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Introduction

In the paper [1] Abhyankar proves the so called “The Geometric Epimorphism
Theorem”: If ¢ : € x 0—C? is an embedding then there exists ¢ € Iso(C?) such that

resex o P=0,

Abhyankar states there the following conjecture: Conjecture 1 in [1]: “For any
n23 the above theorem in €" is false” (we get here an equivalent formulation). He
formulates also the Conjectures 2 and 3, which are particular cases of Conjecture 1.

Our paper is concerned with seeking the sufficient conditions for an embedding
¢:X—-C" (where X is a closed algebraic subset of €") to have an extension
@ elso(C"). In particular we prove:

Theorem 1.1. Let ¢ : C* x 0—~C" be an embedding and n =3k + 1. Then there exists
¢ eIso(C*) such that

IeSckx o P =,

and

Theorem 1.2, Let X be a closed smooth algebraic subset of C* (not necessarily
irreducible ) of dimension (not necessarily pure ) k. Let ¢ : X —C" be an embedding.
If n24k 42 then there exists ® €1so(@C") such that

resy@=¢.

From our Theorem 1 it follows that all three conjectures in [1] are false. It also gets
the partial answers for the questions 1, 3, 4 which are contained in [1]. The paperis
divided into two sections. In the first part of this paper we investigate extensions of
regular embeddings and in the second part we consider extensions of rational
embeddings.
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Notations and Conventions

Our notations are generally the same asin [3]. Additionally we denote by cl(X) the
closure of X in the Zariski topology of €". Let X, Y be closed algebraic subsets of
C" and let 9: X—Y be a regular mapping. We call ¢ a regular embedding (or
embedding for short) if: 1) (X) is closed in the Zariski topology 2) ¢ ~ ! exists and
is a regular mapping @(X)—X. ¢:X—Y is called an algebraic isomorphism
if ¢ satisfies 1) and 2) and @(X)=7Y. If X = Y=C" then we denote by Iso(C") the
set of all algebraic isomorphisms from X onto Y.

Let X, Y be algebraic varieties. By a rational mapping ¢: X —Y we mean a
mapping which is defined on non-empty and open subset dom{(¢) of X and such
that ¢ :dom{gp)- Y is a regular mapping. By ¢(X) we mean the set p(dom(g)). If
¢,y :X—Y are rational mappings we say that ¢ =1 if there exists an open dense
subset U of X such that ¢,y are defined and regular on U and res; ¢ =resyp. A
rational mapping ¢ : X — Y will be called a rational embedding if ¢ ™! is a rational
mapping from cl,¢(X) onto X. We say that ¢ : X - Y is a birational isomorphism
if ¢ is a rational embedding and cl,p(X)=Y.

1. The Extension of Regular Embeddings
The following proposition is well-known.

Proposition 1.1. Let X, Y be closed algebraic subsets of €" and let :X—Y be a
regular mapping and X = cl(¢(X)). The following conditions are equivalent:

1) ¢ is a regular embedding

2) o, C[X]3h—ho@eC[X] is an isomorphism.

If in addition X and Y are smooth then these two conditions are equivalent to

3) @ is an embedding in the sense of differential geometry i.e. g is closed injective
and d,@: T X - T)Y is injective for all ac X.

Lemma Al. Let VC@*x " be a closed algebraic set and let n:C*x C"3(x, )
—(0, y) €0 x €" denote the projection. Assume that ¢ =res, n is an embedding. Then
there exists an algebraic isomorphism ®: C* x C"—>C* x C" such that

resy P=¢q.

Proof. Let V= (V). From Proposition 1.1 Py C[V]-C[V]is an isomorphism.
Let X;=resy x;,i=1,..., k. There exist h;e €[ V] such that X, =h; - ¢. In other words
there exist polynomials h,e C[y,,...,y,] such that

x;=h{y) modI(V).

Let us recall that I(V) denotes the ideal of a set V in C[xy, ..., X, Y15 eus Vul-
Let

@: T x €'3(x, )= (6 = IV - X = Bi), €T x T
It is clear that @ is an algebraic isomorphism and
resy @=0¢,

because the x;— h(y) vanish on V.
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Lemma Bl. Let L be a linear subspace of €, dimL=s and let X CLCC" be a
closed algebraic set. If ¢:X—>C" is an embedding and (X)CH"™*, where H""*
denotes an (n— s)-dimensional linear subspace of €", then ¢ has an extension, i.e.
there exists an algebraic isomorphism @ ;. C*"—C", such that

resy,d=¢.

Proof. We may assume that L'=C*x0, H" *=0xC""*. Let us denote an
extension of ¢ to L* by ¢ and define the mapping ¥ by the formula

Y. CxCa(x,)=(x, ¢(x)—~ ) eC xC =,
We have P(X)=graph(p):=T. Let n be the projection
T CxC"*>0xC"™* and o=res;n.

The following diagram

where p=resy ¥ : X >T', commutes and v is an isomorphism. Therefore
Py =Wy 00y,

and ¢,, p, are isomorphisms, hence o, is also an isomorphism. This implies
that o is an embedding. From Lemma A1 it follows that there exists X : €*—>C",
2 elso(C"), satisfying the equality

resp2 =co.
If we put =X ¥, then ® ¢ Iso(C") and
resy @=(resp2)o(resy V)=aop=4¢,
which completes the proof.

Lemma C1. Let X CT" be a smooth (not necessarily irreducible ) closed algebraic

set of dimension (not necessarily pure) k. If n>2k+1 then we can change
coordinates in such a way that

@:X3(xq, .0 %) (0, %5, ..., x,) €0 C" 1,
is an embedding.

Proof. Let us recall the notion of multiplicity of an algebraic set X ata point x. Itis
the number

mult (X)=mini(x, X~L"""),

Wwhere L~ is an (n —r)-dimensional linear subspace of €" and x is a component of
XNL"" here r=dimX. (see [3, p. 75, Definition 5.97).
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Let Y be an irreducible algebraic set. The smooth points y of Y are
characterised by the property

yeY is smooth < mult,(Y)=1.
Mult behaves in the following way with respect to projections:

Theorem [ 3, pp. 77-78, 5.14]. If xe YCIP" and y satisfies
1) y¢Y
2) y¢ E}Y ={the tangent cone at a point x to Y}
3) ypxY={x},

then
mult,(Y)=mult(Y’) deg(resyp,),
where Y'=p (Y)CP"™!, x' =p (x)eY"

Corollary. If x, Y,x', Y' are as in the above theorem and x is a smooth point of Y then
x' is also a smooth point of Y.

Proof. The result is clear from the equality 1=mult.(Y")deg(resyp,) because
mult, deg are natural numbers.
For a further application, note that if Y is a smooth set then E¥Y=T.Y for
every x € Y : this follows from the definition of the tangent cone (see also 3, p. 76]).
Let us go back to the proof of Lemma C1. First we shall assume that X
is irreducible. Let S=X x X x €, then dimS=2k-+1 and § is an affine variety.
We define the regular mapping

p:S3(a,b,t)>ta+(1—-0beC".
Let Tan(X)= () T.X.Tan(X)islocally theimage of X x C* by a regular mapping.
xeX

Since X is pseudocompact (in the Zariski topology) then there exists an algebraic
set Y such that Tan(X)CY and dim Y <2k. The set C=cl (yp(S))uY is algebraic
and dimC <2k +1. Let C (X) be the closure of C (X)in P". I H , = {xeP":x, =0} is
a hyperplane at infinity then H _\C =+ because each component of C contains
points which are outside H_ and dimH _ >dim C. Hence also H_\(CuX)=+0 and
there exists a point y € H ,\(CuX). We can change affine coordinates in such a way
that y=(0,1,0,...,0)e H,,. From the above Corollary (for Y = X) it follows that
p,(X) contains only smooth points of py()? ). On the other hand py()? nH_) is
contained in H,, hence ¢=resyp,:X—->C" is a closed mapping. Therefore
im g =clz(p(X)) and because ¢ is injective (by the choice of y) then ¢ is a bijection
from X onto the smooth affine variety ¢(X). From Zariski’s Main Theorem [3,
p. 48, 3.26] it follows that ¢~ ' is regular. In homogeneous coordinates

py((XO’ xl’ e xn)) =(x0’ O, x25 seey xn),
Le.

@((Xls “ees xn))z(oa X325 '“axn)’

in affine coordinates, which ends the proof of this case.
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If X= |} X, where X, are irreducible components of X, then the proof is
i=1

similar. In this case

C=cl, (<‘Lr)‘(piJ{X,~ x X;x (E)) U kol Tan(Xk)) ,
iZ] =
where
0;;: X; x X;xC>(a,b, t)>ta+(1-t)beC",
ie. C is the union of components of dimension not greater than 2k+1, and

H, \(CuX)+0. The rest of the proof is exactly as above.

Corollary. If X C€" is a closed algebraic smooth set, dim X =k and n>2k +1 then
we can change coordinates in such a way that the projection

@:X3(x,y)-(0,y)e0x C**1,

is an embedding.

Proof. We apply s=n—(2k+1) times Lemma C1, in each step changing co-
ordinates in an appropriate way, but only in that part of €" which is the
image of the projection which was used in the previous step.

Theorem 1.1. Let ¢:C*x0—>C" be an embedding and n23k+1. There exists
@ e Iso(C") such that
TeSexx o P=0.

Proof. If k=0 then the proof is trivial: it is sufficient to take as & an appropriate
translation. We may assume that k> 0. Let us put X = o(@C* x 0) and apply the last
corollary to X and the second copy of €. Then there exist coordinates (in the
second copy of €") such that

6:X3(x,y)-(0,y)e0x CH**?!,
is an embedding. Let p=0-¢. From Lemma B1 we obtain ¥eIso(C") such that
reSpex o ¥ =v.
From Lemma A1 it follows that there exists ¥ € Iso(CC") satisfying the equality
resyZl=o.
If we take @=X""'-¥ then
reSqrx 0P =01 o(reSqx o P)=0"'o(oo@)=0.

Theorem 1.2. Let X CC" be a closed algebraic set which is smooth and not
hecessarily irreducible of dimension (not necessarily pure) k. Let ¢: X —»@" be an
embedding. If n=>4k+2 then there exists ® e Iso(C") such that

resy®@=¢.

Prqof. Let us choose the coordinates in the first copy of €" in such a way that the
projection

6: X 3(x,y)=(0,y)e 0 x C*+1
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is an embedding into €*** !. With the second copy we do the same with respect to
X =¢(X) and we denote the projection X—0x €C**! by A From Lemma Bl
it follows that the embedding As @ oo ~* has an extension ¥, ie. ¥ elso(C") and

res, P =Aecpoc™!.

Let X be an extension of ¢ and 4 be an extension of 1. We obtain that
D=A"1c¥oXelso(T)
and
resy®@=A"'c(lopoo YYoo=¢p. Q.ED.

Corollary 1. If n=2 and A, BCC", # A= # B < o then any bijection ¢ : A— B has
an extension, i.e. there exists @ e Iso(C") such that

res,P=¢.

Remark. For n=1 the last corollary is false. Hence for dim X =0 the estimation in
Theorem 1.2 is sharp.

Corollary 2. For all n=+3 an embedding ¢ : C—C" always has an extension. (see [1]
for the case n=2).

Corollary 3. Let X, Y be lines (in the sense of [1]). If n#3 then X, Y are equivalent.
(in the sense of [1]).

Hence Conjectures 1-3 in {1] are false.

Corollary 4. Let a be an ideal of Clx,,...,x,]. If C[x,,...,x,}/a is isomorphic to
Clt,, ...t and 3k+ 1= n then there exist polynomials py,...,Px T1s--esFy—y SUch
that a=(ry, ...,r,_) and Cxy, ... X, 1=C[P1s - Di> T1> -+ » Pi— 1)

Corollary 5. Ler a,b be ideals of C[x,,..,x,] and A=C[x,,...,x,]/a,
B=C[x,...,x,]/b. Let us assume that the rings A and B are isomorphic, regular and
n=4-dimA+2. Then there exists an automorphism

&:Clxq,....%,] 2 Clxy, ..., %,],
such that ®(a)=Db.
Example. (see [2]) Let X C@C? be the union of the sets
Fi={xy:xy=1}, I={xy):xy=2},
L={(x,y):x=0}. Let ¢: X »C? satisfy the following conditions:
res,,r, @ =res;r, (identity of C?)

resp, @ =resyp, T(2),

where T(m} (x, y)=(mx, my). X is a smooth algebraic set, ¢ is an embedding, but ¢
has no extension.
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2. The Extensions of Rational Embeddings

Proposition 2.1. Let X, Y be algebraic varieties in C" and ¢: X —>Y be a rational
mapping. Let us denote X by cl(p(X)). The following conditions are equivalent:
1) @:X—>Y is a rational embedding.
2) @, CX)sh—-hopeC(X) is an isomorphism
3) there exists a non-empty, open (in the Zariski topology ) set U C X such that

resyp:U—X,
is a regular and injective mapping.
Proof. See e.g. [3].

Lemma A2. Let VCC*x C" be an algebraic variety and let ¢ : V3(x, y)—(0,y)€0
x C" denote the projection. Let us assume that ¢ is a rational embedding. Then there
exists a birational isomorphism @ : C* x €"—C* x C" such that

resy, P=¢.
Proof. Let us put ¥ =cl,(¢(V)). The mapping
¢y C(V)a2h—hope@(V),

is an isomorphism. In particular there exist polynomials P;, Q;e C[y,, ..., y,] such
that

P,
x,--——a' in C(V).
The mapping l

<D(x,y)=(x1 — Wi oo X — VVkay)!
where W,=P,/Q,e C(y,, ..., ,) is a birational isomorphism and
resy, @=¢. Q.E.D.

Lemma B2. Let L be a linear subspace of €", dimL*=s, and let X CL*CC" be an
algebraic variety. If
p: X-C",

is a rational embedding and o(X)C H"™5, where H"”° denotes an (n— s)-dimensional

linear subspace of ", then there exists a birational isomorphism &:C"—C" such
that

resy®@=¢.

Proof. The proof is analogous to that of Lemma B1. We may assume that L' =C*
X0, H* *=0 x €"~*. We denote cl,(¢(X)) by X and the extension of ¢ to L* by .
Let us define the mapping ¥ by the following formula:

¥ CxC 773 (x, y)=(x, ) - p)e T x €.

Itis clear that ¥ is a birational mapping. Let V=cl(¥(X)), a:V3(x, y)—(0, y)e)?
and p=resy V. g, are dominating and gop=0 that is p, oo, =0, ie.
9, :C(X)->C(V) is an isomorphism, hence ¢ is a rational embeddmg (see
P top. 2.1). Lemma A2 shows that there exists a birational mapping X: C"—>C"
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such that res, Z=o0. If we put =X ¥ then & is a birational mapping and
resy @ =¢.

Lemma C2. Let X CT" be an algebraic variety of dimension k. We can change
coordinates in C" in such a way that

@:X3(x,y)~0,y)e0x C*1,
is a rational embedding.
Proof. See [3, p. 48].

Theorem 2.1. Let ¢ :T*x 0—C" be a birational isomorphism onto its image and
n=2k+1. There exists a birational isomorphism ®:C"—>C" such that

reSexx o P=0.
Proof. See the proof of Theorem 1.1.
Theorem 2.2. Let X CC" be an algebraic variety of dimension k. Let ¢: X ->C" be a

rational embedding. If n=2k+2 then there exists a birational isomorphism & : "

—@" such that
resy®=¢.

Proof. See the proof of Theorem 1.2

Corollary. If ¢:C x 0>@3 is an embedding then there exists a birational mapping
@:C3 -3 such that resg, = o.
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