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Summary. McGill showed that the intrinsic local time process L(t, x), t => 0, x eN,  
of one-dimensional Brownian motion is, for fixed t > 0, a supermartingale in 
the space variable, and derived an expression for its Doob-Meyer  decomposition. 
This expression referred to the derivative of some process which was not obvious- 
ly differentiable. In this paper, we provide an independent proof of the result, 
by analysing the local time of Brownian motion on a family of decreasing curves. 
The ideas involved are best understood in terms o f  stochastic area integrals 
with respect to the Brownian local time sheet, and we develop this approach 
in a companion paper. However, the result mentioned above admits a direct 
proof, which we give here; one is inevitably drawn to look at the local time 
process of a Dirichlet process which is not a semimartingale. 

1. Introduction 

Let (Bt)t> o be Brownian motion on IR, B 0 = 0  , with jointly continuous local 
time {L(t, x): t>0 ,  xeN} .  For  each x e N  we define 

A(t,x)=- i I~B ~=x~ds, z(t,x)=-inf{u: A(u,x)>t}  
0 

B(t, x)=--B~(t,x), g~-~ a({/~(t, x): t-->0}). 

The time-change z(-, x) wipes out all time spent in (x, oo) by B, so that /~( . ,  x) 
is what we would see of B if all excursions above x were deleted and the gaps 
left in the time axis closed up. Relative to this time scale, the process of local 
time in x must be 

L(t, x)=-L(z(t, x), x), 

the intrinsic local time of B at level x. Various properties of the Brownian excur- 
sion filtration (gx) have been studied before; see [ W l ] ,  [-Wi], I-W2], [M1],  
[J], [R] for a selection of earlier work. 
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In a stimulating and inventive paper, McGill [M-1 has investigated the intrin- 
sic local time process of B with a view to obtaining a stochastic integral represen- 
tation result for the Brownian local time sheet. The starting point for the current 
study was a puzzling result in [M]. As a simple consequence of the Ray-Knight 
theorem, McGill shows that 

(1) (L(t, x) + 2 x-)x~F, is an gx-supermartingale, 

and, after lengthy calculations, concludes that the increasing process of this 
supermartingale is 

1 d L,(t,y)2 dy  . 
(2) 2 d t  

(Let us remark straight away that our definition of L is double that of McGill, 
and that the first argument of L for us is t, the variable traditionally associated 
with the horizontal axis.) 

Herein lies the puzzle: if a function is indeed differentiable, one should be 
able to exhibit its derivative - so what is the derivative (2)? 

To answer this question, we firstly ask rather, "What  is the increasing process 
of the supermartingale (1)?" To understand this better, let us consider the situa- 
tion where x>0 ,  and B(t, x)<x, depicted in Fig. 1. We assume that t > 0  is 
fixed for the time being. 

The dashed continuous decreasing curve is the graph of z~-~(t, z), and T 
=sup{s<T(t,x):Bs=x}. By the Ray-Knight theorem, (L(T,z))~>x is an 
(gz)-martingale, and L(T, z)=L(~(t, z), z), at least for z>x  sufficiently close to 
x. Ultimately, as the level z rises, the time ~(t, z) slips back until (~(t, z), z) lies 
on the Brownian path, and at that level, the processes L(T, z) and L(t, z) begin 
to differ. Thus by the level y in the diagram, L(t, y)<L(T, y). It seems at least 
plausible that this discrepancy should be compensated for by the amount of 
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local time spent by B on the dashed curve between z(t, y) and z(t, x). This turns 
out to be exactly correct. 

In more detail then, defining for s >  ~ > 0  

0s (4) - inf{z: A (s, z) > ~}, 

and setting 0~(~)= + oe if s <  4, it is not hard to show that 0 is jointly continuous 
in {(s, 4): s > ~ > 0 } ,  and, for fixed 4, the process sF--,O~(~) is decreasing in s > ~ ;  
the dashed curve in Fig. 1 is just the graph of (h.(t). 

Fixing t > 0, if we let 2 be the local time at zero of the continuous semimart- 
ingale {B~ = O~(t): s > t}, we have the following result. 

Theorem 1. Fix asP,. The process 

C, ,x-2(z( t ,  a))-2(z(t ,  x)) (x>=a) 

is continuous, ( gx)-adapted, and increasing, and 

{L,(t,x)+ 2 x -  +C.,~" x > a} 

is an (Ex)-martingaIe bounded in L 2. 

The proof of this result, using Tanaka's formula, and ideas of McGill and 
Jeulin, is quite straightforward, and is dealt with in Sect. 2. 

Now this does not help us so far to identify the derivative (2). Nonetheless, 
we begin to see the connections more clearly if we take a few more steps and 
develop (2): 

)c 

(3) �89 i L,(t, y)2 d y--  l I L(~(t, y), y)2 d y 
a a 

= L(s,y)L(ds, y dy 
a 0 

= d y ~ L (d s, y) L (s, y) I{s =<. (t,y)i I(a, x] (Y) 
- - o O  O 

(4) = ~ L(s, Bs) I{s<r(r,Bs) } I(.,xj(Bs) ds, 
0 

by the occupation-density property of local time; 

(5) = ~ L(s, B~) I(A(s,B~)<t} l(a,xl(B~) ds 
0 

(6) = ~ L(s, B~) l(B~__<o.(t)} l(.,x](B~) ds. 
0 

From this we see that the differentiability in t of (3) is, in view of (5), essentially 
the same thing as the existence of  local time for the process Y~ - A (s, Bs). 
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The only problem is that Y is not a semimartingale. Indeed, if 

(7) Xt =- i L(s, Bs) dBs--A(t ,  Bt), 
0 

then we show that X has zero quadratic variation, yet has infinite order p variation 
for any p < 4/3. We prove this in [RWa 2]. It is not known whether a continuous 
Dirichlet process (which Y is) already has a local time, though some partial 
results are known; see Bertoin [B] and the references therein. 

Nonetheless, in such a concrete setting, one can establish the existence of 
local time for Y Indeed, writing St for sup B,, we prove in Sect. 3 that there 
exists a jointly continuous version of ,<=t 

{2(s, a; t): 0 <  t<s ,  a~lR, a + B , - S t } ,  

where 2(-, a; t) is the local time at a of the semimartingale B.- tp . ( t ) ,  and we 
deduce from this that for f ~ Q ( I R )  

(8) 
tl u 

L(s, Bs) f (A(s ,  B~)) ds  = ~ f ( y )  2(u, 0; y) dy. 
0 0 

From this and (5), it is now clear that (3) is differentiable with respect to t, 
and it is easy to confirm from here that the derivative is indeed the compensator 
of L(t, x)+ 2 x- ,  as identified by Theorem 1. 

There is yet another way to characterise the 'local time on a curve' which 
appears in the compensator of L(t, x)+ 2 x - ,  and this is in terms of the stochastic 
area integral with respect to L, as developed by Walsh [W]. This approach 
is the one used in the companion paper [RW], where the main ideas of the 
construction of stochastic area integrals are developed, and an integral represen- 
tation result is proved; every L 2 random variable has a stochastic area integral 
representation. The consequences of this for the problems discussed here are 
pursued. 

The final section of the paper is a direct and independent derivation of 
Lemma 4.2 of McGill I-M], using the powerful techniques of It6 excursion theory. 
If you like that kind of thing, you can certainly avoid lots of calculations ! 

2. The compensator of [.(t,-) 

Recall the definition of the process ~9 : 

Os(~)=in f{x :A(s ,x )>{}  if s > ~  

= + o 0  if s_<_~. 

We record briefly a few properties of 0. For fixed s, 0s(') is strictly monotone 
in [0, s), and C 1 in (0, s), with derivative 1/L(s, Os(~)) at 4. For fixed 4, 0-(~) 
is decreasing in (4, oe), but is not strictly decreasing; in any time interval (u, v) 
throughout which B~>O,(~), the function ~.(~) is constant. The last property 
of 0 which we shall need for the moment is its joint continuity; but if s ,> ~ , ,  
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s , - s > ~ = l i m ~ , ,  if x,--6~,(~,) and if for some subsequence x . j ~ a ,  we have 
by the joint continuity of A that 

~,~ = A (s,j, x,j) ~ A (s, a) 

so that r  a). Strict monotonicity in x of A implies that a = ~ ( ~ ) ,  from 
which continuity of @ in {(s, ~): s > ~ > 0} follows. 

For  the rest of this section, let us fix t>0 ,  abbreviating ~s(t) to ~s. Since 
is continuous, decreasing and adapted, the semimartingale {B~-~9~: s>t} has 

a local time 2 at zero. The main result of this section is the following. 

Theorem 2. Fix a~]R. The process 

Ca,~-= 2(z(t, a))-2(z(t ,  x)) (x>=a) 

is continuous, increasing and (g~)-adapted. The process 

{Z~,~: x>a}=_{L(t, x) + 2 x -  + C,,~: x>a} 

is an (8~)-martingale bounded in L 2. 

Proof Monotonicity of C follows by monotonicity of 2 and z (t,-). It is elementary 
to show that z(t,.) is left-continuous and decreasing, and if for some b>a, 
z(t, b+)=u<z( t ,  b)=v, then A(',b) is equal to t throughout (u, v) and hence 
if follows that B~>b for all sE(u, v) a.s. But ~ = b  for all s~(u, v) so that B ~ - - ~ > 0  
throughout (u, v); hence the local time 2 at zero for B--O cannot grow on 
(u, v). Thus 2(z(t, .)) has no jump at b, even though z has. 

To see that C is (d~ notice that for y ~ x 

A(z(s, x), y)= f Ir du 
0 

so that A(z(s, x), y) is g~-measurable, and hence for s>t, ~(~,~) is also 
g~-measurable. For s~(z(t, x), z(t, a)), ~ < x ,  from which it is not hard to deduce 
that 2(~(t, a))-2(z(t, x)) is the local time at zero of the g~-measurable process 
/~(', x)-~9~(.,~)between the times t and A(z(t, a), x), both g~-measurable. 

Now for the main part of the theorem, the statement that Z~ is an 
(C~)-martingale. Let us fix y > x > a  and consider Z~,y-Z~,~. Because/~ii, x)<x 
for all t, x, Tanaka's formula at the stopping time z (t, x) yields 

-�89 L(t, x)= ~(t, x)-(x A 0)-  
(t, x) 

I(B,~x} dBs, 
0 

so that 

(9) {;(t,  y ) -L( t ,  x)) = B(t, x ) - ~ ( t ,  y ) - ( x  A 0)+ (y ^ 0) 
�9 (t,y) ~(t,x) 

+ ~ l(~,yl(Bs)dBs-- ~ I~B<=~,~dBs. 
0 z ( t , y )  
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Next, using the Tanaka-formula definition of )0 between the stopping times ~ (t, y) 
and z(t, x) yields similarly 

(10) �89 {.~(t, x) -- ~'(t, y)} = (/~ (t, y) -- ~ (t, y)) A 0 -- (B (t, x) -- ~ (t, x)) A 0 
~(t,x) 

+ 5 l{Bs-o~=<o}d(S.-tPs), 
z(t,y) 

where 7.(t, y)-)~(z(t ,  y)), ~(t,  y) = tp~(t,y ~ are the customary abbreviations. Notice 
that ~(t, y )=y ,  and that/~(t,  y)<y ,  so adding (9) and (10) gives some cancella- 
tions, yielding 

(11) �89 {L(t, y ) - L ( t ,  x )+ ~(t, x ) -~ ( t ,  y)} 
r (t, y) 

= x - - y - - ( x A O ) + ( y A O ) +  ~ I~,s1(B~)dB ~ 
o 

~(t,x) ,(t,~) 

+ ~ (I{Bs<=O~}-I{~<=~})dB, - ~ I{B~_-<_O.~}dt~ �9 
z(t,y) ~(t,y) 

Observe that for r(t, y)<s<'c( t ,  x), ~ takes values in Ix, y), so that the penulti- 
mate term on the right-hand side of (11) simplifies to 

,(t,x) 

5 I{x<~s-<o,} dB~. 
~(t,y) 

To simplify the final term on the right-hand side of (11), notice that 

Indeed, if we suppose that B~> Os for all s in some interval (u, v), and also 
that Ov < t)u, then we have 

t=A(v, ~0 = A(u, 0 0  > A(u, ~'0. 

However, since Bs>Os>=O~ for all s in (u, v), it must be that L(v, x )=L(u ,  x) 
for all x<O~,  and therefore A(v, O~)=A(u, ~ ) ,  a contradiction. 

Thus the final term on the right-hand side of (11) is 

t(t ,x) 

-- S d O s = ~ ( t , Y ) - ~ ( t , x ) = y - x ,  
~(t,y) 

and assembling this gives 

(12) �89 {L(t, y ) -  L(t, x) + ~(t, x ) -  ~(t, y) + 2 y -  - 2 x -  } 
~(t,x) 

= 5 I{x<B~<yAos}dBs �9 
o 
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Now the left-hand side of (12) is Z ~ , y - Z  .. . .  and the right-hand side is bounded 
in L 2 uniformly in y. To see this, we estimate 

,13, d st 
( ~(t,x) S) 

= E  ~ I{~<B,_<y,,o~}d 
0 

oo 

= E  ~ I{x<Bs<=y,,o,}ds, because O , < x  fo r s>z ( t , x ) ;  
0 

oo 

=<E ~ I{~<B,<q,~}ds 
0 

oo 

= E  ~ l{x<B,,A(s,es)_<_t } ds 
0 

~x3 

= E  ~ dy  S L(ds, y)I{A(s,r)<t} 
x 0 

oo 

= E S d y L(z(t, y), y) 
x 

0 oo 

=< S c dy + ~ cP~ y before t) dy  
x 0 

where c =E(L(z( t ,  0), 0)). 
Thus we have an L 2 bound on the right-hand side of (12). However, since 

the right-hand side of (12) is a stochastic integral involving only increments of 
B at times when B > x, by Lemma 1.2 of McGill [M], its conditional expectation 
given Ex is zero. Since the left-hand side of (12) is, as already noted, Z a , y - Z  .. . .  
the proof is complete. [] 

3. The local time process of A (t, Bt) 

The main aim of this section is to prove the following result. 

Theorem 3. There exists a jointly continuous version of the process 

{2(s, a; t): 0 < t  <s, a~N., a=l=Bt-St} , 

where 2 ( ' , .  ; t) is the local time process of {B s -  @s (t): s > t}, and S t =- sup Bu. 
t t<_t 

Remarks. The proof of this result uses Kolmogorov's Lemma, but with some 
modification of the underlying processes in order to get round a technical diffi- 
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culty. These modifications prevent one from concluding the joint continuity 
in (a, s, t) which one wants, but the result we give is sufficient for the applications 
we have in mind. Before proving Theorem 3, we look at some easy consequences. 

Theorem 4. For bounded measurable f: IR + x N. + ~ IR, for t >O, 

(14) 
ff t t 

f (s ,  A(s, B~)) L(s, B~) ds = ~ dy  ~ f (s ,  y) 2(ds, O; y) 
0 0 0 

Proof. It suffices to prove (14) for the case where f depends only on its second 
argument, the general case following by familiar techniques. So we aim to prove 
that 

(15) 
t 

f (A(s, B~)) L(s, Bs) ds = ~ f (y) 20:, O; y) dy, 
0 

and, since ~Im}(A(s, B~))ds=0, it suffices to prove (15) for f vanishing in some 
neighbourhood of 0. Take some qSeC~ which is non-negative, supported in 
(0, oe) and such that ~ b ( x ) d x =  1. Then the right-hand side of (15) is equal 
to 

(16) lim ~ ~b(x) dx ~ f(y) i(t, ex; y) dy  
a ,Lo  

using Theorem 3. But (16) is equal to 

t 

lim ~ d y f (y) ~ ~b (e- 1 (B~ - 0s (Y))) d s/~ 
~ { 0  y 

' d_j: 
=l im ~ ~5(v)f(A(S,  Bs--av))eL(s, Bs--ev)dv 

el ,  O 0 

using the substitution v = a  l(Bs-Os(y)) and the fact that OOs(y)/t?y 
= L(s,  O~(y))-  ~; 

as stated. [] 

t 

= ~ f (A(s ,  Bs)) L(s, Bs) ds, 
0 

From this we can deduce easily McGill's result that the derivative (2) is 
the compensator of L(t, x )+  2 x - ,  identified in Theorem 1. 

Corollary. For x > a, 

(17) 
x 

�89 S L(t, y)Z dy = i {2(,(s, a))-2(z(s ,  x))} ds. 
a 0 
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P r o o f  By (5) the left-hand side of (17) is 

L(s, B~) I[o,o(A (s, Bs)) I[a,~)(B~) d s  
0 

T = ~ dv 2(ds, 0; v) Ita,x)(Bs) by (14); 
0 0 

= f dv 2(ds, 0; v) It.,x)(O~(v)), 
0 0 

since 2( ' ,  0; v) grows only when B~-- ~ks(v) is zero; 

= i d r  ~ 2(as, O; v)I{A(s,a)<v<A(s,x) } 
0 0 

= i dv ~ 2(as, 0; v)I(~(v,x)<s<_~(v,a)}, 
0 0 

from which (17) follows immediately. []  

P r o o f  ( o f  Theorem 3) .  Fix e > 0  small, 
= N A inf{u: [B u 1> N}, and set 

and N e N  large, define T=- Tu 

x 

A ~ ( s , x ) - A ( s A  T,O)+ ~ (L(SA T,y) v s)dy, 
0 

~,~(t) - in f{x :  A *(s, x) > t}. 

Then throughout {(s, x): 0 < s < T, inf Bu < x < sup Bu}, we have A ~ (s, x) ~ A (s, x), 
u<s u<=s 

with eventual  equality.  Moreover, for 0 < t < s =< T, we have [0~(t) l <l~q(t) l < N, 
and ~p~(t)~Os(t) as s~0, with eventual  equality.  Notice that for a = g B t - S ,  there 
is an interval of time to the right of t during which B --a  does not encounter 
O.(t) nor, for all sufficiently small e, ~. (t), since ~b,+ (t)= S,. Thus it is sufficient 
to prove the existence of a jointly continuous local time 2~(s, a; t) for B . - ~ .  (t), 
because for 0 < t < s <  T and all a s l R ,  a ~ B t - - S t ,  2"(s, a; t) is eventually equal 
to 2 (s, a; t). To establish the existence of a jointly continuous version of 2"( ., - ; ' ) ,  
we analyse Tanaka's formula. For 0 < t < s < N ,  we have 

(18) �89 2 ~ (s, a; t) = (Bs ^ T -- ~k~ ̂  T (t) -- a) + -- (Bt,, r - -  ~k~ ̂  T (t/X T)  -- a) + 
S A T  

- -  ~" Iw~-o~(o-~>o}d(B.-O~(t)) - 
t A T  

The joint continuity of the first two terms on the right is immediate, leaving 
only the integrals. Writing 

s A T  

T ( s , a ; t )  = ~ Iw~-o~(o -~>o}dB . ,  
t A T  
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we have that for p > l, with Cp denoting a constant depending on p (and changing 
from line to line), 

(19) E[ 7J(s, a; t ) -  T(w, b; v)] p 

=< Cp {E 1 7J( s, a; t) - 7J(w, a; t)[P + E I ~(w, a; t) - T(w, a; v)I p 

+ E  [ ~(w, a; v ) -  kV(w, b; v)]P}. 

Estimating the terms one by one, the first is trivially at most Cp [s -w [p/2. For 
the second, assuming t__> v without loss of generality, we have an upper bound 
of 

E u, A T p /21  (20) Cp It-rip/2+ f l{0f,(v)<Bu_a=<0f,(0)du 
t A T  

{ E ~" rI{o<B~_~_O~,{~);(r_~)/~} dulP/2 } <Cp [t-riP/2+ ~ 
t A T  

since 0~(.) is globally Lipschitz with constant s -1. Now the estimation on 
pp. 100-101 of [RW] shows that if X is a continuous semimartingale whose 
martingale part M is bounded by K, and such that the variation of A = X - M  
is also bounded by K, then the inequality 

E oo p/2 
l(a<xs<=b~ d[X]s <6  p/2 CpK p 

0 

holds, where 6 - b - a > O .  This inequality is applicable to (20) because B T is 
bounded by N, and because u~--~O~(t) is Lipschitz continuous with constant 2 s-1. 
To see this, suppose that ~=Os(t), t /=0s+h(),  where h>0.  By definition, 
A~(s, ~)=t= A"(s + h, ~), so 

O=A~(s+h, O)-A~(s, 0)+ S (L(s+h, y) v e) d y -  S (L(s, y)v  s) dy  
0 0 

= A~(s + h, 0 ) -  A~(s, O) + ~ {L(s + h, y) v s -  L(s, y) v e} dy 
0 

- ~ (L(s ,  y) v s) dy, 
r/ 

whence 
r ,1 

(L(s, y) v s) dy  = A ~ (s + h, 0 ) -  A ~ (s, O) + ~ {L(s + h, y) v s -  L(s, y) v a} dy. 
0 

Now the integrand on the right-hand side is non-negative, and is at most L(s 
+h, y)--L(s, y), so the modulus of the integral is at most h, and we conclude 
that I ~ - t/] ~_ 2 h/s. Returning to (20) we have an upper bound of the form 

C(p,N,~)]t--v] p/2. 



The intrinsic local time 373 

The estimation of the final term on the right-hand side of (19) follows exactly 
similar lines, yielding 

E [ 7~(s, a; t ) -  T(w, b; v)]P < C (p, N, e) {[s-- w ]p/2 + ] t -  v [p/2 _~_ [ b--  a iv/2}. 

By taking p > 6, we get the kind of estimate needed to feed into Kolmogorov's  
Lemma, and give a jointly continuous version of 7 ~. It remains now only to 
establish the existence of a jointly continuous version of the finite variation 
integral in (18): 

S A T  

(21) @(s,a; t)= ~ I(~u-of,(t)-,>o/dO~(t). 
t A T  

Because 0 ~. (t) is Lipschitz with constant 2 e-  1, we have 

[ O(s, a; t ) - O ( w ,  a; 0[=<3e -1 I s - w [ ,  

leaving only the continuity in a, t for some fixed s. This turns out to be quite 
a bit more difficult than might at first sight appear. We need a subsidiary result. 

Lemma. Suppose that f , :  [0, N] ~ [ - 1 ,  1] are measurable, and that f , ~ f  in 
measure. Let  kt, be signed measures on E0, N] with densities p,  with respect to 
Lebesgue measure, [p, I <__ 1, and assume that #,=~#. Then 

N N 

f ,  d# ,  ~ ~ f d # .  
0 0 

Proof. Firstly, note that d -  {bounded Borel g: [0, N] -~ • s.t. ~ g d #, --. ~ g d #} 
is a vector space containing constants, closed under uniform limits, and also 
closed under bounded monotone limits; since d contains the algebra of continu- 
ous functions, by the monotone-class theorem (see, for example, [DM],  1.21) 
d contains all bounded Borel g. To finish the proof, define f2=-( f ,  A ( f  
+ e ) ) v ( f - e )  and notice that I f - f , ~ l < e ,  and that for all large enough n, 
Leb({f,  + f2}) < e. Thus 

[ ~ f . d # . - ~ f  d # l < = l ~ ( f . - f ~ ) d # . [ + ] ~ ( ~ - f ) d # . [ + [ ~ f  d # . -  ~ f  d#[ 

which tends to 0 as n - ~ .  []  

Now the measures with distribution functions u ~ - ~ ( t )  vary continuously 
(in the weak topology) with the parameter t, and have bounded densities, so 
the existence of a jointly continuous version of ~g will be achieved once we 
can prove that the functions 

U b-* I(B ~ _ Off(t) - a > O) 

vary continuously in measure with the parameters t, a. To this end, define 

s A T  

O(t,t',s,a,a')---- 
( t v t ' ) A  T 

[ I(uu--Off(t)--a> O}-- I{Bu_O~(t,)_a, > O} [ d u. 
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We shall prove that this has a jointly continuous version in all five variables, 
and this will be enough. Without loss of generality, assume that 0 < t < t' < s < T, 
to ease notation. 

Elf(t, t', s, a, a ' ) - -$ (v ,  v', w, b, b')l p 

C { I s - w [ P + g l  ~(t, t', s, o, a ')- ,~(v, v', s, b, b')l'}, 

the second term of which is bounded above by 

E s A T  

[ t ' - v ' l ' +  S {I I~.-~,e,)-a > o~- I~B,-oer o/I 
v '  v t f 

- -  I I { n .  - O~,(v) - b > 0 }  - -  l iB , -  0a(v') - b' > oil d u} p 

s i T du p 
<=lt '--v ' lP+2;-tE _ [ I { B . - q t ~ , ( t ) - - a > o I - - l ( B . - - t P ~ , ( v l - b > O } ]  

vr v t ' 

s A T  p 

+ 2 V - l E  , ,! t ,  ]I{B"-q'g(r)-a'>O}--lfn"-O~(v'I-b'>o}l du , 

and both of these terms can be estimated as they were for the integral with 
respect to B. Once again, an application of Kolmogorov's Lemma completes 
the proof. [] 

4. Obtaining the compensator of /S(t ,  .)  by excursion theory 

Since the compensator of L(t,-) is quite singular, it seems worthwhile to obtain 
O9 

instead the compensator of ~ e-~tL(t, ")dt, and then unravel the Laplace trans- 
0 

form. This is the method of McGill [M], by which he obtains (2). Our aim 
in this section is to establish the following result, which is at the heart of McGill's 
analysis. 

Theorem 5. Fix 0 > 0, a < b, and let 2 - �89 0 2. Then 

(22) I ] E ~ 2e-a*L(t,b) dtlga 
I -0  

= E  ~ e aA(~'b)L(ds, b 
0 

(23) = ~ sech 0 6 ~ exp { - 2 t -  �89 0 tanh 0 ~ L(t, a)} L(d t, a), 
0 
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where 6 - b - a and 

e = l  /f a > 0  

=cosh O b + sech 06 if a<0 .  

Remarks. From (23), with a__> 0, 

3-1E[f,te-a*(L(t, b)-r , ( t ,  a)) dt[Ea] 

co 

= ~ e - st 6 - 1 {sech 0 6 exp(-- �89 0 tanh 0 6 L(t, a ) ) -  1 } L(d t, a) 
0 

---,- ~e-~t2L( t ,  a)L(dt,  a) as 6~0; 
0 

= -- S 22e-ZS �89 a) 2 ds, 
0 

which makes it look very plausible that the compensator of 

oo 

should be 

(24) S S 22e-ZS�89 2d dy. 
0 \ 0  

A little care is needed over this; see Sect. 4 of McGill [M]. Given this, the 
statement that (2) is an expression for the compensator of L(t, .)  looks eminently 
credible - and, as we have proved, is true. 

Proof The equality (22) is obtained by a trivial integration by parts. The cases 
a > 0  and a < 0  of (23) need slightly different treatment, according as {Bt: 0 <  t 
=<Ha} is ~a-measurable or not (Ha=inf{t:  Bt=a}). We shall leave to the reader 
the trouble of bolting on the modifications required for the initial part of the 
path, and shall treat only the case a = 0, to which all others can be reduced. 

Let U denote the space of Brownian excursions: 

U = { f E C ( I R + , N ) : f - I ( I R \ { O } ) = ( O ,  0 for some [>0} ;  

where for f e U ,  ( - i n f { t > O :  f ( t )=O} is called the lifetime of the excursion f 
The space U decomposes naturally into U+ w U_, where 

U+ = { f e  U: f ( t )  > 0 for all t}. 

The Brownian path can be decomposed into its excursions, yielding a point 
process in (0, 00) x U, which turns out to be a Poisson process with expectation 
measure d t x d n, where the a-finite measure n is the so-called excursion law 
of Brownian motion. For  more information on Brownian excursion theory, 
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(25) 

where 

consult Part 8 of Chapter VI in Rogers and Williams [RW] ; in particular, the 
characterisation of n given in Theorem VI.55.11 will be used without further 
comment. 

Let N denote the Poisson random measure of excursions and let N_+ denote 
the restriction of N to U_+. Then go is the a-field generated by N_ and every 
zero-mean L 2 (go) random variable Y has a stochastic integral representation 

Y = ~ q~ (s, f )  _N_ (d s, d f) ,  
( O , ~ ) x  U_ 

I ] E ~ ds ~ n(df)4(s,f) z <oo, 
LO U -  

and N_ is the compensated Poisson random measure 

N_ (ds, df ) -N_ (ds, d f ) - d s  n(df). 
Define 

7t- inf{u:  L(u, O) > t}. 

Then it is easy to see that 

oo 

(26) ~ e-~'A{s'b)L(ds, b) -= SS Vt- (~(f)N(dt, df) 
0 [O, colx O 

(27) 

say, where 

and 

~X, 

V~=-exp{-2A(Tt, b)}, 

4 ) ( f ) = ! e x p ( - 2 f  l(-oo,b](f~)ds)ly(du, b), 

where ly(', ") is the local time process of the excursion f. Notice that ~b is sup- 
ported in U+, so that the N-stochastic integral representation of X is actually 
a stochastic integral with respect to N+. Notice also that since 

X= ~ 2e-~tL(t,b)dt 
0 

<= ~ 2e-~tL(t+Hb, b) dt, 
0 

a random variable with an exponential law, X possesses all moments. 
Thus 

M r -  ~S V~_ q~(f)N+ (ds, df)  
(O, t lx  U+ 

is an LZ-bounded martingale which is purely discontinuous and orthogonal 
to any stochastic integral with respect to N_, because the jumps of N+ and 
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N_ never coincide in time. Because of the stochastic integral representation 
(25), then, 

E[M|  Ig0]--0, 
and hence 

(28) EEZl~o] ~EEX~ y,_ r (dt, df)l Eo] 
oo 

expressing the thing we are interested in as the product  of two factors. The 
first we shall evaluate presently using Theorem VI.55.11 of Rogers and Williams 
[RW],  but before that, we deal with the second. 
We prove that 

(29) E [ Vt [ 6~o] = e x p ( -  2A (?2t, 0 ) -  c t), 

where c=�89 The argument was supplied by a referee, and replaces 
our longer original. The function 

�9 (x) = cosh O(x- b)- 

is a bounded positive solution to 

12~d)'t ---- 2 / ( O , b ]  ~ 

and hence by It6's formula, with c = # '  (0)/#(0)= �89 0 tanh 0 fi, 

Yt=-q~(B,)exp{-2/I(o.bl(B,)ds+cL(t,O)} 

is a continuous martingale, 

Yt=r + S ~'(Bs)exp --2 I~o,o~(B,)du+cL(s,O ) ICB~>o)dBs. 
0 

But then E(Y(7~)Jgo)=~(0) by Lemma 1.2 of McGill [M], as at the end of 
Sect. 2. Hence 

E [-exp { - 2 (A (7, b) - A (7t, 0))} ] go] = e -  at 

from which (29) is immediate. Now a little calculus takes us from (29) to 

[o; (30) E Vtdtld~o = I exp(-2t-cL(t,O))L(dt, O). 
0 

So, in summary, the result (22) which we want follows from (28) and (30) once 
we can prove that 

(31) ~ q5 ( f )  n ( d f ) =  sech 0 3. 
U 
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No te  that  q~ is zero unless the m a x i m um  of the excursion f exceeds b; by Wil- 
liams' character isat ion of  the Brownian  excursion law, the n-measure of  excur- 
sions which exceed b is 1/2b, and, given that  the m a x i m u m  is greater than  
b, the excursion behaves as a BES(3) process until it reaches b, and thereafter 
it behaves as a Brownian  mot ion.  

Thus  

[~ ] 
(32) J O ( f ) n ( d f ) = 2 b  s inh0b  Eb ~ L(ds'b)e-Za(~'b) ' 

u o 

since 2~-~ ~ / ~ b  cosech ~ b is the Laplace t ransform of the BES(3)first  passage 
law. By L6vy's character isat ion of  reflecting Brownian  motion,  we have that  

Eb S L(ds, b) e-)'m~'b) = E ~  2L(ds ,  0) e - z  , 
0 

where T = i n f { u :  IBul =b},  and this is equal to 

(33) 2E~ e-)'~ L(ds,  0)] (1--E~ 

using the strong M a r k o v  proper ty  at the s topping time S = i n f { t >  T: B t=0} .  
Hence (33) is equal to 

(34) 2 0o 0 -1  ~ ( 1 - e -  sech 0 6 ) = 2  tanh 06. 

Assembling (32) and (34) yields (31). [ ]  
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