Correction to

A Geometric Characterization of Non-Atomic Measure Spaces

R. B. Holmes

Professors J. B. Conway and J. Szücs have kindly pointed out to the author that there is a gap in the proof of Theorem 1 in the paper [2]. The oversight occurs in the first sentence on p. 58 of [2], where it is asserted that "...the closure is mid-point convex". Due to the fact that the ball $U\left(L_{R}^{\infty}(\mu)\right)$ (all unexplained notation is that of [2]) need not satisfy any countability axioms with respect to the weak* topology, the above assertion only becomes convincing under some additional hypothesis such as "the space $L_{R}^{1}(\mu)$ is separable". The purpose of the present note is to indicate how the technique introduced in [2] can be further exploited to yield a valid proof of Theorem 1 as originally formulated.

A persual of the argument given in [2] shows that what is needed for completeness is a proof of the following

Assertion. Let (S, Σ, μ) be a finite non-atomic measure space and let $-1<\lambda<1$. Then there is a sequence $\left\{f_{n}\right\} \subset \operatorname{ext}\left(U\left(L_{R}^{\infty}(\mu)\right)\right)$ such that

$$
f_{n} \rightarrow \lambda \chi_{s} \text { weak* }
$$

Without essential loss of generality we may assume that $\mu(S)=1$. Put $\alpha=\frac{1}{2}(1+\lambda)$. By induction and the Liapounoff convexity theorem we can construct sets

$$
\begin{aligned}
& A_{1}^{(n)}, \ldots, A_{2^{n-1}}^{(n)}, \\
& B_{1}^{(n)}, \ldots, B_{2^{n-1}}^{(n)},
\end{aligned}
$$

for each positive integer n, such that
and

$$
\begin{aligned}
A_{k}^{(n)} \cup B_{k}^{(n)} & =A_{k}^{(n-1)}, & & k=1, \ldots, 2^{n-2}, \\
A_{k}^{(n)} \cup B_{k}^{(n)} & =B_{k-2^{n-2},}^{(n-1)}, & & k=2^{n-2}+1, \ldots, 2^{n-1}, \\
A_{k}^{(n)} \cap B_{k}^{(n)} & =\phi, & & k=1, \ldots, 2^{n-1}, \\
\mu\left(A_{k}^{(n)}\right) & =\left\{\begin{array}{ll}
\alpha \mu\left(A_{k}^{(n-1)}\right), &
\end{array} k_{1, \ldots, 2^{n-2},}^{\alpha \mu\left(B_{k-2 n-2}^{(n-1)}\right),}\right. & & k=2^{n-2}+1, \ldots, 2^{n-1}
\end{aligned}
$$

$$
A^{(n)} \cup B^{(n)}=S,
$$

where

$$
\begin{aligned}
& A^{(n)} \equiv A_{1}^{(n)} \cup \cdots \cup A_{2^{n-1}}^{(n)}, \\
& B^{(n)} \equiv B_{1}^{(n)} \cup \cdots \cup B_{2^{n-1}}^{(n)} .
\end{aligned}
$$

Now let $\langle\cdot, \cdot\rangle$ be the inner product on the Hilbert space $L_{R}^{2}(\mu)$ and let χ_{n} be the characteristic function of the set $A^{(n)}$. Then one can verify that

$$
\begin{aligned}
\mu\left(A^{(n)}\right) & =\alpha, \forall n, \\
\left\langle\chi_{n}, \chi_{n+p}\right\rangle & =\alpha^{2}, \forall n, \forall p \geqq 1,
\end{aligned}
$$

and consequently that

$$
\begin{gathered}
\left\langle\chi_{m}-\alpha \chi_{s}, \chi_{n}-\alpha \chi_{s}\right\rangle \\
=\left\langle\chi_{m}, \chi_{n}\right\rangle-\alpha^{2} \\
=\delta_{m n} \alpha(1-\alpha)
\end{gathered}
$$

where χ_{s} is the characteristic function of the set S. This equation establishes the weak convergence in $L_{R}^{2}(\mu)$ of the sequence $\left\{\chi_{n}\right\}$ to $\alpha \chi_{s}$.

Finally, we put f_{n} equal to the difference between χ_{n} and the characteristic function of the set $B^{(n)}$. Thus

$$
f_{n}=\left\{\begin{array}{rll}
1 & \text { on } & A^{(n)} \\
-1 & \text { on } & B^{(n)}
\end{array}\right.
$$

and we have $f_{n} \rightarrow(2 \alpha-1) \chi_{s}$ weakly in $L_{R}^{2}(\mu)$, and therefore, $f_{n} \rightarrow \lambda \chi_{s}$ weak* in $L_{R}^{\infty}(\mu)$. q.e.d.

In conclusion we note that Conway and Szücs have established a significant generalization of the theorem under discussion in their forthcoming paper [1].

References

1. Conway, J., Szücs, J.: The weak sequential closure of certain sets of extreme points in a von Neumann algebra, Ind. Univ. Math. J., to appear.
2. Holmes, R.: A geometric characterization of non-atomic measure spaces. Math. Ann. 182, 55-59 (1969).

Prof. R. B. Holmes
Division of Mathematical Sciences
Purdue University
Lafayette, Indiana 47907, USA

