the need for sophisticated, "intelligent" alarms 
[37]; (3) tailoring the systems to the demands of  the 
clinical environment, so the systems are human-engi- 
neered to maximize their efficacy; (4) dealing fully with 
the variability of  medicine, so the systems will deal ap- 
propriately with the full range of  coexisting disease, 
concurrent treatment, etc., that will be encountered; (5) 
testing and validating decision rules and algorithms; and 
(6) accommodating practice variations among different 
experts and institutions. 

Two recent articles provide thoughtful discussions of 
certain of  these issues. Rampil [36] gives an overview of  
computer-based detection of artifact, surveying work 
done in monitoring different real-dine patient data 
streams, discussing the general problems which must be 
dealt with, and suggesting that AI-oriented techniques 
might help in the process. Beneken and Gravenstein [37] 
propose a model for conceptualizing the design of  so- 
phisticated alarms using systems engineering concepts. 
Both of  these articles are good illustrations of  the type of  
thinking required to bridge the gap between the practi- 
cal problems posed by real-world patient monitoring 
and the more theoretical issues currently being dealt 
with by basic At research. 

Researchers in the field of  medical AI believe that 
basic research is required before many of these practical 
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issues can be confronted in a satisfactory way. We have 
described several ongoing basic research projects that 
are confronting these fundamental issues in the anesthe- 
sia and intensive care settings. 

SUMMARY 

Medicine is a complex and demanding domain for the 
implementation o f  computer-based advisors. There is a 
broad range o f  different types o f  information that can be 
brought  to bear on medical problems, including funda- 
mental biomedical principles, clinical observations link- 
ing disease states to clinical findings, anecdotal case- 
based knowledge, and critical interpretation o f  the 
clinical literature. Granting the complexity and diversity 
of  medical knowledge, it should not be surprising that 
the development o f  robust, sophisticated computer-  
based advisors poses challenging problems. We have 
outlined a set o f  research projects that are beginning to 
confront these problems in the areas of  anesthesiology 
and intensive care. 

APPENDIX: AI PROGRAMMING LANGUAGES 
ANO HAROWARE 

A discussion of AI is incomplete without mentioning the LISP 
(List Processing) programming language, widely used by AI 
researchers [38]. LISP was one of the first languages designed 
for symbolic (nonnumeric) programming. A second com- 
puter language that has been used more recently for AI pro- 
gramming is PROLOG [39]. 

While LISP has been the central programming tool for 
many AI researchers for the past 20 years, the hardware used 
has changed. In the 1970s, most AI work was performed with 
large mainframe computers, time-shared among several users. 
In the 1980s, there has been a migration of these projects to 
scientific workstations. These workstations are powerful, 
single-user computers, which have recently cost $60,000 or 
more. This price is dropping dramatically, and scientific 
workstations will soon become considerably more affordable. 

Dr Rennels' work is supported in part by National Institutes 
of Health grant LM07033 from the National Library of Medi- 
cine. Dr Miller's work is supported in part by National Insti- 
tutes of Health grants R0t LM04336 and T15 LM07056 and 
National Institutes of Health contract N01 LM63524 from the 
National Library of Medicine. 

GLOSSARY 

ARTIFICIAL INTELLIGENCE (AI) A subfield o f  computer 
science that can be loosely defined as the discipline o f  
developing computer  Systems that exhibit "intelligent" 
behavior. 

CAUSAL MODELING An area o f  AI research that is ex- 
ploring how underlying causal relationships in a physi- 
cal or biologic system can be represented so that the 
computer  itself can inspect those causal relationships 
and reason about their various implications. 

CRITIQUING SYSTEM An expert system that critiques its 
user's approach to a particular problem rather than di- 
dactically attempting to tell the user what to do. 

EXPERT SYSTEM A computer  consultation system de- 
signed to operate in a real-world domain such as medi- 
cir/e, embodying the expertise o f  human specialists in 
that field. 

IF-THEN ROLE A conceptually simple yet powerful 
knowledge representation technique often used in AI 
programming.  An If-Then rule consists of  two parts. 
The I f  clause is a test. The Then clause is an action the 
computer  will perform if  that test is true. Often the 
action involves making a conclusion (an "inference") 
that may later be tested by the I f  clause o f  other If- 
Then rules. 

INFERENCE CHAINING If the conclusion made by the 
Then clause o f  one rule is tested by the I f  clause o f  
another rule, then those two rules can chain together 
sequentially to form an inference chain. 

QUALITATIVE CAUSAL MODELING A type o f  causal mod-  
eling that is being used to explore how the various state 
variables in a causal model might be expressed in qual- 
itative terms (e.g., "normal , "  " low,"  and "high"),  
rather than in numeric values. 

RULE-BASED EXPLANATION T h i s  o c c u r s  when an expert 
system explains the questions it asks its user or the rec- 
ommendations it makes, by using, for example, its If- 
Then rules as the basis o f  the explanation. 

RULE-BASED CONSULTATION SYSTEM An expert com- 
puter system constructed by using If-Then rules to rep- 
resent the system's knowledge about its domain. 

TEMPORAL MODELING An area o f  AI research that is ex- 
ploring how best to represent temporal events (events 
occurring over time) and relationships between those 
events so that the computer  can reason about those 
events. 
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