Erratum

MASS-GENERATION, SYMMETRY BREAKING AND CONFORMAL INVARIANCE

M. Flato, M. Guenin: Czech. J. Phys. B32 (1982) 490

Formula on p. 490, line 18	$\Omega(a, x) = 1/(1 + 2\mathbf{a} \cdot \mathbf{x} + a^{0}x^{0})$
should read	$\Omega(a, x) = 1/(1 + 2\mathbf{a} \cdot \mathbf{x} + a^{2}x^{2})$
Page 490, line 21	It is true, in general, of all massless
replace by	It is true, in general, of most massless
Page 490, lines 27, 28	Notice that even in the case m is a constant
replace by	Notice that even in the case when m is a constant
Page 490, lines 33, 34	This procedure recalls that
replace by	This procedure reminds that
Page 491, line 27	coupling constants with dimensions in Φ^4 theory, in the Fermi-coupling, etc.
replace by	coupling constants with dimensions in Φ^n theory $(n \neq 4)$ in the 4-Fermi-coupling, etc.

Page 491, the expression in the last but one equation

replace by

$$-i\varepsilon\phi^*\,\partial^\mu\phi$$
$$-\frac{1}{2}i\varepsilon\phi^*\,\partial^\mu\phi$$

Page 491, the expression in the last equation

$$\lambda \overline{\psi} \; rac{\phi}{\sqrt{(\phi \phi)}} \, \psi \; - arepsilon^2 A_\mu A^\mu \phi \; + \, {
m i} arepsilon \; A^\mu \; \partial_\mu \phi$$

replace by

$$\lambda \overline{\psi} {\phi \over \sqrt{(\phi^* \phi)}} \psi - arepsilon^2 A_\mu A^\mu \phi$$