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Abstract. The notion of an RNA world has been introduced for a prebiotic scenario that is dominated 
by RNA molecules and their properties, in particular their capabilities to act as templates for reproduction 
and as catalysts for several cleavage and ligation reactions of polynucleotides and polypeptides. This 
notion is used here also for simple experimental assays which are well suited to study evolution in 
the test tube. In molecular evolution experiments fitness is determined in essence by the molecular 
structures of RNA molecules. Evidence is presented for adaptation to environment in cell-free media. 
RNA based molecular evolution experiments have led to interesting spin-offs in biotechnology, commonly 
called 'applied molecular evolution', which make use of Darwinian trial-and-error strategies in order 
to synthesize new pharmacological compounds and other advanced materials on a biological basis. 

Error-propagation in RNA replication leads to formation of mutant spectra called 'quasispecies'. 
An increase in the error rate broadens the mutant spectrum. There exists a sharply defined threshold 
beyond which heredity breaks down and evolutionary adaptation becomes impossible. Almost all RNA 
viruses studied so far operate at conditions close to this error threshold. Quasispecies and error thresholds 
are important for an understanding of RNA virus evolution, and they may help to develop novel antiviral 
strategies. 

Evolution of RNA molecules can be studied and interpreted by considering secondary structures. 
The notion of sequence space introduces a distance between pairs of RNA sequences which is tantamount 
to counting the minimal number of point mutations required to convert the sequences into each other. 
The mean sensitivity of RNA secondary structures to mutation depends strongly on the base pairing 
alphabet: structures from sequences which contain only one base pair (GC or AU are much less stable 
against mutation than those derived from the natural (AUGC) sequences. Evolutionary optimization 
of two-letter sequences in thus more difficult than optimization in the world of natural RNA sequences 
with four bases. This fact might explain the usage of four bases in the genetic language of nature. 

Finally we study the mapping from RNA sequences into secondary structures and explore the topology 
of RNA shape space. We find that 'neutral paths' connecting neighbouring sequences with identical 
structures go very frequently through entire sequence space. Sequences folding into common structures 
are found everywhere in sequence space. Hence, evolution can migrate to almost every part of sequence 
space without 'hill climbing' and only small fractions of the entire number of sequences have to be 
searched in order to find suitable structures. 

1. The  concept of an RNA world 

R N A  m o l e c u l e s  were  f o u n d  to  be  u n i q u e  in c h e m i s t r y  a n d  b i o l o g y  s ince they  can  

n o t  o n l y  act  as t e m p l a t e s  fo r  the i r  r e p r o d u c t i o n  b u t  a re  a lso  ca ta lys t s  fo r  severa l  

r eac t i ons  i n v o l v i n g  o t h e r  R N A  m o l e c u l e s  o r  o l i gopep t ide s .  T e m p l a t e  i n d u c e d  

r e p r o d u c t i o n  o f  R N A  m o l e c u l e s  occu r s  in cells t ha t  were  in fec t ed  by  R N A  vi ruses  

o r  v i ro ids  ( F o r  the  l a t t e r  case  see e.g. R i e sne r  a n d  G r o s s ,  1985). E n z y m e  free  t e m p l a t e  

i n d u c e d  R N A  syn thes i s  has  been  s t ud i ed  ex tens ive ly  by  Les l ie  Orge l  (1992). 

R e p l i c a t i o n  o f  R N A  m o l e c u l e s  u n d e r  n o n - e q u i l i b r i u m  c o n d i t i o n s  p r o v i d e s  t he  basis  

fo r  e v o l u t i o n a r y  a d a p t a t i o n  in t he  sense  o f  D a r w i n ' s  m e c h a n i s m  as s h o w n  in the  
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next two sections. The discoveries of Thomas Cech and Sidney Altman (Cech, 
1986; Guerrier-Takada et al., 1983; Guerrier-Takada and Altman, 1984; Symons, 
1992) have shown that, in contrast to previous belief, RNA molecules can catalyze 
several classes of reactions with similar high efficiency and specificity as protein 
enzymes. The notion of 'ribozymes' was created for such RNA based catalysts. 
The catalytic activities of RNA molecules are all related to cleavage or formation 
of nucleotide or peptide bonds. For RNA substrates ligation and cleavage are highly 
sequence specific. The capability of RNA to catalyze peptide bond cleavage and 
formation (Noller, 1991; Noller et al., 1992; Piccirilli et al., 1992) is of particular 
interest since it can be interpreted as a hint that primordial ribosomes might have 
worked without proteins. Although the catalytic repertoire of ribozymes is rather 
poor compared to that of protein enzymes, it comprises the key reactions that 
are necessary to produce polynucleotide from oligomers and monomers. It is generally 
believed nowadays that there was a period in the origin of life on Earth when 
RNA served as both, genetic material and specific catalyst (See e.g. Gilbert, 1966; 
Joyce, 1991). In other words RNA has the capability to be genotype and phenotype. 
A world of RNA molecules driven by a steady supply of suitable energy rich 
compounds represents also a kind of biological toy universe which allows to study 
the evolutionary process in its simplest form. Such an RNA world is a biological 
adaptive system of minimal complexity. 

Is there room for an RNA world in the current view of chemical evolution on 
the primordial Earth? In Figure 1 we show a sketch of a plausible sequence of 
scenarios leading to the onset on RNA based Darwinian evolution (for more details 
see e.g. Schuster, 1981; Mason, 1991). The major problem with RNA in chemical 
evolution is to seen in its highly elaborate molecular structure: for RNA template 
induced reactions molecules of high stereochemical purity are required, and chiral 
compounds such as ribose have to be present as pure single antipods (racemic 
mixtures of D- and L-ribose incorporated into polynucleotides are prohibitive for 
template induced replication). It was suggested therefore that less complicated 
molecules which could nevertheless act as templates preceded the RNA world (Orgel, 
1986; Joyce, 1989). Recent progress in template chemistry (Orgel, 1992) makes this 
suggestion more and more plausible. RNA molecules, on the other hand, are the 
first template molecules which share most of their chemical properties with DNA 
the predominant genetic information carrier at present. Information transfer from 
DNA to RNA and vice versa, known as transcription and reverse transcription, 
is routine in present day biochemistry. We can speculate therefore that a phylogenetic 
extrapolation of present day genetic information may go back as far as to the first 
efficiently replicating species of a primordial RNA world. In short, RNA molecules 
seem to appear late in chemical evolution and very early in biological evolution. 

According to the analysis of microfossils carried out by William Schopf (Schopf 
and Packer, 1992) the first sure remnants of microorganisms are dated 3.4 × 109 
years ago. These microorganisms were most likely photosynthetic and related to 
present day cyanobacteria. Needless to say, there was a long way with many inter- 
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Fig. 1. Some facts and open questions about the origin of life. 
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mediate steps to go from a primitive Darwinian system like the RNA world to 
a fully developed phytosynthetic organism (Eigen and Schuster, 1985). The flow 
chart sketched in Figure 1 does not refer explicitly to these other 'worlds' which 
inevitably lay in between. 

Evolution experiments in the pure RNA world have to face severe problems: 
template induced RNA synthesis is slow, does not work for many templates under 
the conditions applied so far, and the accuracy of base incorporation is low (of 
the order of one error in hundred nucleotides). Another problem concerns separation 
of double strands which does not occur readily under the conditions of template 
induced synthesis. In order to explore the capabilities of a minimal complexity 
adaptive system we are, however, not restricted to a pure RNA world. Why not 
use protein catalysts as highly specific and efficient environmental factors? Addition 
of enzymes leads to a new toy universe for studies on evolution that might be cha- 
racterized as a protein assisted RNA world. Sol Spiegelman (1971) has indeed shown 
that such a universe can be created in the test tube, and indeed, it shows all features 
of the Darwinian scenario. RNA dependent RNA polymerases, commonly called 
RNA replicases, occur in nature. Spiegelman used an enzyme isolated from bacterial 
cells of  E. coli which were infected by the RNA bacteriophage QB- This enzyme 
replicates RNA fast and with much higher accuracy than achieved without a protein 
catalyst: many thousands of generations can be studied in experiments lasting less 
than a day, and the accuracy of replication is about one error in 3000 nucleotides. 

Varia ~ion 

1 
G C G G A U U U A G - .  • G C A C C A  Genotype: Nucteo~ide Sequence 

Unfolding of the Genotype 

Phenotype: SpatiM Molecular Structure 

l 
Selection 

Fig. 2. Molecular genotypes and phenotypes in RNA evolution experiments. 
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2. Molecular genotypes and phenotypes 

The dichotomy between genotypes and phenotypes is basic to biological evolution. 
Molecular biology has shown that the information for the unfolding of organisms 
(which represent the phenotypes) is contained in the DNA (which is the genotype). 
The Darwinian principle of evolution is based on heridity, variation and selection. 
According to our present day knowledge all inheritable variations are caused by 
changes of the genotype (i.e. by changes in the sequence of nucleotide bases of 
the DNA), and selection acts through differential reproductive success of phenotypes. 
RNA molecules in cell-free evolution experiments are both genotypes and phenotypes. 
As we see in Figure 2 the genotype is again a sequence of nucleotide bases, this 
time in the form of an RNA molecule. Following Sol Spiegelman we consider the 
spatial structure of the RNA molecule as its phenotype. Indeed, this structure is 
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evaluated by the selection process. Systematic kinetic studies on RNA replication 
and test tube evolution carried out by Christof Biebricher in Manfred Eigen's 
laboratory (Biebricher et aL 1983, 1984, 1985) revealed the mechanism of RNA 
replication. The rate and equilibrium constants which determine the outcome of 
selection under different conditions are known now. They can be determined 
independently from selection experiments by direct measurements. In addition 
minimum requirements for efficient replication were discovered. They consist in 
sequence regularities and sufficient secondary structure to facilitate double strand 
separation by the enzyme. 

Selection experiments may be carried out by discontinuous renewal of the 
consumed material as in the serial transfer technique (Spiegelman, 1971) or under 
the continuous constraint maintained in elaborate evolution reactors (Husimi et 
al., 1982; Husimi and Keweloh, 1987). An new selection technique was used by 
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Fig. 4. A selection technique of applied molecular evolution based on massively parallel screening. 
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John McCaskill in his molecular evolution experiments i ,  capillaries (Bauer et al., 

1989a): the capillaries contain a medium suitable for replication, RNA is injected 
and a wave front spreads through the medium. The front velocity of the traveling 
wave increases with the replication rate and hence, faster replicating mutants are 
selected by the wave propagation mechanism. 

The capability of RNA molecules to evolve by natural selection is used now 
in applied molecular evolution to produce biomolecules with new properties. This 
novel evolutionary technology was originally suggested by Eigen and Gardiner (Eigen 
and Gardiner, 1983). Somewhat later Kauffman suggested the use of random 
sequences in selection experiments (Kauffman 1986; for a recent review see Kauffman, 
1992). One approach to the problem is suitable for 'batch' experiments (Figure 
3). The essential trick of this technique is to encode the desired functions into 
the selection constraint. As indicated in Figure 3 sufficient variation is introduced 
into populations either by artificially increased mutation rates or by partial 
randomization of sequences. The synthesis of oligonucleotides with random se- 
quences is routine nowadays. Several examples of successful applications of molecular 
selection techniques to biochemical problems are found in the current literature 
(Horwitz et aL, 1989; Tuerk and Gold, 1990; Ellington and Szostak, 1990; Beaudry 
and Joyce, 1992). In reality it will often be impossible to encode the desired function 
directly into the selection constraint. Then spatial separation of individuals and 
massively parallel screening provides a solution (Figure 4). This technique, however, 
requires highly sophisticated equipment which is currently under development (Bauer 
et al., 1989b). 

3. Adaptation to environmental changes 

The most frequently occurring genotypes (commonly called 'master sequences') can 
be isolated from populations and analyzed during the course of molecular evolution 
experiments. These investigations show how the structure of RNA molecules is 
adjusted in order to cope with changes in the environment. Such environmental 
changes are caused by adding suitable substances to the replication medium which 
deteriorate the conditions for reproduction. For example, heterocyclic dyes (ethi- 
dium bromide, acridiniuum orange, etc.) which intercalate between Watson-Crick 
base pairs and thus interfere with replication therefore, can be used (Kramer et al., 
1974), or ribonucleases (RNA cleaving enzymes) can be applied (Strunk, 1992). 
Mutants which compensate for the change in the environment by having fewer 
binding or cleavage sites than the wild type, appear and are enriched in the popu- 
lations. 

Replication errors lead to new molecular species whose replication efficiency is 
evaluated by the selection mechanism. The higher the error rate, the more mutations 
occur and the more viable mutants appear in the population. The stationary mutant 
distribution is characterized as 'quasispecies' since it represents the genetic reservoir 
of asexually replicating populations. An increase in the error rate thus leads to a 
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Fig. 5. Evolution at the error threshold of replication. The fraction of the most frequent species in 
the population, called the master sequence, is denoted by xm(p). It becomes very small at the error 
threshold. Accordingly, the total fraction of all mutants, 1 - xm~), approaches one at the critical mutation 

rate. 

broader  spectrum of mutants  and makes evolutionary optimization faster and more 
efficient in the sense that populations a re  less likely caught in local fitness optima. 
There is, however, a critical error threshold (Eigen, 1971; Eigen and Schuster, 1979; 
Swetina and Schuster, 1982): if the error rate exceeds the critical limit heredity 
breaks down, populations are drifting in the sense that new RNA sequences are 

formed steadily, old ones disappear, and no evolutionary optimization according 
to Darwin 's  principle is possible (Figure 5). Variable environments require suffi- 
ciently fast adaptat ion and species with tunable error rates will adjust their quasi- 
species to meet the environmental challenge. In constant environments, on the other 
hand, such species will tune their error rates to the smallest possible values in 

order to maximize fitness. 
Viruses are confronted with extremely fast changing environments since their 

hosts developed a variety of  defense mechanisms ranging from the restriction enzymes 
of bacteria to the immune system of mammals  and man. RNA viruses have been 
studied extensively. Their multiplication is determined by enzymes that do not allow 
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large scale variations of the replication accuracies. They vary the error rate by 
changing the length of their genomes, and adjust the RNA chain lengths to optimal 

values, which correspond to maximal chain lengths (Eigen, 1971; Eigen and Schuster, 
1977): 

in a 
V m a x  - -  (1) 

P 

Herein ~'rnax is the maximal chain length that a master sequence can adopt and 
still allow for stable replication over many generations, o ~> 1 is the superiority 
of this master sequence in the stationary population and p is the error rate per 
(newly incoporated) base and replication event. The superiority expresses differential 
fitness between the master sequence and the average of the remaining population. 
In the limit lim o ---- 1 we are dealing with 'neutral evolution' (Kimura, 1983). 
Experimental analysis of several RNA virus populations has shown, that almost 
all chain lengths are adjusted to yield error rates close to the threshold value. Thus, 
RNA viruses appear to adapt to their environments by driving optimization efficiency 
towards the maximum. 

4. Evolutionary stability of RNA structures 

No physical process can occur with ultimate accuracy and hence, mutations are 
unavoidable. Given a certain mutation rate, we may ask what are the differences 
in stability of RNA structures against mutation. How likely does a change in the 

sequence result in an actual change in the structure? In other words we try to 
estimate the fraction of neutral mutants in the neighbourhood of a typical sequence 
('neutral'  is commonly used for sequences which have properties that are indis- 
tinguishable for the selection process; we shall use the term here in the narrower 
sense of identical structures). This question is of statistical nature and can be answered 
only by proper application of statistical techniques. 

Firstly, the RNA sequences have to be ordered in a natural way. In case point 
mutations (single base exchanges) are predominant,  the Hamming distance (dh, 
counting the number of positions in which two aligned sequences differ) is an 
appropriate measure of the relationship between two sequences, since it counts 
the minimum number of point mutations required to convert one sequence into 

another. Moreover, the Hamming distance d h induces a metric on the sequence 
space. The space of binary sequences of chain length u=4 is shown in Figure 6 

as an example. 
RNA secondary structures are first approximations to the spatial structures of 

RNA molecules. They are understood as a listing of the Watson-Crick-type base 
pairs in the actual structure and may be represented as planar graphs (Figure 7). 
We consider RNA secondary structures as elements of an abstract 'shape space'. 
Again a measure of relationship of RNA structures which induces a metric on 
the shape space can be found (Fontana et al., 1991, 1993a, b). We derived this 
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Fig. 6. The sequence space of binary (AU or GC) sequences of chain length u = 4. Every circle represents 
a single sequence of  four letters. All pairs of  sequences with Hamming distance d h = 1 (these are pairs 
of sequences that differ in one position) are connected by a straight line. The geometric object obtained 
is a hypercube in four-dimensional space and hence, all positions (and all sequences) are topologically 

equivalent. 

distance measure f rom trees which are equivalent to the structure graphs, and 

accordingly it is called the 'tree distance', dr. RNA folding thus can be understood 
as a mapping from one metric space into another,  in particular f rom sequence 
space into shape space. A path in sequence space corresponds uniquely to a path 
in shape space (The inversion of this statement is not true as we shall see in the 

next sextion 5). 
The whole machinery of mathematical  statistics and time series analysis can now 

be applied to RNA folding. In particular, an autocorrelation function of structures 

based on tree distances (dt) is computed from the equation 

< dt2(h)> 
Ot (h) = 1 <dr2> (2) 
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Fig. 7. Folding of an RNA sequence into its spatial structure. The process is partitioned into two 
phases: in the first phase only the Watson-Crick-type base pairs are formed (which constitute the major 
fraction of  the free energy), and in the second phase the actual spatial structure is built by folding 
the planar graph into a three-dimensional object. The example shown here is phenylalanyl-transfer- 

RNA (t-RNAP he) whose spatial structure is known from X-ray crystallography. 

Mean square averages are taken here over all sequences in sequence space (<dr2>), 
or over all sequences in the mutant class h of the reference sequence (<dt2(h)>), 
i.e. over all sequences at Hamming distance h from the reference). The autocorrelation 
functions can be approximated by exponential functions, and correlation length 

(lt) are estimated from the relation: In (Pt (lt)) = -1. 
The correlation length is a statistical measure of the hardness of optimization 

problems (see e.g. Eigen et al., 1989). The shorter the correlation length, the more 
likely is a structural change occurring as a consequence of mutation. The correlation 
length thus measures stability against mutation. In Figure 8 correlation lengths 
of RNA structures are plotted against the chain length. An almost linear increase 
is observed. Substantial differences are found in the correlation lengths derived 
from different base pairing alphabets. In particular, the structures of natural (AUGC) 
sequences are much more stable against mutation than pure GC-sequences or pure 
AU-sequences. This obseivation is in agreement with structural data obtained for 
ribosomal RNA (Wakeman and Maden, 1989). It provides also a plausible expla- 
nation for the use of two base pairs in nature: optimization in an RNA world 
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Fig. 8. Correlation lengths of structures (lt) of RNA molecules in their most stable secondary structures 
as functions of the chain length v. Values are shown for binary pure GC-sequences (@), for binary 
pure AU-sequences (O)), and for natural AUGCsequenees (o). The correlation lengths are computed 

from (ln qt(h), h)-plots by means of a least root mean square deviation fit. 

with only one base pair would be very hard, and the base pairing probability in 
sequences with three base pairs is rather low and hence most random sequences 
of short chain lengths (u<50) do not form thermodynamically stable structures. 
The choice of two base pairs thus appears to be a compromise between stability 
against mutation and thermodynamic stability. An alternative explanation for the 
usage of two base pairs in nature was published recently (Szathmfiry 1991, 1992): 
the current alphabet is understood to be optimal in an RNA world where replication 
fidelity decreases and catalytic efficiency increases with alphabet size. Both hypotheses 
are experimentally testable and hence we may expectt a decision in favor of one 
of the two alternatives in the future. 
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5. How to search for RNA structures 

The sequence space is a bizarre object: it is of very high dimension (its dimension 
coincides with the chain length of RNA: 25 < v < 500 for RNA molecules in 
test tube experiments, 250 < v < 400 for viroids, and 3500 < v < 30 000 for (most) 
RNA viruses), but there are only few points on each coordinate axis (K points; 
K is the number of digits in the alphabet: ~< =2 for AU and GC, K = 4 for AUGC). 
The number of secondary structures which are acceptable as minimum free energy 
structures of RNA molecules is much smaller than the number different sequences: 
in case of natural (AUGC) molecules we have about 1.485 × u-3/2(1.849) u structures 
for 4 v sequences (Schuster et at., 1993). The mapping from sequence space into 
shape space thus cannot be invertible. We cannot expect therefore that our intuition 
which is well trained with invertible maps in three-dimensional space will guide 
us well through sequence and shape spaces. In order to obtain information on 
optimization of RNA structures and properties search algorithms were conceived 
(Fontana and Schuster, 1987; Wang, 1987) and computer simulations on realistic 
landscapes based on RNA folding were carried out (Fontana and Schuster, 1987; 

Fontana et al., 1989). Here we shall adopt another strategy and try to develop 
an appropriate statistics to deal with such abstract objects as RNA shape space. 

The information contained in the mapping from sequence space into shape space 
is condensed into a two-dimensional, conditional probability density surface 

S(t ,  h) = Prob (at = t] dh = h). (3) 

This structure density surface (SDS) expresses the probability that the secondary 
structures of two randomly chosen sequences have a structure distance t provided 

their Hamming distance is h. An example of a structure density surface for natural 
sequences of chain length v = 100 is shown in Figure 9. We recognize an overall 
shape that corresponds to one half of a horseshoe and superimposed on it rugged 
details. The contour plot illustrates an important property of the structure density 
surface: at short Hamming distances (1% ~, < 16) the probability density changes 
strongly with increasing Hamming distance, but further away from the reference 
sequence (16 < v < 100) this probability density is essentially independent of the 
Hamming distance h. The first part reflects the local features of sequence-structure 
relations. Up to a Hamming distance of h = 16 there is still some memory of 
the reference sequence. Then, at larger Hamming distances the structure density 
surface contains exclusively global information which is independent of the reference. 

In order to gain more information on the relation between sequences and structures 
an inverse folding algorithm which determines the sequences that share the same 
minimum free energy secondary structure was conceived and applied to a variety 
of different structures (Schuster et al., 1993). The frequency distribution of structures 
has a very sharp peak: relatively few structures are very common, many structures 
are rare and play no statistically significant role. The results obtained show in 
addition that sequences folding into the same secondary structure are, in essence, 
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Fig. 10. Percolation of sequence space by neutral networks. A neutral path connects sequences of 
Hamming distance h = 1 (single base exchange) or h - 2 (base pair exchange) which fold into identical 
minimum free energy structures. The sketch shows a neutral path of length h = 9. The path ends 

since no to identical structure was found with h = 10 and h - 11 from the reference. 

randomly distributed. Consequently all common structures are found in relatively 

small patches of sequence space. For natural sequences of chain length u = 100 

a sphere of radius h ~-- 20 (in Hamming distance) is sufficient to yield a global 

distribution of structure distances. 
In order to complement this illustration of the RNA shape space, a computer 

experiment was carried out which allows an estimate of the degree of selective 

neutrality (two sequences are considered neutral here if the fold into the same 

secondary structure). As indicated in Figure 10 we search for 'neutral paths'  through 

sequence space. The Hamming distance from the reference increases monotonously 

along such a neutral path but the structure remains unchanged. A neutral path 

ends when no further neutral sequence is found in the neighbourhood of the last 

sequence. The length l of a path is the Hamming distance between the reference 

sequence and the last sequence. Clearly, a neutral path cannot be longer than the 

length v (l <~ u). The length distribution of neutral path in the sequence space 

of natural RNA molecules of chain length u = 100 is shown in Figure 11. It is 

remarkable that about 20% of the neutral paths have the maximum length, and 
thus lead through the whole sequence space to a sequence which differs in all position 

from the reference, but shares its structure. 

Combination of information derived from Figures 9 and 11 provides insight into 

the structure of the shape space of RNA secondary structures which may be cast 

into four statements: 
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Fig. 11. Length distribution of neutral paths starting from random AUGC-sequences of chain length 
v = 100. A neutral path connects pairs of sequences with identical structures and Hamming distance 
d h = 1 (single base exchange) or dh = 2 (base pair exchange). The Hamming distance to the reference 

sequence is monotonously increasing along the path. 

(1) sequences folding into one and the same structure are distributed randomly 
in sequence space, 

(2) the frequency distribution of structures is sharply peaked (there are com- 
paratively few common structures and many rare ones), 

(3) sequences folding into all common structures are found within (relatively) 
small neighbourhoods of any random sequence, and 

(4) the shape space contains extended 'neutral networks' joining sequences with 
identical structures (a large fraction of neutral path leads from the initial sequence 
through the entire sequence space to a final sequence on opposite side - there 
are (K - 1) v sequences which differ in all positions from an initial sequence). 

Combining the two statements (1) and (3) we may visualize the mapping from 
sequences into structures as illustrated by the sketch shown in Figure 12. 

These results suggest straightforward strategies in the search for new RNA 
structures. It provides little advantage to start from natural or other preselected 
sequences since any random sequence would do equally well as the starting molecule 
for the selection cycles shown in Figures 3 and 4. Any common secondary structure 
with optimal functions is accessible in a few selection cycles. The secondary structure 
of RNA is understood as a crude first-order approximation to the actual spatial 
structure. Fine tuning of properties by choosing from a variety of molecules sharing 
the same secondary structure will often be necessary. In order to achive this goal 
it is of advantage to adopt alternations of selection cycles with low and high error 
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Sequence Space Shape Space 
Fig. 12. A sketch of the mapping from sequences into RNA secondary structures as derived here. 
Any random sequence is surrounded by a bali in sequence space which contains sequences folding 
into (almost) all common structures. The radius of this ball is much smaller than the dimension of 

sequence space. 

rates. At low error rates the populat ion performs a search in the vicinity of the 

current master sequence (the most  common sequence which is usually also the 
fittest sequence). I f  no RNA molecule with satisfactory properties is found, a change 

to high error rate is adequate. Then the population spreads along the neutral network 
to other regions in sequence space which can be explored in detail after tuning the 

error rate low again. 
The structure of shape space is highly relevant for evolutionary optimization 

in nature too. Since long neutral paths are common,  populations drift readily through 
sequence space whenever selection constraints are absent. This is precisely what 

is predicted by the 'neutral  theory of evolution' (Kimura, 1983), and what is observed 

in molecular phylogeny by sequence comparisons of different organisms. The 

structure of shape space provides also a firm answer to the old probabil i ty argument 
against the possibility of succesful adaptive evolution (Wigner, 1961). How should 

nature find a given biopolymer by trial and error when the chance to guess it 
is as low as l:KV? Previously given answers (Eigen, 1971; Eigen and Schuster, 1979) 
can be supported and extended by precise data on the RNA shape space. The 
numbers of  sequences that have to be searched in order to find adequate solution 
are many orders of magnitude smaller than those guessed on naive statistical grounds. 
If  one of the common structures has a property which increases fitness it can hardly 
be missed in an evolutionary search. 
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