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Abstract. The notion of an RNA world has been introduced for a prebiotic scenario that is dominated
by RNA molecules and their properties, in particular their capabilities to act as templates for reproduction
and as catalysts for several cleavage and ligation reactions of polynucleotides and polypeptides. This
notion is used here also for simple experimental assays which are well suited to study evolution in
the test tube. In molecular evolution experiments fitness is determined in essence by the molecular
structures of RNA molecules. Evidence is presented for adaptation to environment in cell-free media.
RNA based molecular evolution experiments have led to interesting spin-offs in biotechnology, commonly
called ‘applied molecular evolution’, which make use of Darwinian trial-and-error strategies in order
to synthesize new pharmacological compounds and other advanced materials on a biological basis.

Error-propagation in RNA replication leads to formation of mutant spectra called ‘quasispecies’.
An increase in the error rate broadens the mutant spectrum. There exists a sharply defined threshold
beyond which heredity breaks down and evolutionary adaptation becomes impossible. Almost all RNA
viruses studied so far operate at conditions close to this error threshold. Quasispecies and error thresholds
are important for an understanding of RNA virus evolution, and they may help to develop novel antiviral
strategies.

Evolution of RNA molecules can be studied and interpreted by considering secondary structures.
The notion of sequence space introduces a distance between pairs of RNA sequences which is tantamount
to counting the minimal number of point mutations required to convert the sequences into each other.
The mean sensitivity of RNA secondary structures to mutation depends strongly on the base pairing
alphabet: structures from sequences which contain only one base pair (GC or AU are much less stable
against mutation than those derived from the natural (AUGC) sequences. Evolutionary optimization
of two-letter sequences in thus more difficult than optimization in the world of natural RNA sequences
with four bases. This fact might explain the usage of four bases in the genetic language of nature.

Finally we study the mapping from RNA sequences into secondary structures and explore the topology
of RNA shape space. We find that ‘neutral paths’ connecting neighbouring sequences with identical
structures go very frequently through entire sequence space. Sequences folding into common structures
are found everywhere in sequence space. Hence, evolution can migrate to almost every part of sequence
space without ‘hill climbing’ and only small fractions of the entire number of sequences have to be
searched in order to find suitable structures.

1. The concept of an RNA world

RNA molecules were found to be unique in chemistry and biology since they can
not only act as templates for their reproduction but are also catalysts for several
reactions involving other RNA molecules or oligopeptides. Template induced
reproduction of RNA molecules occurs in cells that were infected by RNA viruses
or viroids (For the latter case see e.g. Riesner and Gross, 1985). Enzyme free template
induced RNA synthesis has been studied extensively by Leslie Orgel (1992).
Replication of RNA molecules under non-equilibrium conditions provides the basis
for evolutionary adaptation in the sense of Darwin’s mechanism as shown in the
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next two sections. The discoveries of Thomas Cech and Sidney Altman (Cech,
1986; Guerrier-Takada et al., 1983; Guerrier-Takada and Altman, 1984; Symons,
1992) have shown that, in contrast to previous belief, RNA molecules can catalyze
several classes of reactions with similar high efficiency and specificity as protein
enzymes. The notion of ‘ribozymes’ was created for such RNA based catalysts.
The catalytic activities of RNA molecules are all related to cleavage or formation
of nucleotide or peptide bonds. For RNA substrates ligation and cleavage are highly
sequence specific. The capability of RNA to catalyze peptide bond cleavage and
formation (Noller, 1991; Noller et al., 1992; Piccirilli et al., 1992) is of particular
interest since it can be interpreted as a hint that primordial ribosomes might have
worked without proteins. Although the catalytic repertoire of ribozymes is rather
poor compared to that of protein enzymes, it comprises the key reactions that
are necessary to produce polynucleotide from oligomers and monomers. Itis generally
believed nowadays that there was a period in the origin of life on Earth when
RNA served as both, genetic material and specific catalyst (See e.g. Gilbert, 1966;
Joyce, 1991). In other words RNA has the capability to be genotype and phenotype.
A world of RNA molecules driven by a steady supply of suitable energy rich
compounds represents also a kind of biological toy universe which allows to study
the evolutionary process in its simplest form. Such an RNA world is a biological
adaptive system of minimal complexity.

Is there room for an RNA world in the current view of chemical evolution on
the primordial Earth? In Figure 1 we show a sketch of a plausible sequence of
scenarios leading to the onset on RNA based Darwinian evolution (for more details
see e.g. Schuster, 1981; Mason, 1991). The major problem with RNA in chemical
evolution is to seen in its highly elaborate molecular structure: for RNA template
induced reactions molecules of high stereochemical purity are required, and chiral
compounds such as ribose have to be present as pure single antipods (racemic
mixtures of D- and L-ribose incorporated into polynucleotides are prohibitive for
template induced replication). It was suggested therefore that less complicated
molecules which could nevertheless act as templates preceded the RNA world (Orgel,
1986; Joyce, 1989). Recent progress in template chemistry (Orgel, 1992) makes this
suggestion more and more plausible. RNA molecules, on the other hand, are the
first template molecules which share most of their chemical properties with DNA
the predominant genetic information carrier at present. Information transfer from
DNA to RNA and vice versa, known as transcription and reverse transcription,
is routine in present day biochemistry. We can speculate therefore that a phylogenetic
extrapolation of present day genetic information may go back as far as to the first
efficiently replicating species of a primordial RNA world. In short, RNA molecules
seem to appear late in chemical evolution and very early in biological evolution.

According to the analysis of microfossils carried out by William Schopf (Schopf
and Packer, 1992) the first sure remnants of microorganisms are dated 3.4 x 10°
years ago. These microorganisms were most likely photosynthetic and related to
present day cyanobacteria. Needless to say, there was a long way with many inter-
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mediate steps to go from a primitive Darwinian system like the RNA world to
a fully developed phytosynthetic organism (Eigen and Schuster, 1985). The flow
chart sketched in Figure 1 does not refer explicitly to these other ‘worlds’ which
inevitably lay in between.

Evolution experiments in the pure RNA world have to face severe problems:
template induced RNA synthesis is slow, does not work for many templates under
the conditions applied so far, and the accuracy of base incorporation is low (of
the order of one error in hundred nucleotides). Another problem concerns separation
of double strands which does not occur readily under the conditions of template
induced synthesis. In order to explore the capabilities of a minimal complexity
adaptive system we are, however, not restricted to a pure RNA world. Why not
use protein catalysts as highly specific and efficient environmental factors? Addition
of enzymes leads to a new toy universe for studies on evolution that might be cha-
racterized as a protein assisted RNA world. Sol Spiegelman (1971) has indeed shown
that such a universe can be created in the test tube, and indeed, it shows all features
of the Darwinian scenario. RNA dependent RNA polymerases, commonly called
RNA replicases, occur in nature. Spiegelman used an enzyme isolated from bacterial
cells of E. coli which were infected by the RNA bacteriophage Q8. This enzyme
replicates RNA fast and with much higher accuracy than achieved without a protein
catalyst: many thousands of generations can be studied in experiments lasting less
than a day, and the accuracy of replication is about one error in 3000 nucleotides.

Variation

|
GCGGAUUUAG.--GCACCA Genotype: Nucleotide Sequence

Unfolding of the Genotype

Phenotype: Spatial Molecular Structure

I

Selection

Fig. 2. Molecular genotypes and phenotypes in RNA evolution experiments.
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2. Molecular genotypes and phenotypes

The dichotomy between genotypes and phenotypes is basic to biological evolution.
Molecular biology has shown that the information for the unfolding of organisms
(which represent the phenotypes) is contained in the DNA (which is the genotype).
The Darwinian principle of evolution is based on heridity, variation and selection.
According to our present day knowledge all inheritable variations are caused by
changes of the genotype (i.e. by changes in the sequence of nucleotide bases of
the DNA), and selection acts through differential reproductive success of phenotypes.
RNA molecules in cell-free evolution experiments are both genotypes and phenotypes.
As we see in Figure 2 the genotype is again a sequence of nucleotide bases, this
time in the form of an RNA molecule. Following Sol Spiegelman we consider the
spatial structure of the RNA molecule as its phenotype. Indeed, this structure is

o~
e

Replication <= Amplification

High Mutation Rates

Random Synthesis

<= Diversification

2\ Selection Cycle Genetic
Variability

[————} <= Selection

Target Function

|

Desired Properties
no 7779

\L yes

Product

Fig. 3. A selection technique of applied molecular evolution based on encoding of the function to
be developed into the selection constraint.
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evaluated by the selection process. Systematic kinetic studies on RNA replication
and test tube evolution carried out by Christof Biebricher in Manfred Eigen’s
laboratory (Biebricher ef al. 1983, 1984, 1985) revealed the mechanism of RNA
replication. The rate and equilibrium constants which determine the outcome of
selection under different conditions are known now. They can be determined
independently from selection experiments by direct measurements. In addition
minimum requirements for efficient replication were discovered. They consist in
sequence regularities and sufficient secondary structure to facilitate double strand
separation by the enzyme.

Selection experiments may be carried out by discontinuous renewal of the
consumed material as in the serial transfer technique (Spiegelman, 1971) or under
the continuous constraint maintained in elaborate evolution reactors (Husimi et
al., 1982; Husimi and Keweloh, 1987). An new selection technique was used by
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Fig. 4. A selection technique of applied molecular evolution based on massively parallel screening.
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John McCaskill in his molecular evolution experiments i. capillaries (Bauer et al.,
1989a): the capillaries contain a medium suitable for replication, RNA is injected
and a wave front spreads through the medium. The front velocity of the traveling
wave increases with the replication rate and hence, faster replicating mutants are
selected by the wave propagation mechanism.

The capability of RNA molecules to evolve by natural selection is used now
in applied molecular evolution to produce biomolecules with new properties. This
novel evolutionary technology was originally suggested by Eigen and Gardiner (Eigen
and Gardiner, 1983). Somewhat later Kauffman suggested the use of random
sequences in selection experiments (Kauffman 1986; for a recent review see Kauffman,
1992). One approach to the problem is suitable for ‘batch’ experiments (Figure
3). The essential trick of this technique is to encode the desired functions into
the selection constraint. As indicated in Figure 3 sufficient variation is introduced
into populations either by artificially increased mutation rates or by partial
randomization of sequences. The synthesis of oligonucleotides with random se-
quences is routine nowadays. Several examples of successful applications of molecular
selection techniques to biochemical problems are found in the current literature
(Horwitz et al., 1989; Tuerk and Gold, 1990; Ellington and Szostak, 1990; Beaudry
and Joyce, 1992). In reality it will often be impossible to encode the desired function
directly into the selection constraint. Then spatial separation of individuals and
massively parallel screening provides a solution {Figure 4). This technique, however,
requires highly sophisticated equipment which is currently under development (Bauer
et al., 1989Db).

3. Adaptation to environmental changes

The most frequently occurring genotypes (commonly called ‘master sequences’) can
be isolated from populations and analyzed during the course of molecular evolution
experiments. These investigations show how the structure of RNA molecules is
adjusted in order to cope with changes in the environment. Such environmental
changes are caused by adding suitable substances to the replication medium which
deteriorate the conditions for reproduction. For example, heterocyclic dyes (ethi-
dium bromide, acridiniuum orange, etc.) which intercalate between Watson-Crick
base pairs and thus interfere with replication therefore, can be used (Kramer et al.,
1974), or ribonucleases (RNA cleaving enzymes) can be applied (Strunk, 1992).
Mutants which compensate for the change in the environment by having fewer
binding or cleavage sites than the wild type, appear and are enriched in the popu-
lations.

Replication errors lead to new molecular species whose replication efficiency is
evaluated by the selection mechanism. The higher the error rate, the more mutations
occur and the more viable mutants appear in the population. The stationary mutant
distribution is characterized as ‘quasispecies’ since it represents the genetic reservoir
of asexually replicating populations. An increase in the error rate thus leads to a
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Fig. 5. Evolution at the error threshold of replication. The fraction of the most frequent species in

the population, called the master sequence, is denoted by x,,(p). It becomes very small at the error

threshold. Accordingly, the total fraction of all mutants, 1 - x,,(p), approaches one at the critical mutation
rate.

broader spectrum of mutants and makes evolutionary optimization faster and more
efficient in the sense that populations are less likely caught in local fitness optima.
There is, however, a critical error threshold (Eigen, 1971; Eigen and Schuster, 1979;
Swetina and Schuster, 1982): if the error rate exceeds the critical limit heredity
breaks down, populations are drifting in the sense that new RNA sequences are
formed steadily, old ones disappear, and no evolutionary optimization according
to Darwin’s principle is possible (Figure 5). Variable environments require suffi-
ciently fast adaptation and species with tunable error rates will adjust their quasi-
species to meet the environmental challenge. In constant environments, on the other
hand, such species will tune their error rates to the smallest possible values in
order to maximize fitness.

Viruses are confronted with extremely fast changing environments since their
hosts developed a variety of defense mechanisms ranging from the restriction enzymes
of bacteria to the immune system of mammals and man. RNA viruses have been
studied extensively. Their multiplication is determined by enzymes that do not allow
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large scale variations of the replication accuracies. They vary the error rate by
changing the length of their genomes, and adjust the RNA chain lengths to optimal
values, which correspond to maximal chain lengths (Eigen, 1971; Eigen and Schuster,
1977):

In
Vmax = ”p—g- M

Herein v,y is the maximal chain length that a master sequence can adopt and
still allow for stable replication over many generations, ¢ = 1 is the superiority
of this master sequence in the stationary population and p is the error rate per
(newly incoporated) base and replication event. The superiority expresses differential
fitness between the master sequence and the average of the remaining population.
In the limit lim ¢ — 1 we are dealing with ‘neutral evolution’ (Kimura, 1983).
Experimental analysis of several RNA virus populations has shown, that almost
all chain lengths are adjusted to yield error rates close to the threshold value. Thus,
RNA viruses appear to adapt to their environments by driving optimization efficiency
towards the maximum.

4. Evolutionary stability of RNA structures

No physical process can occur with ultimate accuracy and hence, mutations are
unavoidable. Given a certain mutation rate, we may ask what are the differences
in stability of RNA structures against mutation. How likely does a change in the
sequence result in an actual change in the structure? In other words we try to
estimate the fraction of neutral mutants in the neighbourhood of a typical sequence
(‘neutral’ is commonly used for sequences which have properties that are indis-
tinguishable for the selection process; we shall use the term here in the narrower
sense of identical structures). This question is of statistical nature and can be answered
only by proper application of statistical techniques.

Firstly, the RNA sequences have to be ordered in a natural way. In case point
mutations (single base exchanges) are predominant, the Hamming distance (dj,
counting the number of positions in which two aligned sequences differ) is an
appropriate measure of the relationship between two sequences, since it counts
the minimum number of point mutations required to convert one sequence into
another. Moreover, the Hamming distance dj induces a metric on the sequence
space. The space of binary sequences of chain length »=4 is shown in Figure 6
as an example.

RNA secondary structures are first approximations to the spatial structures of
RNA molecules. They are understood as a listing of the Watson-Crick-type base
pairs in the actual structure and may be represented as planar graphs (Figure 7).
We consider RNA secondary structures as elements of an abstract ‘shape space’.
Again a measure of relationship of RNA structures which induces a metric on
the shape space can be found (Fontana et al., 1991, 1993a, b). We derived this
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Fig. 6. The sequence space of binary (AU or GC) sequences of chain length v = 4. Every circle represents

a single sequence of four letters. All pairs of sequences with Hamming distance 4, = 1 (these are pairs

of sequences that differ in one position) are connected by a straight line. The geometric object obtained

is a hypercube in four-dimensional space and hence, all positions (and all sequences) are topologically
equivalent.

distance measure from trees which are equivalent to the structure graphs, and
accordingly it is called the ‘tree distance’, d;. RNA folding thus can be understood
as a mapping from one metric space into another, in particular from sequence
space into shape space. A path in sequence space corresponds uniquely to a path
in shape space (The inversion of this statement is not true as we shall see in the
next sextion 5).

The whole machinery of mathematical statistics and time series analysis can now
be applied to RNA folding. In particular, an autocorrelation function of structures
based on tree distances (d;) is computed from the equation

 <dpMh>

prlh) = 1 -2

@)
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Fig. 7. Folding of an RNA sequence into its spatial structure. The process is partitioned into two

phases: in the first phase only the Watson-Crick-type base pairs are formed (which constitute the major

fraction of the free energy), and in the second phase the actual spatial structure is built by folding

the planar graph into a three-dimensional object. The example shown here is phenylalanyl-transfer-
RNA (t-RNAPhe) whose spatial structure is known from X-ray crystallography.

Mean square averages are taken here over all sequences in sequence space (<di?>),
or over all sequences in the mutant class 4 of the reference sequence (<dA(h)>),
i.e. over all sequences at Hamming distance 4 from the reference). The autocorrelation
functions can be approximated by exponential functions, and correlation length
(/;) are estimated from the relation: In (p;(}})) = -1.

The correlation length is a statistical measure of the hardness of optimization
problems (see e.g. Eigen et al., 1989). The shorter the correlation length, the more
likely is a structural change occurring as a consequence of mutation. The correlation
length thus measures stability against mutation. In Figure § correlation lengths
of RNA structures are plotted against the chain length. An almost linear increase
is observed. Substantial differences are found in the correlation lengths derived
from different base pairing alphabets. In particular, the structures of natural (AUGC)
sequences are much more stable against mutation than pure GC-sequences or pure
AU-sequences. This observation is in agreement with structural data obtained for
ribosomal RNA (Wakeman and Maden, 1989). It provides also a plausible expla-
nation for the use of two base pairs in nature: optimization in an RNA world
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with only one base pair would be very hard, and the base pairing probability in
sequences with three base pairs is rather low and hence most random sequences
of short chain lengths (¥<<50) do not form thermodynamically stable structures.
The choice of two base pairs thus appears to be a compromise between stability
against mutation and thermodynamic stability. An alternative explanation for the
usage of two base pairs in nature was published recently (Szathmary 1991, 1992):
the current alphabet is understood to be optimal in an RNA world where replication
fidelity decreases and catalytic efficiency increases with alphabet size. Both hypotheses
are experimentally testable and hence we may expectt a decision in favor of one
of the two alternatives in the future.
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5. How to search for RNA structures

The sequence space is a bizarre object: it is of very high dimension (its dimension
coincides with the chain length of RNA: 25 < v < 500 for RNA molecules in
test tube experiments, 250 < v < 400 for viroids, and 3500 < » < 30000 for (most)
RNA viruses), but there are only few points on each coordinate axis (x points;
k is the number of digits in the alphabet: « =2 for AU and GC, « = 4 for AUGC).
The number of secondary structures which are acceptable as minimum free energy
structures of RNA molecules is much smaller than the number different sequences:
in case of natural (AUGC) molecules we have about 1.485 x »™3/2(1.849) structures
for 4% sequences (Schuster ez al., 1993). The mapping from sequence space into
shape space thus cannot be invertible. We cannot expect therefore that our intuition
which is well trained with invertible maps in three-dimensional space will guide
us well through sequence and shape spaces. In order to obtain information on
optimization of RNA structures and properties search algorithms were conceived
(Fontana and Schuster, 1987, Wang, 1987) and computer simulations on realistic
landscapes based on RNA folding were carried out (Fontana and Schuster, 1987;
Fontana er al., 1989). Here we shall adopt another strategy and try to develop
an appropriate statistics to deal with such abstract objects as RNA shape space.

The information contained in the mapping from sequence space into shape space
is condensed into a two-dimensional, conditional probability density surface

S(t, h) = Prob (d; = t| dy = h). 3)

This structure density surface (SDS) expresses the probability that the secondary
structures of two randomly chosen sequences have a structure distance ¢ provided
their Hamming distance is #. An example of a structure density surface for natural
sequences of chain length v = 100 is shown in Figure 9. We recognize an overall
shape that corresponds to one half of a horseshoe and superimposed on it rugged
details. The contour plot illustrates an important property of the structure density
surface: at short Hamming distances (1 < » < 16) the probability density changes
strongly with increasing Hamming distance, but further away from the reference
sequence (16 << y < 100) this probability density is essentially independent of the
Hamming distance 4. The first part reflects the local features of sequence-structure
relations. Up to a Hamming distance of # = 16 there is still some memory of
the reference sequence. Then, at larger Hamming distances the structure density
surface contains exclusively global information which is independent of the reference.

In order to gain more information on the relation between sequences and structures
an inverse folding algorithm which determines the sequences that share the same
minimum free energy secondary structure was conceived and applied to a variety
of different structures (Schuster ez al., 1993). The frequency distribution of structures
has a very sharp peak: relatively few structures are very common, many structures
are rare and play no statistically significant role. The results obtained show in
addition that sequences folding into the same secondary structure are, in essence,
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Fig. 9. The structure density surface S(z, 4) of natural AUGC-sequences of chain length » = 100. The

density surface (upper part) is shown together with a contour plot (lower part). In order to dispense

from confusing details the contour lines were smoothed. In this computation a sample of 1000 reference
sequences was used which amounts to a total sample size of 10° individual RNA foldings.
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Fig. 10. Percolation of sequence space by neutral networks. A neutral path connects sequences of

Hamming distance 4 = 1 (single base exchange) or = 2 (base pair exchange) which fold into identical

minimum free energy structures. The sketch shows a neutral path of length 2 = 9. The path ends
since no to identical structure was found with # = 10 and 4 = 11 from the reference.

randomly distributed. Consequently all common structures are found in relatively
small patches of sequence space. For natural sequences of chain length » = 100
a sphere of radius 42 = 20 (in Hamming distance) is sufficient to yield a global
distribution of structure distances.

In order to complement this illustration of the RNA shape space, a computer
experiment was carried out which allows an estimate of the degree of sclective
neutrality (two sequences are considered neutral here if the fold into the same
secondary structure). As indicated in Figure 10 we search for ‘neutral paths’ through
sequence space. The Hamming distance from the reference increases monotonously
along such a nentral path but the structure remains unchanged. A neutral path
ends when no further neutral sequence is found in the neighbourhood of the last
sequence. The length / of a path is the Hamming distance between the reference
sequence and the last sequence. Clearly, a neutral path cannot be longer than the
length v (! < v). The length distribution of neutral path in the sequence space
of natural RNA molecules of chain length » = 100 is shown in Figure 11. It is
remarkable that about 20% of the neutral paths have the maximum length, and
thus lead through the whole sequence space to a sequence which differs in all position
from the reference, but shares its structure.

Combination of information derived from Figures 9 and 11 provides insight into
the structure of the shape space of RNA secondary structures which may be cast
into four statements:
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(1) sequences folding into one and the same structure are distributed randomly
in sequence space,

(2) the frequency distribution of structures is sharply peaked (there are com-
paratively few common structures and many rare ones),

(3) sequences folding into all common structures are found within (relatively)
small neighbourhoods of any random sequence, and

(4) the shape space contains extended ‘neutral networks’ joining sequences with
identical structures (a large fraction of neutral path leads from the initial sequence
through the entire sequence space to a final sequence on opposite side - there
are (x — 1)” sequences which differ in all positions from an initial sequence).

Combining the two statements (1) and (3) we may visualize the mapping from
sequences into structures as illustrated by the sketch shown in Figure 12.

These results suggest straightforward strategies in the search for new RNA
structures. It provides little advantage to start from natural or other preselected
sequences since any random sequence would do equally well as the starting molecule
for the selection cycles shown in Figures 3 and 4. Any common secondary structure
with optimal functions is accessible in a few selection cycles. The secondary structure
of RNA is understood as a crude first-order approximation to the actual spatial
structure. Fine tuning of properties by choosing from a variety of molecules sharing
the same secondary structure will often be necessary. In order to achive this goal
it is of advantage to adopt alternations of selection cycles with low and high error
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Fig. 12. A sketch of the mapping from sequences into RNA secondary structures as derived here.

Any random sequence is surrounded by a ball in sequence space which contains sequences folding

into (almost) all common structures. The radius of this ball is much smaller than the dimension of
sequence space.

rates. At low error rates the population performs a search in the vicinity of the
current master sequence (the most common sequence which is usually also the
fittest sequence). If no RNA molecule with satisfactory properties is found, a change
to high error rate is adequate. Then the population spreads along the neutral network
to other regions in sequence space which can be explored in detail after tuning the
error rate Jow again.

The structure of shape space is highly relevant for evolutionary optimization
in nature too. Since long neutral paths are common, populations drift readily through
sequence space whenever selection constraints are absent. This is precisely what
is predicted by the ‘neutral theory of evolution’ (Kimura, 1983), and what is observed
in molecular phylogeny by sequence comparisons of different organisms. The
structure of shape space provides also a firm answer to the old probability argument
against the possibility of succesful adaptive evolution (Wigner, 1961). How should
nature find a given biopolymer by trial and error when the chance to guess it
is as low as 1:x*? Previously given answers (Eigen, 1971; Eigen and Schuster, 1979)
can be supported and extended by precise data on the RNA shape space. The
numbers of sequences that have to be searched in order to find adequate solution
are many orders of magnitude smaller than those guessed on naive statistical grounds.
If one of the common structures has a property which increases fitness it can hardly
be missed in an evolutionary search.
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