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Summary. This paper deals with a heat kernel formula in a geodesic chart 
with some applications to the standard n-sphere. Our emphasis will be on the 
special case of the 3-sphere which exhibits some identities linking spherical har- 
monics and certain homogeneous polynomials harmonic on ]1t 4 . In particular, 
we will deduce an expression for P~(~> t) where ~ is the first (random) time 
that the bridge process in S 3 hits the south pole. Another  easy consequence 
will be a special case of the H.P. McKean and I.M. Singer expansion of the 
heat kernel. 

1. Introduction 

We will first give the notation for a general (complete connected) Riemannian 
manifold M. c I f  [6]. Let L =  �89 A + b + V be a differential operator on M where 
A is the Laplace-Beltrami operator  on M, b a smooth vector field on M and 
V a continuous potential term supposed bounded above. 

Let 0r be the Jacobian determinant of the exponential map expr: T r M --+ M 
at y ~ M: 0y (x) = [ detv Tv expy J with x = expy (v) ~ U where U c M- -  Cut (y) is star- 
shaped from y and Cut(y) is the cut-locus of M at y. Star-shaped here means 
that for any x~U there exists a unique geodesic joining x and y and lying 
entirely in U. Let 

(1.1) Br(x) =exp  { i (~(s),b(7(s)))ds}, 

where 7 is the unique minimal geodesic from x to y parameterized to take 
unit time. 

Then let, 

(1.2) C r (x) = B r (x) 0y (x)- ~, x e M - -  Cut (y) 
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~ d(x, y)t 2 
and let qt(x'Y)=(2~O-zCr(x)exp ~ 2t J , where n is the dimension of 

M and d is the distance compatible with the Riemannian metric on M. Let 
PtM( - ,  --) be the heat kernel of M relative to L and P f ( - ,  - )  the Dirichlet 
heat kernel of U relative to L. Let S"=(S"(1), go) be the standard n-sphere. 
Fix a point (the north pole) yeS" and let 33 (the south pole) be the point anti-podal 
to y. 

The notion of the semi-classical Brownian Riemannian bridge is better under- 
stood via the construction of the canonical Brownian motion (with time-depen- 
dent drift) as carried out in [7], Chap. VII, w 1 and w 12 or in [9]. 

To start with, consider the underlying probability space (~2, F, P). We can 
construct (f2, F, P) as follows: Let t > 0, define f2 = Co ([0, t] ; R") = space of con- 
tinuous paths from [0, t] to R" starting from 0eR". F is the a-algebra generated 
by the Borel cylinder sets. A Borel cylinder set B c 12 is a set of the form. 

(1.3) B =  {(~ef2: (o)(tl), ... , co(tm))eE } 

for 0 , <  t l  < t 2 <  . . .  <tm and EeB(R"). 
P is the Wiener measure on (f2, F). Let H: O(M)-~M be the or thonormal  

frame bundle and let TFI: TO(M)-~ TM be the derivative map. For  ueO(M), 
we have the subspace ker T,H of T, O(M). Then set 

(1.4) VTO(M)= ~) k e r T . n  
u e O (M) 

to define a subbundle VTO(M) of TO(M). The Levi-Civita connection on M 
determines a unique complementary horizontal subbundle which we denote by 
HTO(M). 

Hence we have: 

(1.5) TO(M)=VTO(M)OHTO(M).  

In terms of fibres we have: 

(1.6) T~O(M)=VTuO(M)OHT, O(M), ueO(M). 

This determines a map: 

(1.7) X: O ( M ) x R " ~ H T O ( M ) c T O ( M )  

which is a trivialization (i.e. a diffeomorphism) of the horizontal (sub)bundle 
H TO (M): X is defined as follows: 

(1.8) X (u, e) = (TIII H TO (M)) - 1 (u (e)), 

where TH[HTO(M) is the restriction of TH to HTO(M). 
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Equivalently, X is the inverse of the map: 

g: H TO (M) ~ 0 (M) x R" (1.9) 

defined by: 

(1.10) g(v) = (u, 0(v)); v e I - / r ,  O (M), 

where 0: TO (M) ~ R" is the canonical 1-form restricted to H TO (M). 
Given a C a time-dependent vector field on M 

As: M ~ TM, O<s<t  

let As: O (M) ~ TO (M) be its horizontal lift: 

(1.11) As(u)eHT, O(M) and TH(_~s(u))=As(II(u)); O<s<t.  

Now fix x s M  and take uosH- l (x ) .  Let (us)O<=s<t/x~ be the solution of the 
Stratonovich stochastic differential equation for u: [0, t/x ~) x f2 ~ O (M) 

(1.12) d us = X(us, 0dBs) + Jts(Us) d s 

u(0, ~o)=uo, coe~, 

where (Bs)0 < s < t is the n-dimensional Euclidean Brownian motion defined on 
the basic space (f2, F, P) and ~ is the explosion time of the solution process 
(us)O<s<t/,~. 

Finally xts = lI  (us), 0 <= s < t/x ~ is a diffusion process starting from x =H(uo)  
with differential generator �89 + As. We distinguish four cases: 

(i) When As =0,  then the process (xs)0_< s_< t/x ~ (which is independent of t) 
is just Brownian motion on M. 
(ii) When As=b (b independent of time s), then (xs)0_<s_< t/x ~ (independent 
of t) is Brownian motion with drift b on M. 
(iii) When A s = b + V log Pt_Ms ( - ,  y), then (x t) 0 -< s ___ t/x ~ is the classical Brownian 
Riemannian bridge with drift b starting from x e M  and ending at y e M  in time t. 
(iv) When A = b + V log q t - s ( - ,  Y), then (xts) 0 _  s_< t/x ~ is the semi-classical 
Brownian Riemannian bridge with drift b starting from x e M  and ending at 
y e M in time t. 

Since the semi-classical Brownian Riemannian bridge with drift b (x~)0 < s 
__<tA ~ defined on the basic space (f2, F, P) starts from the point x ~ M ,  we will 
write (f2, F, P~) instead of ((2, F, P) to emphasize the fact that P (coe~2: x~(o~) 
= x) = 1. The corresponding mathematical expectation will be denoted by Ex. 

2. The heat kernel formula in a geodesic chart 

Here we will prove the heat kernel formula for U c M - - C u t ( y )  star-shaped 
from y. This was proved in [16] and given in [15] for b=0 .  We will first 
assume that U has compact closure [7 in M - C u t ( y ) .  
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Let fz  be the solution of the diffusion equation in U with Dirichlet boundary 
conditions: 

(2.1) af?  = L f /  
at  

fox=(2 ~2)-2 To exp { d(2~Y)2 ~ 

f~(x) = 0 Vx~aU; t>0,  

where To is of compact support in U with To(y)=1 and 0U is the boundary 
of U. 

2.1. Theorem 

Proof. 

(2.2) 

Pf(x, y)= limfi;'(x) 
2,LO 

f~(x) = ~ fox(z) Pf(x, z) dz, 
U 

where d z denotes the volume element measure on M. Replacing fo x by its value 
given in (2.1) above, we have: 

~" { d(z, _y)2~ 
(2.3) f~a(x)=(2~2)-g5 To(z)exp 22 j P f ( x , z ) d z  

U 

--~ ex- f tlvlIq (2.4) =(2n2) 2 f To(exprv) p ) . - ~ - ; P f ( x ,  exprv)O,(v)dv 
TyM 

by Lemma (2A) of [103 and the fact that T o has compact support in U. 
Setting v = o~/)~, (2.4) becomes: 

( 2 . 5 )  f,a(x)=(2n)-2 ~ To(expyo)V~)exp{ -[tc~ 
TyM 2 

�9 Pf(x, expy co If2) Or(e) ~/-~) d o). 
Thus, 

lim   x = 2   SVy exp{  12} -- Pf(x, y) Or(O ) do) 
2 $ 0 TyM 

= Pf(x, y) 
since 

* exp{--[ '~ ll2} -~ d co = (2 n)2 
TyM 

and T o (y) --- 1 = 0r (0). 
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A probabilistic representation of the solution ft ;~ of the diffusion equation 
in (2.1) is given by the Feynman-Kac formula: 

(2.7) ( }) ftZ(x)=E~ \7.r exp "~ ~ V (ys) ds , 

where z = z (x) is the first exit time from U of the diffusion process (Ys) 0 < s < oo 
with generator L o = �89 + b. By the Girsanov-Cameron-Martin formula: 

(2.s) f/'(x)=E~(x**>Jff(xta)M~ exp { i  V(x2)ds}), 

where 

(i) For  each t>0 ,  (x2)0<s  < t A (~ is now a diffusion process starting from x~ U 
with generator L o + A2 where A2 is defined in geodesic normal coordinates by: 

X 
A~'(x)= 2+t_s+VlogCy(x) i.e. A~'(x)=Vlogqx+t_s(x,y). 

Thus (x2)0_<s-< t a (~ is the semi-classical Brownian Riemannian bridge with 
drift b in M - C u t ( y )  starting from x~ U and ending at y in time 2 + t. 

started (ii) (~ is the first hitting time of the cut-locus by the bridge process x~ 
from U. at x e U and C is the first exit time of x, 

(iii) M~ 0 < s <  oo is the exponential local martingale given by the stochastic 
differential equation 

i . e .  

(2.9) 

d M $ =  '~ "~ -- M s ( A, (xs), u~ dBs), 4 

Mg=I 

M,~-exp { ! - -  (4~a~(xs), u~adBs)~O-�89 
0 

where (u, ~) 0 < s < t A ~ is the horizontal lift of (x~) 0 < s < t A (;" on the orthonor- 
real frame bundle O(M) of M: xs-;'-II(u~). 

Much of the proof  of the heat kernel formula in a geodesic chart is based 
on the computations of M~: 

2.2. Lemma 

2 __n d.xX ,2", 
M ~ = ( ~ - 7 )  2 e x p {  d(x'y)22(2+t) ' t ~Y ,  ~ 

�9 Cy(x)Cy(xt~)-lexp{f~yY(x~)ds t 

where L o = �89 A + b. 
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Proof Define y x: M ~ R by 

d(x, y)2 ~-logC,(x). 
Y~Z (x) = 2 (2 + t -  s) 

Then ~" VY~ =A~ and so by It6's formula, 

(2.10) Yt~(x~) = Y~'(x)+ i 8Y~ (x2) d s +  i (A~'(x~),u2 dBs}~: 
o --~-s o 

t 
+ ~ (V Y~ (x2), b (x2) +A,(x,)}x,a ~ , d s +  i �89 y Z(x2) d s 

0 O 

a . s .  

Now, using (2.10) above we substitute for 

-- i (A~(xZ~) , u~ dB~>~,2 
0 

in (2.9), to have: 

(2.11) M•=exp {Yo~(X) - Yta(xt~) + o i ~ - s  (x~) ds+~- ~ 8Y~z ~ 1 i]LA:(x:)][2 ds 

(A,(x~), b(x2)} d s + � 8 9  AY~a(x~)ds 
0 0 

a . s .  

Setting r(x)= d(x, y), we have: 

A2 (x) = V Y~;" (x) = 
r(x) vr(x) 
2+t--s )- V log Cy(x). 

Hence we have: 

rZ(x) r(x) (Vr(x), VlogCy(x))+�89 IlVlog@(x)l[ 2 
(2.12) �89 2 + t - ~  

r2(x) r(x) 8 logC/x)+�89 
(2.13) = 2 ( 2 + t - - s )  z-- 2+t--s Or 

Recall that if a C2-function f :  M ~ I R  depends only on r(x), then: 

zJ- O 2 f  [n--1 0 logOy) 8f 
}=?~-: +~-U +~; Or 

and hence, 

(2.14) �89 Y,~ - l [2+(-~rl+~--~logOy) 2r]+�89 
4(2+ t - - s )  

8 1 [n+r~_~rlogO,]+~AlogCy" 
2(2+ t - - s )  
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It is easily shown (see for example [-18]) that 

(2.15) (V r (x), b (x) + V log By (x)) = 0 

and so, 

(2.16) (A2(x), b ( x ) ) -  
r(x) 

2+ t - - s  

r(x) + - -  
2+t - - s  

- -  ( V r(x), b(x) ) + ( V log Cy(x), b(x) ) 
2 + t - s  

r(x) 
- -  (Vr(x), b(x)+ V logBy(x)) 

(Vr(x), V log By(x)) + (V log Cy(x), b(x)) 

(2.17) 
r(x) 

- 2 + t - s  (Vr(x), VlogBy(x))+(VlogCy(x),  b(x)) 

r(x) 0 
- 2 + t - -  s c n r log By (x) + ( V log Cy (x), b (x)).  

Thus by (2.14) and (2.17), we have: 

(2.18) (A2(x), b(x))+�89 n + r(x) 8 

Finally, we have: 

2(2+t--s) 2 + t - s  8r 

+ (�89 A + b) log Cy (x). 

log Cy (x) 

(2.19) 8Y~ (x)= r2(x) 
t~S 2()~+t--s) 2 

and so by (2.13), (2.18) and (2.19), M{  in (2.11) becomes: 

r2(x) + ~ + l o g C y ( x ) - l o g C y ( x ~ )  (2.20) M~=exp{  2(2+ 0 

+I }llVl~ 2(2+t-s )  ds . 
0 

A direct computation shows that: 

1 A Cy (x) 
(2.21) k 11V log Cy(x)II 2 +kA log Cy(x)=~ Cy(x) 

vc,(x)\ 
and since (b(x), V log Cy(x)) = b(x), C ~ - / "  We have: 

(2.22) } II v log C,(x) l l  2 +(�89 +b)log Cy(x)= L~ x) . 
% ix) 
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Therefore (2.20) becomes: 

M{ =(2@t)~ exp { 
r2(x) r(x{)) C,(x) exp ," { LoCy (~r (2.23) 

2 (2+0  ~ - ~  C,(x~) ~ Jo 

and so the Lemma is proved. 
The following Lemma is proved in [10]. 

2.3. Lemma. (x2)O<_s<_t converges as 250 uniformly on [-0, t] in probability to 
a process (x~) 0 < s <_ t where 

xs=x ~ Vse[0, t) 

x t  = y a . s .  

i.e. (xs)O<_s <_ t/x ( is the semi-classical Brownian Riemannian bridge with drift 
b from x to y in time t. 

2.4. Lemma. The indicator function X~>t of the first exit time z;" of the bridge 
process (xZ~) 0 < s <- t A (~ from U has the property: 

X~>t=limSexp S Wv(x~) ~.d a.s. 
p ~-0 

where (VVp) p>= 1 is a certain decreasing sequence of bounded continuous functions 
on M. 

Proof (by Construction). Define the sequence of open subsets of M: 

Up={x~M: d(x,/.7) < 1 } ;  p=>l 

and define the sequence (Wp) p > 1 on M as follows: 

(2.24) ~ 0 o n  (7 

Wv= --min[p 2 d ( - ,  t2), p] on Up- U 
L - - P  on ~ .  

Then clearly (Wv) p >  1 is a decreasing sequence of continuous function on M 
each of which is bounded above (in fact it is uniformly bounded above by 
0). Moreover from the definition of l/Vp, we have clearly: 

(2.25) Ze~>_t=lim~exp{iWp(x~')ds } 

where fx is the first exit time of the bridge process (x~')0 <s-< t/x (a from U. 
Since U has smooth boundary, 

(2.26) ~z--zz a.s. 
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and hence, 

t 

(2.27) X~ ~, = lira ~ exp {o~ Wp (x~) d s } a.s. 

Now, by [11], Theorem (5.2), p. 47, the Cauchy problem in U for the parabolic 
equation: 

(2.28) ag~ 1 A z ~ ~ =-- gs +b(gs)+As (gs) as 2 

g~o=l 

g2=0 on the boundary a U of U has a Cl'Z(U)-solution given by 

g~ (x) = ~ ( ~  > s) 

and hence the measure P~(z~e .) has a density with respect to Lebesgue measure 
on [-0, t]. Consequently, we have: 

(2.29) )~ t=X~>t  a.s. 

The Lemma follows by (2.27). 

2.5(a). Theorem. I f  U has compact closure and smooth boundary such that 
[7 c M -  Cut(y) is star-shaped from y, then we have the inequality: 

P~V(x'Y)<(2rct)-2exp 2t j Cy(x)Ex Z~>,exp ~ - y  (xs)ds 

where (xs) 0 < s <<_ t A ~ is the semi-classical Brownian Riemannian bridge with drift 
b (whose differential generator is �89 + b + As) where 

As (x)= A ~ (x)= 17 log qt-s(x, Y). 

(=(( t ,  x, y), is the first hitting time of the cut-locus by the above bridge process 
started at x e U  and reaching y at time t. z=z(t, x, y) is its first exit time from 
U. 

Proof By (2.8) and Theorem (2.1), we have: 

(2.30) P~V(x,y)=limoE~(z~>tfo~(x~)M~exp(iV(x~)ds}) 

( 2 . 3 1 )  =(2~t)-~exp { d(x, y)2.-~ 2t j Cy(x) 

"limoEx (;g~>t To(x~)C,(x{) -1 exp { i  ~YY (x2)ds}) 

by Lemma (2.2). 
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The function Cy (resp. LCy] is defined and is continuous in 0 and hence \ Cy/ 
can be continuously extended to all of M such that the extension be equal 

to Cy (resp. LCY]cy] in [7 and 0 outside a bounded neighbourhood of U. We 

will denote the extension simply by Cy (resp. LCcy]. y] Hence the expression: 

T~ 

is bounded by a constant C(t). By Lemma (2.3), (Xs ~) 0-< s-< t/x (4 converges (uni- 
formly on [-0, t]) in probability to (x,)0 _< s_< t ~, (. Now, set: 

IX= E~ (z**> r To(xa) C,(x~)_ ~ exp{ i LC y (x2) ds}) . 

By Lemma (2.4), we have: 

Limx,o Ix < E~ (To (xt) C, (x,) - 1 exp {i  ( Lc~ (X,) + Wp(x*)) d s}) 

x~=y a.s. by Lemma (2.3) and To(y)= 1 = @(y). 
The above inequality thus becomes: 

LimIX<Ex(exp{i(LCY(xs)+Wp(x~))ds}) 
~ o  = \ C y  " 

By taking limits as Pi" o% we have by Lemma (2.4) again: 

(2.32) Li+m ~ I x__<Ex (Z~>t exp { i  ~YY (xs) d s}) 

and so the inequality of the Theorem is obtained 

2.5(h). Theorem. The reverse inequality of Theorem (2.5(a)) is also valid under 
the same hypotheses: 

n { d(x, _y)2"~ ( fLCy  }) 
PtV(x'Y)>=(2rct)gexp 2t J C'(x)E(z~>texp,~ o ~ - y  (x~)ds . 
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Proof The proof follows that of Theorem 2B in [10]: We know by (2.8) and 
Theorem (2.1) that: 

(2.33) 

(2.34) 

(2.35) 

( {i ~)) P,V(x, y)= limo Ex Z~ >,JoZ(x{)Mt ~ exp V(x~') d 

n { d(x,y)2\  Cy(x) 
= (2 n t)-2 exp 2 i -J 

�9 lim E, )~r >, T o (x~ a) Cy (x2)-1 exp (x2) d s 
z~0 

n { d(x, y)2] 
= (2n t ) -2exp  2 i  -f Cy(x) limI~'~+o 

Now, let F be the space of continuous paths o-: [0, t]--+M* where M* 
is the one-point compactification of M (when M is non-compact) with 
a(O)=x~U. 

Let 3: F ~ N . +  U{+oe} be the map defined by: z(a) is the first exit time 
of the path a from U. 

Then we have: 

(2.36) ~+olimI~=lim~z~>t(a) T ~  r ~y(a(s) )ds}  d P~(a), 

where P~ = x.~(P~) is the image measure of ]Px by x. ~. We know that convergence 
in probability implies convergence in law. Hence since x. ~ converges in probabili- 
ty to x. by Lemma (2.3), we conclude that P~ converges weakly (or narrowly) 
to x.(Px). Consequently, by ([17], Appendix, Proposition 1), we have the inequali- 
ty of the Theorem. 

2.6. Theorem. For U c M C u t ( y )  star-shaped from y and compact, with smooth 
boundary, we have: 

~ ( ~ , .  = q,(~,. ~ ~ oxp {o ~ ~ ( . d  

Proof The result is immediately by the inequality of Theorem (2.5(a)) and the 
reverse inequality of Theorem (2.5 (b)). 

2.7. Corollary 
O) For any U c M-Cut(y)  star-shaped from y, we have: 

~ x ,  q~x ~ ~x (~ ~t ~xp f i ~Lc' ~x ~,~ d~  
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(ii) When M has a pole at y, ehen we have: 

PtM(x, y)=qt(x, y) Ex(exp { i  Lc~  (X(s))ds}) . 

Proof. (i) Let (Um)m>=o be an increasing sequence of open subsets of U exhausting 
U such that each Um is star-shaped from y, has compact closure with smooth 
boundary and [TmC U,,+ 1 for each m>0.  Then each Pt U,,(x, y) satisfies the equali- 
ty of the theorem: 

(2.37) Pt Um(x, y)= qt(x, y) Ex O~m>t exp { i  Lc~- (x(s)) d s}) , 

where r,~ is the first exit time of the bridge process 

(x(s))O<_s<tA~ from U,,. 

Since zm~z as m Too where ~ is the first exit time from U of the above bridge 
process, we have, by taking limits as mT oe : 

(2.38) LimTPtVm(x,y)=qt(x,y)E~ )~>texp ~ZT-, (x(s))ds . 
m 

Let us show that: 

(2.39) lira T Ptv re(x, y) = PrY(x, y). 
m 

If b =0 ,  then (2.39) is just Theorem (4), Chap. 8 of [4]. If b ~ 0  then (2.39) is 
proved as follows: Let (y~) 0 < s < + Go be as in (2.7) and let fl(M) be the o--algebra 
of Borel subsets of M. Then for any positive fl(M)-measurable function f, we 
have (clf [1], proof of Theorem (1.6)): 

(2.40) ~v f (z)PtV (x, z)dz=E~ O~,>tf (yt)exp { i  V(ys)ds}) 

(2.41) =limTE~O~,,>tf(yt)exp{iV(ys)ds}) 

(2.42) = ~ f(z) PrY(x, z) dz. 
U 

Where z (resp. z,,) is now the first exit time of (Yt) 0 < t < + oo from U (resp. 
U,,) and where we set: 

(2.43) lim'f Ptv re(x, z) = PrY(x, z) ... 
m 

In particular, taking f=X~, Bsfl(M), we have: 

(2.44) ~ PtV(x,z)dz= ~ PtV(x,z)dz foral l  B~fi(M). 
U r ~ B  U c ~ B  
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Consequently, 

(2.45) P~V(x, z)=P~V(x, z) for re-almost all zeU, 

where rc is the volume element measure d z on M. 
Since r2o c U = U Urn, we have: 

,._->0 

(2.46) PrY(x, z)=PtV(x, z) for re-almost all z~[7 o . 

We want to remove the "re-almost" condition above in (2.46): Set f,.(z) 
= P,~ re(x,  z). 

Then ( f , . )m> 0 is an increasing sequence of continuous functions on the 
compact set [7 o whose limit is PrY(x, - )  for each x s  U. Hence by Dini's theorem, 
the sequence converges uniformly on t7 o to P~V(x, - ) .  Thus, the limit PrY(x, - )  
is continuous on t2o for each x ~ U. Since both sides of (2.46) are now continuous 
in z on tTo, we finally conclude that: 

(2.47) PrY(x, z)=PtV(x, z) for all z~ t70 . 

In particular, since y e  Uo, 

(2.48) PrY(x, y) = PrY(x, y) 

and so (i) of the corollary is proved. 

(ii) We take U = M  in (i) since cu t (y )=0  in this case. The result then follows 
since the semi-classical Brownian Riemannian bridge (with drift b) on M is 
non-explosive (when M has a pole) c If [18] p. 66. 

2.7. Remark. (ii) of the above corollary is Theorem (7.14) in [18]. Note that 
LCy 

we have removed the boundedness assumption on ~ contained in that theo- 

rem and that the expectation on the R.H.S. of (ii) is finite without it. 

2.8. Remark. We can say much more about  the equality in (2.47). In fact it 
is valid in all of U and not just in Uo. To prove this, set 

f , .(z)=Pt U,.(x, z) as before. 

Choose and fix any integer m o > 0. Then, by definition (e.g. see [4], p. 188). 

(2.49) f,.(z) = 0 for z s U - U , .  

and hence 

(2.50) f , . (z )=0  for zetY,.o-U,, where 0-<m-<mo-1.  

Hence ( f")m > 0 is an increasing sequence of continuous functions on the 
compact set [7,, o. It converges (simply) to PrY(x, - )  on [7,.0. 

Hence the above convergence is uniform by Dini's theorem (see e.g. [6], 
p. 86). 

Now, let K be a compact subset of U. Then there exists an integer m o >0 
such that KcU, ,  o and so (f")m>O converges uniformly to PzV(x,-) on K i.e. 
(f,.) m > 0  converges uniformally on compact subsets of U to the limit P~V(x, - )  
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and so ~V(x, z) is cont inuous  in z e  U by ([6], p. 84). Both  sides of (2.45) are 
now cont inuous  in z on all of  U and we conclude that  

(2.51) P,V(x, z)= P,V(x, z) for all z e  U. 

2.9. Remark. The  equali ty in (2.51) shows that  the upper  bound  condi t ion  
imposed on V at the beginning is not  necessary if PRY(-, - )  exists�9 

3. Application to the standard 3-sphere 

In the case of the s tandard  n-sphere, we have, for n_>2 and x~=37 where 37 
is the point  in S" ant i -podal  to y: 

(3.1) PtS"-{Y}(x, y)= qt(x, y) Ex X~>t exp ~ (xt(s)) d s , 

where (xt(s))O< s <-t/x ~ is the semi-classical Brownian  Riemann ian  bridge with 
drift b, f rom x to y in time t and ~ is its hitting t ime of the cut-locus Cut(y)  = {37}. 

Let  b - 0 and V = 0. Then  

1 { d(x, j )2~  
(3.2) PtS"-{Y)(x' Y)=(2rct)-2Or(x)-2exp 2t J 

�9 E,~(Z~>texp{i �89 

Cut (y )=  {~} has codimension > 2  and hence has capacity zero. Consequent ly ,  
Brownian  mot ion  starting from x 4= 37 never hits )7 and hence: 

(3.3) p s- (x, y) = p s - -  {y} (x, y) 

Consequent ly ,  for x~=y, we have: 

n 1 { 
(3.4) s- - -  - -  Pt (x, y ) =  (2 7r t) 20 r 2(x) exp 

Set r = d ( x ,  y), then, 

(3.5) 

and 

(3.6) 

~ r n ~ 2 .  

for x 4=37. 

2 t  J 

1 ~- t - � 8 9  t �9 Ex ZC >, exp ~- 0r (x (s)) A 0y (x (s)) d s . 

/ s in  r\ ~- 1 
Or(x )=~7)  ; O<r<~ 

( n - l )  2 ( n - 1 ) ( n - 3 ) ( 1  
o F(x) ao;*(x)= ~ + 7~ 
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In particular, for n--3, 

3 r 2 t 

(3.7) s3 . e 2 t e 2 p x ( ( > t  ). P~ (x, y) = (2 ~z t) -v- r 
s i n  r 

The radial component rts = d(x'(s), y) of the bridge process (x'(s)) 0 <_ s <_ t/x ( from 
x to y in time t has the same distribution as the radial component of the 
corresponding Euclidean Brownian bridge from x0 =exp,-1 (x) to 0=exp,-a (y) 
in time t ([7], Chap. IX, proof of Theorem 12C(i)). 

Hence we have: 

(3.8) ~ ( ~  > t) = P~o (fro > t). 

Where (o---~o (Xo, t) is now the first exit time from the Euclidean ball D = D (0, ~) 
of the n-dimensional Euclidean Brownian bridge from Xo to 0 in time t. 

Thus by (3.7), we have: 

3 r 2 t 

(3.9) s3 P~ (x, y )=(2r t t ) -2  r �9 e 2te2Pxo(~o>t ). 
s i n  r 

By (2.6) and (3.6), we have for M = R  3, U = D ,  

3 r 2 

(3.10) Pf(xo, 0)=(2~ct) 2e 2~o((o>t  ). 

Now, consider the eigenvalue problem in D: 

(3.11) A r  

q~lOD=-0. 

Then by ([5]; Chap. V, w 8), 

n = 0  p : l  

where 

1. c~,,p(x) = Yn(0, Cp) S,(r 2~,,p) is the eigenfunction corresponding to the eigen- 
value 2,,p and x --, (0, cp, r) is the change from Cartesian to spherical coordinates. 

2. S , ( r ] / ~ ) -  J"+~ 
r 

(which is regular at r = 0), J, being the Bessel function of order n and the eigen- 
values 2,,a, 2,,z, ..., 2~, v . . . .  are solutions of 
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By (3.9), (3.10) and (3.12), 

r t 
(3.13) s~ eg P,~(Xo, 0) Pt (x, y)= sin r 

r t oe  
(3.14) - sinr e2 ~ ~ e-'a~"'ptOn,p(Xo) On,p(O). 

n=0 p= l  

On the other hand, we have the eigenvalue problem in $3: 

A ~ + # q , = 0  
and hence, 

(3.15) s3 P, (x, y)= ~ e -~  ~k(x) ~k(y) 
k=O 

where by ([-3], Chap. III, Proposition C.I.1). 

1. Ilk = k(k+ 2) is the eigenvalue corresponding to the eigenfunction ~b k. 
2. The eigenfunction ~k is a homogeneous polynomial of degree k harmonic 
on R ~. 

Lastly we have a third formula recently proved by K.D. Elworthy in [8] 
by using (3.4) above and the method of images (as a special case of the formula 
for compact Lie groups): 

P~ (x ,y)=(2rc t ) -2eg~ sin(l(7)) [ - 2 t - f  (3.16) s3 l(7) exp 
7 

where the sum is taken over all geodesics y from x to y and/(7) is the length 
of 7. These lengths are given by: 

7 k = 2 ~ k + r ;  k=0,  1, 2 . . . .  

7k=2rck--r;  k = l ,  2, 3 . . . .  

Thus (3.16) becomes: 

3 t l  - ~ f (3,17) P~S3 (x, y) =(2 ~t) -geg | ~ 2rck+r  (2 ~_k+ r)2~ 
Lk=O sin(2~zk+r) exp 2t J 

+ ~ 2~k--r { (2Tck--r)2~] 
k = 1 sin (2 rc k-- r) exp ~ -  f ]  

3 t y I / '~}  (3.18) =(27zt) 2e2 exp -- 
sin r 

oo / 2 7z kr\ 
"[ I -2k~lexp { 2zcl kZl (2 ~k sinh ~ T ) - - c o s h  (~kr ) )  1 . 
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Consequently, by (3.14), (3.15) and (3.18), we have the identities: 

t 
(3.19) eg 

sin r 
n = O  p=l 

= i e-k~k+~' r ~(y) 
k=O 

3 t l" { Y2~t}[ i { =(27ct) 2e2 . exp - 1 - 2  exp 
sin r k = 1 

4. Some consequences 

(i) A direct consequence of (3.7) and (3.18) is the formula: 

(4.1) Px(~>t)=l--2k__~lexp { 2g~kZ}(  2rckr s i n h ( 2 ~ - r ) - c ~  

Let (fits)0< s_< t A ~o be the n-dimensional Euclidean Brownian bridge from x o 
to 0 in time t. Since 

P=o( sup [fit~[<~)=Px({>t), 
O<_s<~t 

we conclude by (3.8) that P~o( sup I/~l <zc) is equal to the R.H.S. of (4.1) above. 
O<_s<~t 

Thus by computing on the standard 3-sphere S 3 (~) ins tead of $3(1), we have: 

(4.2) P( sup f/?~l < e ) =  1 --2k~exp%"l 
O < s _ < r  = t 

. ( 2 : k  sinh ( 2 . k  r ) _  cosh (2@_r)) 

for O<r<~. 
Let t = 1 and take limits as riO in (4.2); then 

(4.3) Po ( sup ]fl~ [ < e) = 1 -- 2 ~ exp { - 2 52 k 2} (4 52 k z - 1). 
O--<s--<l k=l 

Let (w(t))0<_ t <_ co be the 1-dimensional Brownian motion on R. Then set: 

~ l = s u p { t < l :  w(O=O}; z 2 = i n f { t > l :  w(O=O }. 
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Define the process  (wl (s)) 0_< s_< 1 by 

Iw(%s-z l (1-s) ) l  
(4.4) wx (s) - (% _ vl)~ 

Then  the process  (Wl(S))0<s < 1 is called the unsigned scaled Brownian  excur-  
sion process. 

By (1.1) of  T h e o r e m  1 in [13], we have:  

(4.5) Po( sup w~(s)<e)= 1 - 2  ~ exp{-2z2k2}(4e2k2-1)  
O--<s~<l k = l  

where (w 1 (s))0___ s_< 1 is the unsigned scaled Brownian  excursion defined above.  
The  above  results in (4.3) and  (4.5) confirm D. Wil l iam's  observa t ion  in [19] 
that  (wl (s)) 0-< s_< 1 has the same dis t r ibut ion as the 3-dimensional  Bessel bridge 
([ fi~ 1)0_< s_< 1. Thus  (4.2) is a general isat ion of (1.1) of  T h e o r e m  1 in [13] which 
is given here in (4.5). 
(ii) By (3.18), we have:  

Pt (Y, Y) = (2 ~z t) 5eg  1 - 2 ~ , e x p  - (4re 2k 2 - 1 )  . (4.6) s3 
k = l  

S nco  iex { - - (4rc2k2-1)=o(t")for alln_>_l, 
k = l  

3 t 

(4.7) (27r2ptS3(y,y)=eg+o(t) fo ra l l  n > l  

1 )  1 [1 \ "  
(4.8) = 1 + 2 t + 1  t 2 + . . . + 7 ( ~ #  t'+o(t" ) for all n_->l, 

and so we obta in  all the te rms of the expans ion  to any  order  of tt .P. M c K e a n  
and I.M. Singer for S 3 given in [14]. 

1 S(y) where 4.1. Remark. We notice tha t  the coefficient of  t above  in (3.8) is - 
S(y) = 6 is the scalar curva ture  of  S 3 as is well known.  2 12 
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