Corrections • Berichtigungen

School of Mathematical Sciences, The Flinders University of South Australia, Bedford Park (Australia)

Additions and Corrections to Algorithms for motions with constant stretch history-II.

Rheol. Acta 15, 577-578 (1976)

R. R. Huilgol

(Received March 10, 1978)

In a series of papers $(1,2,3)$ the author has discussed motions with constant stretch history of various types. As is well known, in these flows, the strain history has the form
$C_{i}(t-s)=e^{-s L_{i}(t) T} e^{-s L_{1}(t)}$,
where \boldsymbol{L}_{1}^{T} is the transpose of \boldsymbol{L}_{1}. Now, suppose that \boldsymbol{L}_{1} commutes with $\boldsymbol{L}_{1}^{\boldsymbol{T}}$, i. e.,
$\boldsymbol{L}_{1} \boldsymbol{L}_{1}^{T}=\boldsymbol{L}_{1}^{T} \boldsymbol{L}_{\mathbf{1}}$.
Then
$C_{i}(t-s)=e^{-s A_{1}(t)}$,
where
$\boldsymbol{A}_{1}=\boldsymbol{L}_{\mathbf{1}}+\mathbf{L}_{1}^{T}$
is the first Rivlin-Ericksen tensor (4). Therefore, the condition [2] is sufficient that a given motion with constant stretch history be a simple extensional flow (5).

Now, let a velocity field v be such that its gradient L obeys $\dot{L}=0$. Then, this motion has constant stretch history (2,3). If, in addition, \boldsymbol{L} obeys [2], i. e., $\boldsymbol{L} \boldsymbol{L}^{T}=\boldsymbol{L}^{T} \boldsymbol{L}$, then v is a simple extensional flow from what we have just seen.

In the literature, the example of a simple extensional flow is usually that due to Coleman and $\operatorname{Noll(}(5)$:
$\dot{x}_{i}=a_{i} x_{i}, i=1,2,3$; no sum;
$a_{1}+a_{2}+a_{3}=0$.
Whether [6] is satisfied or not, the velocity gradient of [5] is symmetric. We now show that
$v=\boldsymbol{Q} x, \boldsymbol{Q} \boldsymbol{Q}^{T}=1, \dot{\boldsymbol{Q}}=\mathbf{0}$,
is a simple extensiơnal flow. The proof is trivial because the velocity gradient Q obeys $\dot{Q}=0$ and $Q Q^{T}=Q^{T} Q$, i.e., \boldsymbol{Q} commutes with \boldsymbol{Q}^{T}. It is clear that Q is an
orthogonal tensor and hence $\operatorname{tr} \boldsymbol{Q} \neq 0$, i.e., the velocity field in [7] is not isochoric. For an isochoric, unsymmetric velocity gradient example, see (1).
This note provides the author with an opportunity to point out that the correct solution to the differential equation
$\dot{\boldsymbol{Q}} \boldsymbol{Q}^{T}=\boldsymbol{Z}, \boldsymbol{Z}=-\boldsymbol{Z}^{T}, \boldsymbol{Q}(0)=\mathbf{1}$,
is given by (6)
$\boldsymbol{Q}(t)=1+\int_{0}^{t} \boldsymbol{Z}(\tau) \boldsymbol{Q}(\tau) d \tau$.
In eqs. [8] of (1), [4.14] and [6.10] of (2) and [12] of (3), it was incorrectly stated that
$Q(t)=\exp \left(\int_{0}^{t} Z(\tau) d \tau\right)$.

References

1) Huilgol, R. R., Rheol. Acta 14, 48-50 (1975).
2) Huilgol, R. R., Rheol. Acta 15, 120-129 (1976).
3) Huilgol, R. R., Rheol. Acta 15, 577-578 (1976).
4) Rivin, R. S., J. L. Ericksen, J. Rational Mech.

Anal. 4, 323-425 (1955).
5) Coleman, B. D., W. Noll, Phys. Fluids 5, 840-842 (1962).
6) Hochstadt, H., Differential Equations, pp. 76-79, Dover (New York 1975).

Author's address:
Dr. R. R. Huilgol
School of Mathematical Sciences
The Flinders University of South Australia
Bedford Park, S. A. 5042 (Australia)

