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Introduction 

In the paper [1] Abhyankar proves the so called "The Geometric Epimorphism 
Theorem": If~o : ~  x 0-~C 2 is an embedding then there exists ~b e I so(~  z) such that 

res~:xo~=9,  

Abhyankar states there the following conjecture: Conjecture 1 in [1]: "For  any 
n > 3 the above theorem in ~E" is false" (we get here an equivalent formulation). He 
formulates also the Conjectures 2 and 3, which are particular cases of Conjecture 1. 

Our paper is concerned with seeking the sufficient conditions for an embedding 
q~:X~(E" (where X is a closed algebraic subset of (E") to have an extension 
q~ Iso(~"). In particular we prove: 

Theorem 1.1. Let ~o : ~k X 0-"4~ n be an embedding and n > 3k + 1. Then there exists 
~ Iso(laS") such that 

res~k • o t~ = tp, 

and 

Theorem 1.2. Let X be a closed smooth algebraic subset of tE" (not necessarily 
irreducible) of dimension (not necessarily pure) k. Let ~ : X-*C"  be an embedding. 
I f  n > 4k + 2 then there exists rb e Iso(IE") such that 

res x �9 = qo. 

From our Theorem 1 it follows that all three conjectures in [1] are false. It also gets 
the partial answers for the questions 1,3, 4 which are contained in [1]. The paper is 
divided into two sections. In the first part of this paper we investigate extensions of 
regular embeddings and in the second part we consider extensions of rational 
embeddings. 
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Notations and Conventions 

Our notations are generally the same as in [3]. Additionally we denote by clz(X ) the 
closure of X in the Zariski topology of ~". Let X, Y be closed algebraic subsets of 
C" and let t p : X - ~ Y  be a regular mapping. We call tp a regular embedding (or 
embedding for short) if: 1) ~0(X) is closed in the Zariski topology 2) ~0- x exists and 
is a regular mapping t p ( X ) ~ X ,  t p : X ~ Y  is called an algebraic isomorphism 
if ~o satisfies 1) and 2) and q~(X)= Y. If X = Y= ~"  then we denote by I so (~  ") the 
set of all algebraic isomorphisms from X onto Y. 

Let X, Y be algebraic varieties. By a rational mapping ~o :X~  Y we mean a 
mapping which is defined on non-empty and open subset dom(~o) of X and such 
that tp : dom(~o)~ Y is a regular mapping. By q~(X) we mean the set tp(dom(~o)). If 
tp, ~ : X - ~  Y are rational mappings we say that ~o = ~p if there exists an open dense 
subset U of X such that tp, tp are defined and regular on U and res v ~o = resv~o. A 
rational mapping ~o : X-+ Y will be called a rational embedding if +p- 1 is a rational 
mapping from clz+p(X) onto X. We say that ~o : X-~ Y is a birational isomorphism 
if tp is a rational embedding and clztp(X ) = Y. 

1. The Extension of Regular Embeddings 

The following proposition is well-known. 

Proposition 1.1. Let X ,  Y be closed algebraic subsets o f  ~n and let q~ : X -~  Y be a 
regular mapping and )7 = clz(tp(X)). The following conditions are equivalent: 

1) tp is a regular embedding 
2) q~. : ~[)~]  ~ h ~ h o tp ~ ~ [ X ]  is an isomorphism. 
I f  in addition X and Y are smooth then these two conditions are equivalent to 
3) q~ is an embedding in the sense o f  differential geometry i.e. q~ is closed injective 

and d jp :  T~X-~ T~Y is injective for  all a ~ X .  

Lemma A1. Let  V c ~ k x ~  ~ be a closed algebraic set and let 7z:Ckx C"~(x,y)  
~(0,  y) e 0 x ~"  denote the projection. Assume that tp = resvn is an embedding. Then 
there exists an algebraic isomorphism ~:  ff~k X C " - - ~  k X ~ such that 

resv �9 = ~0. 

Proof. Let ~ '= ~0(V). From Proposition 1.1 q~, : tE [~ ' ]~ tE[V]  is an isomorphism. 
Let xi = resv xi, i = 1 . . . .  , k. There exist ~/i ~ r [ ~'] such that ~i = h- i o q3. In other words 
there exist polynomials ha E tE[ya ... . .  y,] such that 

x i = hi(y ) modI(V) .  

Let us recall that I (V)  denotes the ideal of a set V in <E[xl . . . . .  Xk, yl .. . . .  y.]. 
Let 

q~: ff~k X ff~" ~ (X, y )~ (X l  -- h x(y) . . . . .  X k -- hk(y), Y) ~ ff~k X ~" .  

It  is clear that �9 is an algebraic isomorphism and 

res v �9 = +p, 

because the xi-h~(y) vanish on E 
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Lemma B1. Let L ~ be a linear subspace of  flY, d i m U = s  and let XCLSCll2" be a 
closed algebraic set. I f  cp : X~II2" is an embedding and q~(X)CH"-*, where H "-~ 
denotes an (n-s)-dimensional  linear subspace of  I12", then q) has an extension, i.e. 
there exists an algebraic isomorphism q~ : ffY~Ir.", such that 

res x �9 = q~. 

Proof. We may  assume that  U=l I2~x0 ,  H " - ~ = 0 x l ~  "-~. Let us denote an 
extension of  ~o to U by q3 and define the mapping  ~ by the formula 

~ :112 ~ x Ir,"-S~ (x, y )~ ( x ,  (o(x)-- y) ~ ffY x I12"-*. 

We have ~ ( X ) = g r a p h ( ~ o ) : =  F. Let rc be the projection 

rc:I / ;*xlE"-<-+Ox~; "-* and a=resr rC.  

The following diagram 

Ip 

X , F  

where tp = res x ~ P : X ~ F ,  commutes  and ~p is an isomorphism. Therefore 

(p, = 1,o, o t r , ,  

and (p,, ~p, are isomorphisms,  hence a ,  is also an isomorphism. This implies 
that a is an embedding. F r o m  Lemma A1 it follows that there exists S : ~;"~tE", 
S s Iso(tl2"), satisfying the equality 

rest Z = a .  

If we put  �9 = Z o 7/, then �9 e Iso(~") and 

resx �9 = (rest Z) o (resx ~) = a o ~0 = r 

which completes the proof. 

Lemma C1. Let  X C fly be a smooth (not  necessarily irreducible) closed algebraic 
set of  dimension (not  necessarily pure) k. I f  n > 2 k +  1 then we can change 
coordinates in such a way that 

q ) : X ~ ( x l  . . . .  , x , ) -+ (0 ,x2 , . . . , x , ) e0  x II; " - 1 ,  

is an embedding. 

Proof. Let us recall the not ion of  multiplicity of  an algebraic set X at a point  x. It  is 
the number  

multx(X ) = min i(x, X n L"-  "), 

where L " - '  is an (n - r)-dimensional linear subspace of  IIY and x is a componen t  of  
Xc~L"-" here r = d i m X .  (see [3, p. 75, Definition 5.9]). 
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Let Y be an irreducible algebraic set. The smooth points y of Y are 
characterised by the property 

y e  Y is smooth r multr(Y)= 1. 

Mult behaves in the following way with respect to projections: 

Theorem [3, pp. 77-78, 5.14]. I f  x e  YCF" and y satisfies 
1) yC Y 
2) y C E * Y = { t h e  tangent cone at a point x to Y} 
3) y~ c~ Y= {x}, 

then 

multx (Y) = multx, (Y') de g (resr Pr), 

where Y' =pr(Y) C ~ -  1, x' =pr(x) e Y'. 

Corollary. I f  x, Y, x', Y' are as in the above theorem and x is a smooth point of Y then 
x' is also a smooth point of Y'. 

Proof. The result is clear from the equality 1 =multx,(Y')deg(resrpr) because 
mult, deg are natural numbers. 

For a further application, note that if Y is a smooth set then E* Y = T~ Y for 
every x �9 Y: this follows from the definition of the tangent cone (see also [3, p. 76]). 

Let us go back to the proof of Lemma CI. First we shall assume that X 
is irreducible. Let S = X  x X x 112, then d i m S = 2 k +  1 and S is an affine variety. 
We define the regular mapping 

02: S ~(a, b, t )~ ta  +(1 - t)b e C". 

Let Tan(X) = U TxX. Tan(X) is locally the image ofX x tE k by a regular mapping. 
x e X  

Since X is pseudocompact (in the Zariski topology) then there exists an algebraic 
set Y such that Tan(X)C Y and dim Y < 2k. The set C = clz(~0(S))u Y is algebraic 
and dim C__< 2k + 1. Let ~ (_~) be the closure of C (X) in IW. If Ho~ = {x E ~ :  x o = 0} is 
a hyperplane at infinity then H|162 because each component of C contains 
points which are outside H~ and dim H~ > dim ~. Hence also H o~ \ (~  u)~) + 0 and 
there exists a point y �9 Hoo\(~u)~). We can change affine coordinates in such a way 
that y=(0,1 ,0  . . . .  , 0 ) �9  From the above Corollary (for Y=)7) it follows that 
py(X) contains only smooth points of py()~). On the other hand py(XcaH~) is 
contained in Ho~, hence ~o=resxpy:X~C" is a closed mapping. Therefore 
im~o = clz(~o(X)) and because r is injective (by the choice of y) then r is a bijection 
from X onto the smooth affine variety r From Zariski's Main Theorem [3, 
p. 48, 3.26] it follows that ~o- 1 is regular. In hotoogeneous coordinates 

P,((Xo, xl ..... x.)) =(Xo, O, x2 ..... x.) , 

i.e. 

o((x~ . . . . .  x . ) )=(O,  x2 . . . . .  x . ) ,  

in affine coordinates, which ends the proof of this case. 
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If  X = ~J X~, where X~ are irreducible componen t s  of  X, then the p roo f  is 
i = 1  

similar. In this case 

C = clz j(Xi x Xj  x IE u Tan(Xk , 
i k = l  

where 

~oij:Xix X j •  n, 

i.e. C is the union of componen t s  of  dimension not greater  than  2 k +  1, and 
Ho~\((~w)~) 4:0. The  rest of  the p roof  is exactly as above.  

Corollary. I f  X C ~n is a closed algebraic smooth set, d i m X  = k and n > 2k + 1 then 
we can change coordinates in such a way that the projection 

q~:X~ (x, y )~(0 ,  y )~0  x ~E 2k+ l ,  

is an embedding. 

Proof. We apply s = n - ( 2 k +  1) t imes L e m m a  C1, in each step changing co- 
ordinates in an appropr ia te  way, but  only in that  par t  of  IE" which is the 
image of the project ion which was used in the previous step. 

Theorem 1.1. Let ~o:~ k x 0 ~  ~ be an embedding and n > 3 k +  1. There exists 
�9 ~ Iso(IE") such that 

resr • o 4~ = ~o. 

Proof. If  k = 0  then the p roof  is trivial: it is sufficient to take as 4~ an appropr ia te  
translation. We may  assume that  k > 0. Let  us put  X = ~0(~* x 0) and apply  the last 
corollary to X and the second copy of ~ .  Then  there exist coordinates  (in the 
second copy of ~E ~) such that  

a:  X ~(x, y )~(0 ,  y) e 0  x IE 2k+ 1 

is an embedding. Let ~ = a o~0. F r o m  L e m m a  B1 we obtain ~UeIso(IE ~) such that  

From L e m m a  A1 it follows that  there exists X~ Iso(CE") satisfying the equality 

r e s  x ~ '  ~ o- .  

I f  we take r = 2 : -  1 o ~ then 

resck • o ~ = o -  1 o (res,~ • 0 t/,) = o -  1 o (o o r = ~p. 

Theorem 1.2. Let X ( t E  ~ be a closed algebraic set which is smooth and not 
necessarily irreducible of  dimension (not necessarily pure) k. Let qg : X ~ t E  ~ be an 
embedding. I f  n > 4k + 2 then there exists ~ ~ Iso(tE n) such that 

resx # = ~o. 

Proof. Let us choose the coordinates  in the first copy of C" in such a way that  the 
projection 

o: X~(x , y )~ (O ,y )~O • C 2k+ 1, 
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is an embedding  into ~2k+ 1. With  the second copy we do the same with respect to 
)~=go(X) and we denote  the project ion ) ~ 0  x IE 2k+~ by 2. F r o m  L e m m a  B1 
it follows that  the embedding  2o go~ tr -1 has an extension 7 j, i.e. 7 '~Iso(IE") and 

res,(x ) tp = 2 o go o or- 1. 

Let E be an extension of a and A be an extension of 2. We obtain  that  

and 

�9 = A  -1 o ~/' o S e  Iso(~E") 

r e s x @ = 2  - l o ( 2 o g o o a - 1 ) o a = g o .  Q.E.D. 

Corol lary 1. I f  n > 2 and A, BCtE n, # A =  # B <  0o then any bijection go : A--* B has 
an extension, i.e. there exists eb ~ I s o ( ~  ~) such that 

res A ~/, = go. 

Remark. For  n = 1 the last corol lary is false. Hence for d i m X  = 0  the est imation in 
Theorem 1.2 is sharp. 

Corol lary 2. For all n 4:3 an embedding go : C ~(E n always has an extension. (see [1] 
for the case n = 2). 

Corollary 3. Let X,  Y be lines (in the sense of [1]) .  I f  n 4:3 then X,  Y are equivalent. 
(in the sense of  [1]) .  

Hence Conjectures  1-3 in [11 are false. 

Corollary 4. Let a be an ideal of IE[x 1 .. . . .  x,]. I f  ~[X1, ...,Xnl/Q is isomorphic to 
~ [ t l ,  . . . ,  tk l  and 3 k +  1 < n then there exist polynomials P l , ' "  ", Pk, r l  . . . .  , rn_ k such 

that a = ( r l ,  ...,rn_k) and ~ [ x l ,  . . . ,xn] = ~ [ p l  . . . . .  PR, rl, ...,r~-k]. 

Corollary 5. Let a,b be ideals of (12[xl . . . . .  xnl and A = I E [ x  1 . . . .  ,x , l /a,  
B = ~ Ix  1 . . . . .  x~l/b. Let us assume that the rings A and B are isomorphic, regular and 
n > 4 - d i m A  +2 .  Then there exists an automorphism 

�9 :~E[xl . . . .  , x ~ ] - - , ~ [ x l  . . . .  , xn] ,  

such that r b. 

Example. (see [21) Let X C 1~2 be the union of the sets 

r ,  = {(x,y): xy  = 1}, r2  = {(x,y):  xy  = 2}, 

L =  {(x, y) : x = 0}. Let go : X ~  2 satisfy the following condit ions:  

resL~,r, ~o = resL~r, (identity of  IE 2) 

resr~ go = resr~ T(2), 

where T(m) (x, y) = (rex, my). X is a smoo th  algebraic set, go is an embedding,  but ~P 
has no extension. 
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2. The Extensions of Rational Embeddings 

Proposition 2.1. Let X,  Y be algebraic varieties in rE" and tp : X ~ Y be a rational 
mapping. Let us denote X by clz(tp(X)). The following conditions are equivalent: 

1) ~p : X ~ Y is a rational embedding. 
2) q~, : ~()~) ~ h ~ h  o q~ ~ C(X)  is an isomorphism 
3) there exists a non-empty, open (in the Zariski topology) set U C X such that 

resv~ p : U--+X, 

is a regular and injective mapping. 

Proof. See e.g. [-3]. 

Lemma A2. Let V < ~ k x ~7" be an algebraic variety and let ~p : Vo(x,  y)-+(O, y)eO 
x fly denote the projection. Let us assume that tp is a rational embedding. Then there 
exists a birational isomorphism �9 : ~k X ~ ,  _+~k X C" such that 

resv �9 = q~. 

Proof. Let us put ~'=clz(~p(V)). The mapping 

q~ , : ~ ( r / )  ~ h - - , h  o ~o ~ ~ (  v )  , 

is an isomorphism. In particular there exist polynomials P~, Q~ ~ ~ [-y~, ..., y,] such 
that 

Pi 
x i = ~  in r 

The mapping 

�9 (x, y ) = ( x , -  wl .. . . .  x k -  w~, y), 

where W/= PJQi e 112(yl .. . . .  y,) is a birational isomorphism and 

resv~ = (p. Q.E.D. 

Lemma B2. Let L* be a linear subspace of  112", dimL* =s, and let X C L~ClF." be an 
algebraic variety. I f  

tp:X-+C", 

is a rational embedding and tp(X)C H"-s, where H "-s denotes an ( n -  s)-dimensional 
linear subspace of  C", then there exists a birational isomorphism ~:~"--+(17 ~ such 
that 

resx �9 = tp. 

Proof. The proof is analogous to that of Lemma B1. We may assume that L s = ~s 
x 0, H "-* = 0  x ~ , - s .  We denote clz(~p(X)) by X and the extension of~p to L * by ~. 
Let us define the mapping ~ by the following formula: 

W: ~E~ x ~ " - ~ ( x , y ) ~ ( x ,  ~ ( x ) -  y)~ ~E ~ x ~E "-~. 

It is clear that ~u is a birational mapping. Let V = clz(~(X)), tr: V~ (x, y)~(0, y) e .g 
and lp=resx~,  a,~p,~p are dominating and cro~p=~0 that is lp, o t r ,= tp ,  i.e. 
%:~E()~)-~E(V) is an isomorphism, hence tr is a rational embedding (see 
Prop. 2.1). Lemma A2 shows that there exists a birational mapping 2~:~"~C"  
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such tha t  resv2~=a.  I f  we pu t  ~ = S o  7, then cb is a b i r a t iona l  m a p p i n g  and 
res x �9 = ~0. 

Lemma C2. Let X Cff~" be an algebraic variety of dimension k. We can change 
coordinates in ~"  in such a way that 

q~ : X ~ (x, y ) ~ ( 0 ,  y) e 0 x ~k+ 1, 

is a rational embedding. 

Proof See [3, p. 48]. 

Theorem 2.1. Let q~:(Ek x 0--*(E" be a birational isomorphism onto its image and 
n >  2 k +  1. There exists a birational isomorphism q~: C~"~(E" such that 

resc~ x o ~ = qg. 

Proof See the p r o o f  of  Theo rem 1.I. 

Theorem 2.2. Let XC(E" be an algebraic variety of dimension k. Let q~ : X ~ "  be a 
rational embedding. I f  n > 2k + 2 then there exists a birational isomorphism �9 : (E" 
--*~" such that 

resx q~ = ~o. 

Proof. See the p r o o f  of  Theo rem 1.2. 

Corol lary .  I f  q~ : �9 x 0 ~  3 is an embedding then there exists a birational mapping 
cb : 117. 3 ~ C  3 such that resc• o q~ = ~o. 

References 

1. Abhyankar, S.S.: On the semigroup ofa meromorphic curve. Tokyo: Kinokuniya Book-Store 
1978 

2. Jelonek, Z.: Identity sets for polynomial isomorphism. Universitatis Iagellonicae Acta 
Mathematica (to appear) 

3. Mumford, D.: Algebraic geometry I. Berlin, Heidelberg, New York: Springer 1976 

Received March 16, 1986; in revised form September 24, 1986 


