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Summary. Consider the set c~ of all possible distributions of triples (z, x, r/), 
such that r is a finite stopping time with associated mark x in some fixed 
Polish space, while r/is the compensator random measure of (z, K). We prove 
that T is convex, and that the extreme points of rg are the distributions 
obtained when the underlying filtration is the one induced by (z, x). More- 
over, every element of c~ has a corresponding unique integral representation. 
The proof is based on the peculiar fact that E V~, ~ = 0 for every predictable 
process V which satisfies a certain moment condition. From this it also 
follows that T~, ~ is U(0, 1) whenever T is a predictable mapping into [0, 1] 
such that the image of (, a suitably discounted version of r/, is a.s. bounded by 
Lebesgue measure. Iterating this, one gets a time change reduction of any 
simple point process to Poisson, without the usual condition of quasi- 
leftcontinuity. The paper also contains a very general version of the Knight-  
Meyer multivariate time change theorem. 

1. Introduction 

This paper deals primarily with marked stoppin9 times of the form (z, K), where z is 
a random time in (0, ~ )  while ~c is an associated random mark in some fixed Polish 
space K, and where the process it(A) = 1 {z < t, ~c ~ A } is assumed to be adapted to 
the underlying filtration ~ -- ( ~ )  for every set A in the Borel a-field ~(K). We 
shall always assume that ~- satisfies the usual conditions of right-continuity and 
completeness. Note also that all stopping times in this paper are assumed to be a.s. 
finite, unless otherwise specified. By the compensator of (z, ~c) we shall mean the a.s. 
unique random measure t/ on (0, ~ ) x  K, which is such that the process 
t/t(A ) = t/((0, t] x A) is predictable while the difference it(A) - th(A ) is a martingale 
for every A ~ ( K ) .  Marked stopping times and their compensated versions are 
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obviously fundamental, as they form the basic building blocks in marked point 
processes and in purely discontinuous local martingales, respectively. 

In the special case when f f  is induced by (r, ~), i.e., when f f  is the smallest 
filtration that makes the process ~ adapted, one may compute the compensator 
explicitly through the formula 

It A ~)+ #(ds x A) 
qt(A) = f A 6 ~ ( K )  (1) 

o /2([s, oo) x K) '  

in terms of the distribution # of (r, ~r (cf. Jacod (1979), p. 86, or Elliott (1982), 
p. 203). Hence in this case, the distribution of the triple (r, ~c, ti) is uniquely 
determined by #, and we shall denote it by P,. We shall also refer to ti in this case as 
the natural  compensator .  

In general there is no formula like (1), and the interplay between the filtration 
and the random pair (~, ~c) may often be quite subtle. Nevertheless, it will be 

shown in Theorem 6.1 below that the distribution of an arbitrary triple (z, ~:, ti) has 
a unique integral representation as a mixture of measures -P,, in the sense that 

P(r, ~c, ti)-i = f P,v(d#) ,  (2) 

for some probability distribution v over the space of all possible measures #. It will 
further be seen that every such measure v may occur in (2), for a suitable choice of 
filtered probability space (f2, ~-, P) and of pair (r, it). This means in particular that 
the class cd of all possible distributions of triples (r, ~c, ti) (defined on arbitrary 
filtered probability spaces) is convex, and that the extreme points of cd are exactly 
the distributions Pu" 

We pause to remark that our notion of extremal measure differs from the usual 
one in the martingale literature, where one considers a fixed adapted process X (or 
more generally a set of such processes) on some filtered space (O, ~,~), and studies 
extremality within the convex set of all probability measures on ~2, such that (each) 
X becomes a martingale. Though the two notions are obviously closely related, the 
results one obtains in the context of fixed processes are rather different (cf. Jacod 
and Yor 1977; L6pingle et al. 1981). 

In the natural case, the distribution p of (z, ~c) can be recovered up to time 
r from the compensator ti, via formula (1). The same construction applies in the 
general case, but yields instead of # a random subprobability measure r supported 
by the set (0, r] x K, which will play a basic role in the sequel. We shall refer to ~ as 
the discounted compensator  of (r, lc). To get an explicit expression for r write 
flt = tlt(K ) and ~t = ~t(K) = ~((0, t] x K), and note that the process Z t = 1 - 
must satisfy the Dol~ans differential equation 

d Z  t = - Z t _  dq~, Z o = 1 , (3) 

whose unique solution is given by 

Z t = exp( - qt)l-[ (1 - Aqs ), t > 0 ,  (4) 
s < t  

(cf. Br6maud (1981), p. 338; or Rogers and Williams (1987), p. 29). Here 
Af/s = qs - G - ,  while qc denotes the continuous component of q. The measure 

may now be obtained in terms of t /and Z as 

~(A) = f j Z t _ t i ( d t d x ) ,  A ~ ( ~ +  • K ) .  (5) 
A 
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We may now give a probabilistic interpretation of (2). As we shall see in 
Theorem 6.2, our discounted compensator ~ can always be extended to a random 
probability measure C on (0, oo) x K, such that 

= ~C  and P[(z,~c)~.lC] = ~ a.s., (6) 

where % denotes restriction to (0, z] x K. The distribution of C is then unique and 
agrees with the mixing measure v in (2). It is suggestive to think of (6) (hence also of 
(2)) in terms of first choosing a probability measure ~ at random with distribution v, 
and then picking a random pair (z, ~c) in accordance with the distribution ~. To get 
the desired compensator t/ for (z,F), we may finally take f f  to be the smallest 
filtration that makes the process (~, 4,) adapted. 

The discounted compensator ~ of (z, ~c) plays an important role even in the 
context of random time change. Thus if T is a predictable mapping from ~ + x K 
into [0, 1], such that the image random measure ~T-1 is a.s. bounded by Lebesgue 
measure 2, then T~, ~ turns out (see Theorem 4.3) to be U(0, 1) (uniformly distributed 
on [0, 1]). This might be surprising, since the total mass of ~ is typically strictly less 
than one. In the special case when z is U(0, 1) with natural compensator t/, the 
result is essentially contained in Section 5 of Kallenberg (1988). The general 
statement is somewhat deeper, mainly because ~ is not assumed to be totally 
inaccessible. 

By iterating the mentioned type of transformations for individual stopping 
times, one may reduce an arbitrary simple point process ~ to homogeneous Poisson 
with respect to a suitably transformed filtration, through a random time change 
which only depends on the compensator t/ of 4, and on certain randomizations 
needed to resolve the possible discontinuities of t /a t  the jumps of 4. The resulting 
Theorem 5.1 extends the classical result of Papangelou (1972) and Meyer (1971) in 
the quasi-leftcontinuous case, where q itself defines the new time scale. In general 
the appropriate time change is different, which explains the previously noted 
deviation from Poisson when t /has jumps (cf. Brown and Nair 1988b). 

All results mentioned so far are based on a peculiar but extremely useful 
moment identity in Theorem 4.1, which states that E V~, ~ = 0 for every predictable 
process V on ~ + x K that satisfies a certain moment condition. More precisely, we 
define 

U.~= Vt,~ + Vd~, t > O, x � 9  (7) 

where V is assumed to be such that the right-hand side makes sense, and we prove 
that 

E I U~, ~1 < oo implies E V~, ~ = 0.  (8) 

Various primitive versions of this rather incredible fact have been noted earlier in 
the context of exchangeable processes (cf. Theorem 4.1 in Kallenberg (1989)). Note 
incidentally that a martingale component may be added to the process V in (8), to 
yield a similar statement for suitable semimartingales. 

In addition to the mentioned results which are all closely related, we include in 
Sect. 2 a general multivariate time change theorem, even though the result uses 
different methods for its proof. More specifically, we consider predictable trans- 
formations which reduce a family of continuous local martingales and quasi- 
leftcontinuous point processes to a pair of a centered Gaussian process X and an 
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independent Poisson process q, both defined on abstract spaces. The result con- 
tains Knight's classical (1970, 1971) reduction of orthogonal continuous martin- 
gales to independent Brownian motions (where the previous one-dimensional 
version is due to Dambis (1965) and Dubins and Schwarz (1965)), as well as the 
corresponding point process reduction to Poisson, due to Meyer (1971). However, 
our present version is more general, since the continuous martingales are not 
assumed to be orthogonal, nor are the predictable transformations assumed to be 
monotone. The result is rather closely related to certain invariance theorems in 
Kallenberg (1988, 1989). 

Our proof uses a simplified version of the method in Cocozza and Yor (1980) 
based on exponential martingales, which in turn is much easier than the usual 
textbook proof (of. Ikeda and Watanabe (1981), p. 86; or Karatzas and Shreve 
(1988), p. 187). Other approaches are suggested by Kurtz (1980) and, in the point 
process case, by Aalen and Hoem (1978) and Brown and Nair (1988a). Pitman and 
Yor (1986) contains an approximation theorem related to Knight's result, while 
Grigelionis (1971) and Karoui and Lepeltier (1977) prove a representation of 
certain marked point processes in terms of a Poisson process. One might also 
mention the partially successful attempts by Merzbach and Nualart (1986) and 
others to transform a two-dimensional point process to Poisson by means of 
suitable 'stopping lines'. 

The mentioned results will essentially appear in reversed order. Thus we begin 
in Sect. 2 with the general reduction theorem. Our moment identity (8) and the 
related predictable mappings of marked stopping times will appear in Sect. 4, and 
in Sect. 5 we consider monotone transformations of (sequences of) stopping times, 
along with their associated filtrations. Finally, Sect. 6 contains a proof of our 
integral representation (2) and of the related existence of a random distribution C. 
Some technical prerequisites for Sect. 4-6 have been relegated to a special Sect. 3, 
in order not to distract the reader's attention from the main ideas. 

Throughout the paper, we shall often use standard terminology, notation and 
results from stochastic calculus without explicit references, and in most cases the 
reader may consult the texts by Dellacherie and Meyer (1975/80), Jacod (1979), or 
Elliott (1982) for details. All random objects are assumed to be defined on filtered 
probability spaces (O, ~ ,  P) satisfying the usual conditions, and Ewill then denote 
integration with respect to P. To avoid the constant nuisance of extending the 
probability space (in applications of Lemma 3.1), we shall always assume f2 to be 
rich enough to support any randomization variables we may need. Some further 
conventions for this paper are to let 1 { . . .  } denote the indicator function of the set 
within brackets, to use I as the identity mapping on any space, and to write a < b 
as synonymous to a = 0(b). Finally note that, given any Polish space K, we use 
M(K) to denote the Borel a-field in K, write ~ ' (K)  for the class of locally finite 
measures on J)(K), and let dg 1 (K) be the subclass of probability measures. 

2. Reduction to Poisson and Gaussian processes 

Our aim in this section is to state and prove the general reduction theorem for 
continuous local martingales and quasi-leftcontinuous marked point processes, 
mentioned in the introduction. Thus we fix a filtered probability space (f2, .~-, P), 
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where the filtration ~ = (fit)  is assumed to satisfy the usual conditions of right- 
continuity and completeness. We shall also fix a Polish space K endowed with its 
Borel a-field ~(K).  

By a K-marked point process on (0, ~ )  we shall mean a locally finite, integer 
valued random measure r on (0, 0o) x K satisfying ~({t} x K) _< 1 for each t, and 
such that the process ~,(B) = 4((0, t ] x  B), t > O, is adapted to f f  for every 
bounded B ~ ( K ) .  Note that there exists an a.s. unique random measure ~ on 
~+ x K, the so called compensator of 4, such that the process ~t(B) = ~((0, t] x B), 
t > 0, is a compensator of ~t(B) in the usual sense for every bounded B ~ ( K ) .  
Further recall that ~ is quasi-leftcontinuous iff ~(B) is a.s. continuous for every 
bounded B e ~ ( K ) ,  i.e. iff ~({t} x K) = 0 for all t a.s. For  the definition of Poisson 
random measures on abstract measurable spaces, we may refer to Kallenberg 
(1986), p. 15. 

Theorem 2.1. Let  M1,  . . . , M d be continuous local martingales, and let ~ be a quasi- 
leftcontinuous K-marked point process on (0, oo) with compensator 4. Fix  a a-finite 
measure space (S, 5P, #), along with an abstract space T equipped with a non-negative 
definite function p: T 2 ~ ~. Add a point ~ to S, and consider a family of  predictable 
processes U jt : Y2 x ~ + ~ ~, j = 1 , . . .  , d, t ~ T, and V: ~2 x ~ + x K ~ S w {~}, sat- 
isfying 

S U ~ d [ M j ,  M j ]  < ~ a.s., j =  1 , . . . , d ,  t ~ T ,  
0 

~ S Uj~Uktd[Mj, Mk]--p~, a.s., 
j = l k = l  0 

s , t ~ T ,  

V-1  = #  a.s. on S . 

Then r I = ~ V-1 is a Poisson random measure on S with intensity #, while 

X,:= ~ ~Uj~d_Mj, t ~ T ,  
j = l  0 

is an independent centered Gaussian process on T with covariance function p. 

Proof  First we conclude from It6's formula that, if M is a continuous local 
martingale while J is a quasi-leftcontinuous simple point process with compensator 
J, and if u > 0 is a constant, then the processes 

Z t = exp(iM, + �89 M]t), t > 0 ,  

Yt = exp( - uJ t + (1 - e-")~) ,  t > 0 ,  

are local martingales. Applying this to the processes 

M ( t ) =  ~ c k ~ i UJ.tkdM~ , t > O, 
k = l  j = l O  

t +  

J j ( t ) - - - I  ~ l{V~Aj}d~,  t > 0 ,  
K 0 

j = l , . . . , n ,  
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where c 1 . . . .  , c,,~ N and ul . . . .  , u,~ ~+ are constants while A 1 . . . . .  A, e 5  p are 
arbitrary disjoint sets with finite/~-measure, and noting that the resulting processes 
Z and Y1, �9 - �9 Y, are bounded and orthogonal, it follows that the process 

N t = exp{iM t + aIM,  M]t - ~ ( u J j ( t )  - (1 - e-"0Jj(t)},  t > 0 ,  
)=1 

is a bounded martingale. Hence EN~ = fiN o = 1. Since 

Moo = ~ CkX~k; Jj(oo) = q(Aj) ,  j = 1 . . . .  , n ,  
k = l  

h k i j , , ]  h k 

~(oo)  = ~ 1 { V ~  A j}  d ~  = I~(Aj), j = 1 . . . . .  n ,  

we obtain 

Eexp lk=  1 "  CkX,~-- i=I  uirl(Aj) = expk- -  3~Z" h k ChCkPth' tu - - j=l  (1 - e - " O # ( A j )  , 

and the result follows. 

We remark that an even simpler proof is available when the space S is 
sufficiently nice (Polish will do) while the measure/~ is diffuse, since we may then 
replace the processes Y~ . . . . .  I1, above by one single bounded martingale 

r, = eJ, a { J ,  = 0 } ,  

l{WA}d , 

t > O  
where 

t +  

J,=Yf 
K O  

and conclude as before that 

Since obviously Et/= p, the assertion now follows as in Theorem 3.3 of Kallenberg 
(1986). 

We mention this because of recent efforts to get a simple proof of the multivari- 
ate time change theorem for orthogonal point processes (cf. Brown and Nair  
1988a), and also because the same method gives a very simple proof of Theorem 4.3 
below, in the special case when the stopping time r is totally inaccessible. 

We conclude this section by showing how the classical time change theorems of 
Knight and Meyer can be deduced from Theorem 2.1. First we take M 1 . . . .  , M d 
to be mutually orthogonal continuous local martingales starting at 0, and such that 
[Mj, Mj ]~  = oo a.s. for eachj.  Here we choose T = {1, . . . , d} x ~+ ,  and define 

U ~ j t ( s ) = 6 ~ j l { [ m ~ , m ~ ] ~ < t } ,  i , j =  1 , . . . , d ,  s , t  > O ,  

r j ( t ) = i n f { s > 0 ; [ M j ,  Mj]  s > t } ,  j =  1 . . . . .  d, t > 0 .  
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Then 

while 

Xj( t ) : - -  ~ ~ Uij,dM, = 1 {[Mj,  Mj]~ < t } d M i ( s ) =  M j o z j ( t ) ,  
i = 1 0  0 

d oo 

~ ~ Uih, U~k,d[M~, M j] = 6hk ~ {[Mk, Mk]r <--_ S/x t }d [Mk,  Mk] r = 6hR(S A t ) ,  
i , j = l  0 

so Theorem 2.1 shows that  the time changed processes Xj  = Mj o zj have the same 
finite-dimensional d is t r ibut ions  as d independent  Brownian motions.  Moreover ,  
the X~ inherit the proper ty  of r ight-continuity from the zi, so they must  in fact be 
a.s. continuous.  Thus Xa . . . .  , X d are independent  Brownian motions,  as noted by 
Knight  (1970, 1971). 

Next  we assume that  ~ . . . . .  ~d are mutual ly  or thogona lquas i - le f tcont inuous  
simple point  processes with compensa tors  r . . . . .  ~d, and such that  

f/(o~) = ~j(0, ~ )  = 0o a.s. for each j. In this context, or thogonal i ty  means  that  
~i({t})~i({t}) = 0 for all t > 0 and i 4= j. T o  make  this si tuation fit into our  general 
f ramework,  we take K = {1 . . . . .  d}, and put  ~ = (31 . . . . .  Cd) and 

= ( ~  . . . . .  ~d). Now choose S = {1 . . . . .  d} x R+ and define 

Vs(t )= ( j ,~ J ( t ) ) ,  j =  1 , . . . , d ,  t > 0 ,  

z~(t) = inf{s > 0; ~j(s) > t}, j = 1 . . . . .  d, t >  0 ,  

Then  

while 

t/j(t):= ~j{s >= O; ~j(s) _<_ t} ---- ~;ozj(t), j = 1 . . . . .  d, t >= O, 

~j{s>O;~j(S)<=t } = t ,  j =  1 . . . . .  d, t>__0, 

so Theorem 2.1 shows that  ~/1, - - �9 ~d are independent  Poisson processes on Bq+ 
with intensity ;t. This is the result of Meyer  (1971). Our  theorem even allows us to 
conclude that  the two sets of processes X 1 . . . . .  X a and ~1 . . . .  , rl a are indepen- 
dent, whenever  the mart ingales  M 1 . . . . .  M a and the point  processes ~ . . . . .  ~d 
are defined on the same filtered probabi l i ty  space. 

Applicat ions of this kind are all very simple f rom our present general point  of 
view. With somewhat  greater  effort, we could also deduce f rom Theorem 2.1 some 
non-tr ivial  representat ion theorems for stochastic integrals with respect to stable 
L6vy processes, but that  would bring us too far a f i e l d . . .  

3. Some preliminaries 

In this section we have gathered some auxiliary results which will be needed in 
subsequent  sections. The idea is that  the reader m a y  skip this section on a first 
reading, and return to the specific results when need arises. Only L e m m a s  3.2 and 
3.3 may  be of some independent  interest, while the others are more  technical. 

Our  first result is the simple coupl ing l emma from Kal lenberg  (1988), which we 
restate here for the reader 's  convenience. 



174 O. Kallenberg 

Lemma 3.1. Let ~ and rl be random elements in some Polish spaces S and T, such that 

d f (q ) for  some measurable mapping f:  T ~ S. Further assume that ? is U(O, 1) and 
independent of  ~. Then there exists some measurable function tf of ~ and 7, such that 
~f d = r 1 and ~ =f(r/ ')  a.s. 

Note that, by enlarging the probability space if necessary, we may always 
assume the existence of a randomization variable 7 with the stated properties. No 
further comments will be made on this point. 

For the next few results, recall that the notions of stopping time, martingale, 
etc., are with respect to a fixed right-continuous and complete filtration ~ = (~t). 
Note also that K denotes a fixed Polish space endowed with the Borel o'-field ~(K). 
W e  shall say that a marked stopping time (z, s:) is pure, if its ~-compensator  
remains predictable with respect to the induced filtration and therefore agrees with 
the natural compensator in (1.1). The next lemma plays a crucial role in the 
construction of the random probability measure ( o f  (1.6). 

Lemma 3.2. Let (z,x) be a pure marked stopping time in (0, 1)• K with 
ess supz = l, and let U be an adapted left-continuous K-valued process on [0, 1). 
Then there exists some left-continuous K-valued process V on [0, l), such that V is 
independent of(z, K) and satisfies V = U a.s. on [0, z]. 

Proof Define (n,f)~ = f ( s  ^ t) for any funct ionfon [0, 1) and constants s, t ~ [0, 1). 
Letting t e l0 ,  1) and A e ~ ( ( t ,  1] x K), we get 

SO 

PE(z, s:)eAl~-~] = EEr/AI~] = EEr/AIz > t] l{z > t} a.s., 

P{(z,x)~A, x,U~'} = E[P[(z, ~c)~AI~]; zc, U~-]  

= P[(z, ~c)~Alz > t]P{z > t, zctU~" } (1) 

= P{(z ,  ~ ) z A }  PE~ ,U~"  Is > t]  . 

Taking A = (s, 1) x K with sr 1), we get in particular 

P [ z c t U ~ . l ~ > s ] = P [ ~ t U ~ ' l z > t  ], 0 < t < s < l ,  

so by the Daniell-Kolmogorov theorem, there exists some left-continuous process 
V on [0, 1), such that 

P{rc, V~-} = PErc, U~' lz  > t], t~[0, 1). (2) 

Taking V to be independent of (z, x), we get from (1) and (2) 

P{(z, tc)eA, z~tUE.} = P{(z, x)eA}P{zt, VE.} = P{(T,x)6A, ~ , V e . } .  (3) 

Let us now write 

z , = m a x { k 2 - "  < z , k ~ Z + } ,  n ~ N  . 

Letting Ae~((0 ,  1) x K), we get from (3) with t = k2-", 

P{(z., x)eA, z, = k Z - " , ~ U ~ - }  = P{(z.,K)eA, % = k2-", =~.Ve-}. 
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Summing over k yields 

(~,, ~, rt~.U) ~ (~., ~,Tt~ V), 

and since U and V are left-continuous, it follows that 

h, ~, rc~U) =d(~, ~:, r~V). 

By Lemma 3.1, there will then exist some random elements z', ~:' and V', such that 

(~', ~:', V') ~ h, K, V); (~, ~, rc~U) = (T', ~:', ~ ,  V') a.s. 

It follows in particular that (r', x') = (z, x) a.s., so even V' is independent of (T, x), 
and we have rc~U = rt~ V' a.s. [] 

The following uniqueness assertion is part of Theorem 6.1 below and will be 
needed for its proof. Note that the corresponding statement for general point 
processes is false. 

Lemma 3.3. For marked stopping times (z, ~c) in (0, oo) x K with compensators ~1, the 
distribution of  (z, ~c, q) is uniquely determined by that of  tl. 

Proof. The stochastic intervals {t >__ 0; q,K > s}, s __> 0, are right-closed and pre- 
dictable, so their left endpoints 

L = inf{t > 0; r/tK > s}, s > 0, 

are predictable stopping times. Since for each s the random measure n~t/ is 
~,s--measurable, the restriction of L to sets of the form {n~rleB} with Be 
~(dg((0, ~ )  • K)) are again predictable stopping times. By the compensating 
property of r/, we thus obtain for any A ~ ( ( 0 ,  ~ )  x K), 

P{(z, ~c)ea, z > - c , , ~ , r / ~ B }  = E [ r l { ( t , x ) ~ A ; t > L } ; ~ , f l 6 B  ] . (4) 

Since the L are measurable functions of r/, it follows that the probabilities on the left 
of (4) are uniquely determined by the distribution Pr/- ~. Now the class of events 
occurring on the left of (4) is closed under finite intersections, so by a monotone 
class argument, every set in the generated a-field has a unique probability. Thus 
Pr/- 1 determines the joint distribution of all random measures 

1{(~, ~)~A,~ > ~}rc~rl, A e ~ ( ~ +  x K), s > 0 .  (5) 
Now 

l(v_->r~}rE~jlT~/ as s T r l ~ K ,  

so by taking the supremum in (5) over rational s, we may conclude that even the 
random measures la(r, ~)q have uniquely determined distributions. The asserted 
uniqueness of P(z, ~, ~/)- ~ now follows by another monotone class argument. [] 

The idea of attaching additional marks to a marked stopping time (z, K) by 
means of predictable mappings will be useful in Section 6. The next lemma shows 
how this affects the compensator. 

Lemma 3.4. Let (z, x) be a marked stopping time in (0, oo) x K with compensator t l, 
let V be a predictable process on ~+ x K, and let W denote the random mapping 
(t, x) ~ (t, x, Vt, x), t => 0, x ~ K. Then the triple (z, ~:, V~, ~ ) is a marked stopping time in 

+ • K • ~ with compensator r lW-~.  
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Proof  The triple (T, ~C, V~,~) is a marked stopping time, since V,. ~ is ~-~-measurable. 
To see that the associated compensator is given by t IW-1,  we fix a set Be 
~ ( K  x ~), and note that 

t +  

1 {(z, ~c, V~,~)eE0, t] x B} = ~ ~ 1,(x, V,,~)f~,,(dsdx), t > O .  (6) 
0 K 

Here the integrand on the right is a predictable process in the pair (s, x), so the 
process in (1) is compensated by the process 

t +  

J" j" 1.(x, V~,~)t/(dsdx) = qW-~(E0, t] x B), t > 0 ,  
0 K 

and the assertion follows. [] 

The next result is a simple identity for conditional probabilities which will be 
used repeatedly in subsequent sections. 

Lemma 3.5. Fix a probability space ((2, ~r P), let fr and 3~ be sub-a-fields o f  ~ff , and 
consider an atom G o f  f~ and a set A e ~r with A c G. Then 

PEAIaJ v Jg]  - 

(with the convention 0/0 = 0). 

Proof  Since 

P[AI~.~] 

P E G I ~ 3  
1G 1 {P[GI~]  > 0) a.s.,  (7) 

EI-PI-AI~ v ~ ] ;  O ~] = P(A\G) = O, 

both sides of (7) vanish a.s. on G c. Next we write H o = { P [-G I v'cf] = 0}, and note 
that 

EEPEA[~F v ~ ] ; H o ]  = P(A c~ H o ) <  P ( G n H o ) =  EEPEGIffg]; H o] = 0 ,  

Thus P[AI~F v ~ ]  = 0 a.s. on H o. I t  remains to prove (7) on G \ H  o. Now any 
v Yr'-measurable subset of G \ H  o has the form G n H ,  where H e Y f  with 

H c H~. It is hence enough to show that both sides of (7) have the same integral 
over G n H, which is seen from 

G n H  = E [ G [ f f g ] P [ G I f f f ] ; H  = E [P [A IoCg] ;H ]  

= P ( A n H ) =  P ( A n G n H ) = E [ P E A I f # v  J g ] ; G n H ] .  
[] 

Next we state without proofs a couple of simple technical results needed for the 
proof of Theorem 4.6, for which no reference could be found in the literature. Both 
statements may be proved by straightforward monotone class arguments. 

Lemma 3.6. Let  V be a predictable process on ~+ x K, and let a be a finite 
predictable stopping time. Then the process V(a, �9 ) on K is ~,~ • ~(K)-measurable.  

Lemma 3.7. Fix a probability space with a sub-a-field ~, let ~ be a locally finite 
random measure on K, and let X be an ~ +-valued and fr • ~(K)-measurable process 
on K. Then 

E [ ~ X d ~ I ~ J  = ~XdE[~ l~# ]  a.s., 
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where E[~IN]  denotes the a.s. unique measure valued version o f  the process 
E [~A I~], A e ~(K). 

We conclude this section with two technical lemmas,  where certain sets con- 
sidered in the p roof  of Theorem 6.2 below are shown to be measurable.  As before, 
K is an arb i t ra ry  Polish space endowed with its Borel a-field, and J//d 1 (K) denotes 
the class of all probabi l i ty  measures  on K. For  the first result, write 
S(a, b) = (a,b) x [0, 1] x ~+  x K. 

L e m m a  3.8. For each ss(O, 1], let B s denote the class of  all measures # on S(0, 1), 
such that whenever a, b, yE[0 ,  1], t >_= O, and v s J#  l (K ) are such that a < b <_ s, and 
# = 2 x by x 6 t x v on S(a, b), then # has the same form on S(a, (b v y) A S). Those 
sets Bs are measurable. 

Proof. Fix s e (0, 1], and note that  B~ = ~ Ba, b, where B,, b is the set of all measures  
with the stated p roper ty  for fixed a and b. Here  the intersection extends over  all 
a and  b with 0 < a < b __< s, but  the formula  remains true if we restrict the 
intersection to rat ional  a and b. This is because every non-empty  interval (a, b) 
contains a similar interval with rat ional  endpoints.  It  is thus enough to prove  that  
B,, b is measurable  for fixed a and b. 

Let us then introduce the classes A r of measures  # with the stated produc t  form 
on S~,,, where re(a ,  1] is arbi t rary,  and write A,  = A" c~ A ; ' n  A'r", where A~' and 
A'/' are the sets of measures  with degenerate  projections f rom S,,r onto  coordinate  
spaces 2 and 3, respectively, while A'r is the set of measures  with project ion of the 
form 2 x v on to  (a, r) x K. Then A;' and A;" are expressible in terms of suitable 
m omen t s  of order  0, 1 and 2, and are therefore measurable.  To  see that  even A; is 
measurable ,  we m a y  write it as the intersection of the sets {v~ = v,} over  rat ional  
t ~ (a, r), where v t denotes the normal ized project ion on # from S~.t onto  K. This 
shows that  each set A. is measurable .  

Fo r  any # e Ab, the degenerate  value of y in the produc t  formula  may  be 
expressed in terms of momen t s  of order  0 and 1, which shows that  y = y .  is 
a measurab le  function o f #  on Ab. By put t ing y .  = 0 for # ~ A~, we m a y  extend yu to 
a measurable  function on the entire measure  space. Writ ing b.  = (y.  v b) ^ s, it is 
easy to verify that  

B],b = Abc~ L) ({r < bu} c~ A~,), 
r > b  

and this clearly remains true if the union on the right is restricted to rat ional  r > b. 
The  desired measurabi l i ty  of Ba, b now follows f rom the measurabi l i ty  of the sets A~ 
and the functions b,.  [] 

L e m m a  3.9. For any bounded measure # on [0, 1] 2 x N+ x K, define 

y u ( s ) = s u p { y s [ O ,  1];#([O,s] x [y, 1] x N+ x K) > 0}, s~ [0 ,  1] , 

t . ( s ) = s u p { t e R + ; # ( [ O , s ]  x [0 ,1]  x [t, oo) x K) > 0}, s~ [0 ,  1] . 

For each s e (0, 1], let C. be the class of  measures # as above, such that 

#((yu(r+),  1] x [0, 1] x [0, tu(r + )] x K ) =  0, r e [ 0 ,  s ) ,  (8) 

Those sets Cs are measurable. 
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Proof First we show for fixed s that y.(s) and tu(s) are measurable functions of#. It 
is then enough to show for measures m on R that sup(suppm) is a measurable 
function of m, which is obvious from the relation 

{me it'(R); sup(suppm) < x} = {me J/(N); m(x, oe) = 0}, x e  N . 

Approximating from the right by step functions, it follows that even yu(r + ) and 
tu(r+ ) are measurable in # for fixed re(0,  1). Keeping r fixed, we next approximate 
yu(r+) and t .(r+) from above by functions y~ and t~, taking values in the set 
{k2-"; ke  N}. Then Y"u ~ Yu(r+) and t" u $ tu(r+ ), so by dominated convergence, 

#((y~,, 1] x [0, 1] x [0, t~] x K)--*p((yu(r+), 1] x [0, 1] x [0, tu( r+)]  x K ) .  
(9) 

Since the YT, and t~ are again measurable and take only countably many values, the 
left-hand side of (9) is measurable in ~t, so the same thing is true for the expression 
on the right. This proves the measurability in (8) for fixed r. 

From this follows the measurability of the sets C's, defined by (8) but with 
r restricted to the rational numbers. To complete the proof, it remains to show that 
C's = C~. Let us then take p e C~ and fix r e  [0, s). Choose rational numbers 
rl ,  r 2 , . . ,  with s > r ,  ~ r. Since y,(r+) and tu(r+) are non-decreasing and 
right-continuous, we get yu(r, +) ~ yu(r +) and tu(r, +) $ tu(r +), so by dominated 
convergence, 

0 = #((yu(r.+), 1] x [0, 1] x [0, tu(r .+)]  x K) 

~#((y , ( r+) ,  1] x [0, 1] x [0, tu(r+)]  x K ) .  

which shows that the relation in (8) remains true for r. Hence p e C s. [] 

4. Moment identities and predictable transformations 

Our plan in this section is first to prove in Theorem 4.1 the basic moment identity 
(1.8), from which the predictable reduction of a marked stopping time to U(0, 1) 
will be deduced in Theorem 4.3. The latter result yields in particular some simple 
but extremely useful tail and moment estimates for ( and r/. The concluding 
Theorem 4.5 is a multivariate extension of Theorem 4.3. 

All random objects in this section are defined on a fixed probability space 
equipped with a right-continuous and complete filtration ~- = (4) .  Until further 
notice, we fix a Polish space K with associated Borel a-field ~(K),  and consider 
a marked stopping time (~, ~) in (0, o0) x K with compensator r 1 and discounted 
compensator (. Recall how ( was constructed from q in (1.5) by means of the 
Dol6ans exponential process Z of (1.4), which in turn arose as the unique solution 
to the differential equation in (1.3). As before, we shall use 0 and ~-to denote the 
projections of r /and ( onto (0, ~).  Recall also how a measure valued process (r/t) 
was associated with the random measure r/via the formula rb(A ) = 11((0, t] • A), 
and similarly for (f/t), ((,) and (~). 
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Theorem 4.1. Let  V be a predictable and a.s. (-integrable process on R+ x K,  such 
that S~ Vd( = 0 a.s. on {Z~ = 0}, and let U be given by (1.7) (with the convention 
0/0 = 0). Then the process 

t +  

M r =  U,,KI{z =< t} -- ~ U d t / ,  t=>O,  (1) 
0 

exists and satisfies Mo~ = V,,K. I f  we further assume that E] U,,~[ < oo, then M 
becomes a uniformly integrable martingale, and we get E V,,~ = O. In that case 
also F'M*P ~ ElV,,~lP for  any p > 1. 

Here the main  assert ion is the fact that  E lUg, ~ I < ~z implies I: V~, ~ = 0, but  the 
remaining s ta tements  are useful to obta in  mult ivar ia te  extensions of this result. In 
fact, assume that  (Zl, x l ) , .  �9 �9 (Zd, Xd) are marked  s topping times with compen-  
sators  ~/1 . . . .  , ~/d, such that  the mart ingales  1 {zj < t) - 6j(t) are or thogonal ,  and 
let V 1 . . . . .  V n be predictable processes on ~+ x K with associated processes 
U~ . . . . .  U n as defined in (1.7), such that  

EIU~(zj, ~:j)l < ~ and EIVj(zj, xj)l pj < ~ ,  j = 1 . . . . .  d ,  (2) 

for some constants  p~ . . . . .  Pd > 1 satisfying p i - ~ + . . .  + p ~ - l <  1. Then  the 
corresponding mart ingales  M1 . . . . .  M d f rom (1) are again o r thogona l  and 
bounded  in Lp,, . . . .  Lp,, so even their p roduc t  is a uniformly integrable mar t in-  
gale, and we get 

d 

E 1-[ V~ (z j, tc~) = O.  (3) 
j = l  

Note  that  the or thogonal i ty  condi t ion is automat ica l ly  fulfilled when 
rl  < �9 �9 < rd" A special case of the ment ioned result is contained in Theorem 4.1 
of Kal lenberg  (1989), where the rj are independent  and U(0, 1), while ~- is 
essentially the generated filtration. 

For  the p roof  of  Theo rem 4.1, and in fact a l ready for the definitions of ( and U, 
we need some basic propert ies  of Z. 

L e m m a  4.2. The process Z is a.s. non-increasing with 

Z > O  and Z ,_  > 0  a.s.,  (4) 

while the reciprocal process Y = 1/Z satisfies 

dYt = Y~dflt as long as Z , > 0 .  (5) 

Proof. F r o m  (1.4) it is clear that  the s ta tements  in (4) are equivalent  to 

A f / < I  and r < i n f { t > 0 ; A f / t =  1} a .s . ,  (6) 

and (6) follows easily from the definition of r / by  means  of the predictable section 
theorem (cf. Jacod (1979), p. 76, or Liptser  and Shiryayev (1978), p. 240). 

Next  we may  integrate by parts  to see that, as long as Z t > 0, 

0 = d (Z  t Yt) = Z t -  dYt + YtdZ t . 

Combin ing  this with (1.3) yields 

dYt = -- Y, Yt -dZ,  = Yt Yt -Zt_  dr/, = Ytdf/,, 

as asserted in (5). [] 
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Proof  o f  Theorem 4.1. From Lemma 4.2 and (1.5) it is clear that r /<  (/Z~_ a.s., 
which shows that Vis also a.s. r/-integrable. F rom (1.7) and the hypothesis on V, it 
is further seen that [U - V] < (Z~=)- 1 f~ [VI d(  < ~ ,  so even U is a.s. r/-integrable. 
Letting t be such that Z t > 0 and writing Y = 1/Z, we get by (1.7) (applied twice), 
Lemma 4.2, and Fubini 's theorem, 

t +  

~ ( U -  V)dr /=  
0 

t +  r +  t +  r +  

YrdOr ~ f Vd~ = I dY,  I I Vd~ 
0 0 0 0 

t +  t +  

I I V,,,(Yt - r , -  )ds = U,,x - V,,= - I I Vdr/, 
0 0 

which shows that 
t +  

Vt.x = Ut, x -  ~ ~ U d q  , (7) 
0 

Adding this to (1.7) and letting t T 3, we get in particular 

15 Udr/= r,_ I I Vd . (8) 
0 0 

Let us next assume that Z~ = 0. By (I.7) and the hypothesis on V, we get 

r+ 

~ Vd~ = 0 = U~, ~ - V~. x ,  (9) 
0 

and from (8) and (9), 

I ~ V d r / =  f I U d r / +  f ~ V d r /  
0 0 [~] 

T-- r +  

= I Ira;+ Vdr/= I IVd; =o= 
0 [~1 0 

This shows that (7) holds for t = 3, even ifZ~ -- 0. From (1.7) it is then clear that (7) 

is generally true. 
Putting t = z and x = ~c in (7), we obtain 

I:+ 

0 

Noting that U is predictable and assuming E[ U,.~l < oo, we get E ~  [UI d r / <  co, so 
in this case M is a uniformly integrable martingale, and hence 

EV,,,, = EMoo = E M o  = 0 .  

By Doob 's  inequality, we further get for any p > 1, 

E l M * f <  E I M ~ I  p = El V~,,,I p . ~ 

We now have the tools to prove the first main result of this section. 

Theorem 4.3. Let T be a predictable mappin9 of  ~ + x K into some probability space 
(S, 5 ~, m), such that ( T -  1 < m. Then P{T~, ~ e- } = m. 

Proof  Fix B ~ 5 ~, and define 

V~, ~ = I B ( T t  ' ~ )  - -  roB, t > O, x ~ K , 
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and note that V is bounded and hence ~-integrable. By the hypothesis on T, we get 

~+ t +  t +  

~ V d ~ =  ~ ~ l B ( T ) d r  ~ d ( < = r  (10) 
0 0 0 

and repeating the argument  with B replaced by B c (which only changes the sign 
of V), we get instead 

t +  

- ~ V d ~ < = Z t m B  c. ( l l )  
0 

If Z t = 0, it follows from (10) and (l l) that the integral on the left if zero, so 
V satisfies the condit ions in Proposi t ion 4.1. Defining U by (1.7), we obtain from 
(10) and (t l) ,  

- -  1 < 1B(Tt , ~ ) - 1  = V t , ~ - m B  ~< U,,x < V t , ~ + m B =  18(T,,~ ) <  1, 

so [UI < 1. Hence Proposi t ion 4.1 yields 

P{T~,~zB} = EV~,~ + mB -- roB, 

and since B was arbitrary,  this shows that T~, ~ has distribution m. [] 

The last theorem can be used to obtain bounds for the distributions of Z, ,  Z,_ 
and q~. Such estimates could also be obtained from the integral representation (1.2). 

Corollary 4.4. 
(a) P{Zr < s } _ < s _ < P { Z r  suE0,1] ,  
(b) 1 - t < P { q , > t } < e  ~-', t>O.  
(c) Elfh] p is bounded by some absolute constant cp for every p > O. 

Proof Let 7 be U(0, 1) and independent  of ~ ,  and enlarge the filtration so as to 
make the process 1 {z < t, 7 E.} adapted. Then (v, 7) becomes a marked stopping 
time in R+ x [0, 1] with compensator  f / x  2. Define a predictable mapping T f r o m  
~+ x [0, 1] to [0, 1] by 

T~,~= 1 - Zt_ - xAZt,  t ~ + ,  x~[-0, 1] , (12) 

and note that (~- x ) 0 T -  1 = ;~ on [0, 1 - Z~]. Hence Theorem 4.3 shows that  T~. ~ is 
U(0, 1), and part  (a) follows from the fact that, by (12), 

Z ~ <  1 - T=,~ < Z ~ _ .  (13)  

Next  we get from (1.4) for any t > 0, 

- l o g Z ,  = q~ - ~ l o g ( 1  - Aqs) > Oct + Y, AO, --- O, >= 1 - Z , ,  
s<=t s<=t 

so using (13) and the fact that Aq < 1, we obtain 

T,,~ __< q~ __< qt-  + 1 __< 1 - logZ~_ __< 1 - log(1 - T~,~). 

We thus get (b) by writing 

1 - t < P{q~ > t} < P{1 - log(1 - T~,~) > t} = P{1 -- T~,~ < e 1- '} < e 1-t  

Finally, we may obtain (c) from (b) by writing 

O O 0 

[] 
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We remark that part (c) of t he  last corollary may also be obtained by the 
following direct argument, suggested by a referee. First note that it is equivalent to 
prove the assertion with M~ in place of 0f, where M denotes the martingale ~--  O. 
Then write 

EM~ = E[M, M],  < 1 + E ~ ( A F / , )  2 =< 1 + Eq= = 2,  (14) 

and proceed by induction over p = 2", n ~ ~, using the Burkholder-Davis-Oundy 
inequality to obtain 

EM~ "+' ~ EEM, M] 2" =< E(I + ~(AO,)2) 2" < E(I + f/~)2- 

= E(2 - M r )  2" ~ 22"-1(22" q- EM~"). 

Let us illustrate the usefulness of the last corollary by mentioning a few 
applications. First we note how the result can be used to prove a law of the iterated 
logarithm for simple point processes. Define ~b(s) = (2s log logs)  ~/2 for s > e, and 
write a, <~ b, for positive a t and b t to mean that l imsup(at /b~) < 1. Let ~ be a simple 
point process on (0, c~), and denote its compensator by r/. Then, with probabi l i ty  
one, i t  -~ oo i f f  tlt ~ oo as t ~ 0% and in that  case 

lit -- tit[ ~cc~(~t)  "~ c(o(rlt), t ~ oo , (15) 

where c is an absolute constant.  (One may e.g. take c = 2.) This follows by a rather 
straightforward application of the Skorohod embedding theorem and the law of 
large numbers of martingales, as stated in Hall and Heyde (1980), pp. 269 and 36, 
respectively, where the required uniform conditional moment estimates may be 
obtained from Corollary 4.4 (or from (14) for the second moment to get c = 2). 

Though results like (15) might be available in the more general context of 
martingales with bounded jumps, the present version of the statement seems to be 
less known. Note in particular that the equivalence of ~ --* oo and r/, ~ 00 general- 
izes L6vy's conditional version of the Borel-Cantelli lemma. Note also that (15) 
implies ~, ~ r/t, which is known in discrete time (cf. Neveu (1972), p. 152). Finally, 
(15) holds trivially with c = 1 when ~ is quasi-leftcontinuous, since in that case 

o r/- ~ is a unit rate Poisson process. 
As another application of Corollary 4.4, we note that our integrability condi- 

tions EIU~,~I < oo and EJV~,,,I p < co in Theorem 4.1 may be replaced by similar 
conditions involving ~. More specifically, let V be any predictable mapping from 
~+ x K to R+. Then EV~,~ < oo, provided that  E ~  VPdC < oo f o r  some p > 2. The 
observation is particularly useful when the filtration is the natural one, since ( is 
then bounded by the distribution # of (z, x), and the condition becomes 
~ E VPd# < oo. The resulting version of Theorem 4.1 should be compared with 
Theorem 4.1 in Kallenberg (1989). 

To prove our claim, note that, by H61der's inequality with p-  ~ + q-1 = 1, 

EF~,~ < (EZI_-q)~/q(EZ~_ V{,~) ~/p . (16) 

Under the stated condition on V we obtain 

EZ~_ V ~  = E ~  Z t -  V ~ d t h ,  x = E ~  VVd~ < ~ .  (17) 

By Corollary 4.4(a), it is further seen that 
1 1 

EZ~_ -q < ~ s 1-~ds = - -  < oo . (18) 
0 2 - q  

Thus the right-hand side of (16) is finite, and the assertion follows. 
As a final application of Corollary 4.4, we discuss the proof of the existence of 
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a compensator associated with an arbitrary stopping time (and then, by iteration, 
of a general point process). Here the easiest approach, due to K.M. Rao, involves as 
the only technical difficulty a proof that a certain family of random sums is 
uniformly integrable (cf. Ikeda and Watanabe (1981), p. 37; or Karatzas and Shreve 
(1988), p. 25). Now those sums turn out to be of the form t/,(z,) for certain 
approximating stopping times % with associated compensators r/,, so their uniform 
integrability is immediate from Corollary 4.4. Realizing this makes Rao's already 
simple proof even more transparent. Note that no circular reasoning is involved, 
since the discrete version of our corollary is elementary and doesn't require the 
general Doob Meyer decomposition. 

We conclude this section with a multivariate version of Theorem 4.3. For 
motivation, note that if the marked stopping times (z j, ~0) are such that their 
associated martingales in Theorem 4.1 are (strongly) orthogonal, and if Tx, T 2 , . . .  
are predictable mappings into [0, 1] satisfying ~j T f  ~ < 2 a.s., where ~ denotes the 
discounted compensator of (z j, K~), then the random variables Tj(z~, ~cj) are inde- 
pendent and U(0, 1). Without orthogonality the statement fails, but we show how it 
can be saved by a suitable modification of the compensators, as long as the r~ 
remain a.s. distinct. 

Theorem 4.5. Let  (z 1 , ~cl) . . . . .  (za, ~:a) be marked stopping times in (0, oo) x K with 
compensators q l , . . . ,  qd, and assume that z~ . . . .  , z d are a.s. distinct. Put  
Flk = ilk(" X K)  for each k, and define the random processes and measures 

k - 1  k - I  

PR( t ) :  H l { r j 4  =t}, 
j = l  

q~,(dtdx) = pk(t) ~/k(dtdx), 

z ' d t )  = 

~(t) = 1 -  ~ ~ j ( t ) ,  
j = t  

q;,(dt) = t/~,(dt x K ) ,  

exp( - q~,~(t)) H (1 - Aq~(s)), 
s<=t 

g'k(t-- )q'k(dt dx) , 

(19) 

(i,(dtdx) = 

(with the convention 0/0 = 0 in (19)). Further assume that T 1 . . . .  , T a are predictable 
mappings from • + x K to [0, 1], such that (~ T k t  <= 2 a.s. for  each k. Then the 
random variables Tk(~k, ~Ck) are independent and U (O, 1). 

Before proceeding to the proof, we note that ql . . . .  , t/~ are a.s. well-defined, 
since Dk(t) = 0 implies Pk(t) = 0 for all k and t, outside a fixed P-nullset. In fact, 
each ~k = ~ ,  + - - - +  8~, is a simple point process with compensator 
Ck = fh + " " �9 + flk- ~, and the relation ~k(t) = 0 is equivalent to (k {t} = 1, which 
implies ~k{t} = 1. Note also that the processes Z~, are well-defined and non- 
increasing, since Aq'k <= 1. 

Proof  Fix Borel sets B~ . . . . .  B d c [0, 1], and define for t > O, x e K ,  and 
k = l  . . . . .  d, 

V k ( t  , X )  = 1Bko T k ( t  , X )  - -  ) ~ B k ,  

1 t+ 

Uk(t, x) = Vk(t, X) + ~k(t) ~ ~ VkO('~' (20) 
0 

t+ 

Mk(t) = Uk(rk' ~CR)I {rk < t} - j" ~ Ukd~fk. (21) 
0 



184 O. Kallenberg 

As in the p roof  of  Theorem 4.3, we note that  IUkl < 1 for each k, and that  
the integral in (20) equals 0 when Z'k(t)= 0. It  follows as before that  
Vk(Zk, ~Ck) = Mk(Oe ). 

We need to show that  the processes M k are uniformly integrabte martingales.  
To  see this, we note that  the r andom set {t > 0; A (r71 + . . .  + f/d)t > 0} is predict- 
able, and hence is covered by the graphs  of some predictable s topping times 
a l , a  2 . . . . .  where the latter may  be taken to be finite and distinct. Write 
D = C)[aj ] ,  and note that  t/~ = t/k on D c. Fur thermore ,  each U k coincides on D C 
with a predictable process 

U'k(t,X)= Vk(t,x) + (U * -  Vk)(t--), t > O, x s K  . 

Thus  the processes 

t+ [+ 

M~(t) = f 1-odMk = U~(rk'~Ck)I{Zk~[O't]\D}- I I 1,oUidr/k, t_->0,  
0 0 

are uniformly integrable martingales.  
For  fixed k~ {1, . . . , d} and a finite predictable s topping time a, we next define 

f i t  a -  = o ~ a -  V a { ~  1 . . . . .  ~ k - 1 } ,  where ~j --=- l{zi = a, ~cj~ .}, and show that  

E[AMk(a)lff'~_ ] = 0 a.s. (22) 
Let us then write 

AMk(a) = ~ Uk(a, ")de k - ~ Uk(a, ")dr/~,({a} x - ) .  (23) 

F r o m  Corol lary  1.45 in Jacod (1979) it is clear that  E[r ._  ] = t/k({a } x �9 ) a.s., 
so by our  L e m m a  3.5, we get 

1 a + z t . . . . .  zk-1; ~ ,~j{a} < 1 
j = l  = x - ) .  

1 -  Z Oj{a} 
j = l  

(24) 

Thus (22) will follow from (23) by L e m m a  3.7, if we can only show that  the process 
Uk(a, ") on K is . ~ _  x ~ (K) -measurab le .  

To  see this, we conclude from L e m m a  3.6 that  the process Va(rr , )  is 
f f~_  x N'(K)-measurable.  Moreover ,  the processes Z;, and ~lEo.~Vkd( ~ are 
adapted  and of bounded  variation,  so their left-continuous versions are predict- 
able, and hence their left-hand limits at a are f f~_-measurable .  It  remains to show 
that  both processes have ~,~;_-measurable j umps  at a. But this follows easily f rom 
the ment ioned measurabi l i ty  of Va(a,'), plus the fact that  r/~({a} x .) is ~ _ -  
measurable  by (24). This completes  the proof  of (22). 

By the definition of D, we may  write 

1DdM k = AMk(aj)l {a j <= t}, t >= O, (25) 
0 j = 1  

and using Corol lary  1.45 in Jacod (1979), it is seen f rom (22) that  each term on the 
right is a martingale.  Since ]Ukl <= 1, we further obtain f rom (21) and (24), 

E ~ IAM~(ai)I < E ~ (1 {z k = oj} + g/~{cri}) = 2 ~ P{z k = aj} < 2 ,  (26) 
j = l  j = l  j = l  
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so the series in (25) converges in Lt for each t, and the sum is uniformly integrable 
in t. Thus the integral on the left is a uniformly integrable martingale. Since the 
same thing was shown to be true for the integral M~ over D ~, even the sum Mk must 
be a uniformly integrable martingale. Since [Mk(O0)[ = [Vk("Ck, /~k)[ ~ 1, it follows in 
particular that M~' < 1 a.s. 

We proceed to show that the product Mj  = 1-IjMj is a martingale for every 
non-empty index set J ~ { 1 , . . . ,  d}. Through repeated integration by parts (cf. 
Lemma 5.6 in Kallenberg (1989)), we get 

Mj(t) = Z ~ MJ\lJ)(s-)dMj(s) + ~. Z MJ\t(s-)l--[ AMi(s), t > O, 
j e J  0 I s < t  i~l  

where the outer summation in the last term extends over all subsets I c J of size 
> 2. Here the integrals in the first sum on the right are clearly martingales. Since 
the -cj are a.s. distinct, the inner sum in the second term equals 

1{~ ~ t}Mj\t(aj-) l- [ AMi(a~) , (27) 
j i~l 

and to see that each term in (27) is a martingale, it suffices as before to show that 

EIMs\~(a-)[-[ AMi(a) ~"- ] = O r _  ~ a.s., 

for every finite predictable stopping time a. Here the first factor on the left is 
ff,_-measurable and may be ignored. Letting k be the largest index in I and 
defining o~;_ as before, it is then enough to show that 

E [ ~l-fl AMi(a) ~ _  1 = 0 a.s. 

But this follows from (22), since AMi(e ) is clearly ~-;_-measurable for every i < k. 
To obtain the martingale property of M j, it remains to notice that, by (26) and the 
fact that JMkJ < 1 for each k, 

j = l  i~I j = l i = l  

The martingale property of M s yields 

E iV[ ( l~ io  Tj(z~, ~cj) - 2Bj)  = E l~ Vj(zj, ~cj) = EMj(oo)  = EMj(0)  = 0 ,  
J~J j ~ J  

and it follows by induction over [Jl that 

P 0 {rj%, = I-[ ;.Bj, 
j e J  j 6 J  

J c { t  . . . . .  d} .  

In particular, the relation for J = { 1  . . . . .  d} expresses the fact that 
Tl(zl, ~cl) . . . . .  Td(rd, ~Cd) are independent and U(O, I). [] 
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5. Random time change 

The main  result of this section is our  extension in Theorem 5.1 of  the classical t ime 
change reduction of quasi- leftcontinuous simple point  processes to homogeneous  
Poisson. For  mot ivat ion,  let ~ = ~ cS~j be an a.s. unbounded  simple point  process 
adapted  to some filtration ,,~, and let r /denote  the compensa to r  of  ~. Assuming that  
0 < 271 < "~'2 • �9 �9 " , we may  apply the previous time change results to z~, z 2 . . . . .  
to obta in  a sequence of independent  exponential ly distr ibuted r a n d o m  variables, 
which may  then be combined  to form a Poisson process. Unless r is quasi- 
leftcontinuous, we need in addi t ion a sequence of independent  U(0, 1) r a n d o m  
variables xx, x2 . . . .  independent  of ~-. The  resulting t ime change process T then 
becomes 

T, = ti~ - ~ log(1 - Ati~) - ~ log(1 - xjAths), t > O. (t) 
s < t , r  j < ~[0, t] 

Note  that  T t reduces to i/t when the latter process is continuous.  
A refined version of the classical result states that  the image process ~is Poisson 

with respect to a suitably time changed filtration if', in the sense that  ~ becomes 
~ - a d a p t e d  with compensa to r  2 (cf. Theorem 10.33 in Jacod  (1979)). This is the 
version of the classical result which we shall extend below to arbi t rary  point  
processes. Let us then define the left- and r ightcont inuous inverses of T by 

L s = inf{t > 0; T, > s}, R S = inf{t > 0; T t > s}, s > 0 .  (2) 

and recall that  the classical choice is to take ~ s  = ~-R~ for each s. In the general 
case, we introduce for each s > 0 the extended filtration 

, ~ } s )  = " ~ t  V o { ~ s ( ~ T - 1 ) } ,  t => 0 ,  (3) 

where the opera to r  n~ denotes restriction to [0, s], and define 

if, = ~ { j _ ,  ~ ,  = fq,+, s > 0 .  (4) 

Theorem 5.1. Let  ~ be an a.s. unbounded ~ -adap ted  simple point process on (0, oo) 
with compensator q, let x~, x2 . . . .  be i.i.d. U(0, 1) and independent o f  ~ ,  and define 

T, L, R, ,,~s) and ~ by (1)-(4). Then ~ T -  1 is ff" -Poisson, and (to motivate (4)) L~ is an 
~(~)-predictable stopping time for  each s. In the quasi-leftcontinuous case, T t and ~Y 
reduce to the classical choices tl t and a~ ~ R ~ .  

A lemma will be needed for the proof. 

Lemma 5.2. Let  (z, K) be a marked stopping time in (0, 0o) • (0, 1) with discounted 
compensator o f  the form ~ = ( • 2, and define Z t = 1 - ~. Further consider a stop- 
ping time 0 < z and an .~o-measurable random variable ~ > O, and write 

Yt = - logZ , ,  T~.~ = - log(Z t_ + xAZt) ,  t > O, x~(O, 1), 

L ~ = i n f { t > 0 ; ~ +  Yt > s } + ~  s > 0 .  

Then each L~ is a predictable stopping time, and the random variable a = ~ + T~, 
satisfies 

p[cr > s + hi ~ s] e -n {c~ < s}, s, h > 0 (5) ._~ L s _  ~ O" ~> ~ a . s .  ogl. ~ . 
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Proof. Write # for the exponential distribution on ~ + with density e -~, and define 
for fixed s > 0 and B ~ ( ~ + ) ,  

Vt, x = (ln(Tt, x - Y L , - ) - - # B ) I { L ~ < t ^ T } ,  t > O, x~(O, 1). 

Since ~T-1 < #, we get for t ^ z > L s, 

t +  t +  

~ Vd( = ~ ~(1B(T-- YG_) -- #B)d( __< ( T - I ( B  + Y L , - ) -  (ZL,-  -- Z , )#B 
0 L s -  

< exp( - YL,- )#B - (ZLs- -- Z~)~tB = Z , # B .  

Hence the process U in (1.8) satisfies U < 1 - #B + #B = 1. The same argument 
with B replaced by B eyields - U _ < _ I - p B  c + # B  c =  1, so in factlUl__< 1. Note 
also that the integral in (1.8) equals zero when Z t = 0, as required. 

Since a > s implies a + YLs- <= S, we may choose B = (s + h - ct - YL~-, oo), 
so that 

V t , ~ = ( l { T t , ~ > s + h } - e x p ( 7 +  Y L s - - S - h ) ) l { L  s = < t ^ z } ,  t > 0 ,  x e ( 0 , 1 ) .  
(6) 

We shall prove below that Ls is a predictable stopping time and that the process 
Vis predictable on N+ x (0, 1). Theorem 4.1 then shows that the process M in (4.1) 
is a uniformly integrable martingale with Moo = V~,~. Choosing an announcing 
sequence of stopping times z, ~ L~ and noting that M, = 0 for t < L~, we obtain by 
optional sampling and martingale convergence, 

E[V~,~I~ ] a.s. : : Ir ~Ls- o EM~. E[V~, I ~.]--, 
Hence the limiting variable vanishes a.s., and we get 

P[a > s + hl ~ ~ h) a.s. o n { L ~ < r } ,  h > O .  ~ L ~ - ] = e x p ( e +  Y L - - s -  = = 

Thus (5) follows by Lemma 3.5 plus the fact that ~ < s < a implies L~ = ~. 
To see that each Ls is a predictable stopping time, we note that the process 

Y ( = ( Y t + c O l { O < t , c ~ < s } ,  t>=O, 

is predictable, since Y inherits its predictability from Z, while the processes 
1{,9 < t, c~ < s} and ~1 {0 < t, ~ < s} are both adapted and left-continuous. From 
the fact that Yt = 0 for t < ,9, we get 

L ~ = i n f { t > O ;  Y~>s} s > 0  

so Ls is the left endpoint of the predictable interval I = {t > O; 1'~ > s}. It remains 
to notice that I is closed, since Y' is right-continuous on (,9, oo), while L~ > ~9 
because Y' 9+ ~ O L  

To see that the process V in (6) is predictable, we note first that T has this 
property. By the predictability of the stopping time L~, it remains to show that the 
event {L~ < v} and the random variables ~ and YL.- are ffL _-measurable. But this 
follows from the predictability of Y and L~, the stopping time properties of ~9 and r, 
and the fact that 0 < L~. [] 

By a similar argument, or by applying Lemma 5.2 with c~ = 0 and transforming 
the time scale, we obtain the following result which will be needed later. 
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Lemma 5.3. 

Tt,:, = 1 - Z t -  - xAZt ,  

L s = inf{t => 0;1 - Z, => s}, 

and put a = T~, ~. Then 

2B 
P [ a e B r ~ L , - ,  a > s] - a.s., 

1 - s  

Let (z, to), ~ and Z be such as in Lemma 5.2, but define instead 

t > 0, x~ (0 ,  1) ,  

s~[0 ,  1), 

B ~ ( ( s ,  1]), s e t 0 ,  1). 

j ' log(1 - dq~) = - ~ dq] + ~ log(1 - At/s ) . 
A A seA 

Writing v = ~ T - l [ 0 ,  s], it is easily verified that the process T ' =  T (~) is yts)_ 
predictable. F rom the fact that  I T - 1  is unit rate Poisson, as explained at the 
beginning of this section, it is further clear that  a~ < s < av+l a.s., so T' = T o n  the 
interval (%, ~ + 1), while T'~.+, => T~+~ . Writing L', = inf{t => 0; T;  > s}, it follows 
easily that L; -- L~ > z~ a.s., and since T'  is r ight-continuous on (z~, m), L s is a.s. the 
left endpoint  of an ~tS)-predictable closed interval. Hence L~ is an ~t~)-predictable 
stopping time. 

To prove the last assertion, assume that ~ is quasi-leftcontinuous, i.e. that  q is 
a.s. continuous.  Then R s < L~+h for all s > 0 and h > 0, so 

~-~+~ = ~ + h ~  = ~+~ 
~ R s  ~ Ls+h-  

and therefore ~R~ c ~ +  = ~ .  To get the reverse relation, we note that 

~s(~T -~) = (~R~)T-I e ~ ,  

and further that for all t _>_ O, 

Ac~{ t  < L ~ } e ~  ~ eo~t ~'L~- ~ ~,g~ , A . 
Thus 

A ~ { t  < L s } ~ f f g ~ ,  A ~  s), 
which shows that 

L s -  ~ ~ R ~  - 

Hence we get 

as desired. 
To prove that ~T -~ is ~ ' -Po i s son  amounts  to showing that the process 

M s = (~T-~)s - s is an if--martingale. By right-continuity of M and reverse mar- 
tingale convergence, it is enough to show that M is a C~-martingale on (0, ~ ) ,  and 
since M is N-adapted, we may clearly replace f# by any larger filtration f#'. In 
particular, we may replace ~ by ~ s ' =  ~,~ v a{zrs~ }, s > 0, where E = ~ 6(~j,~,~, 
and define aj, accordingly as in (3) and (4). Note  that ff is then ~- ' -adapted  with 
compensa tor  r/ x 2. Dropping  the primes, we may assume instead that ~ is adapted 
to f f  with compensa tor  q x 2, and prove that M is a fr 

where 

Proof  o f  Theorem 5.1. Put a o = z o = 0 and a,  = To r, ,  n ~ N, and define for each 
n s Z + the process 

t A ~ n + l +  

T [ " ) = a , l { t > z , } -  f l o g ( 1 - d q s ) ,  t > 0 ,  (7) 
t A Tn+ 
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We shall prove  below that  

P[av+l>S+hlfg~]=e -h a.s., s , h>O,  (8) 

where a ,  = To ~, and v = ~ T -  1 [0, s] as before. Consider ing any finite union U of 
disjoint intervals l j  = (sj, sj + hj], j = 1 . . . . .  n, to the right of s, we get f rom (8) by 
successive condit ioning on ~s . . . . . .  ffs,, 

a s  

j = l  j = l  

Fixing s > 0, this will then hold s imultaneously outside a fixed nullset for all 
U determined by rat ional  endpoints,  and since ~T -1 is a.s. simple, we may  
conclude by Theorem 3.3 in Kal lenberg  (1985) that  I T - 1  is condit ionally unit rate 
Poisson on (s, ~ ) ,  given fr This yields in par t icular  the desired mart ingale  
p roper ty  of M. 

To  prove  (8), we note  that  v is lOs-measurable, and further that  a.s. v = n iff 
a ,  < s < a ,+ 1. Thus  it suffices to show for any fixed n E 7/+ and s, h > 0 that  

P[a .+l>s+hL~sJ=e  -h a.s. on { a , < s < a , + l } .  (9) 

Defining T (") as in (7) and put t ing 

L; = inf{t > 0; Tt (n) __> S} + ~ "  1 {a. > s}, (10) 

we note as before that  L~ = L~ on {a, < s < a .+ l} .  Since even L" is an ~(~)- 
predictable s topping time, it is hence equivalent  to prove  (9) with ff~ replaced by 
~(S)L;_ ' or rather  to take (10) as our  new definition of L~. Writ ing e = a , ,  a = a , + l ,  
r = r ,  + 1 and ~: = x, + 1, we m a y  then conclude f rom L e m m a  5.2 that  

P [ a > s + h l ~ L _ , a > s ] = e  -h a.s. on { a < s } .  

In the same notat ion,  (9) becomes 

P [ a > s + h l f q s J = e  -h a.s. on { a < s < a } ,  

so we need only show that  the restriction of ~q~ to {a < s < a} is contained in 
~L~-  C~ {a > S}. (The restrictions of the two a-fields are in fact equal.) 

To  see this, recall that  f#~ is generated by the sets A c~ {t < L~} with A ~ ~}~) and 
t > 0. Hence  its restriction to {~ < s < a} is generated by the sets 

A n { t < L s } n { a < s < a } ,  A6~, ,  t>=O, (11) 
and 

{ u s ( ~ T - a ) e ' } n { t < L , } n { a < s < a } ,  t > O ,  (12) 

Here  the former  class generates the a-field 

so it is enough to consider the class in (12). C o m p a r i n g  with (11), it is clear that  we 
may  omit  the set {t < L~} in (12), and prove  instead that  

{zc~(r "} c~ {a < s < a } s ~ L , -  ~ {~ < s < a } .  (13) 

But on {~ < s < a}, our  present  L~ from (10) agrees with the original version f rom 
(2), and moreove r  ~ T - a [ s J  = 0, so we get 

rcs(~ T - l )  = gs - (~  T - l )  = (gL~- ~) T - 1  e ~  s -  , 

and (13) follows. 
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The remainder  of this section is devoted to an extension of Lemma 5.3 to the 
context  of marked stopping times, a result needed for the proof  of the integral 
representat ion in Sect. 6. The assertion is easy to believe but surprisingly hard to 
prove, so the reader might skip to the next section on a first reading. 

We return to the nota t ion and conventions of Sects. 1 and 4. Thus (z, x) is 
a marked  stopping time in (0, oo) x K with discounted compensator  (, as given by 
(1.4) and (1.5) in terms of the ordinary compensator  r/, and we have Z t = 1 - ~, 
where ~ = ~([0, t] • K). Moreover ,  L is the left-continuous inverse of 1 - Z, as 
defined in Lemma 5.3. Recall that  rc s denotes restriction to I-0, s] or [0, s] • K, and 
write n for projection onto R+. Given a process T on R+ • [0, 1], we define the 
process T x I on ~+ x K x [0, 1] by (T x I)t,x,r = (Tt,,, x). 

Proposition 5.4. Let (z, K) be a marked stoppin9 time in (0, oo) x K with discounted 
compensator (, define Z and L as before, let ~ be U(O, 1) and independent of  ~ ,  and 
put a = T~. ~, where 

T,,r = I - Zt + y A Z  t, t > O, y e [ 0 , 1 ] .  

Let if be the right-continuous filtration generated by the a-fields ~-L,- and the 
process 1 {a < s, x ~" }. Then the pair (a, to) has discounted if-compensator 

~' = ~( ( (  x 2)(T x I)-1). (14) 

To appreciate this result, note that the discounted compensator  of a equals 

~ : =  ff'zr -1 = ~,(((  x 2)T -1) = ~ , 2 ,  

as predicted by Lemma 5.3. Thus the discounted (but not  the ordinary) compen-  
sator is t ransformed by the same time change T as the stopping time itself. 
Proposi t ion 5.4 merely states that this remains true in the presence of marks. 

We shall base our  proof  of Proposi t ion 5.4 on two rather  technical lemmas. 

Lemma 5.5. Let z, K, (, Z and L be as before, and put a = T~ where T = 1 - Z. 
Denote by if the right-continuous filtration on [0, 1] generated by the a-fields ~Ls_.  
Then (a, x) is a marked stoppin9 time in [0, 1] • K with discounted compensator 
(' = ( ( T  x I ) -  1. Writing C' = ~'(" x K) and L~ = inf{r > O; ~ > s}, we further have 
the identities 

( ~ = a ,  ~;~ i=~ '  C {s _-__ 0; ~ * s} = 0 .  

Proof  Let r /denote  the compensator  of ~ = 3~, ~), and put  

~ ' = ~ ( T x  i ) - i = 3 ~ , ~ ) ,  r/ '=r/(Tx i ) - l .  

We shall show that ~' is adapted to if with compensator  r/'. To  this aim, we first 
note that T t < s i f f t  < Ls, so that for any s e [ 0 ,  1], 

r s) x -) = ~([0, Ls) x ' ) ,  r/'([0, s) x ') = r/([0, L~) x ").  (15) 

Here the random measures on the right are measurable with respect to ~ L  - ~ if~, 
since the processes ~([0, t) x .) and r/([0, t) x . )  are ~-pred ic tab le ,  while ]L, is an 
o~--predictable stopping time. By the right-continuity of if, it follows that even 
~'([0, s] x - )  and r/'([0, s ] x . )  are if~-measurable, which means that ~' and ~' are 
adapted to if. 
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Next  we fix 0 < r < s < t, and let Z-l, 1~ 2 . . . .  be a sequence o f . f i  s topping times 
announcing  the ~ - p r e d i c t a b l e  s topping t ime L,. Since r - t/is a uniformly integr- 
able f f  mar t ingale  measure,  while L~ and L t are i f -p red ic tab le  s topping times, we 
get f rom (15) by opt ional  sampling,  

E[(#' - t/')(Es, t) x ' ) l ~ , , ]  = E[(~ - t/)([L~, L,) x . ) l o ~ . ]  = 0 a.s. 

By mart ingale  convergence,  it follows that  

E[(~' - r/')([s, t) X')Io~L _ ] = 0 a .s . ,  

and replacing r by r' e (r, s), we get 

E[(~' - r/')(Es, t) x ' ) 1 ~ ]  = 0 a.s . .  

E(~' + q')([0, 1] x K)  = 2 < 0% we finally obtain  by domina ted  conver-  Since 
gence, 

E[(~' - ~/')((r, s] x .)I(~r] = 0 a.s., 

which means that ~' - q' is a (measure valued) if-martingale. 
To see that r/' is if-predictable, conclude from the definitions of q', T and L that, 

for any s~[O, I] and A~(K), 

A t f s ( A ) = t l { ( t , x ) ~ + x  A; T~ = s} = A q L s ( A ) . I { T o L ~ = s } .  (16) 

I f  AOL, > 0 for some s wi th To L~ = s, there must exist some rat ional  s' 6 (0, s) wi th  
L r  = Ls, so AO' is supported by the countable set 

{ To L~; s ~ Q  ca(O, 1), To L~ > s} . 

F r o m  (16) it is further seen that  

A~l'roL s = AriEs, s t ( 0 ,  1). (16') 

Since the cont inuous  c o m p o n e n t  of r/' is automat ica l ly  g-predictable ,  it thus 
remains to show that, for every fixed s6(0,  1), the process 

AqL s 1 {s < To L~ < r}, r 6 [0, 1] , 

is aJ-predictable. To  see this, we note that  To L~ ~ O~L,- m c~ by the i f -p red ic tab i l -  
ity of  T. The  restriction a s of T ~ L s to the set { To L, > s} is then a f~-predictable 
s topping t ime > s, and it remains to notice that  

At]L~G ~ L ~ -  ~ ~s ~ ('~- " 

To see that  the discounted compensa to r  ~' of(a ,  ~c) equals ~(T x I ) -  1, conclude 
f rom (16) that  each a tom of f/' is the image under  T of a unique a tom of f/. This 
shows in part icular  that  f/'~ = f/~ T-~.  Since moreove r  T - I  [0, s) = [0, L~), we get 

Z j_  := exp( - f/~) l--[ (1 - ACg) = exp( - t~[) 1-[ (1 - Aflt) = Z L -  �9 
r < s  I<L s 

Writing T = T x I, we thus obtain  

~ '(dsdx) = Z;_  rf(dsdx) = Z L -  t/] P-  l (dsdx)  �9 

Since clearly 
L o T , = t ,  t > O  a.e. r~, (17) 
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it follows that  for any A e ~ ( [ 0 ,  1] • K), 

~ ' (A )=~ZL~- t IT - l (d sdx )  = ~ ZL~rO_q(dtdx)= ~ Zt_q(dtdx)  
A T XA T-1A 

= ~ ~(dtdx) = ~ ( ]P - l (d sdx )  = ~ P - I ( A ) ,  
r - t A  A 

as asserted. 
To  prove  the final identities, note first that  

~ : ~ T  - 1 [ O , a q : ( { t _ _ > O ; ~ , _ _ < ~ } = ( , =  ~ = , ; .  

Next  we note that, for any s > 0, 

~ = ( T - ~ [ O , s ] = ( T - I ( ~  [0, u) = ~-('] [0, L , ) =  inf T ( L , - ) .  (18) 

N o w  we have for s in the range of T, 

s =  T(Ls)<: T ( L , - )  < u > s , 

since in this case L,  > L, for u > s. Hence by (18), ~ o 7;, = T~ for all t > 0, and it 
follows that  

~{s  => 0; ~ * s} = ~-{t _>_ 0; ~o  T , .  T,} = ( ( s  = 0 .  

To  p rove  the second identity, we note that  

L; /x  Too = To L~, s > 0 .  (19) 

In fact, we get for r < To L~, 

C[O, r) = (EO, L,) = T ( L , -  ) < r < To L~ < s ,  

so L'~ > r, and as r T To L~ we get L'~ > To L~. Conversely,  assuming that  L~ < oo 
and letting r > To L~, we get L, > L(To Ls) > L~, so 

C'[0, r] > ~-'[0, r) = ~-[0, Lr) >= ~-[0, L~] = ToL~ > s ,  

whence L~ < r, and as r ~ ToL~ we get L'~ < ToL~. It remains to notice that  (19) is 
trivially true when L~ = oo. F r o m  (19) we conclude by the definition of L that  

t L o L~ = < L~, s = > 0 . (20) 

It  is now easy to show that  

T~<L~ iff t < L ~ ,  t > O  a.e. ( .  (21) 

In fact, t < L~ implies T e < ToL~ < L'~ in view of (19). Conversely,  using (18) and 
(20), we get f rom T t < L'~, 

t = L o T t < L  L~ L~, t > 0  a.e. ~-. 

By (21) we obtain  for any A e ~ ( K ) ,  

~[;(A) = ( ' ( [0 ,  L'~] x A) = [{(t, x ) E ~ +  x A; T t < L;} 

= x A ;  t < = 

O. Kallenberg 
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L e m m a  5.6. Let  (z, ~c) be a marked stopping time in (0, oo) x K with discounted 
compensator ~ satisfying ~ =- z and ( { t  > O; ~ 4: t} = O, define Z and L as before, 
and assume that the process (L t is ~-adapted .  Write 

Tt, y = t + yAZt ,  t >= O, y ~ [ 0 , 1 ] ,  

let ? be U(O, 1) and independent of  Y ,  and put ~ = T~, ~. Denote by N the right- 
continuous filtration generated by ~ and by the process 1 {~ <= t, ~c e .  }. Then the pair 
(a, ~) has discounted N-compensator (' := ~za((( x 2)(T x I ) -1) .  

Proof. Since ~(t  _> 0; ~ * t} = 0, we have T~,y = 1 - Z~ + y A Z  t for (--a.e. t>=0 and 
for all y e [ 0 ,  1], so ~ : =  ( ,~ -1  = ira(((- x 2 )T  -1) = ~ 2 .  Moreover ,  

= z + 7/IZ~ = 1 - Z~ + 7AZ~, so L e m m a  5.3 shows that  ~ has discounted W- 
compensa to r  ~o2 = ~, where N' is the r ight-cont inuous filtration generated by the 
a-fields ~L~- and by the process 1 {a < s, ~ e .  }. N o w  s = L~ in the present  case, so 
N~ ~ Ns', and therefore even the discounted N-compensa to r  of a equals (-'. I t  
remains to show that  the N-compensa to r  ~/' of the pair  (~, K) equals 

t ! 
dth. x -- Ytd(t, ~, t __> 0, x ~ K ,  (22) 

for some process Y on IR+, since the discounted N-compensa to r  must  then be of 
the same form but  with another  process Yt', and project ion onto N+ yields Y' = 1 
a.e. ~. 

To  see this, we first consider the restrictions of  z and a to the i f -p red ic tab le  set 
S - -  {t > 0 ;Z t_  = t}. Fo r  t s S  we have Z t = t and A Z  t = 0, so z s S  implies a = z. 
No te  also that  ~ :t: a e S  m a y  occur  only if ? = 1, which is a.s. excluded. Thus 
{zeS} = {aeS}  = {a = z} a.s., so it is enough to show that  the o ~ -  and 
N-compensa to r s  of (z, ~c) agree a.s. on the set S x K. But this is immedia te  f rom 
L e m m a  3.5. 

The remaining par t  of (0, z] may  be decomposed  into disjoint intervals 
Ij ~ (O~j, flj] of length flj - c~j = Z , j  - Zpj = - AZp~. Since the 0~j with Ij  ~ ~ are 
exactly the j u m p  times of the ~ - a d a p t e d  process 1 - Z o L, we m a y  choose the c~j to 
be a.s. distinct s topping times. Writ ing 

fly = ~j + A(Z o L)~j, P J:= ~({fli} x .) = A(~L)~j , j e N , 

it is further seen that  bo th  fli and pj are ~ j - m e a s u r a b l e  for each j. In part icular,  
even the flj are s topping times, and the intervals I j  are ~ -p red ic t ab le .  No te  also 
that  a . s .  {'L" = f l j }  = {Z~I j }  ---- { a ~ I j } ,  since ~-~ = z while ? :# 1 a.s. I t  remains to 
prove  (22) on each inteval Ij. 

Dropp ing  the subscripts, we thus consider a stochastic interval (co fl] with an 
~,~,-measurable ft. Redefining c~ and fl to be oo when c~ = fl, it is seen that  fl becomes 
predictable,  and we may  write 

p : =  PEr = f l ,  ~cel~-~_] = P[ r  =/~,Ke-I~=] a.s. (23) 

Recall that  a.s. {r = fl} = { re (e ,  fl]} = {~re(~, fl]}, and that  o- = fl - 7(fl - c0 on 
{r --/~}. Write ~ for the restriction of a to the set {~ --- fl}. Since the latter is 
N~-measurable,  (if, ~:) is ano ther  marked  N-stopping time, and ff is a.s. restricted to 
(e,/3] w { oo}, so the compensa to r  0 of (~, ~) is a.s. suppor ted  by the predictable set 
(c~, fl] x K. It  remains to show that  f / =  X x p a.s. on (c~, fl] x K for some r a n d o m  
measure  Z on (c~, fl]. 

To  see this, we are going to prove  for any fixed s < t that  the r a n d o m  measure  
P [ 6 < t , ~ c e . l N , ]  is a.s. p ropor t iona l  to p on the set { e < S < f l A a } .  Using 
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Doleans '  L I - a p p r o x i m a t i o n  theorem for cont inuous  compensa to r s  (cf. Rogers and 
Williams (1987), p. 373), which applies since a and hence also ~ is totally inaccess- 
ible, we may  conclude that  F/has the stated form on every interval (~,, fl], where 
c~, = inf{k2-"  > cq k e N}. It only remains to let n --* o% in order  to get the result on 

(~, fl]. 
To prove  the s ta tement  abou t  P[~7 < r, ~ce. IN,], we note that  by L e m m a  3.5, 

P[6 =< t ,~e-f%] P[6 < t, ~ e ' l ~ ]  
= a.s. on {se[~, /~  t, a ) } .  

P[~  _-< tlNA P[~ _-< t l ~ ]  

Expressing the event {~ ___% t} in terms of ~, cr /~ and 7, and condit ioning on 
v a{z, ~,/~}, it is clear f rom the independence of 7 and ~ that  

a.s. on {se [~ , f l  A v)} , 
P[a < t l ~ ]  P[~ = / ~ I ~ ]  

so it suffices to show that  

P [ r = / / , ; c e - l o ~ ] = p  a.s. on { S e [ C q / ~ A r ) } .  (24) 

Let us then choose an announcing sequence of s topping times /~, for /3, put 
/~', = /~ ,  v c~, and define c~, = (s v c 0 A /~',. Then ~ and ~ .  agree on the set 
{s = c~,} = {s~ [~,/~;,]}, so by (23), 

P [ z = B , ~ c e . l ~ ]  = P [ z = / ~ , K e ' l o ~ , . ]  = p  a.s. on {se[c~,/~' ,]}, 

and (24) follows as we let n ~ oo. [] 

Proof of Proposition 5.4. Define "~ = Y~ where Y = 1 - Z, and let ~ denote  the 
r ight-cont inuous filtration generated by the a-fields ~ _ .  Then  L e m m a  5.5 shows 
that  the pair  (f, ~c) is a marked  s topping time in (0, 1] x K with discounted 
compensa to r  Z = ~(Y x 1) -1. Writ ing )~ = X(" x K) and L~ = inf{r > 0; )~ > s}, it 
is further seen that  

~ = ~, )?~, = ~L~, )?{s >= 0; )?, + s} = 0 .  

In particular,  the second of these relations shows that  )~;2, is adap ted  to J~, 
Next  we write Z~ = 1 - )~,, and define 

f , .~ = t + yAZ, ,  t >->_ O, ye[O, 13 . 

Not ing  that  L o Yt = t for t outside the ~ - p r e d i c t a b l e  set 

A= U {t>r;Z,=Z,},  
reQ+ 

we get in view of (16'), 

f'y,,y= Y~+ yAZr,= Yt+ YAZL r,= Yt+ YAZt= Tt,,, teA c, y e [ 0 , 1 ] .  (25) 

Since ~-(A) = 0 and therefore z e A C a.s., it follows that  a = Te, ~ a.s. Note  also that  

N agrees with the r ight-cont inuous filtration generated by ~ and by the process 
l {a  < s, ~ e ' } .  Thus L e m m a  5.6 shows that  the pair  (or, ~c) has discounted 
N-compensa to r  

( '  = n~((Z x )o)(i~ x I)  -1) = ~o((~ x 2)( i~o(r  x I)  x I ) - 1 ) ,  

which by (25) agrees with the expression in (14). [] 
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As we have seen, much of the technical difficulties in this section arose from the 
fact that we insist on working with right-continuous transformations of our 
processes and left-continuous mappings of the associated filtrations. Reversing this 
(as in Jacod (1979), p. 321) gives a smoother theory, which unfortunately doesn't 
seem to apply here, for various reasons. 

6. Integral representations and random distributions 

In this section we retain the framework and conventions of Sects. 1 and 4. Thus we 
consider arbitrary marked stopping times (z, ~c) in (0, ~ )  x K with compensators 
r/and their discounted versions (. Our aim is to establish the previously announced 
integral representation for the distribution of (z, •, r/), as well as the equivalent 
extension of ( to a random probability distribution for (z, ~c). 

As in Sect. 1, we shall write Pu for the distribution of (z, K, q) when (z, ~c) has 
distribution #, while t/ is the compensator of (z, K) with respect to the induced 
filtration. Here /~ is an arbitrary element of J//l((0, m) x K), the space of all 
probability measures on (0, oo) x K. Recall that Jgl((0, ~ )  • K) is endowed with 
the a-field generated by all projections m ~ re(B) for arbitrary B ~ ( ( 0 ,  oo) x K). 
We may now state the main result of the paper. 

Theorem 6.1. Let (z, K) be a marked stopping time in (0, ~ )  • K with compensator tl. 
Then 

P(z, K, t/)- 1 = ~ puv(d# ) (1) 

for  some probability measure v on J/gl((O, ~ )  x K), and v is uniquely determined by 
Ptl-1. Moreover, any measure v as above may occur in (1). 

For  the last statement, we emphasize that the underlying filtered probability 
space ((2, i f ,  P) is not regarded as fixed. To state the equivalent extension theorem 
for discounted compensators, recall that a random probability measure on 
(0, ~ )  x K is a random element in the space rig1((0, ~ )  x K). As before, we write 
~z, for restriction of such measures to the subset (0, t] x K. 

Theorem 6.2. Let (z, ~c) be a marked stopping t i~e in (0, ~ )  x K with discounted 
compensator ~. Then there exists (on a suitable extension o f  the probability space) 
some random probability measure ( on (0, ~ )  x K,  such that a.s. 

= n S  and P[ (z ,~ )~ . l ( ]  = ~- (2) 

Moreover, P~-1is  uniquely determined by P ( -  1, and it agrees with the measure v in 
Theorem 6.1. 

To provide motivation, we shall first establish the equivalence between (1) and 
(2). The existence of the random measure C in Theorem 6.2 will then be established 
via some further lemmas. 

Lemma 6.3. Let (z, to, 0 be a random element in ~ + x K x .//g(~ + x K). Then 

P(z, ~c, ()-1 = ~ # {(t, x) e ~ + x K; (t, x, n,#) ~" } v(d#) (3) 

for  some probability measure v on J g l ( ~ +  • K), iff 

= ~,~ and PE(T, ~)e- I ( ]  = C a.s. (4) 
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for some random probability measure Con R+ x K. In that case v = p~- l, and v is 
uniquely determined by P~-1. 

Proof Assume that (4) holds for some random probabil i ty measure ~ on N+ x K, 
and define v = P~-~. We then obtain (3) by writing 

P{(r, to, 0 e ' }  = P{(q to, ~ ) e -  } = EP[(z, x, rc,~)E'l(-I 

= E~{(t, x) �9 R + x K; (t, x, ~S) e. } (5) 

= f ~,((t, ~) ~ ~ + • K; (t, x, ~,~) ~. } ~(d~) .  

Assume conversely that (3) holds for some probabil i ty measure v on 
/gl(R+ xK). Choose random elements ~' in ~ '~ (~+  • and (~', ~') in A+ x K ,  
such that P~' - 1 = v and P [(z', ~') ~ "1U] = ~' a.s. Proceeding as in (5), it is seen that 
the distribution of the triple (z', x', n,.U) is given by the right-hand side of (3), so 

(z',K',zc~,(') ~ (z,~c, 0.  By Lemma 3.1, we may then choose another  triple 

(~', ' ( ' ) ,  such that (i, ~ , n , ~ ) =  (~, x, () a.s. In particular we get 
(~'~'~)7 ~' 
(~,fl, C) ( , ' , t ( ,~ ' )  and zc ,C=(  a.s., so (4) follows. Note  also that 
p~-~ = p~,-1 = v. 

To prove the uniqueness of v, write Yr = ~,(K) and ~ = ~(K),  and define 

L~ ~ inf{t > 0; Y~ > s}, /~ = inf{t > 0; ~ > s}, s~[0 ,  1). 

Next  choose the random variable a to be U(0, 1) and independent of C, and put 

= s  Then (4) shows that (-~, ()  ~ (~, C), and since clearly "~ = g(~, C) for some 
measurable function 0: [0, 1) x / g . ~ ( ~ +  x K)--* N+, there exists by Lemma 3.t 

some random pair (a', ( ')  =a (o, (), such that (9(a', ~'), (') = (z, () a.s. In particular, 

(a', ( ' )  ~ (~, 0 and g(a', ~) = z a.s. Thus ~ may be chosen such that in addit ion 
= s  a.s. Then a.s. 

P[-a > s , , e ~ l ( ]  = ,~{xeEs, 1]; s  

= ! ( l { s <  s  + ~ - S l { s  1];L,~dt} 
A~ 

and since Y = Y a.s. on [0, 

_ _ < ~ _ } +  ~ - S l { # ~ _  <s=<  ~ } ) ; z e B C I ,  
aY~ 

z], we get 

P[a>__s[T,C]=l{s<= Yr Yr Y~} a.s. (6) 
~Y~ 

Note  a l so tha t  ~ZsC = ~L,~ a.s. on {s _--< Y,}. Using these facts and the independence 
of a and ~, we get for any se[O,  1), 

= P{s __< Y~_, ~ L f e '  } + E[(Y~ - s)IAY,; se(Y~_, Y,], zcL~e'] , 

Since z is a.s. the last point of increase of Y, the right-hand side is uniquely 
determined by P~-  ~, and hence so is the distribution of ~zs for each s e  [0, 1). The 
same thing is then true for v = PC-l ,  since ~ , ~  1" C as s 1" 1. [] 
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Weake r  versions of  Theorem 6.2 are established in the next two lemmas.  

L e m m a  6.4. Let (z, •) be a marked stopping time in (0, oo) x K with discounted 
compensator (. Then there exists some random probability measure C on ~+ x K, 
such that 

=n~C and P [ z 6 " ] C ] = ~ n - 1  a.s. (7) 

Proof Put  Yt = 1 - Z t = ~ = ~t(K) = ~([0, t ] x  K) as before, and define 

L s = inf{t > 0; Yt > s}, Ds = (yoL)~_, sE[0 ,  1), 

Tt, y = Y~- + yA Yt, (T •  y,x), t> O ,  x 6 K ,  yE[O, 1]. 

In t roduce  a U(0, 1) r a n d o m  variable 7 independent  of ~-, and define 

a = T~, y, Z = (( x 2)(T x 1) -1 , (8) 

so that  Z becomes a r a n d o m  measure  on [0, ~] x K with Z~-  1 = 2 on [0, a].  
Let t ing ff denote  the filtration generated by the cr-fields #-Ls- and the process 
1 {~ __< s}, it is further seen f rom L e m m a  5.3 that  tr is U(0, 1) and a pure ~# s topping 
time, in the sense of  Sect. 3. 

Next  we note  that  the processes L~, D~ and Zs are non-decreasing and left- 
continuous,  in case of X with respect to the weak topology  for measures  on K. Note  
also that  L~ and D S are ~Ls - -measu rab le ,  the latter because of the predictabili ty of 

~- _-measurable ,  as may  be seen from the formula  Y. Even Zs is in fact #~L~ 

z~(A)=(L , (A)  Y L , - s  A (L , (A ) I {L ,<  ~} ,  A 6 ~ ( K ) .  

Thus  the processes L, D and ~( are adapted  to ft. By L e m m a  3.2, there exist some 

left-continuous processes s  and ~ independent  of tr, such that  a.s. 

/f,s = L~, /5, = D,, Z~ = Z~, s s [0, s ]  . (9) 

Condi t ioning on the event {~r > s} for arbi t rary  s s [0, 1), it is seen that  the 
processes L~, Ds and ~ are a.s. non-decreasing,  and further that  ~ is a.s. continuous.  
By a s tandard  extension argument ,  we may  then define a r a n d o m  measure  ;~ on 
[0, 1) • K, such that  a.s. )~(A) = ~([0, s] • A) for all s s [ 0 ,  1) and A s ~ ( K ) .  F r o m  
the condit ioning on {a > s}, it is also seen that  ~Tr- ~ = 2 a.s., and in part icular  that  
~([0, 1) • K ) =  1 a.s. 

O u r  next aim is to establish the a.s. relations 

L, = s = z, Z, = Z, , s~Ea, Y,] , (10) 

Ls ^ s > ~, s >  Y,. (11) 

We then note  that  z is a.s. the last point  of increase of  Y, and that  y > 0 a.s. Using 
the definition of L~, we thus obta in  L, = z a.s. on {s ~ [a, Y,] } and L~ = oo a.s. on 
{s > Y~}. To  prove  the remaining relations in (10) and (11), we m a y  first assume 
that  A Y, = 0. Then (10) follows f rom (9), and to prove  (11) we need to show only 
that  Ls > z for s > Y,. N o w  A Y~ = 0 implies L~ = L~ < L~ = z a.s. for all s < a, so if 
s  = T for some s > ~, then ~ must  be the left endpoint  of  an interval where s is 
constant .  But this is a.s. excluded by the independence of a and s since there are 
only countably  m a n y  such points  for a fixed L. 
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Turning to the case when A Y~ > 0, we note that 

Ds+ = i n f { t > s ; L t > L s + } ,  s~[0 ,  a ) .  

F rom (9) it follows by condit ioning on a that also 

D~+ = inf{t > s; / i t  >/2s+ }, s e [ 0 ,  1). 

Compar ing  these relations and using (9), we get 

i n f { t > s ; s  }, s e [ 0 ,  a ) .  

Now A Y~ > 0 implies a.s. that  L s = z for all sufficiently large s < a, so for any 
such s, 

i n f { t > s ; s  > z } = i n f { t > s ; L  t > t } =  Y~ a.s.,  

which shows tha t /2  satisfies (10) and (11) a.s. 
To  prove the second part  of (10) when A Y~ > 0, we note that )/s increases 

linearly on every interval where L is constant.  By condit ioning on a, we get the 
same proper ty  for the processes 2 and/2. Since L is constant  on (Y~_, Y~], and since 
L = L a.s. on the same interval by the relevant parts of (9) and (10), it follows that 
both ;G and 2~ increase linearly on the mentioned interval. Moreover ,  X and )? agree 
a.s. on the a.s. non-empty  subinterval (Y~_, a]. Thus Z = )? a.s. on the entire 
interval. This completes the proof  of (10) and (11). 

We may now define the random probabil i ty measure C on R+ x K by 

( =  ;~(s x I ) - '  , (12) 

where (s x I)s, x = (s x). Not ing  that 

LoT~,y=t ,  ( t , y ) E ~ + x [ 0 , 1 " ]  a.e. ~ - 1  x 2 ,  

and using (8) (12), we get for any r e [0 ,  z] and A e ~ ( K ) ,  

(,(A) = ;~{(s, x)E [0, 1) x A ; s  s < t} 

= Z{(s, x)6 [0, 1) x A;L s <= t} 

= (~ x 2){(u, x, y)e  N+ x A x [0, 11; L o T,,y < t} = (,(A), 

which shows that C = ( a.s. on [0, t ]  x K. Since ( = 0 on (t, oo) x K, this proves 
the first relation in (7). To prove the second one, we write 

P [ z E . I ( ]  = P E s  = EEPI - /2 , ,~ - I ( , / 2 ] l ( ]  = E E 2 s  

= E E O ? x - 1 ) s  = E E ( g - ' I C ]  = ( r~ - ' .  [ ]  

Lemma 6.5. The random measure C of Theorem 6.2 exists when z is totally 
inaccessible. 

Proof Choose ( a s  in Lemma 6.4, and introduce some random elements r '  in (0, oo) 
and K' in K, such that  

P [ ( r ' , ~ ' ) e ' l ( ] = ~  a.s. (13) 

Then (z', ~) =d (z, ~), SO by Lemma 3.1 there exists some triple (z", ~c"U), =d (z; K; () 

with (z", (") = (z, ~) a.s. But then (z, ~c", ()  ~ ({, ~c', (), so (13) remains true for the 
pair (z, ~c"), which shows that we may take z' = z in (13). We shall prove below that 
the pair (z, ~c') has N-compensator  r/, where ff is the r ight-continuous and complete 
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filtration generated by q and (z, ~c'). Then Lemma 3.3 yields (% ~c', q) ~ (z, ~, q), so 

there exists by Lemma 3.1 some triple (~ ~, ~) ~ (z, ~', C) with ({, ~, ~eC) = (z, ~, 0 

a.s. In particular, z~,C = ( a.s. and (L ~, ~') ~ (z, to, C), so (13) remains true for the 
triple (z, •, ~). Thus (2) holds with ( rep laced  by ~. 

To see that the V-compensator of (,, ~') equals ~/, let us fix a t >__ 0 and 
a measurable function f:  (t, oo) x K --, JR+, and write N~' = a{~t~, z > t}. Using (13) 
and Lemmas 3.5 and 4.2, we get a.s. on {z > t}, 

E [~'fdr/IN ~ ] = E[ I~f~, x z~-~ ((dsdx)lN~'] 

= E [ f~f~, xZ[2  1 {s < r} ((dsdx) l N~ ] 

= E[ 2, -~ t ] ( (dsdx) lN~] ~fs ,  x , -  P [ s _ - < z l ( , z >  

= E [ I I L , = 2 7 ~ ( ( d s d x ) l N ; ]  = Z; -1EEIfdgl~q~'] ,  

where 2,  = ~((t, oe) x K). Hence by (13) and Lemma 3.5, 

E l f (z ,  K')IN~'] = E[E[f (z ,  K')I~, z > t] IN ~ = E [ 2 2 ~ I f d ~ l N ; ]  ---- E[~fdq[N~] ,  

a.s. on {z > t}, which shows that the measure valued process 1 {z __< t, ~ e- } - t/, is 
a martingale with respect to the induced filtration. By right-continuity, the martin- 
gale property extends to the filtration N, and it remains to notice that q is adapted 
continuous and hence V-predictable. [] 

Proof  o f  Theorem 6.2. In view of Lemma 6.3, it suffices to prove the existence of 
Let us then put Y = 1 - Z, and note by Lemma 3.4 that the discounted com- 
pensator ( '  of the marked stopping time (z, ~c'):= (z, Y~, z, ~:) equals the image of 

under the mapping (t, x ) ~  (t, Y,, t, x). Assuming the assertion to be true 
for (z, K'), so that there exists some random probability measure (' on 
R+ x [0, 1] x ~+ x K satisfying 

(' = n~(' and P[(z, ~c')~'[('] = (' a.s. ,  

it is clear that the projection of ( '  onto ~+ x K satisfies (2). It is thus enough to 
prove the assertion with ~ replaced by ~:' and K by K ' : =  [0, 1] x ~+ x K. 

Let us then define 

T t , ,=  Y , -  ydYt, t > 0 ,  ye[O,  1] ,  (14) 

let 7 be a U(0, 1) random variable independent of ~ ,  and put a = T~, y. Then 
Proposit ion 5.4 shows that, under a suitable choice of filtration (r the pair (a, #)  
becomes a marked stopping time with discounted compensator  

( ' :=  ~ ( ( (  x ,~)(r x I ) -~ ) ,  (15) 

where (T  x I )t,., y = (T  t. y, x) as before. In  par t icu lar ,  the discounted compensator  
of a equals 

~,~-1 = ~ ( ( ( x  2)T -1)=rc~2 a.s. ,  (16) 

so a is U(0, 1), pure, and totally^inaccessible. Hence there exists by Lemma 6.5 some 
random probability measure ~" on N+ x K'  with 

(' = ~ S '  and P[(a, ~c')~_.]('] = ~' a.s. (17) 
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Projecting this onto  the time scale and noting that  by (16) atso 

('re -1 = z~2 and P [ a e ' 1 2 ]  : 2 a.s . ,  

we may  conclude by the uniqueness assertion in L e m m a  6.3 that  

C r f f -  1 : ~, a.s. (18) 

Combin ing  this with (17) yields P [ a e "  [C'] = 2 a.s., which shows that  a and Care  
independent.  

F r o m  (14) and (15) it is clear that, if ( '  = ('(co) is of the form 2 x 6y x 6, x v 
on some non-empty  rectangle (a,b) x K' ,  then Y~_ <=a<b<= Y t = Y  and 
~({t} x .) = v, so ~' must  have the same form on (a, y A a) X K' .  This shows that  
~' ~ B~, where the sets B, are defined as in L e m m a  3.8, and f rom (17) we then obta in  
~'eB~ a.s. on {a >__ s} for every s t ( 0 ,  1). By the measurabi l i ty  of the B~ and the 
independence between a and ~', it follows that  C' e B~ a.s. for every s e (0, 1), and then 
also for s = 1. N o w  it is clear from (14) that, for a suitable r a n d o m  measure  v on K, 

(~ x 2)(T x 1 ) - 1  = 2 X ~gt X ~ X • on (Y~_, Y~] x K ' ,  

and combining (15) and (17), we get 

g a C '  = g a ( ( ~  X 2 ) ( r  x / ) - 1 )  a.s . ,  (19) 

SO C' has a.s. the same representat ion on (Y~_, ~r] x K' .  Since C'eB~ a.s., the latter 
representat ion extends a.s. to (Y~_, Y~] x K' ,  so (19) extends to 

~r ,~ '  = (~ x 2 ) ( T  x I) -~  a.s. (20) 

Let us next define the functions t ,  and Yu and the sets C~ as in L e m m a  3.9, and 
note that  for r < ~, the function tc(r +) agrees with the r ight-cont inuous inverse R~ 
of I7, while y~,(r+) = yotr  = y o R , .  It  follows that  for any t < to(r+)  and 
x e [ 0 ,  1], 

Tt,~ <= Yt < Y ~  = Y c ( r + ) ,  
SO 

(T  x I ) - l ( ( y ~ , ( r + ) ,  1] x [0, 1] x [0, t c (r+)]  x K)  = (2~ , 

and therefore [ ' e  C~ by (15). Arguing as for the sets B~, we m a y  conclude that  
[ '  e C~ a.s. In particular,  

C'((y(,(cr+), 1] x [0, 1] x [0, t c , (a+) ]  x K) = 0 a.s. 

N o w  the independence of C' and cr implies that  y(, and t(, are a.s. cont inuous at a, 
and moreove r  r is a.s. the last point  of increase of Y, so we get a.s. 

t~ ' , (O '+)  = t(,(O') = t;-,(O') = r ,  y$,(6+) = y( , (o ' )  = y( , (o ' )  = YT. 

Hence 
C'((Y~,I] x [0,12 x [0, r] x K ) = 0  a.s. (21) 

Let us now define ~ = ~ 'h -  1 where h(s, y, t, x):= (t, y, t, x), and conclude from 
(17) that  

PE(z, ~c ' )e - l ( ]  = EEPEh(~, K ' ) ~ - I ~ ' ] I ~ ]  = EEC 'h -~ I~ ]  = C a.s. 
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Since h o (T  • I) is merely project ion of ~ + x K '  x [0, 1 ] onto  ~ + x K' ,  it is further 
seen f rom (20) that  

(l~y~C')h -1 = (( x ),)(T • I ) - 1 h - 1  = ( a .s . ,  

so by (21) we get a.s. 

n ~ =  C ' h - l (  - n ( [ 0 ,  z] x K ' ) ) =  ( ' ( h - l ( - ) n ( [ 0 ,  1] 2 x [0, z] x K)) 

= C ' ( h - l ( - ) n ( [ 0 ,  Y,] x [0, 1] x [0, z] x K)) 

= ( ~ y , ~ ' ) h - ' ( .  c~ ( [0 ,  r]  • K' ) )  = ~ = ~. 

Thus  Chas  the required properties.  [] 

Proof of Theorem 6.1. In view of Theorem 6.2 and L e m m a  6.3, it remains to show 
that  any probabi l i ty  measure  on ~ x ( ( 0 ,  ~ )  • K) may  occur  as the distr ibution of 

in (2). But given any such measure  v, we m a y  take ~ to be a r andom probabi l i ty  
measure  on ( 0 , ~ ) •  K with distr ibution v, and let T and ~c be such that  
PE(r, x ) e ' F ( ]  = (. Choos ing  ~ to be the filtration generated by the process 
((, I {r < t, x e -  }), t > 0, it is clear that  (~, x) becomes a marked  s topping t ime in 

(0, o0) • K, whose compensa to r  is given by.(1.1) with p replaced by (. Hence the 
discounted compensa to r  of  (r, h:) equals n f ,  and (2) follows. [] 

Let us finally remark  that, a l though L e m m a  6.4 was stated and proved for 
a rb i t ra ry  marked  s topping times (z, x), it was only used in the special case when z is 
totally inaccessible. Likewise, L e m m a  3.2 was proved for marked  s topping times, 
but it was only applied in a markless  situation. Finally, we proved the uniqueness 
assert ion in L e m m a  (r.3 wi thout  taking advantage  of L e m m a  3.3. The resulting 
redundancy  in those three cases was intentional. Indeed, we feel that  there ought  to 
be a simpler way of proving Theorem 6.1, where the rather  awkward  time change 
a rguments  of Sect. 5 are avoided. The redundant  a rguments  might be helpful to 
a reader  who wants  to search for one. In this connection,  note that  L e m m a  6.4 (in 
its present  generality) gives a direct p roof  of Theorem 6.1 for s topping times 
wi thout  marks .  The  same lemma could be used to prove  the general result in 
discrete time, by a me thod  mimicking the p roof  of L e m m a  6.5. 
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