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WHY IS MUCOSAL IMMUNITY IMPORTANT IN 
HIV INFECTION? 

The absolute majority of all infectious diseases is 
contracted through the large surface area of muco- 
sal membranes which serve as portals of entry for 
the most important viral and bacterial pathogens 
(1). Infection by the human immunodeficiency virus 
(HIV) is no exception: Excluding drug users and 
recipients of blood products or tissues from HIV- 
infected donors, epidemiological data concerning 
the route of acquisition of HIV on a worldwide 
basis convincingly indicate that 70-80% of all AIDS 
cases are acquired by heterosexual transmission 
(2-10). In the United States, this category has the 
most rapidly rising incidence of new infections, 
with women becoming infected at a higher fre- 
quency than men (11, 12). HIV, either associated 
with cells in semen or present as free virions, 
infects susceptible cells (Langerhans cells, macro- 
phages, T cells, and probably epithelial cells) in the 
genital tract (2, 7, 8). Because mucosal and sys- 
temic immune responses are elicited and regulated 
with a considerable degree of independence (13- 
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15), induction of protective immunity at the most 
frequent portals of entry of infectious agents-- 
mucosal membranes is being considered with in- 
creasing emphasis in the design of novel vaccines 
including those against HIV (1, 4, 11, 16-21). 

Studies performed in animal models and in hu- 
mans have convincingly demonstrated that the lev- 
els of protection against diseases of the respiratory 
tract (e.g., influenza, respiratory syncytial virus) or 
of the intestinal tract (e.g., rotavirus, cholera, sal- 
monellosis, shigellosis) correlate better with the 
levels of antibodies in corresponding external secre- 
tions than in serum (7, 22, 23). Therefore, several 
injectable vaccines that preferentially stimulate sys- 
temic immunity have proved to be of limited value, 
and alternative routes of immunization are cur- 
rently being developed to stimulate mucosal im- 
mune responses (1, 24). 

The importance of mucosal immunity in protec- 
tion of rhesus macaques against infection with sim- 
ian immunodeficiency virus (SIV) has been clearly 
demonstrated. Systemically immunized animals, re- 
sistant to a systemic challenge with SIV, were not 
protected when the virus was introduced by the 
genital route (25). In contrast, mucosal immuniza- 
tion with inactivated SIV in biodegradable micro- 
particles resulted in the induction of protective 
immunity (26). These encouraging initial results 
underscore the importance of mucosal immunity in 
the development of vaccines that will protect 
against mucosal as well as systemic routes of acqui- 
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sition of HIV infection (7, 8, 11). However, ad- 
vances in these efforts are compromised by insuffi- 
cient basic knowledge of HIV transmission and 
types of infectable cells in the genital tract. Mech- 
anisms involved in the induction and regulation of 
the mucosal immune response in the genital tract, 
including the origin and differentiation pathways of 
B and T cells and the origin and hormonal regula- 
tion of selectively transported antibodies, require 
further extensive investigation. Routes of immuni- 
zation and antigen-delivery systems that would lead 
to protective immunity in both female and male 
genital tracts are currently being pursued. 

HOW CAN HIV CROSS THE MUCOSAL BARRIER? 

The mechanism of mucosal transmission of HIV 
is poorly understood at present. Clearly, mucosal 
acquisition, particularly by heterosexual contact, is 
grossly inefficient compared to infection via blood 
or blood products. Several reports have indicated 
that the rate of male to female transmission is less 
than 0.2% per incidence of unprotected sexual 
contact (27-29). Female-to-male transmission rates 
are believed to be considerably lower (12). Never- 
theless, some individuals have become infected 
after only one or two sexual contacts with an 
infected partner (29, 30). Increased rates of HIV 
transmission have been shown to be associated with 
cofactors such as genital ulcers or coincidental 
sexually transmitted diseases (31-34). However, it 
is apparent that loss of integrity of mucosal tissues 
is not necessary for transmission to occur, although 
trauma to rectal mucosae during hOmosexual inter- 
course most certainly would be expected to lead to 
enhanced rates of infection. Most infections arise 
from heterosexual intercourse, which must be as- 
sumed to be nontraumatic in nature, and transmis- 
sion by artificial insemination has even been re- 
ported (35, 36). Similarly, studies using the rhesus 
macaque SIV model have shown that these animals 
can be infected via the cervicovaginal, rectal, and 
urethral routes (25, 37-39); in addition, vaginal 
transmission of HIV infection in the chimpanzee 
has been demonstrated (40). In all of these animal 
studies careful attention was paid to avoid trauma 
when virus was applied to the mucosal site. 

The target cells for HIV infection in mucosal sites 
have not been unequivocally identified, although 
there are several candidates. In the female genital 
tract, CD4+ T lymphocytes, cells of the monocyte/ 
macrophage lineage and Langerhans cells are pre- 

sent in the vaginal epithelial submucosa (41) and 
have been shown to contain HIV which is infectious 
(42). Much less is known regarding the immunology 
of the male genital tract (43). 

The gastrointestinal tract is clearly a key target of 
HIV infection. The mechanisms by which the gut 
may be infected are unclear at present but may 
include tissue injury, with resulting entry of virus 
which comes directly into contact with CD4+ cells, 
direct binding and internalization by intestinal epi- 
thelium, and uptake and transport by intestinal M 
cells to underlying lymphocytes and macrophages. 
Although it is known that CD4-bearing lymphoid 
cells are abundant in this tissue and can be shown to 
be infected with HIV (44), the question of whether 
mucosal epithelia can be directly infected has re- 
mained somewhat controversial. It has been re- 
ported that viral RNA can be detected in intestinal 
epithelium of biopsies obtained from infected pa- 
tients (45, 46). Several other studies have shown 
that cells of intestinal epithelial origin can be in- 
fected in vitro, including cell lines (47-49) as well as 
freshly isolated cells (50, 51). Such infection can be 
achieved at least some of the time via a CD4- 
independent mechanism (48, 49, 52). In this regard, 
the glycosphingolipid galactosylceramide has been 
implicated as the alternate HIV receptor on intesti- 
nal epithelial cells and perhaps those of the genital 
tract as well (52). 

HIV-1 has also been shown to be taken up and 
transported by intestinal M cells (53), which consti- 
tute a specialized epithelium above the lymphoid 
follicles (54). They are important in sampling of gut 
antigens and transporting such antigens to underly- 
ing lymphoid tissues. It is possible that M cells 
might function in delivery of the virus to intraepi- 
thelial lymphocytes and macrophages, without 
themselves becoming infected. However, these 
types of cells have not as yet been detected in the 
genital tract. 

Mucosal immunity and physiology of the intesti- 
nal tract are profoundly influenced directly as well 
as indirectly in HIV infection. A variety of intesti- 
nal disorders, such as malabsorption and diarrhea, 
is known to occur commonly as complications of 
HIV-1 infection (44, 55). These disorders are fre- 
quently not associated with opportunistic infec- 
tions, and it has been speculated that they result 
from primary HIV-1 disease (56). Ultrastructural 
studies have shown that HIV-1 induces hypertro- 
phy of the Golgi complex and alters differentiation 
of the apical membrane of HT29 cells (57, 58). 
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Thus, although the basis for HIV-induced intestinal 
disease has not been established, the possibility that 
enteropathy is a direct result of virus infection 
remains real and provokes further concern with 
respect to prevention of infection of the gastroin- 
testinal tract. 

WHAT IS THE RELATIONSHIP BETWEEN 
MUCOSAL AND SYSTEMIC IMMUNITY? 

Extensive studies have clearly shown that the 
immune system can be divided into two functionally 
independent compartments: systemic, represented 
by the bone marrow, spleen, thymus, and lymph 
nodes; and mucosal, represented by lymphoid tis- 
sues in mucosae and external secretory glands (13, 
15, 59). For the development of vaccines, this 
compartmentalization is essential; induction of an 
immune response in one of these two systems may 
not necessarily be reflected in the other (1, 16, 60). 
In general, systemic immunization induces poor 
mucosal immunity; however, mucosal immuniza- 
tion offers the advantage in that some antigen 
delivery systems induce both mucosal and systemic 
immunity. Furthermore, these two systems do not 
display a parallel maturation pattern, and the prod- 
ucts of immunocytes (i.e., antibodies and cyto- 
kines) differ in their quality and quantity (1, 13, 61). 

Comparison of the molecular properties of anti- 
bodies in human serum and external secretions, on 
one hand, and of antibody-producing cells, on the 
other, clearly illustrates the remarkable indepen- 
dence of the two systems (13-15). It has been 
known for almost 30 years that polymeric IgA 
(plgA) locally produced by the large number of 
plasma cells distributed in mucosal tissues and 
secretory glands is selectively transported by a 
receptor-mediated pathway through epithelial cells 
into external secretions (62, 63). In humans, plas- 
ma-derived immunoglobulins (Ig) of the IgG and 
IgA classes constitute only a minute fraction of 
secretory antibodies due to their inability to interact 
with the polymeric Ig receptor, also called secre- 
tory component (SC) expressed on epithelial cells. 
Numerous studies performed in humans demon- 
Strated that usually less than 1% of antibodies in 
saliva, nasopharyngeal secretions, intestinal fluid, 
and bile are of plasma origin (62, 64). Thus, neither 
systemic active immunization with antigen nor pas- 
sive administration of preformed antibodies is of 
value for protection of mucosal surfaces to prevent 
the initial entry of pathogens. Consequently, muco- 

sal surfaces can be colonized by bacteria, and 
viruses can infect epithelial cells in spite of the 
presence of corresponding antibodies in the circu- 
lation. For example, systemic immunization with 
inactivated poliovirus may prevent the develop- 
ment of poliomyelitis but does not prevent infection 
in the gastrointestinal tract or in tonsils (65). Thus, 
these findings should be considered with increased 
awareness in the development of all vaccines des- 
tined to combat infections encountered through 
mucosae, including HIV. Furthermore, the ontoge- 
nies of the serum and secretory IgA systems display 
characteristic and independent patterns of matura- 
tion. Adult levels of mucosal IgA in external secre- 
tions are reached considerably earlier (1 month-2 
years) than those of serum IgA (adolescence) (13, 
61). 

The cells engaged in the production of antibodies 
destined for systemic and mucosal compartments 
display different tissue distribution and origin of 
precursors (13, 66, 67). Approximately 70% of all 
Ig-producing cells in the human body are found in 
mucosal tissues; the remaining 30% are found 
mainly in the bone marrow (the most important 
source of plasma IgG and IgA) and much less in the 
spleen and lymph nodes. In mucosae, some 80% of 
total Ig-producing plasma cells secrete IgA (13, 14, 
59, 62). Precursors of these cells Originate in the 
IgA-inductive sites such as gut-associated lymphoid 
tissues (GALT) including Peyer's patches (PP), 
solitary lymphoid nodules, and probably rectal ton- 
sils (see below), bronchus-associated lymphoid tis- 
sues (BALT), and perhaps other potential inductive 
sites, such as palatine tonsils. 

Less is known about the role of cell-mediated 
immunity (CMI), cytotoxic T lymphocytes (CTL), 
-r T cells (68), and natural killer (NK) cells in the 
defense of mucosal membranes including the genital 
tract (8). The unavailability of mucosal tissues in 
sufficient quantities, usually low yields of isolated 
lymphocytes, and difficulties in generating virus- 
infected targets (for CTL) from outbred species 
(macaques, chimpanzees and human) present con- 
siderable obstacles in performing such studies. 

THE COMMON MUCOSAL IMMUNE SYSTEM 
(CMIS) AND IgA-INDUCTIVE SITES: IS THE 
GENITAL TRACT A COMPONENT OF CMIS? 

Extensive studies concerning the origin of pre- 
cursors of mucosal IgA plasma cells revealed that 
the organized lymphoepithelial structures found 
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along the gastrointestinal and respiratory tracts are 
the main source of such cells (66, 67, 69). These 
precursors, which are committed to IgA synthesis, 
mature in mesenteric lymph nodes and enter the 
circulation through the thoracic duct. Subse- 
quently, they lodge in the lamina propria of the 
intestinal, respiratory, and genital tracts and in the 
mammary, salivary, and lacrimal glands, where 
terminal differentiation into IgA plasma cells occurs 
under the influence of locally produced cytokines, 
such as interleukin-6 (IL-6), transforming growth 
factor [3 (TGF[3), and IL-10 derived from T cells and 
mucosal epithelial cells (70, 71). in animals, the 
evidence for this IgA cycle is based primarily on the 
adoptive transfer of cells from the GALT and 
BALT into recipients whose mucosal tissues and 
glands were populated by IgA plasma cells of donor 
origin. Furthermore, the oral administration of an- 
tigen led to the appearance of specific secretory IgA 
(S-IgA) in milk of immunized animals (72). These 
results were further validated and extended in many 
subsequent studies performed in a large number of 
animal species using diverse microbial antigens (16, 
24, 60). Such specific S-IgA antibodies also ap- 
peared in secretions of the intestinal and respiratory 
tracts, as well as in tears, saliva, and milk. 

Evidence for the existence of the CMIS in hu- 
mans has been strengthened in recent years by 
several studies. In addition to the detection of 
specific S-IgA antibodies in remote secretions in- 
duced by natural exposure to antigens or oral im- 
munization, analyses of IgA-secreting cells from 
peripheral blood and mucosal tissues provided 
strong evidence for this concept (16, 60, 73-76). 
These results provide a sound physiological basis 
for rational immunization protocols that exploit the 
potential of the CMIS--the design of vaccines that 
induce protective immunity at the portals of entry 
of most pathogens. 

Although GALT, represented by ileojejunal PP, 
and BALT have been considered as primary 
sources of precursors of mucosal IgA plasma cells, 
additional lymphoid structures elsewhere in the 
body may serve a similar purpose. Accumulations 
of lymphoid tissues, such as palatine, lingual, and 
nasopharyngeal tonsils which constitute Waldey- 
er's ring, are strategically positioned at the begin- 
ning of the digestive and respiratory tracts (77-80). 
Several observations, summarized by Brandtzaeg 
and Halstensen (77) have suggested that these lym- 
phoid tissues may serve as a source of precursors of 

IgA plasma cells found in the upper respiratory and 
digestive tracts. 

Follicular structures analogous to PP are also 
found in the large intestine, with especially pro- 
nounced accumulations in the rectum (81-83). The 
potential importance of the rectal lymphoid tissues 
as an IgA-inductive site and as a source of IgA 
plasma cell precursors is suggested by several stud- 
ies. In humans, the distribution of plasma cells 
producing IgA1 and IgA2 antibodies in the lamina 
propria of the large intestine differs from that of other 
mucosal tissues by the pronounced predominance of 
IgA2 plasma cells (84-86). The fact that this is also 
the case in the female genital mucosal tissues (uter- 
us, cervix, fallopian tubes, and vagina) (87) suggests 
that the rectal lymphoid tissues may be an important 
source of IgA precursors destined for the genital 
tract. However, it has not been conclusively estab- 
lished if in humans the genital tract is an integral 
component of the CMIS. It is unknown at present 
whether antibody-producing cells and T cells found 
in the genital tract originate, by analogy with other 
mucosal effector sites, mostly from PP or rectal 
lymphoid tissues. Furthermore, the effectiveness of 
oral, intravaginal, and rectal immunization routes (or 
their combinations) and systemic immunization in 
the induction of immune responses in human genital 
tract will require further evaluation. 

Considered in the context of the CMIS, these 
studies suggest that further subcompartmentaliza- 
tion may exist and be controlled by a pronounced 
preference of homing of IgA plasma cell precursors. 
Thus, certain IgA-inductive sites provide precursor 
lymphocytes for a particular effector site. By exten- 
sion, the intranasal route of immunization may be 
less effective in the induction of S-IgA in the genital 
tract than the introduction of antigens into the 
rectum. Thus, further comparative studies of the 
distribution of specific S-IgA antibodies in various 
external secretions induced by diverse mucosal 
immunization routes should be performed to ad- 
dress this point with implications important in the 
design of effective vaccines. 

IMMUNOGLOBULINS (Ig) IN THE GENITAL 
TRACT: WHAT IS THEIR ORIGIN AND 
FUNCTION? 

Early studies of the secretions of the female gen- 
ital tract suggested that antibodies found in genital 
tract secretions originated from two compartments: 
the upper genital tract (fallopian tubes and uterus) 
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and the lower genital tract, which is chronically 
colonized by mucosal microorganisms (for review 
see Refs. 88 and 89). The upper genital tract secre- 
tions are the products of the peritoneal cavity, fallo- 
pian tube effluent, and hormonally dependent endo- 
metrial epithelium and stroma. These secretions are 
not readily accessible without invasive measures and 
appear to have lower rates of secretion than those of 
the lower tract. While vaginal fluid can be collected 
and quantitated separately, the cervicovaginal junc- 
tion is a physiologic unit and the secretions there are 
usually collected and evaluated together. 

Relative Ig concentrations in the genital tract are 
dependent on hormonal and local factors such as 
the presence of inflammation and probably the use 
of vaginal douches and contraceptives. The albu- 
min/IgG ratio in cervical mucus, which is constant 
throughout the menstrual cycle, approximates that 
of serum. This suggests that both components orig- 
inate from the systemic circulation. The IgA of 
cervical mucus is represented by S-IgA with a small 
component  of monomeric IgA and IgM (88, 90, 91). 
This finding implies that the IgA in cervical mucus 
is predominantly of local origin, In the upper vagi- 
nal secretions of postmenopausal women the IgG 
level was reduced by -50% after hysterectomy, but 
the IgA level was reduced 15-fold (92). Hysterec- 
tomy reduced IgA in vaginal fluid to 5% of controls 
but did not significantly alter IgG in mouse vaginal 
fluid (93). This demonstrates again the importance 
of the cervical contribution to the local IgA pool. 

In comparison to external secretions of human 
salivary, lacrimal, and mammary glands and gastro- 
intestinal fluids, the physicochemical properties of Ig 
found in the female genital tract have received less 
attention. Consequently, information is not available 
concerning the levels of mlgA and pIgA, presence of 
SC and J chain in plgA molecules (indicating their 
local selective transport through epithelial cells 
rather than transudation), and proportion of total as 
well as antigen-specific IgA1 and IgA2 antibodies in 
fluids collected from fallopian tubes, uterus , and 
vagina, and the distribution and molecular properties 
of Ig isotypes in the genital tract secretions have not 
been well-defined in health or disease. Yet this 
information will be essential for the design of vac- 
cines that should induce protective humoral immu- 
nity throughout the menstrual cycle and especially at 
ovulation when S-IgA becomes the dominant isotype 
in women's  genital secretions (W. H. Kutteh, J. 
Mestecky, submitted for publication). 

The presence and frequency of Ig-producing cells 
of IgA (including subclasses), IgG, or IgM isotypes 
and the presence of J chain in these cells and of SC 
in epithelial cells of female genital mucosa were 
determined by the immunofluorescence technique 
using antibodies that recognize various epitopes of 
the component polypeptide chains (87, 94). The 
endocervix and ectocervix displayed the highest 
accumulation of Ig-forming cells and such cells 
produced antibodies predominantly of the IgA iso- 
type. 

A large number of IgA-p0sitive cells costained 
with reagents that recognize J chain; this finding 
strongly suggests that they were engaged in the 
synthesis of plgA (62). SC was occasionally detected 
in the endometrial glands and at a high frequency in 
the epithelial cells of the endocervix; squamous 
epithelial cells were SC negative. Furthermore, ex- 
amination of tissues positive for IgA-producing cells 
with monoclonal antibodies that distinguish human 
IgA1 and IgA2 subclasses (84, 85) revealed approx- 
imately equal proportions of cells positive for IgA1 
or IgA2. Comparison of the distribution of IgA1- or 
IgA2-producing cells in various human lymphoid and 
mucosal tissues (84-86) indicated that, in this re- 
spect, the female genital tract strongly resembles the 
lower intestinal tract. 

If we accept the premise that specific antibodies 
in plasma and in external secretions are important 
in protection against viral infections (22), including 
HIV and SIV (95), their induction in infected and 
immunized individuals should be of benefit to the 
host. Although mucosal antibodies can neutralize 
free viruses, little is known about their ability to 
interfere with intracellular viral assembly. This is 
especially important in HIV infection because the 
virus is present in the free form as well as in cells in 
the form of incompletely assembled virus, viral 
RNA, or unintegrated and integrated DNA provirus 
(96, 97). However, recent in vitro studies have 
suggested that epithelial cells which express spe- 
cific receptors for plgA and IgM (SC) internalize 
such antibodies and, by an unknown mechanism, 
interfere with viral infection, presumably by intra- 
cellular neutralization (98). These findings are rele- 
vant to HIV infection because epithelial cells that 
express SC are infectable by the virus. Further- 
more, CD4+ monocytes/macrophages also express 
receptors for Fc of IgA (99), which is  internalized. 
The effect of HIV-specific IgA on virus infectivity 
and intracellular neutralization has not been evalu- 
ated (100). 
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HIV as well as HIV-specific antibodies have been 
detected in virtually all external secretions (7). 
However, some standard markers for mucosal im- 
munity appear depressed in HIV-infected patients: 
Salivary IgA levels are actually significantly de- 
creased (101, 102), and it has been suggested that 
this is a consequence of selective depletion of IgA2 
(102). Further, the numbers of IgA plasma cells in 
the gastrointestinal tract are decreased (103, 104) 
and the IgA subclass ratio which normally charac- 
terizes these cells (see below) is altered 'such that 
the numbers of IgA2 cells are often markedly de- 
pleted (103). 

Although levels of IgA in serum are second only 
to those of IgG (105), the function of serum IgA has 
essentially remained enigmatic. However, manY 
diverse functions of S-IgA have been shown, in- 
cluding virus neutralization (1, 106). Intracellular 
neutralization of virus by IgA antibodies is a re- 
cently described function of IgA (98) which has 
been suggested but not yet investigated with respect 
to protection against HIV disease (100). 

We (107) and others (108) have recently studied 
whether IgA antibodies isolated from the sera of 
HIV-infected individuals can neutralize HIV in vi- 
tro and have found that serum IgA anti-HIV has a 
limited capacity to perform this function, although 
neutralization was clearly accomplished by IgA 
isolated from some donors. However, the ability of 
mucosally derived IgA antibodies to neutralize HIV 
has not been studied, and elucidation of the poten- 
tial function of S-IgA anti-HIV isolated from exter- 
nal secretions is important. 

IgA antibodies have also been shown to mediate 
antibody-dependent cell mediated cytotoxicity 
(ADCC) (106). Our own findings in this regard 
indicate that IgA isolated from the sera of HIV- 
infected donors is equally competent to IgG isolated 
from the same individuals in mediation of ADCC of 
HIV-infected cells (109). Again, the role of S-IgA 
anti-HIV antibodies in ADCC remains to be deter- 
mined. 

A potential function of IgA antibodies that has not 
been adequately addressed is IgA-mediated en- 
hancement of HIV infection. It is well-known that 
anti-HIV antibodies can be shown under defined 
conditions to enhance infection of susceptible cells, 
provided that the cells have receptors for the Fc 
portion of anti-HIV antibodies or for complement 
components which bind to HIV-anti-HIV immune 
complexes. This phenomenon has been widely de- 
scribed for a variety of cell types and has raised 

questions regarding the potential dangers of vaccina- 
tion against HIV (110, 111). Virtually all of these 
studies have been done using whole serum or puri- 
fied IgG, and little attention has been paid to the 
potential for IgA anti-HIV antibodies to mediate 
enhancement of HIV infection. Since many cells 
(monocytes/macrophages, polymorphonuclear neu- 
trophils, epithelial Cells, and eosinophils) bear recep- 
tors for the Fc portion of IgA (15, 99, 112), this 
possibility must be considered, especially in light of 
the high levels of IgAl-containing circulating im- 
mune complexes known to exist in AIDS patients 
(113, 114). Although the presence of IgG receptors 
on rectal epithelium has prompted concerns about 
the potential for IgG antibodies to mediate enhance- 
ment of infection of the gastrointestinal tract (115), 
similar concerns regarding IgA mediated-enhance- 
ment of intestinal epithelium, possibly via the poly- 
meric immunoglobulin receptor (SC) on epithelial 
cells, should be addressed. Interestingly, in an anal- 
ogous study, plgA antibodies to Epstein-Barr virus 
(EBV) have been shown to carry EBV into HT29 
cells not normally susceptibl e to this virus (116). 

Ana lyses  of purified serum IgA from HIV- 
infected individuals have indicated that specific IgA 
antibodies can be regularly demonstrated only in 
the IgA1 subclass (117, 1!8); dominant IgA1 anti- 
HIV antibodies were also observed in two S-IgA 
samples isolated from colostrum of healthy HIV- 
seropositive mothers (118). Our laboratory has ob- 
served that IgA1 antibodies seem to be directed 
almost exclusively against env glycoproteins. In 
many subjects, a total lack of IgA1 reactivity to g a g  
and p o l  proteins was accompanied by intact IgG 
responses to these same antigens (118). It is impor- 
tant to emphasize that this striking restriction of the 
IgA anti-HIV response to the IgA1 subclass is of 
potential functional importance, since this isotype 
is exquisitely sensitive to IgA1 proteases produced 
by many pathogenic organisms responsible for sec- 
ondary infections in AIDS patients (22). 

INDUCTION OF I M M U N E  RESPONSES IN T H E  
G E N IT A L  TRACT: IMPLICATIONS FOR HIV 
V A CCIN E  DEVELOPMENT,  ROUTES OF 
IMMUNIZATION, AND EFFECTIVE 
ANTIGEN-DELIVERY SYSTEMS 

The ultimate goal of a potential HIV vaccine is to 
induce protective immunity systemically as well as 
at mucosal surfaces of the genital tract. The impor- 
tance of the mucosal compartment in the protection 
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of the genital tract has been convincingly and dra- 
matically demonstrated by Miller e t  al. (25, 119): 
Rhesus monkeys systemically vaccinated with inac- 
tived SIV were not protected against SIV applied to 
the genital mucosa. However, sequential vaginal, 
rectal, and oral immunizations with a recombinant 
particulate SIV antigen elicited both mucosal and 
systemic immune responses manifested by S-IgA 
and IgG in the vaginal fluid, IgA and IgG antibodies 
in serum, and T-cell proliferative and helper func- 
tions in the genital lymph nodes and peripheral 
blood (120, 121). Using SIV incorporated into mi- 
crospheres, Marx et  al. (26) have demonstrated that 
oral or intratracheal immunization following sys- 
temic priming induces a protective immune re- 
sponse against vaginal challenge with SIV. 

Other studies performed in animal models have 
generally shown that the induction of mucosal im- 
munity as measured by specific IgA and IgG anti- 
body responses in the female reproductive tract 
requires intensive local immunization with repeated 
challenges of large doses of antigen (11, 88, 89, 122, 
123). The intravaginal route of antigen administra- 
tion is relatively ineffective (93, 124) in the induc- 
tion of local immune responses unless a combina- 
tion of mucosal (oral and rectal) and systemic 
immunization is used. The low efficiency of intra- 
vaginal immunization may be due to poor absorp- 
tion of antigens and the apparent absence of an 
IgA-inductive site, analogous to GALT or BALT, 
in the genital tract. Furthermore, if the female 
genital tract were an efficient inductive site, re- 
peated deposition of sperm during sexual inter- 
course should result in prompt induction of immune 
responses with reduced fertility. 

Whereas systemic immunization resulted in 
lower local responses,  booster  immunization 
given in the vagina or uterine horns often resulted 
in an increased response in the reproductive tract. 
Recent comparative studies (125) of the effective- 
ness of vaginal, pelvic, and parenteral immuniza- 
tion in the induction of IgA and IgG antibodies in 
murine vaginal washings indicated that local (vag- 
inal) immunization induced an unimpressive re- 
sponse. In contrast, subserous and intraperitoneal 
immunizations with the same antigen resulted in 
both IgA and IgG responses in this fluid, while 
subcutaneous injection induced only IgG antibod- 
ies. The authors speculated that the effectiveness 
of intraperitoneal immunization was due to vigor- 
ous stimulation of regional lymph nodes. How- 
ever, an alternative explanation may be offered 

based on recent studies of the peritoneal origin of 
the precursors of mucosal IgA plasma cells (126). 
Thus, it is probable that this route of immunization 
stimulates peritoneal IgA precursors that subse- 
quently populate the genital tract. Oral immuniza- 
tion has been attempted in laboratory experiments 
in mice and rats with limited success. Female mice 
immunized with homologous sperm by oral intu- 
bation show partial reduction in fertility. A1- 
lardyce and Rademaker (127) combined oral with 
vaginal booster immunization and were successful 
in demonstrating vaginal IgA anti-sperm antibod- 
ies in association with reduced fertility. In addi- 
tion, in rats oral administration of sperm cells 
resulted in anti-sperm antibodies of the IgA class 
in vaginal fluids with antibody titers being associ- 
ated with length of infertility (127). 

Little is known concerning the induction of an 
effective immune response in the human female 
genital tract. The occurrence of specific antibodies 
in cervicovaginal secretions from women with sex- 
ually transmitted diseases and other local infections 
has supported the contention that a mucosal im- 
mune response can be induced in the genital tract 
(11, 88, 89, 122, 123). Active immunization of the 
cervical-vaginal mucosa by direct exposure to an- 
tigens has resulted in secretory antibody production 
(128). Local immunization of the vagina or uterus 
with inactivated polio virus resulted in specific IgA 
and IgG antiviral antibodies in vaginal secretions 
but only IgG antibodies were found in the uterus. 
The concept of an independent genital mucosal 
immune system is also supported by the identifica- 
tion of local IgA and IgG antibodies as well as 
systemic antibodies against sperm cells in some 
infertile men and women (129). Such antibodies 
may occur in sera or secretions concurrently or 
independently. 

Systematic studies of the induction of humoral 
and cellular immune responses in the human genital 
tract by mucosal or systemic immunization routes 
(and their combination) have not been performed. 
In view of the independence of the mucosal and 
systemic immune compartments and predominant 
route of HIV acquisition, this information will be 
necessary for the design of potential vaccines pro- 
tective against HIV as well as other sexually trans- 
mitted diseases. 
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Antigen-Delivery Systems for the Induction of  
Mucosal and Systemic Immune Responses 

Empirical experience with mucosal immunization 
has resulted in a generally accepted conclusion that 
considerably high doses of antigens are required. 
This is due to the elimination of antigens by peri- 
stalsis and outflow of secretions, existence of effec- 
tive mechanical (epithelial cells) and chemical (e.g., 
mucins) barriers, and degradation and denaturation 
of antigens by enzymes and acids. Thus, only 
minute quantities of fully potent antigens reach the 
mucosal lymphoid tissues. Consequently, several 
strategies recently reviewed (1, 18-21, 60, 130, 131) 
have been proposed to circumvent this problem. 

The ability of some microorganisms to colonize 
and infect mucosa of the intestinal tract and the 
potential for inclusion of genes from unrelated mi- 
croorganisms which code for relevant antigens rep- 
resent an attractive possibility for design of novel 
vaccines effective in the protection of mucosal 
surfaces (132-134). Although several bacterial spe- 
cies, including genetically modified strains of Sal- 
monellae, Escherichia coli, Mycobacteria (BCG), 
Yersinia enterocolitica, and Lactobacilli have been 
considered (24, 76), most of the experimental work 
has been performed with extensively attenuated by 
genetic modifications strains of Salmonellae and, 
more recently, BCG (135-138). In addition, polio- 
and adenoviruses (139, 140) have also been consid- 
ered as vectors suitable for mucosal immunization. 
The development of recombinant vaccines based on 
the attenuated strains of poliovirus is attractive 
given the fact that the vaccine is routinely given to 
the population. 

These approaches have several obvious advan- 
tages. Colonization and infection with live microor- 
ganisms are known to induce long-lasting, vigorous 
immune responses in both mucosal and systemic 
compartments (141). Furthermore, the possibility of 
introduction of genetic material coding for many 
different and unrelated antigens into a single micro- 
bial vector would reduce the need for multiple 
immunizations to a single dose and yet induce 
protection against several diseases. For example, 
oral immunization with BCG expressing genes en- 
coding for HIV glycoproteins and fragments of 
tetanus toxin, or many other candidate antigens of 
medical importance, resulted in the induction of 
corresponding antibodies (137, 138). Furthermore, 
such vaccines would be easily administered and 
inexpensive to produce---factors that are of para- 

mount importance for large-scale immunizations in 
the Third World countries. However, a number of 
related questions and problems associated with this 
approach must be considered. The most important 
aspect concerns the reusability of individual vec- 
tors. Immune responses are induced not only 
against the desired antigen expressed in a given 
microbial vector, but also to the vector itself (75). In 
point of fact, the response to the vector is dominant 
in some systems. Therefore, such immune re- 
sponses could limit the effectiveness of subsequent 
secondary or tertiary immunizations with the same 
microorganism as recently demonstrated (75). 
However, multiple administrations of the Sabin 
poliovirus are routinely used for immunization. 

Some of the antigens considered are poorly 
expressed in a given vector or are not released 
from the periplasmic space until after the death of 
a bacterium. Furthermore, the antigens expressed 
in a bacterial vector are likely to differ from the 
structure of such antigens derived from the origi- 
nal source. For example, the secondary and ter- 
tiary structures of native glycoproteins will be 
dissimilar to those expressed in Salmonellae or E. 
coli, due to the inability of these bacteria to 
glycosylate the protein, and thus the epitopes on a 
given glycoprotein may be altered. The absence of 
carbohydrates on gpl20 of HIV expressed in bac- 
terial vectors (50% of the total molecular mass of 
gpl20 is contributed by N- and O-linked side 
chains) may pose serious problems concerning the 
relevance and specificity of antibodies induced by 
immunization with non-glycosylated proteins. 
Carbohydrate determinants apparently play an 
important role in the antigenicity of glycosylated 
HIV glycoproteins (142). The absence of carbohy- 
drates would not be a limitation, though, for the 
generation of a cell-mediated immune response. 
Taken together, the limitations of using a single 
recombinant vaccine necessitates the develop- 
ment of several compatible approaches involving 
the use of different recombinant organisms in 
conjunction with non-recombinant-based methods 
(e.g., microencapsulated antigen). 

A recent report has shown that plants such as 
tobacco, lettuce, tomato, or banana can be used for 
the expression of viral (hepatitis B) antigens (143). 
This novel approach has stimulated considerable 
interest in potential utilization of this "edible anti- 
gen delivery system" for an inexpensive mass im- 
munization by the oral route in human and veteri- 
nary medicine. 
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Cholera toxin (CT) and its B subunit bind to all 
nucleated cells, especially to intestinal epithelial 
cells, through a specific GM 1 ganglioside receptor. 
CT is the most potent oral immunogen, and in 
addition, CTB promotes significant mucosal and 
serum antibodies to proteins when coadministered 
by the mucosal route (144, 145). Furthermore, 
coadministration of viral antigens with CT signifi- 
cantly enhances S-IgA antiviral responses in exter- 
nal secretions as well as in serum (144, 146). 

To avoid their degradation and denaturation by 
pepsin and hydrochloric acid in the stomach, vac- 
cine antigens have been incorporated into gelatin 
capsules, liposomes, and biodegradable micro- 
pheres, subsequently coated with substances that 
became soluble in the alkaline pH of the small 
intestine. Biodegradable microspheres have been 
used for systemic and oral immunizations in several 
recent studies (21, 26, 130, 131, 147). The micro- 
spheres are usually composed of biodegradable and 
biocompatible materials, such as poly DL-lactide- 
co-glycolide (DL-PLG) copolymers with antigens 
incorporated within such particles during their 
preparation. Controlled biodegradation, whose 
rates may range from several days to months de- 
pending on the lactide-glycolide proportion, pro- 
ceeds by hydrolysis of ester bonds to yield the 
catabolizable products lactic and glycolic acids. 
Microspheres are absorbed from the gastrointesti- 
nal tract through PP, where they are retained and 
subsequently release antigen. The incorporation of 
antigens into biodegradable microspheres has sev- 
eral advantages including the protection of antigen 
from proteolysis and possible coincorporation of 
immunological adjuvants or cytokines that may 
further enhance the immune response. Further- 
more, a single injection or ingestion of micro- 
spheres with programmed short and long biodegra- 
dative times may induce overlapping primary and 
long-lasting secondary immune responses, thus 
eliminating the need for booster immunization. 
Small microspheres (1-5 p.m) were also absorbed 
but not retained in PP (131) and were found in the 
spleen and lymph nodes; thus, a concurrent sys- 
temic and secretory immune response may be in- 
duced by ingestion of microspheres of appropriate 
sizes. As a dry powder, microspheres containing 
antigens are stable, and with the small number of 
antigens tested thus far, the results indicate that 
their immunogenicity can be preserved for many 
months. Promising results have been obtained with 

more complex antigens, such as influenza virus 
(147) and SIV (26). 

Finally, gene vaccines or the use of DNA encod- 
ing for relevant antigens are gaining deserved atten- 
tion (148). Such vaccines given by the intramuscu- 
lar as well as the mucosal (intranasal) routes have 
induced protective immune responses against influ- 
enza in animal models and the application of this 
technology to HIV and SIV vaccines is being pur- 
sued. In addition to the effectiveness of several 
immunization routes and minute amounts of DNA 
required, the antigens produced by the immunized 
individual are likely to resemble native antigens and 
contain relevant carbohydrate moieties. 

C O N C L U S I O N S  

The development of vaccines that would induce 
specific immune responses in the genital tract se- 
cretions would have far-reaching implications for 
not only the prevention of AIDS and sexually 
transmitted diseases but also the immunological 
control of fertility (4, 76, 88, 89, 123, 124, 149). 
Most of the currently studied vaccines utilize sys- 
temic routes of immunization which are of limited 
value for the prevention of mucosa-contracted dis- 
eases. The relative contribution of antigen- 
sensitized cells from PP or other inductive sites 
(e.g., rectal tonsils) to remote or adjacent effector 
sites (e.g., genital tract) as manifested by the ap- 
pearance of corresponding S-IgA antibodies has not 
been studied extensively in humans despite its 
unquestionable practical importance. Exploration 
of immunization routes that are effective for induc- 
tion of mucosal immune responses and that are 
based primarily on current knowledge of the origin 
of antibodies and of specific antibody-forming cells 
in mucosal tissues, together with novel antigen 
delivery systems (1, 76, 89, 130), is likely to reduce 
the incidence of many infectious diseases including 
AIDS and also reduce the cost of administration of 
such vaccines. 
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