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Summary. We consider the d-dimensional Bernoulli bond percolation model 
and prove the following results for all P<Pc: (1) The leading power-law 
correction to exponential decay of the connectivity function between the origin 
and the point (L, 0, ..., 0) is L -(d-1)/2. (2)The correlation length, ~(p), is real 
analytic. (3)Conditioned on the existence of a path between the origin and 
the point (L, 0 . . . .  ,0), the hitting distribution of the cluster in the intermediate 
planes, Xa = qL, 0 < q < 1, obeys a multidimensional local limit theorem. Further- 
more, for the two-dimensional percolation system, we prove the absence of 
a roughening transition: For  all p >Pc, the finite-volume conditional measures, 
defined by requiring the existence of a dual path between opposing faces of 
the boundary, converge - in the infinite-volume limit - to the standard Bernoulli 
measure. 
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1. Introduction 

Consider the nearest-neighbor Bernoulli bond percolation model on the d- 
dimensional hypercubic lattice in which bonds are occupied with density p and 
vacant with density 1 -  p. (See Sect. 2 for precise definitions and basic properties 
of the model.) It has been known for some time that in dimension d_-> 2, the 
percolation model undergoes a phase transition at some value p~(d)e(O, 1), below 
which the occupied clusters are finite w.p. 1 and above which there is an infinite 
cluster w.p.1. In this paper, we study the detailed asymptotic properties of occu- 
pied paths throughout the subcritical regime, i.e. whenever p < Pc. 

The properties of occupied paths for p<p~ are typically characterized by 
the connectivity function 

(1.1) r~, y(p) = Pp (x and y are connected by a path of occupied bonds}. 

A special case of this is the on-axis connectivity function ZO,c(p) between the 
origin and the site = (L, 0, ..., 0). In this case the limit 

(1.2) 1 - = _  lira 1 ~(p) ~o~ Z log ~o,r(p) 

exists and defines the correlation length ~(p) of the system. It is known that 
if(p) < oo for p < p~ and that ~(p) diverges continuously as p T p~ (see, e.g., [CC3]). 
Thus, in the low-density phase, the leading behavior of the (on-axis) connectivity 
function is exponential decay: Zo, L (p)~ e-  L/r Moreover, %,C obeys the bounds 

1 
(1.3) K1 (p) ~ e-  L/r < ZO,L (P) < e- C/r 

with K1 (p)> 0 (see, e.g., [Gr]). 
One of the purposes of this work is to obtain the leading power-law correc- 

tion to exponential decay of the connectivity function. As we will show, this 
is in turn related to the typical fluctuations of long paths of occupied bonds. 
The relationship between these quantities is most easily seen by examining the 
analytic structure of transforms in x - y  of zx, y(p). By controlling the p-depen- 
dence of these transforms, we also obtain detailed information on the correlation 
length ~(p). 

Our principal results are: Vp < Pc 

(I) 3Kz(p)> 1, A (p)>O such that 

I ~ Zo,~,(p) e +L/~(p)-K2(p)] Ne-~(P) L; 
X:Xl  = L  

(II) 3 ~ (p)/O such that V a e Z a- 1 satisfying l al < e L  3/4-~ with e > 0, 

1 e- L/r162 e-  a2/t~(v)Ll [1 + O (L- 1 L- 4 ~)] ZO,(L,,) = KE(P) [~(p) ~L]~a_ i)/2 

where, as also in the following, we write O (L-", L-b) for O (U mi,(~,b)); 

(III) ~(p) is real analytic. 
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Notice that (I) implies that the point-to-plane connectivity function 

(1.4) ~L(P) ==- ~ %,x(P) 
x : x l = L  

has pure exponential decay in the strongest sense: the correction to exponential 
decay is itself exponentially small. As in field theory, we will call the exponential 
correction the upper gap. 

Result (II) is the central result of this paper. It is obtained from (I) using 
an analysis of the transform of z, combined with some estimates on various 
connectivity functions. For a =0, (II) says that the correction to exponential 
decay of Zo,r(P) is of the form L-~d-1)/2; in statistical mechanics, this power 
law prefactor is known as Ornstein-Zernike decay. For a ~= 0, observe that the 
ratio ZO,~L,a)/ffiL is essentially the hitting distribution 1 of endpoints in the plane 
x~ =L. Thus, by (I) and (II), under the scaling a ~ a/(c~L) 1/2, the hitting distribu- 
tion tends to a Gaussian; the Ornstein-Zernike prefactor arises naturally as 
the normalization of this Gaussian. 

From (II), it can be shown (see Sect. 6) that conditioned on the existence 
of a cluster between the origin and y=(L, 0 . . . .  ,0), the maximum height of 
the cluster in the plane xa =qL, 0 < q <  1, obeys a multidimensional local limit 
theorem. In particular, in each direction, the cluster typically wanders a distance 

O(~fs from the xl-axis. In dimension d=2, this also implies the absence of 
a roughening transition: namely, for all p > Pc, the finite-volume conditional mea- 
sures in which a dual path is required between the midpoints of two opposing 
faces of the boundary, converge - in the infinite-volume limit - to the standard 
Bernoulli measure. We also prove an alternative characterization of the absence 
of roughening in terms of the vanishing of a "roughening order parameter." 

Result (III) constitutes a characterization of the subcritical regime. 
Behavior similar to that described above is expected to hold in a wide variety 

of spin systems and field theories. Indeed, analogues of some of the results 
(I)-(III) have been proved in many systems for extreme values of the parameter 
(e.g., p ~ 1 for percolation) via expansion techniques. For general expansion tech- 
niques of this form, see, e.g., [PS1; PS2]. Specific perturbative results on Orn- 
stein-Zernike decay and upper gaps appear in [ACC1; ACC2; AK; BrF1 ; BrF2; 
BrF3; CC3; P; O1; 02; OB; OBr; $1; $2; $3; $4; Si2]. Roughness of two- 
dimensional interfaces at low temperatures has also been proved with expansions 
([G; Hil; Hi2]). To our knowledge, the only other systems in which such results 
are known nonperturbatively are certain random surfaces ([ACC3; CC1]) and 
self-avoiding walks [CC2], both defined via generating functions. Absence of 
a roughening transition (an inherently nonpertubative result) is also known 
for the two-dimensional Ising magnet ([A; Hi3]). 

Our proof is modelled closely on that cited above for self-avoiding walks 
(SAWs). Indeed, we define analogous quantities and rely on some previous lem- 
mas. Here, however, there are several significant complications: First, percolation 
clusters can branch, whereas by definition SAWs have no branching points. 
Second, percolation configurations have a density of connected components, 
whereas (again by definition) the SAW "configurations" each contain only one 

1 This correspondence is exact for a slightly modified connectivity function: the cylinder con- 
nectivity function, as defined in Sect. 3 
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walk. We therefore expect that our proofs of results (I)-(III) should hold, with 
no essential modification, for the branching polymer system, which has the 
first, but not the second complication. Indeed, our proofs should also hold 
for one parameter lattice animals defined via generating functions. It is worth 
noting, however, that our methods do not readily extend to two-parameter 
lattice animals, for which results analogous to (I)-(III) remain an open problem. 

We conclude this introduction with an outline of the paper (including a 
rough scheme of the proof): 

In Sect. 2, we set general notation, define the percolation model and review 
some basic esults which are used in our subsequent analysis. 

In Sect. 3, we introduce several other connectivity functions (i.e., analogues 
of the "free" connectivity functions, Zx, y and II~L, in which the occupied paths 
are required to satisfy additional constraints). Some of these, which we call 
the cylinder connectivity functions, differ from rx,y only by boundary constraints. 
Others, which we call direct connectivity functions, have an additional constraint 
imposed in each hyperplane perpendicular to the xl-axis. In fact, we define 
several direct connectivity functions which differ among themselves only by 
boundary conditions. It is intuitively clear, but rather difficult to prove that 
connectivity functions which differ only by boundary conditions are bounded 
uniformly (in [x-yl)  in terms of one another throughout the subcritical regime. 
This is established in Sect. 3, with some of the more tedious aspects of the 
proofs relegated to an appendix. 

Our motivation for introducing the cylinder and direct connectivity function 
is explained in Sect. 4. There we show that these functions are related by a 
renewal equation. Which (by analogy to the study of correlation functions in 
fluids) we call the Ornstein-Zernike equation. The utility of the Ornstein-Zernike 
equation is that the exponential decay rates of the cylinder and direct functions 
are strictly separated, then the equation provides sufficient analytic control to 
prove analogues of properties (I)-(III) for the cylinder functions. Thus the proof 
of these properties is reduced to a proof of strict separation of the decay rates. 
These consequences of an Ornstein-Zernike equation have been exploited pre- 
viously in work on other systems, where they formed the basis of both perturba- 
tive ([ACC1; ACC2; AK; CC3]) and nonperturbative proofs ([ACC3; CC1; 
CC2]). However, for completeness, we give a rather detailed proof of these 
consequences for percolation. 

Since the direct connectivity function has a density of additional constraints, 
it is obvious and quite easy to prove that its exponential decay rate is strictly 
separated from that of the cylinder function p ~ 1. What is less obvious is that 
the separation prevails throughout the subcritical regime. This is established 
in Sect. 5 using a renormalization scheme, which will be explained in some 
detailed at the beginning of that section. 

We finally comment on results appeared between the submission and the 
revision of this paper. Weaker lower bounds (but simpler to obtain) for the 
connectivities along the axes were given by G. Grimmett and by two of the 
authors (J.T.C. and L.C.) (see respectively [Gr] and [All where the author 
generalizes these results to the behavior of the connectivities in other directions). 
In [Ma] the author remarks that the asymptotic behavior and the local limit 
theorem in the case of self-avoiding random walks, treated in [CC2], can be 
deduced from the separation of the decay rates by introducing a suitable random 
walk and exploiting probability theorems. The proofs of these theorems are 
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in any case very similar to those given in [CC2] (see Sect. 6 of this paper 
for the analogous results in our case), while the essential difficulties lie in the 
proof  of the separation of rates and (in the case of this work) of the independence 
of the behavior of different connectivities from the boundary conditions. 

2. Notation, definitions and preliminaries 

Consider the d-dimensional hypercubic lattice ~a. We will denote a generic 
site (x,,  ..., xe )e~  d by the vector x, except that we will not use vector notation 
for the origin 0. The unit vectors will be denoted by e I . . . .  , ea. We will often 
have occasion to distinguish the x,-coordinate;  in this case, we will write x 
= (L, a) with Le2g and a e ~  a- 1. Furthermore,  for Leag, 

(2.1) P(L) = {xe~al xj = L} 

will denote a hyperplane perpendicular to the xl-axis; 

(2.2) H(L) = {x e~dl x~ < L} 

will denote the half-space to the left of P(L); and for L => 1, 

(2.3) S(L)= {xe~a[x~P( j )  for some O<=j<L} 

will denote a slab perpendicular to the xl-axis. We will measure lattice distances 
in the U~ i.e. for x ~ Z  ~ 

(2.4) fxl-= [Ixll o~ = max {Ixll . . . .  ,Ixal}. 

Finally, for a ~7Z, d- 1, a2= E a2 will denote the standard vector product. 
i 

The set of all bonds between nearest-neighbor sites of ~a, i.e. pairs x, ye7Z d 
with Y, lxi-yil=l, will be denoted by IBe. Similarly, given Sc71 d, N(S) will 

i 

denote the set of bonds between nearest-neighbor sites of S. A path ~clB(S) 
is a sequence (finite or infinite) of bonds bl, b2, ..., with no repetitions, such 
that b, and b,+ 1 have a common endpoint. Thus two paths are disjoint if they 
have no bonds in common. Similarly, two paths are site-disjoint if they have 
no endpoints of bonds in common. For  x, ye~ge, a set S c Z  d is said to separate 
x from y if all paths from x to y include at least one bond with an endpoint 
in S. 

The nearest-neighbor Bernoulli bond percolation model at density p is 
defined by independently choosing each bond of Ne to be occupied with probabil- 
ity p or vacant with probability 1 - p .  Thus the configuration space is 
={0, 1}~d; a generic element of O will be denoted by co. For  (L, a)~N d, we 
will denote by T(L'a)co the translate of co by the vector (L, a). For  ScaU,  we 
will denote by co[s the restriction of co to S; thus colst{0, 1} *(s). We let Pp denote 
the product  measure on ~ at density p, and Ep denote expectation with respect 
to Pp. We will often suppress the subscript p in Pp and Ep. 

For  $1, S2caU, we say that $1 is connected to S 2 in the configuration co 
if there is a path of occupied bonds in co from a site in S~ to a site in $2. 
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If such a path occurs within a set of bonds B o B  d, we say that $1 is connected 
to $2 in B. Such paths may always be taken to be self-avoiding; henceforth, 
when we say that two sets are connected by a path, we will always mean a 
self-avoiding occupied path. The maximal connected subsets of co are called 
the (occupied) clusters of co. For  x ~  d, we let C(x)= C(x; co) denote the cluster 
containing x in co. Finally, for Sc2U,  we will denote by C(x)]Ls=C(x)l]s 
- C ( x ;  co[s) the connected component of x in S. Note that C(x)[Is is generally 
a strict subset of the restriction of the set C(x) to S, i.e. the latter need not 
be a single component.  

It should be remarked that, as defined, C(x) is a set of sites, not bonds. 
Thus, for S c ~  e, when we write IC(x) nS[,  we will always mean the cardinality 
of the set of sites C(x)c~S. However, when no confusion arises, we will often 
speak of "the cluster of x"  when we mean the bonds contained between sites 
in C(x). Furthermore, unless otherwise specified, when we say that two such 
clusters are disjoint, we will mean that they are bond disjoint. 

Let us review a few basic facts about percolation. First, it is well known 
([BH]) that in dimension d > 1, the model undergoes a phase transition at the 
socalled percolation threshold, Pc = Pc(d)~ (0, 1), below which the occupied dusters 
are finite w.p.1, and above which there is an infinite occupied cluster w.p.1. 
The order parameter for this transition is called the infinite cluster density (or 
percolation probability): 

(2.5) P~ (p) = Pp(0) belongs to an infinite occupied cluster). 

It is known ([-Har; AKN])  that the infinite cluster is unique for p > Pc. 
There is an a priori smaller critical point defined by divergence of the suscepti- 

bility: 

(2.6) Z (P) = Ev (] C (O)D = ~ ~o,, (P). 
X 

Here -Co,x(p) is the connectivity function defined in Eq. (1.1). However, it is now 
known ([K; AB; M; MMS]) that ~(p)<oe for P<Pc, from which it follows 
easily [HI  that {(p)<oo for P<Pc. Thus the a priori upper bound in Eq. (1.3) 
is non-trivial for all p <Pc. We will make repeated use of this bound and its 
off-axis generalization: 

(2.7) %,y (p) < e-Ix-yl/~(p). 

We will also use the following bound [-AN] on the tail of the finite cluster 
distribution: 

(2.8) PAl c(0)l > n) _-< e -  ~(P~", 

with ~c(p)> 0 for p < Pc. A final inequality which is quite useful in the low-density 
phase is the Hammersley-Simon ([-H; Sil l)  inequality on %,y. Let x, y E ~  d and 
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let Sc2g a be a surface which separates x from y (including the degenerate case 
of a plane). Then 

(2.9) Zx,y < Z rx, z~Tz,y �9 
Z E S  

We will also need a few general notions and inequalities. 

Definition 2.1. Let co1,~o2e(2. There is a natural partial order on O defined 
by col-<co e if all occupied bonds in co s are also occupied in co 2. An event 
in f2 is said to be positive or increasing (respectively, negative or decreasing) 
if its indicator function is nondecreasing (respectively, nonincreasing) with 
respect to this partial order. 

The Harris-FKG inequality ([-Har; FKGJ)  states that if A1, Az c f2 are both 
positive (or both negative) events, then 

(2.10) Pv(A a n A 2) > Pp(A a) Pv(A2). 

Definition 2.2. Let co~Acf2 and BcR3 d. The event A is said to occur on the 
set B in configuration co if A occurs in co restricted to B, regardless of the 
configuration in ~3a/B. We thus define the event 

(2.11) A[B={co~AIcS~A for all ch such that eS = co on all bonds in B}. 

Two events A1,A2~f2  are said to occur disjointy, denoted by AloAz,  if there 
are (bond) disjoint sets on which they occur. 

(2.12) A1 oA2 = {co~A1 cAz[3B1, B2 ~B3a, BI caB 2 =0, co~AlJs, c~A2[,2}. 

The van den Berg-Kesten inequality [BK] states that if A1,A2c(2  are both 
positive (or both negative) events, then 

(2.13) Pp(A~ o A2) < Pp(A1) Pp(A2). 

This inequality was extended to the case of the Ai being intersections of positive 
and negtive events by van den Berg and Fiebig [-BFJ. 

3. The basic connectivity functions 

3 a. Full and cylinder connectivity functions 

Consider the connectivity event 

(3.1) ex, ,= {coly~C(x)}. 

Our goal is to prove statements (I)-(III) for the "free" connectivity function 
*x,y (P)= P (r and the corresponding point-to-plane connectivity function II~L 
(cf. Eq. (1.4)). However, it turns out that we must first prove analogous statements 
for a slightly constrained connectivity function. To this end, consider the follow- 
ing: 
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Definition 3.1. For x, yETZ d, x~P(0), y~P(L), L > 1, the point-to-point cylinder con- 
nectivity function hx,y is defined by 

(3.2 a) dx, y = {colye C(x)[I S(L), C(x)II S(L) C~ P(0) = {x}, C(x) LI S(L) ~ P(L) = {y}} 

(3.2b) hx,y(p) = P(~x,y), 

while for L = O, we use the convention 

(3.2 c) hx,y = (1 - p)2(d- 1)~x,r" 

For non-negative integers L, the point-to-plane cylinder connectivity function 
is defined by 

(3.3) IHL(p)= ~ h,,y. 
yeP(L) 

Remark. The term cylinder connectivity is sometimes used simply to denote 
the probability that two points are connected within the slab between their 
xl-coordinates. Note, however, that in the above definition we impose the addi- 
tional constraint that the intersection of the connected component of these points 
with the bounding planes consists solely of the two points. In the proof of 
Proposition 3.1 below, we will show that whenever P<Pc, the effective "condi- 
tionally expected" number of such intersections is finite, and hence the two 
types of cylinder connectivities differ inessentially. When we must distinguish 
the two types of boundary conditions (e.g., in the Appendix), we will refer to 
those used in (3.2) as strict cylinder conditions. 

Below, we establish basic properties of the connectivity functions IH L and 
GL: namely existence of decay rates and a priori bounds. More importantly, 
we show that IH L and fiL are bounded above and below in terms of one another 
uniformly in L. 

Proposition 3.1. Let fiL(P) and IHL(p) be defined as in Eqs. (1.4) and (3.2). Then 
for all pc(O, Pc), 

(i) the limits 

lim log IHL(p) = lim log fiL(P) _ 1 
L-* ~ L c ~  L ~(p) 

exist, where ~(p) is the decay rate Of Zo,L as defined in Eq. (1.2); 

(ii) for every L 
~-I L (p) < e-  L/~tp) =< l~ L (p); 

and 

(iii) 3fl(p)>0 such that for every L 

fl(p) fiL (P) <= JIlL(P) < fiL (P)" 

Corollary. fi (p) e -LIe(p) <~ ~-I(p) <~ e - L/~(p) . 

Proof. For the purposes of this proof, we will suppress the argument p in all 
quantities. 
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To prove the existence of a limit for the cylinder function, let L~, L 2 be positive 
integers and a~,a2e2U -~. The restriction of a configuration cot edO,(L~,.~) to 
S(La) can be patched together with the translate of restriction to S(L2) of an 
co2 e~O,(L . . . .  ) to obtain a configuration in S(LI+L2) that is the restriction of 
a configuration in ~O,(L,+L . . . .  +~). Taking into account the repetition of the 
boundary conditions in the plane P(L1) this implies 

(3.4) ho,(L . . . .  ) ho,(/2,a2) ~ ho,(L~ +L . . . .  + ~:)(1 _ p )2 (d -  1) 

On the other hand, given L~ and L2, such an co uniquely determines a 1 and 
a2. Thus we have the stronger inequality 

(3.5) Zho,(L . . . .  ) ho,(L2,a_a2) ____< ho,(L, +L2,a)(1 __ p)2(d- 1) 
al 

Summing over a and a l ,  we obtain 

(3.6) ]HL1 ' ~_IL 2 ~ ~_tL ' +L2( 1 __ p)Z(d- 1). 

By standard arguments, the subadditive inequality (3.5) implies the existence 
of the first limit in (i) and the fact that it is reached from below (i.e. the first 
inequality in (ii)). To prove the corresponding statement for filL, again let L 1 
and L 2 be positive integers and a e Z  a-1 . The Hammersley-Simon inequality 
(2.9) for the connectivity function ro,{L, +L2,., may be applied in the case where 
the bounding surface is the plane P(L1): 

(3.7) "gO,(L1 +L2,a) ----~ E TO,(L1 ,al) T(L1 ,al),(L1 + L2,a)" 
al 

Summing (3.6) over a and exploiting translational invariance, we get 

(3.8) [~LI' I~L2 ~>[~L1 + L2 

which implies the existence of the second limit in (i) and the fact that it is 
reached from above (i.e. the second inequality in (ii)). 

It is clear that (iii) implies the equality of the two limits. Furthermore, that 
the decay rate of t1~ L equals that of rO,L (c.f. Eq. (1.2)) is implied by the obvious 
bounds 

(3.9) rO,L=<I//L= ~ %,x_< ~ e -IXI/e, 
xeP(L) x~P(L) 

in which we have used the a priori bound (2.7) on Zo, x. 
It remains to prove (iii). The second inequality in (iii) is trivial since every 

configuration in f2 whose restriction to S(L) belongs in ~O,{L,a) is also in YO,{L,a)" 
To prove the first inequality in (iii), let us define a modified cylinder connecti- 

vity which need not obey the condition that C(0) have only a single point 
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I I 
I I 
I I 

i y 0 
I 
I 
I 
I 

Fig. L A configuration in ]o,(z.~ 

of intersection with each of the bounding planes. That is, for xeP(0),  y~P(L), 
let 

(3.10a) L , y =  {coly~ C(x)[lS(L)) 

(3.10b) ~x,y= P ( L , , )  

(3.10c) g-IL---- ~ ff~,,. 
y~P(L) 

First, let us relate ~-I L to II~L. If Oge]O,(L,a), then there are two points, xeP(0)  
and yeP(L) ,  and three disjoint occupied paths: a (possibly trivial) path from 
0 to x, a (possibly trivial) path from y to (L, a), and a non-trivial path from 
x to y in S(L). (See Fig. 1 for clarification.) It then follows from the van den 
Berg-Kesten inequality (2.12) that 

(3.11) TO,(L,a) "~ 2 TO,x ~x,Y TY,(L,a)' 
x~P(O) 
yeP(L) 

Summing over ae2U-1,  we obtain 

_ 21ii (3.12) ~L -< )~ L ,  

where )~ was defined in Eq. (2.6). 
We now want to relate I-I L to ~-I L. To this end, let us (disjointly) partition 

AO.(L.a) according to the number of intersections of C(0)JIs(L) with the planes 
P(O) and P(L): 

(3.13a) 

(3.13b) 

•(kl,k2) O,(L,.) = {CO [(L, a ~ C (O) ll S(L), I C (0)]1S(L) m P (0) 1 
=kl,Lc(o) ILs(L)aP(L)I =k2}, 

~(okl) - -  7~(kl,k2) 
, (L,a)- -  (,_) wO,(L,a)~ 

k2>1 

and define the connectivity functions 

"0 ,  (L, a) - -  ~ ~,"~ O, (L, a)! 

(3.14b) g'(k~) ~'~ g(kl,k~) _ p / ~ ! k ~ )  '~O,(L,a) ~ ~ O,(L,a)/" = ,i,O,(L, a ) - -  
k 2 ~ l  
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I I 
I 8 [ 

l 
I 
I 
I 

a 

(L,a) 

I I 
I B I 

I , I 
x ~  {L,a) 

ol 
I I 

I I 
I I i 

b 
Fig. 2. Configurations in .7(k~) corresponding to cases (a) and (b). For pictorial clarity, we F~O,(L,a) 

have omitted the additional k 1-2 connections of C(0)I[S(L) to the boundary 

Then the boundary conditions in the definitions of A and ~e imply 

(3.15) ho,(L+2,a) = ~ ff(k,,k2) "0,(Z,a) [(1 __ p)Z(d- 1)p]2 (1 __p)k, +k2-2 
kx,k2 >= 1 

so that 

(3 .16)  ~ IL  + 2 ~~- 2 ~ - I ~ I ' k 2 ) [ ( 1 - - p ) 2 ( a - 1 ) p ] 2 ( 1 - - P )  k l + k 2 - 2  , 

kl,k2 >= 1 

where 

(3.17) 

By the Jensen inequality 

(3.19) 

where 

(3.20) 

"O,(L,a)" 
aeZ 
d - 1  

II-IL + 2 => I4 L [(1 _ p)2(a-1)p32 (1 _p)2e,  - 2 

/(z = ~ kl l~-I~"k2) 
k l > l  ~ L  
k2~ 1 

Let us now consider a configuration in 2(kl) If there are kl points in v~O,(L,a). 
C(0)llS(L)nP(0), at least one of them, say x, is at a distance greater than 

(const.)k~/(d-l) from/0. ,..,\Let B(x,  ~ )  denote the ball (i.e. c u b e ) o f  radius ]x~2 

about x and let OB(x, I~_~l) denote its boundary.  We distinguish two possible 
cases (see Fig. 2): " 

(a) There is a connection from 0 to (L, a) outside B (x, ~ ) ,  and an independcnt 

connection from x to some point of ~B (x, ~ ) .  



280 M. Campanino et al. 

(b) There is a connection from x to (L, a), and an independent connection from 

0 to some point of ~B (x, ~ ) .  

By the van den Berg-Kesten inequality (2.12), we therefore have 

(3 .21)  -o,(L,.)~(kl) :< E ~O,(L,a) (const.)l xl a-  1 e-Ixl/~ 
xeP(O)  

Ixl >(const.)kl/(d ~) 

+ E h'x,(C,.)lxl a-le-1~l/2e- 
x e P ( 0 )  

Ix I >(const.)kl/(a t) 

Thus 

(3.22) 
kl_>- 1 xeP(O)  a e Z a  1 

Ixl > (const . )k~/(d-  1) 

" [-ho,<L,.) (const.)lxl a- 1 e-Ixl/r + h~,(L,,)ixld- a e-Ixl/2~] 

= ~ ka ~ (const.)[lxla-te-IXl/~+lxla-le -I~l/ar 
k 1 _>- 1 xeP(O)  

Ix I > (consl.)k~/(a- 1) 

<K, 

with K=K(p) a constant independent of L which is finite for P<Pc. Inserting 
(3.22) into (3.19), we obtain 

(3.23) IHL+ 2 =- ~ I L  e-K'(P) 

with K'(p) independent of L and finite for p < Pc- The first inequality of (iii) 
follows immediately from (3.23) and (3.12). [] 

3 b. The direct connectivity function 

In order to control the analytic structure of the transforms of hx, y (and zx, y) 
we would like to relate hx, y to another connectivity function via a renewal 
type equation, and to prove that the latter function has a strictly faster decay 
rate than hx, y. To this end, we propose the following: 

Definition 3.2. For x, y~g~, x~P(0), y~P(L), L >  1, the point-to-point direct con- 
nectivity function Cx,y is defined by 

(3.24a) ex,y = {co ly s C(x)[1S~L), C(X)II S(L) C~ P(0) = {X}, C(x)H s~L) c~ P (L) = {y}, 

I C(x)lt s(L)c~ e(j)l =>2V 1 <_j<=L-- 1}, 

(3.24b) Cx,y(p)=P(cx,,), 

while for L = 0, we use the convention 

(3.24 c) c,,., (p) = 0. 
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For non-negative integers, the point-to-plane direct connectivity function is 
defined by 

(3.25) CL(p)= ~ cx, y(p). 
y~P(L) 

Remark. Notice that the configurations in Cx,y are just the subset of those in 
~x,y which satisfy the constraint 

(3.26) [C(x)/I s<L) ~ P(J)[ > 2 

in every interior plane (i.e. V l < j < L - - 1 ) .  We will occasionally refer to (3.26) 
as the "lI;-condition." 

It is easy to show that l12r has a well-defined decay rate: 

Proposition 3.2. Let l~L(p) be defined as in Eq. (3.25). Then for all pc(O, Pc), 

(i) the limit 

lim 1 1 
L-~oo L log ~;L(P)= -- ~c(P-~ 

exists, and there is a 2(/)) < oe such that for all L 

(ii) furthermore 
e L  (p) _-< .~ (p) e - ~/~<~> ; 

�89 ~c(p) < ~(p), 

where ~(p) is the decay rate of %,L as defined in Eq. (1.2). 

Proof. (i) As in the proof of the sharp decay rate for IHL, we claim that I~ L 
has a subadditive inequality of the form: 

(3.27) CL, CL~ _-< ,~(p) e L ,  + L~. 

Indeed by patching together the restrictions of two configurations col eCgo,(rl,al) 
and a translate of CO2~cg0,(L2,a2), we obtain the restriction of a configuration 
co which satisfies all the conditions of the event ~gO,(LI+L . . . .  +-2) except the C- 
condition (Eq. (3.26)) in the plane P(L1). However, if our patching procedure 
includes occupying one of the 2 ( d - l )  vacant bonds incident on (L 1, al) in 
P(L1), say (L1, a l )+e2,  and vacating the possibly occupied 2 d - 1  other bonds 
incident on ( L l , a 0 + e  2 in P(L1) , then the resulting configuration co* is in 
(~0,(L1 +L2,al +a2)" More importantly, given La and L2, such an co* uniquely deter- 
mines aa and a2. Thus we obtain both an inequality analogous to (3.4) and 
a strengthened inequality of the form (3.5). Summing over the intermediate 
points, this yields (3.27), with 2(p)/(1 _p)2(d-1) the cost of the patching procedure 
described above. As before, this implies the existence of the limit for 
L- 1 log tEL(p) and the fact that the limit is reached from below. 

(ii) The inequality ~c(p)< ~(p) follows from the bound e L <  ~Ir, which holds 
for all L. To prove the inequality ~ < 2 ~c, let us define the on-axis direct connecti- 
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vity function CO,L = C O,(L,O ..... 0). We claim that this connectivity also obeys the 
conclusions of (i): namely the limit 

1 CO,L(P) 
(3.28) lim -- log 

L ~ L  L 

exists, is equal to 1/~c(p) and provides the a priori bound 

(3.29) CO.L (P) < 2 (p) e -  L/~~ 

for all L. 
Specializing the weak subadditive inequality to the case al = az = 0, we obtain 

the existence of the limit in (3.28), denoted temporarily by ~*, and the fact that 
it is reached from below. Furthermore, the analogue of (3.4) with al = - a 2  = a, 
then gives 

(3.30) CO,(L,a ) =< 2(p) e -z/r 

Vas2U-1. This may of course be supplemented with the obvious estimate 

(3.31) Co,cL, a ) = O(e -L2/r 

for l a[ > L 2. Then an analogue of (3.9), implies 4" = gc and hence (3.29), as claimed. 
Next, we may define the double connectivity event 

(3.32 a) j , , y  = {~o~x,r [ 3 2 disjoint connections between 

x + e l  and y - e l }  

and the functions 

(3.32b) Jx,r (P) = P (j , , r)  

and JO,L--Jo,~L,O ..... o). By the van den Berg-Kesten inequality, we have 

jx,r __< (const.) [h'~, y] 2, (3.33) 

and hence that 

(3.34) lim 1OgjO,L < 2  
L-~oo L = 4 "  

On the other hand, by considering connectivity functions confined, for example, 
to half spaces, it is straightforward to establish that 

(3.35) lim logjo,z . 2  
z ~  L =4"  

The desired inequality follows from the observation that 

(3.36) Jx,rNcx, r- [] 
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Remark. In light of the above result, it is interesting to note that 

(3.36) lira ~(p) 2 
p ~ 0 ~  ~ " 

However, we do not, at this time, have any speculation about this ratio in 
the limit p T pc. 

In our subsequent analysis, we will also require a direct connectivity function 
with free boundary conditions. Thus we define: 

Definition 3.3. For x, yeT, a, xeP(0), yEP(L), L >  1, the point-to-point free direct 
connectivity function kx, y is defined by 

(3.37a) Afx, y = {co ]y~ C(x), [C(x )nP( j ) I>2VI<j<L-1} ,  

(3.37 b) kx, y (p)= P (~fx, y), 

while for L = 0, we use the convention 

(3.37c) kx,y(p)=0. 

For non-negative integers, the point-to-plane free direct connectivity function 
is defined by 

(3.38) ]Kr(P)= ~ kx, y(p ). 
yeP(L) 

As with the other connectivity functions, it is easy to show the existence of 
a decay rate: 

Proposition 3.3. Let ]KL(p) be defined as in Eq. (3.38). Then for all p~(O, Pc) the 
limit 

lim 1 log I(z(p) = 
1 

L ~  L, ~ ( p )  

exists. 

Proof. Let L1 and L 2 be positive integers and al ,  a2~N a-1. We use the Harris- 
F K G  inequality and an easy patching argument to show that 

(3.39) ko,(L . . . .  ) ko,(Lz,a2 ) ~ (const.) ko,(L 1 + L . . . .  +a2)" 

Notice that this is an analogue of the weak subadditive inequalities for h and 
c (e.g., Eq. (3.4)). Thus, following exactly the first half of the proof of Proposition 
3.2 (ii), (3.39) establishes existence of al imit ing decay rate for the on-axis func- 
tions ko,L--ko,(L,O ..... 0) and an a priori bound of the form (3.31) for the off-axis 
functions ko,(L,, ). Then we can prove existence of a limiting decay rate for KL 
by "squeezing" with an inequality of the form (3.9). Notive, however, that this 
does not establish an a priori bound on NL. 

Remark. At several points in our subsequent analysis, we will need to use the 
fact that the direct connectivity function is essentially independent of boundary 
conditions. The strongest form of independence is of course uniform bounds 
analogous to those of Proposition 3.1 (iii). Uniform bounds for the direct connec- 
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tivities are provided in Proposition 3,4 below, the proof of which appears in 
an appendix. The proof is substantially more complicated than that for the 
ordinary connectivities (i.e. @z and lHL), since, with free boundary conditions, 
paths can satisfy the (E-condition by rather devious (though improbable) mecha- 
nisms. 

Proposition 3.4. Let (EL(P) and ~t(L(p) be defined as in (3.25) and (3.38), and let 
the decay rates ~(p), ~(p) and ~k(P) be given as in (1.2), and Propositions 3.2 
and 3.3. Then for all pE(O, pc), either ~c(p)=~k(p)=�89 or 3D(p)<oo such 
that 

]KL (P) <= D(p) (EL(P) 
unformly in L. 

4. The Ornstein-Zernike equation and its consequences 

In this section, we derive an Ornstein-Zernike equation, i.e. a renewal equation 
relating the cylinder functions to the direct correlation functions. Then we prove 
t ha t / f  ~c < 4, the Ornstein-Zernike equation implies analogues of results (I)-(III) 
of the introduction for the cylinder functions. The fact that ~c < ~ for all p <Pc 
is established in the next section. 

Proposition 4.1. Let the functions h0,(L,a), ]HL(p), e0,(L,a ) and (EL(P) be defined 
as in Eqs. (3.2), (3.3), (3.24), and (3.25), with the conventions ho,(0,, ) = f - l ( p ) 6 , =  o, 
f ( p ) -  ( 1 -  p)-2re- 1), so that ~I o (p) = f - l (p) and Co,(o,a)= 0 so that (Eo (P) = O. Then 
V L > I  

L 

h 0 , ( L , a ) = f ( P )  ~ ~ C0,(N,b) ho,(L-N,a-b) 
N = 0 bEP(N) 

and thus 
L 

IHL= f (P) Z (EN H-IL- N" 
N = 0  

Proof. First, for L = 1, the equation is satisfied by noting that ho,(1,, ) = Co,(1,a)Va. 
Now take L > 2 and consider a configuration coedO,(L,, ). There are two possibili- 
ties: either there is a j with 1 < j =< L -  1 such that 

(4.1) I C(O)]ksr P(j)I = 1 

or no suchj  exists. In the latter case, (DEL:0,(L,a). 

In the former case, let the smallest j satisfying (4.1) be denoted by N. Then, 
it is clear that cO~co,(N,~) for some b~7Z d- 1, while T (-N'-b)coEdo,(L_N,a_b). Note 
that the only intersection of the regions in which eo,(N,b) and d(N,b),(L,a) are 
defined is the bounding plane P(N), where both events require simply that 
the 2 ( d -  1) bonds emanating from (N, b) be vacant. 

Conversely, given an col JS(m~c0,(N,b) and an C%[S(L--m~dO,(L--N,~--b ), we can 
"patch"  them together to form an C0tS(L)C~0,(L,,). Moreover, this co satisfies 
the conditions that that the smallest j obeying (4.1) is j =  N and that the unique 
point in the plane P(N) belonging to the connected cluster of the origin and 
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(L, a) is (N, b). Finally, note that these co 1 and COg separately satisfy the condition 
that the 2 ( d -  1) bonds emanating from (N, b) in P(N) be unoccupied. 

Thus, we have 

L 

( 4 . 2 )  ho,(L,a)=(1--P) -2(d- l )  Z 2 CO,(N,b) ho,tL-N,a b) 

N = 0 b e P ( N )  

as desired. []  

In order to derive results (I)-(III), we consider the transforms of the connectivity 
functions 

(4.3a) 

(4.3b) 

h(z, k; p) = f  (p) ~ ho,<L,~)(p) z z e ik'a 
L , a  

~--I (z; p ) = f ( p ) ~ l H L ( p )  z L = fi(z,  0; p) 
L 

and 

(4.4a) d(z, k; p ) - - f  (p) ~ c0,{L,,)(p) zZe ika 
L , a  

(4.4b) (~(z; p)=f(p)~ll?L(p) zL= O(Z, 0; p). 
L 

Henceforth, we will occasionally suppress the argument p in the transform func- 
tions. 

In terms of these transforms, the Ornstein-Zernike equation is simply 

1 
(4.5) h'(z, k; p) = 1 -- e(z, k; p)" 

Information on the connectivity functions can be recovered from (4.5) via con- 
tour integration: 

(4.6) 
dz 1 

ho,(L,a)(p)=f-t(p) } zL+a S 1--~(Z, k; p) 
[ - r~ ,+ r~ ]d -  J 

dk .e-  ik "a _ _  
(2 ~)d- 1- 

The utility of the condition ~c < ~ should now be clear: Although ~ is a priori 
defined only for Izl < e a/~, if ~c< 4, then (4.5) provides a meromorphic extension 
of ~ to a disk of a larger radius. In order to exploit this, we will need a few 
properties of d, as summarized below: 
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Proposition 4.2. Let CO,(L,.) and (EL(P) be defined as in Eqs. (3.24) and (3.25), 
with the decay rate ~c(P) given by Proposition 3.2. Then the transform functions 
defined by Eq. (4.4) satisfy: 

(i) Vp<p~, VJz] <e ~/r 
(a) ~(z, k; p) is an even funaion of each component of k; 
(b) V k with IRe (k~)l _-< ~, Im(k~) = 0 

1O(z, k; P)l < ~(Izl, 0; p)--- ~(Iz[; p); 
(ii) g p < p~, g]zoD < e 1/e~ 3 6k = 6k (p, Zo) 

> 0 such that d(z, k; p) is analytic in the regions I z[ < Izol and I k[<__ ~ ; 
(iii) Vpo < Pc, V I Zo [ < el/r176 3 6p = 6p (Po, Zo) 

> 0  such that ~(z; p) is analytic in the regions Izl< ]Zol and Ipl =<Po( 1 +6p)- 

Proof. (i) These properties follow immediately from positivity and symmetry 
of the coefficients CO,(L,,). 

(ii) Let [Zo[=e 1/e~ It suffices to show that 36k(e)>0 such that 

(4.7) ~ eO,(L,a ) zLe ik'a 
L,a  

converges absolutely in the regions Izl=<lzol and [kl<6k(p,e). Indeed, take z 
such that I zl _-< I zol and k lkl _-< ~ ~/~. Then 

(4.8) [ ~  CO,~L,.)z%ik'"l < ~ CO,(L,,)e [1/r 2~lLe[~c/~llal �9 
L,a  L ,a  

We divide the sum over a into two regions: ]al <[~/~c] L and la]>[~/~c] L. 
Using the a priori upper bound on (EL from Proposition 3.2, the "small a"  sum 
is bounded by 

(4.9) (const.)~ [(~/~e) L] d- i e-[1/~AL erl/~-2elL e~L < o9. 
L 

Now, using the obvious bound CO,~L,, ) < e-I" I/r the "large a" sum is less than 

(4.10) (const.)~e-tl/r tl/~o- 2~1L eEL < 0% 
L 

which establishes the absolute convergence of (4.7). 

(iii) Let us begin by defining a "lattice animal" generalization of (EL(P). Thus 
consider 

(4.11) Aka(r , q)=-- ~ F~(L)r"q  m, 
n , m  

where F,, ,(L)>0 is the number of clusters of volume (number of bonds) n and 
boundary (number of bonds outside the cluster but connected to it) m which 
connect the origin and the point (L, 0 . . . . .  0), which have only a single point 
of intersection with each of the planes P(0) and P(L), and which obey the 
(E-condition (Eq. (3.26)) in each of the intermediate planes P(j), I < j < L - - 1 .  
Notice that F, m (L) = 0 unless m _-< 2 (2 d - 1) n. 
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Clearly (I;L(p)=&L(P, 1 --p). Thus analyticity of ~(z ;  r, q )=~NL(r ,  q) Z L in 
L 

z, r and q certainly implies analyticity of ~2L(Z; p) in z and p. In fact we will 
prove the stronger result. 

For future reference, note that the tail of the sum in (4.11) is bounded by 
the tail of the finite cluster distribution, which is in turn known (cf. Eq. (2.8)) 
to be exponentially bounded for p < Pc : 

(4.12) F~m(L ) p"(1 -- p)" < Probp([ C(0)l > too) < (const.) e-  ~(p),o, 
n >17 o 

m 

with ~:(p)>0 for p<p~. 
Let po<p~ and Izol=e ~/r176 As explained above, it is enough to show 

that ~ 6,(po , O, 6q(Po, e)>0 such that 

(4.13) ~ zLF~m(L) r"q ~ 
L , n , t n  

converges absolutely in the regions I zl ~ [Zo[, ]rl~ I Pol(1 + 6~), I q l~  (1 -po)(1 + 6q). 
Indeed, take z such that Izl <lZo[, r such that Irl <Po e~" and q such that Iql <(1 
- p o ) e  ~p with ep=[4d-1] -xe~(po)~(po) .  (Recall that ~:(Po) is the decay rate 
of the finite cluster distribution.) Then 

(4.14) zLF,,,(L) rnqm<= ~ et~/r162176 ~,["+ml 
Z , n , m  L , n ,  rn 

�9 Fnm (L) p~(1 --po) m. 

As in the proof of (ii), we divide the sum over n into two regions: n__< n o and 
n>n  o, with no=[X(po)~c(po)]-XL. For each term in the "small n" sum, we 
bound e "pt"+m] by its maximum value e~p["~176 ~L, and then relax the 
restriction that n__< no, to obtain the upper bound 

(4.15) (cons t . )~2(2d-  1)(n o L)Zetl/r 
L 

< (const.)~2(2d-- 1)(no L)2eD/G-2~JLe~Le-[1/G]L< o0. 
L 

On the other hand, according to (4.12), the "large n" sum is also bounded: 

(4.16) (const.)~etl/r ~ F,,,,(L)p"o(1--po)" 
L n > n o  

m 

= <(const.)~etl/r162 1L <00, 
L 

which establishes the absolute convergence of the sum (4.13). [] 

Next we derive the consequences of the Ornstein-Zernike equation: first, a lemma 
we will need to control the renormalization scheme of Sect. 5, and then, results 
(I)-(III) for the cylinder functions. Results (I) and (II) for the free connectivity 
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function are established in Sect. 6. Much of the analysis in the rest of this section 
parallels previous analyses of Ornstein-Zernike equations in other systems, some 
of which is repeated here for completeness. 

Lemma 4.3. ([CC2], Proposition 4.1). Let IHc(p) and tEL(p) be defined as in 
Eqs. (3.2), (3.3), (3.24), (3.25) with the decay rate ~(p) of 114 L given by Proposition 
3.1 (i). Remember that [-I L satisfies the corollary to Proposition 3.1, and that 
the transform functions l[-I(z) and C(z) are related by (the k=O form oJ) equation 
(4.5): lft(z)= [1 - ~(z)] - 1. Then: 

(i) ~ (e  1/r = 1; and 

(ii) ~, LtEL e L/r < oe. 
L = O  

By Proposition 3.4, we also have: 

Corollary. ~ L ~ (  L e L/r < o0. 

L = 0  

Proof. The proof given in [CC2] holds without any modification. One simply 
notes that the left hand sides of (i) and (ii) can be expressed as the x ' fe  1/r 

limits of ~(x) and x day ~(x), respectively, for xcN.  +. These quantities can then 

be bounded, via the Ornstein-Zernike equation, by computing l[-I(x)=~ltt  L x L 
using the upper and lower bounds on IH L from the corollary to Proposition 
3.1. [] 

Theorem 4.4. Let the functions ho,~L,~), IHL(p), CO,(L,,) and tEL(P) be defined as 
in Eqs. (3.2), (3.3), (3.24), and (3.25), with decay rates ~(p) and ~c(P) as given 
by Propositions 3.1(i) and 3.2(i). Remember that lI-IL(p) obeys the corollary to 
Proposition 3.1. Suppose further that the transformed functions ~(z,k;p) and 
d(z,k;p) are related by an Ornstein-Zernike equation of the form (4.5), and 
remember that d(z, k; p) satisfies the conclusions of Proposition 4.2 and Lemma 
4.3 (i). Then whenever ~ (p) < ~ (p): 

(I) 3/~2 (P) < i, A (p) > 0 such that 

I~Ir (p) e + r/r g 2  (P) I < e-  ~ (p) r. 

(II) 3e (p )>0  such that VasTZ d- 1 satisfying lal ~ L3/4-~ with e>0,  

1 e-  c/r ,=/[~(p)L] [1 + O (L- 1, a -4~)]. ho,(L,,) ~ / (2  (P) [~(p) nL](d- 1)/2 

In particular: 

(i) The expression above represents the first term in an asymptotic expansion: 
i.e., for any  f ixed function a(L), [a(L)[<__L a/4-", with a(L) tending to infinity 
(e.g. as a power of L) ,  the O(L -1, L -4~) terms can be systematically calculated 
in an asymptotic series. 
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(ii) The error term is uniform in a: i.e. 3da(p), d2(p)<~ such that VaETZ d-1 

satisfying lal <=L 3/4-~ 

[[ho,(L,a)][~(p) 7zL](d-1)/2 e+L/r /~2 (P)[ ~ ~ - ~ -  d2L~Pe). 

(iii) The tail of the distribution is uniformly bounded: i.e. 3 d 3 (p)< o0 such that 
VaETZd- 1 satisfying [a[ __< L 3/4-~ 

E ho,(L,b)~d3(p) l~'d-1)/2e-L/r 
b: [bj[ > lajl 

where aj and bj are the jth components of the vectors a and b. 

(III) ~ (p) is real analytic. 

Remark. The hypothesis ~c(p)<~(p) is verified for all P<Pc in Theorem 5.4; 
thus (I)-(III) hold throughout the low-density phase. 

Proof. Much of the following proof can be found in the union of ([ACC2], 
Theorems 2.4, 2.7, 4.1 and 5.5; Lemmas B.1 and B.2) and ([CC3], Theorems 5.10 
and 5.11). There, however, a complete asymptotic analysis along the lines of 
equations (4.31)-(4.42) of the following proof was not done explicitly, and hence 
in [CC2] it was (overenthusiastically) concluded that an analogue of (II) holds 
Vial <~L,  for some t/>0, rather than Vial < [al ~ L  3/4-~. Actually for L3/4<=L 1-~, 
one can derive an analogue of (II); however, it need not have the Gaussian 
form. Here we present a complete proof. 

(I) By positivity of coefficients, l[-I(z) is analytic for [z I < e 1/r and ~(z) is analytic 
for Izl < e  1/~c. Thus by the Ornstein-Zernike equation and the asumption ~c(P) 
<~(p), ~-t(z) has a meromorphic extension to the larger region Iz[ < e  1/r This 
implies that 3A e(0, 1/~ c -  1/0  such that the only singularity of ~-I(z) in the region 
Iz[ =< e 1/r occurs at z = e I/r ; furthermore, by the a priori upper bound of Propo- 
sition 3.1, this singularity is a simple pole. Thus we have ~-I(z)=F(z)[1 
- ze -1 / r  -1 with F(z) analytic for Iz[<=d/r In terms of the coefficients of 
F, ~-I L may be written as 

L 
(4.17) ~-IL=f- l (p)  e -LIe ~ F~ e ~/r 

n=0 

The Cauchy bound: [F~l =<(const)(el/r -" now implies the desired result, with 
/~2(P) =f-l(P)F(el/r  The fact that/~2 (P)--< 1 follows from the a priori bound 
]HL ~ e - L/~. 

(II) This proof amounts to an analysis of the contour integral in equation (4.6); 
thus in the following, we will restrict to k with ]Re(ki)l<n, Im(ki)=0. First 
we want to show that the only significant contribution to the integral occurs 
in the neighborhood of Ikl=0. Explicitly, we claim that VcS~(0, nl, 3t(cS) 
>0,  fi~(~)< oo such that 

1 1 - d z  1 e _ i k .  ~ dk  
(4.18) f -  (P)f~n/~z ~ T F  ~ 1--~(z,k;p)  (2n) d - ~  

[kl>~ 
~fll  e-(t/r 
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uniformly in L. To prove this, it suffices to show that Vlkl >=6, 3t(6)>0, s(6)>O 
such that 

(4.19) It(z, k; P)I ~ 1 -s (6)  

whenever Izl =<e 1/r Indeed, given (4.19), one may simply integrate (4.18) about 
the circle [zl = e */~+t, bounding the integrand by 1/s(6). 

To prove (4.19), express t(z, k) as a power series in z with coefficients %(k), 
and note that, by Proposition 4.2(ia), each %(k) is a cosine series with positive 
coefficients. Hence, provided that cL(k) has a non-trivial cos kj term for every 
j (which here occurs for L__>2), %(k) is strictly maximized by Ik l=0.  Thus we 
have a strengthened form of Proposition 4.2 (i b): V I kl > 6, 3 v (6) > 0 such that 

(4.20) It(z, k; P)I ~ ~(Iz l ) -2vlz l  2. 

Now by Lemma 4.3(i), ~(el/~)= 1. Furthermore, ~(Izl) is a strictly monotone 
increasing, analytic function of Iz I for Izl < e 1/~~ Thus (4.20) implies that 3 t(6) > 0, 
s(6) > 0 such that (4.19) is satisfied for all Izl < e 1/r as claimed. 

Now we focus on the "small k"  integral. The first step here is to determine 
the analytic structure of the integrand. Recall from the proof of (I) that the 
function 1 - ~ ( z ) = l - t ( z ,  0) has a simple zero at z=e  1/~ and no other zeroes 
in the region Izl _-_ e 1/~+a. We claim that the structure is similar for Ikl sufficiently 
small: namely, 362(ZI)>0 such that Vlkl<62, 1-~(z,  k) has a simple zero and 
no other zeroes in the region I z l<e  1/r Indeed, by Proposition 4.2(ii), 
3 61 (z0) > 0 such that 1 - t (z, k) is analytic for I kl < 61, I zl < I Zo [ < e 1/~o. Thus take 
Ikl < 61. Then provided that 

(4.21) I1 - ~ ( z ) l  >= I ~ ( z )  - t(z, k)[ 

along the contour I zl = e*/r + a < e t/~~ Rouch6's Theorem says that 1 - t (z, k) has 
the same number and multiplicity of zeroes inside the contour as does 1 -  ~(z) 
(i.e. one simple zero). Now since A>0,  I I -~ (z ) [  is uniformly positive along 
the contour Izl=e 1/~+4. Thus, given analyticity in k, it is clear that 3,52(A)>0, 
62 < 61, such that (4.21) is satisfied V Ikl < 62, as claimed. 

Next, we will determine the form of this zero for Izl < e  1/r Ikl <fi2. Since 
6z <61, t(z, k) is analytic in this region. Thus, by the analytic implicit function 
theorem, 3 63 > 0, 63 ~ 62, such that for I kl < 63, the equation 

(4.22) 1 - t(z, k) = 0 

has a unique, analytic solution, denoted by e 1/r describing the motion of 
the zero in this region. By Proposition 4.2(ia), the expansion of ~- 1 (k) contains 
only even powers of k. Furthermore, the coefficients in the expansion are real. 
Indeed, k e n  d- 1 implies t(z, k)= t(5, k), which in turn means that the solutions 
to (4.22) occur in complex conjugate pairs; uniqueness of the solution then 
implies 4-1 (k) elR. Finally, it is easy to verify that 4- ~ (k) has a nontrivial quadra- 
tic minimum. Thus for [k[ < 63, we may write 

(4.23) ~ - 1  (k) = ~ - 1 (0) + ((x/4) k 2 -[- R (k) 



Fluctuations of percolation connectivities 291 

with e (p) > 0, and ~- 1 (0; p) = r  1 (p) _ ~- 1, the inverse correlation length. Finally, 
we may choose a 5>0,  ~<53,  such that for Ikl<~ 

(4.24) 

with 7 satisfying 

(4.25) 

IR(k)l ~Tk  4 , 

~__<~e. 

Now we can apply (4.18) to the integral for Ikl_-__~, and perform the integral 
for Ikl <& By the above reasoning, for Ikl <5 we can write 

(4.26) ~(z, k) = f (z, k)[ 1 - z e - 1/r - 1 

with ~-X(k) given by (4.23~(4.25), and F(z,k) analytic for Izl<e ~/~§ Then 
following exactly the Cauchy bound proof in (I), we see that 

1 . d z  1 - ik .a  dk 
(4.27) f - t ( P ) 2 ~ / ~ z ~ -  ~ 1--d(z,k;p) e (27c)d_ 1 

]k]<O 

dk 
=[l  +O(e -~L)] ~ /~2(k)e-C/r -k'a (2rc)e-~ 

Ikl<O 

with /~2 (k; p) = f -  1 (p) F(el/r k) analytic for Ikl < 6, and /s p) = K2 (P) 
=/s the same constant appearing in (I). The remainder of the proof of (IIi)- 
(IIiii) amounts to the evaluation of the integral in (4.27). 

To establish (IIi) and (IIii), suppose that a e Z  e satisfies [a[ <=L 3/4-~ for some 
e>0.  We divide the integral over ]kl<6 into two regions: g(L)<lk[<6 and 
[k[< g (L) with g (L)= L-1/4-~/2. The first integral is easy to bound. Indeed, using 
(4.23)-(4.25), we have 

g(L)_-< Ikl <,~ dk (4.28) 5 /~2 (k) e-  L/r e - iu-a (2 U)d-~ 

dk 
<e-L/r S IK2(k)l e-(~/S)k2LI (2rc)e_t 

g(L)<lkl 

< f12 e-L/r exp [--- (e/8) L 1/2-q, 

with fl2=fl2(P)< oo. Notice that, in the worst case, (4.28) is smaller than the 
"purported answer" by a factor of exp [ - (const)/2]. 

We now do the integral in (4.27) for [k[<g(L). We claim that the major 
contribution comes from the quadratic piece of ~- ~ (k), i.e. the gaussian integral: 

(4.29) Y'~2 e-L/~ I e_(~/4)kELe_ik,  a dk 
[kl <g(L) (2;re)d- 1 

= [erf[(eL)l/2g(L)]] a-IK2 

Here the error is utterly negligible since 

(4.30) 

1 
Ire eL] (e- 1)/2 e- Ll,(v) e- a2/t~L]. 

erf[(eL)l/2g(L)] = 1 + O(exp [-- ceLl/2-']). 



292 M. Campanino et al. 

We must now demonstrate that the non-quadratic piece of ~-~(k) yields the 
claimed correction. The remainder in the region ]k[<g(L) may be expressed 
a s ;  

(4.31) e -L/r 
Ikl <g(L) 

e - L/#(p) e - az/[a(P)L] 

= S [7c~L](a-1)/2 I~l<f(L) 

dk 
S e - ( a / 4 ) L k Z e - i k ' a [ K z ( k ) e L a ( k ) - - f f x 2 ]  ( 2 7 0 a -  1 

 xp[ [~Ll 1/~} ] 

s 

with f(L)=(1/2)o~1/2L1/4-~/2. In order to evaluate (4.31), for each component  
sj of s, we must do the integral about the contours enclosing the region IRe(s~)l 
< (1/2) cd/2 L 1/4- ~/z and 0 < - I m  (sj) < a/[eL] 1/2 < c~- 1/2 L1/4-~. Clearly, the func- 
tion R in (4.31) makes sense (i.e., its argument is small), and the integrand 
in (4.31) contains no poles in this region. Furthermore,  since, at the turning 
points, Im(s~)/Re(sj)= O(L-~/2), the relative contribution of the "vertical pieces" 
of the contours are O Eexp(L-~)]. Thus we need only evaluate the integral along 
the "horizontal  piece" Im(si) = - a/[c~L] 1/z, [Re(sj)] < f(L). 

Here, if desired, the functions e -LR and K 2 may be expanded and the terms 
explicitly evaluated. Note that this expansion is always legitimate since we are 
within the domain of analyticity of these functions - indeed, as L gets larger, 
the arguments get smaller. The range of validity of the series depends, of course, 
on the nature of a(L) and on how many terms one wishes to obtain. In particular, 
there are already several "e r ro r"  terms which are of the order 0 (e-L~), which 
may be comparable to inverse powers of L when L is rather small. However, 
as L ~ o o  (with some specific a(L), e.g., obeying upper and lower power law 
bounds), the expansion represents the correct asymptotic behavior. This establ- 
ishes (II i). 

Let us now attend to (IIii). Here the nature of a(L) is unspecified other 
than the power law upper bound [ a { ~ L  3/4-~. The error term may be written 
in the form 

(4.32) g(a, L ) -  [~L]~d-  1)/2 e +a2/t'Ll 
K2 

/?2 
x e +L/~ h0,z,a) [c~gL](a-1)/2 e-L/~e-~2/t~L] " 

Recalling (4.27)-(4.31), we have the estimate 

(4.33) g(a, L)<=fl3 t,,l<~(L ) '  ia z 

x{F22([(o~/4~L]l/2) exp[LR([(o:/4~L]l/Z)]--K2}ds 

with fi3 a finite constant. First observe that fore k near zero, we may estimate 
[/~2 (k)-/~21 < const .  I k[ 2, so that the k dependence of/~2 (k) produces a contribu- 
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tion to g(a, L) which may bounded by ff4/L for some finite/?~. This is within 
the stated error. Next, we distort the contour as discussed in the paragraph 
below Eq. (4.31). Neglecting the vertical pieces, thereby incurring an error of 
O [exp(L-~)], we are left with 

f(L) X 2 2x 
(4.34) E(a,Z)<=fl3, f e- fexp[LR(.[o~l/2 2ia]] 1} 

-f(L) e L / J -  

xdd-lx + ~ ' .  

Now we use explicitly the small argument estimate of Eq. (4.24): 

(4.35) IR (u-t- iv)l ~ 7 ]u + ivl4 <= 2(u4 + v4), 

Thus 

oR( 2x 2ia  {x" 
(4.36) -[e~-a/2 c ~ L ] l < 3 2 ~ + ~ ] ,  

which is also small since I xl < f (L) = (1/2) c~ 1/2 Z 1/4- - e/2 and l al < Z 3/4- ~. We may 
now bound the integrand in (4.34) using [e r -  11 < e  lyl - 1  <21Yl for y small, and 
apply (4.36) to obtain 

(4.37) 
a 4 

[~(a,L)l<=fi41+ fls ~ 

with fl4=fl4(p) and f ls=fls(p)<oe.  Thus the dominant correction to (4.29) is 
O(L- 2, L-4~), as claimed. 

Finally, let us attend to (IIiii). First observe that when ]bl is large relative 
to L, we may use the a priori upper bound (2.7) to estimate the tail of the 
sum. Thus, for example 

(4.38) h0,(L,b ) < (const) L d- 1 e-  2L/~. 
b:lb3l>lZLI 

Next assume for the moment  that each a j>0 .  Then we may sum the expression 
in (4.6) over all bj in the range aj < b~__< 2 L, with the result: 

(4.39) ~ ho,(L,b) < ~ h0,(L,b) 
aj<_bj<=2L aj<_bj<_2L+aj 

f - 1  1 dz 1 e_ik. a 
= (P) ~ ~ zr~+l l 1 -- ~ (Z, k ; p) 

[ - r e ,  + ~ ] a  1 

[d-d 1-- e-2ikjL~ dk  

�9 \)=11 ~ }  • (2re)a-1 �9 

Now we may perform, without modification, the steps (4.18)(4.28) to obtain 
a bound on the integral for [k[>g(L). (Observe that no singularity appears 
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at k j=0  because of the regulating terms 1--e-21kjL.) As before, we may distort 
the contour for the integral over Ikl < g(L) to obtain: 

(4.40) e-L/r ( 2x 2ia~ 
[ffo~L'](d-1)/2 ~ e - x 2 g 2  Ix[ < f(L) [~ -1 /2  ~L ] 

~'-]_1 \)=11 l_e-i~,/t2(~c)'/~le-a/t2~LQ ds' 

which is identical to the old result except for the presence of the product. How- 
ever, for a j >  0, it is easy to bound the magnitude of this product. Indeed, the 
magnitude of each factor in the numerator is bounded above by a constant, 
while the magnitude of each factor in the denominator is bounded below by 
(const) L -1. Thus the product is bounded above by (const)L d- 1, so that the 
contribution from the range O<aj<__b~<=2L yields a result of the desired order 
of magnitude. The terms which come from the range b j__<-a t are identical 
due to lattice symmetry. 

In case any of the aj vanish, we save the j th integral for last and use a 
separate estimate on the corresponding term in the product, namely 

Ii_e-2io~s I 
(4.41) ii_e_~,o[ < 2 N ,  

which is easily verified, e.g., by induction on N. Thus the contribution from 
these directions yields the same bound as those with aj > 0. Overall, we obtain 

(4.42) ~ h0,(L,b ) < (const) L d-  1 ho,(L,a) ' 
b:lbjl>ladl 

as claimed. 

(III) The proof of this is analogous to that of analyticity of ~(k) in k (cf. 
Eq. (4.22)). Let Po <Pc and choose z o such that e 1/r176 < Izol < e  1/r176 By Proposi- 
tion 4.2 (iii), 3 61 (Po, zo)> 0 such that the function @(z; p) is analytic in the region 
I zl < I zol, I pl < po (1 + 61). Then, by the analytic implicit function theorem, 3 62 > 0, 
62<61, such that for Ipl<po(l+62),  the equation 1 - ~ ( z ; p ) = 0  has a unique 
analytic solution, which we identify as e 1/~(p). Thus ~(p) is analytic in a region 
about any real p such that ~c(P)< ~(P). [] 

5. Separation of the decay rates 

In this section, we prove our principal estimate: namely that the exponential 
decay rates of the cylinder and direct connectivity functions are strictly separated 
for all P<Pc .  This verifies the hypothesis of Theorem 4.4 and thus completes 
our proof of properties (I~(III) for the cylinder functions. 

As in the analogous proof for SAWs [CC2], our strategy is to define block 
connectivity functions on slabs of some fixed scale L which interpolate between 
the free and direct connectivity functions at that scale. Explicitly, these block 
functions are the probabilities of connections which satisfy the "C-condit ion" 
(cf. Eq. (3.26)) over only part of the slab (i.e. over the central region of width 
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Fig. 3. A "likely" (a) and an "unlikely" (b) configuration in r a); R) 

(L, al 

R<�89 In Sect. 5a, we will use estimates on the basic connectivity functions 
to show that the block functions (and hence also the direct functions) decay 
faster than the cylinder functions, although not necessarily exponentially faster 
in L. 

In order to exploit this extra decay, we require interpolating functions on 
an even larger scale. Thus, in Sect. 5 b, we define rescaled interpolating functions, 
on scale NL, N >> 1, as the probabilities of connections which obey the C-condi- 
tion over interior regions (again of width R<�89 of each slab of scale L. A 
significant contribution to these rescaled connectivity functions is obtained by 
simply patching together N block functions. Were this the only contribution, 
then the extra decay of the block functions in L would imply that the rescaled 
functions decay exponentially faster in N than do the cylinder functions of scale 
NL. Such an estimate would complete the proof that ~c < 4. 

Unfortunately, a naive patching argument ignores the contribution of config- 
urations with long branches, e.g., configurations in which the (E-condition in 
one slab is not satisfied until the cluster has ventured into a later slab. These 
configurations are the analogues of the recurrent walk configurations encoun- 
tered in the SAW analysis [CC2], although here there are additional possibilities. 
Our key estimate (Lemma 5.3) shows that whenever p<pc, the probabilities 
of these "recurrent configurations" is exponentially smaller than that of the 
configurations obtained by simple patching. Furthermore, the probabilities of 
these recurrent configurations are related to various rescaled functions via a 
coupled system of Ornstein-Zernike or renewal inequalities. By analyzing the 
renewal inequalities, using both the bounds on the block functions and the 
bounds on the probabilities of recurrent configurations, we obtain r < ~ (Theo- 
rem 5.4). 

5 a. The block functions 

As explained above, we will use functions which interpolate between the free 
and direct functions. We propose (see Fig. 3): 

Definition 5.1. Let A, R ~2g +, A > R, L -  2 A + R. Let n~Z, O < n < L. The point-to- 
point block connectivity function of central scale R from (-- n, 0 ) -  (-- n, 0, ..., 0) 
to (L, a) is defined by 

(5.1a) ~,,,((g, a); R)= {o~l(g, a)~C((-n,  0))IIH<L), 
I C( ( -  n, 0))I[H(L)C~ P(j)I __>2 Vj with A < j < A  +R} 
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(5.1b) bl,.((L , a); R; p)= P(d~,.((L, a); R)), 

and the corresponding point-to-plane block connectivity function is 

(5.1c) 1B~,.(L;R;p)= ~ b~,.((L,a);n;p). 
a~?Td  - 1 

We will often suppress the arguments (L, a), R and p in our notation for these 
functions. 

The quantities of principal concern to us here will be the block connectivities 
from the origin: 

(5.2) dl--~l,O, b l - b L o ,  IBI-IBLo; 

and the extended block connectivities : 

A + R  A + R  A + R  

(5.3) ~t--= ~J ~1,,, aa--- Z b~,,, A~ --= E N~,,' 
n = A  n = A  n = A  

Remark. Since the block functions are required to obey the ~-condition over 
the central region, but are otherwise unconstrained, it is clear that (as promised) 
the block functions from the origin interpolate between the free and direct func- 
tions: 

(5.4) ~L(P) > ]B~ (L; R; p) > eL (P)" 

In particular, the decay rate of ]Ba(L) provides a bound on the decay rate 
of C L. Were this bound exponentially faster in L than ((p), we would be done. 
Although we cannot establish such an exponential bound, we make the following 
modest start: 

Lemma 5.1. Let IB~,,(L;R;p) be defined as in Eq. (5.1c) with L >  3R. Suppose 
that ~,t~ satisfies Proposition 3.1 with decay rate ~(p), and that ~(L satisfies the 
corollary to Lemma 4.3. Then 36(R; p) with lira 6(R; p)=OVp<p~, such that 

R ~ o o  

IBI,,(L; R; p) < 6(R; p) e -(I~+")/~(p) 

uniformly in L and n. 

Proof As in Definition 5.1, we let L = 2 A + R .  By an argument analogous to 
that in the proof of Proposition 4.1, it is easy to see that given a configuration 
oJe~l,,((L, a);R), there must exist a rightmost plane to the left of P(A) and 
a leftmost plane to the right of P (A + R) in which the ~-condition is not satisfied 
by C((--n, 0))lln(L). We denote these planes by P(N 0, - - n < N  1 <=A, and P(N2), 
A + R < N z < L .  This gives us disjoint realizations of the events ~(-,,0),cul,al), 
~(u ... .  ),(u . . . .  ) and ~(N . . . .  ),(L-N2,a-~I-~2)- Applying the van den Berg-Kesten in- 
equality (2.12), summing over points in P(N0, P(Na) and P(L), and shifting 
indices, we obtain 

A + n  A 

(5.5) Y, Y 
L I = O L 2 = O  
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(-n,O) 
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P (0} P (NL] 

[NL, a) 

Fig. 4. A "likely" (a) and an "unlikely" (b) configuration in gN,.(NL, a); R) 

Using the a priori upper bound: ~ c  < fl-1 (p) e-L/r from Proposition 3.1, relaxing 
the upper bound on the remaining sum, and using the fact that for any function 
F defined on the positive integers, ~ F(L 1 + L2)= ~ LF (L), we have 

L1 L2 L 

(5.6) ~l ,n (L;  R) ~ f l -  2 e -(L +n)/r ~, L]KL + R e (L + R)/r 
L = O  

<~fi- 2 e-(L +n)/r ~ LHC~L e L/r 
L>R 

However, by the corollary to Lemma 4.3, the coefficient of fl-Ze-(L +,)/r in (5.6) 
is the tail of a convergent sum, and thus tends to zero with R. [] 

5 b. The rescaled functions 

We now want to take advantage of the extra decay provided by Lemma 5.1�9 
Thus we propose (see Fig. 4): 

Definition 5.2. Let A, Re2g +, A> R, L=-2A + R. Let ne7/, O<=n<L. Let N~TZ +. 
The point-to-point rescaled connectivity function of central scale R from ( - n ,  0) 
to (NL, n) is defined by: 

(5.7 a) dm,((NL, n); R)= {co I(L, a)e C ( ( -  n, 0)) [IH(NL), 
�9 I C ( ( -  n, O))]l n(Nc) c~ P ( (M - 1) g +J)  l 

> 2  VM with 1 <=M<N, Vj with A < j < A + R }  
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(5.7 b) bN,.((NL, a); R; p)= P(dN,.((NL, a); R)), 

and the corresponding point-to-plane rescaled connectivity function is 

(5.7c) ]BN,.(L;R;p)= ~ bN,,,((NL, a);R;p ). 
a~TZd 1 

As before, the connectivities of principal concern to us will be the rescaled 
connectivities from the origin." 

(5.8) dN=--dN, O, bN-bN, o, IBN--NN,0 ; 

and the extended rescaled connectivities : 

A + R  A + R  A + R  

(5.9) ~ N -  ~.) ~N,n, aN =- 2 bN,,, AN-- 2 IBN,." 
n = A  n = A  n = A  

Remarks. (1) Notice that IB o is not defined by the above equations; we will 
use the convention 

(5.10) IB o - 1. 

On the other hand, ~o  makes perfect sense; it is just a sum of free connectivities. 
By Proposition 3.1 

A + R  

(5,11) ~ 0 =  ~ ~N<=2a(P) e-Ale(P), 
n = A  

with 2 l(p) < oe uniformly in A V p < Pc. 

(2) It is seen that, for N =  i, the above definition is entirely consistent with 
Definition 5.1 of the block functions. Indeed, let us denote the "central region" 
of the M th slab by So(M): 

(5.12) sc(m)={x~Zd[xl=(m-1)L+j forsomejwi thA<j<A+R}.  

While the configurations in ~1,, are required to satisfy the C-condition in So(l), 
those in ~N,, are required to satisfy the C-condition in So(M) VI<M<<_N. We 
will often say that a configuration double-covers the region So(M) if it satisfies 
the ~-condition in every plane of that region. It will also be useful to have 
explicit notation for the entire M th slab; thus we define 

(5.13) s(m)={x~Zalxa=(m-1)L+jforsomejwithO<=j<L}. 

(3) As before, the rescaled functions (from the origin) interpolate between the 
free and direct functions of the appropriate scale: 

(5.14) II~NL (p) >= IBN (L; R; p) >= II2NL (p). 

Thus, if we can show that for fixed L, BN(L) has an exponentially faster decay 
rate in N than does the free function II~NL , we are done. We begin by establishing 
the existence of a decay rate for NN : 
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Proposition 5.2. Let ]BN, n(L; R; p) be defined as in Eq. (5.7). Then for all pc(O, Pc), 
the limit 

1 1 
lim - -  log IBN n(L; R; p) = 

N~o~ N " ~b(L; R; p) 

exists and is independent of n. 

Proof. That the limit is independent of n is obvious, since the ~3N, . differ from 
each other by factors which depend on n < L, not on N. Thus we may confine 
attention to n=0 .  For ~3N, o, we can simply repeat the arguments in the proofs 
of Propositions 3.2(ii) and 3.3: As usual, we have a weak subadditive inequality 
analogous to (3.4) or (3.39), which implies the existence of a limiting decay 
rate for the on-axis point-to-point functions bmo((L, 0)) and an a priori upper 
bound for the off-axis functions bN, o((L, a)). Then IBN, o is shown to have the 
same limiting decay rate by "squeezing" with an inequality of the form (3.9). [] 

As is apparent from the above discussions, our strategy is to show that, 
for some choice of R, ~ I ( L ; R ) > ~ - I L  uniformly in L. This, together with 
(5.14), would give us ~ - 1 >  4-1. In order to prove this, we will of course use 
the extra decay from Lemma 5.1. Indeed, if the 113 N basically decoupled into 
N copies of ]]31 (i.e. if ~3N~3~) , Lemma 5.1 would directly imply ~ I ( L ; R )  
> ~- 1 L + [log ~ (R)[. In fact, we will ultimately obtain an estimate which is almost 
this strong. However, in order to do this, we will have to bound the probabilities 
of those configurations which do not decouple (e.g., the unlikely configuration 
in Fig. 4) by even faster exponential terms. This is the subject of our principal 
estimate: 

Lemma 5.3. Let the functions AkN(L; R; p) and ]3N(L; R; p) be as given in Definition 
5.2 with L = 2 A  + R, A >  R, and with Ak o and ~o given by Eqs. (5.11) and (5.10). 
Suppose that ~L satisfies Proposition 3.1, with decay rate r Then VN_-__I, 
Dx. N and 113 N obey the coupled renewal inequalities: 

N N 
(i) IBN ~ 2 "~YrK ~N -- K "j- 2 ~LJj "~N - J 

K=0 J=O 

N N 

(ii) &N ~-~ 2 "~YK ]BN - K + 2 ]~JJ ~kN- J 
K=O J=O 

where the functions V K (p), Uj(p), "grK(p) , ff-Js(P)>= 0 satisfy 

Vo = Uo = ~o =r =~J~ = ~  =o 
v~ =~3~, V~ = &  

l I J2<~2(p)  e+R/~(P)e -2L/~(p), ~_J2<=~2(P) e-A/r 

V6rlC <= )c 3 (p) e - A/r e - 2(K- 1)L/r (K -->_ 2) 

~ < ~3 (P) e - 2 Ale(,) e - 2 (K-1)L/~ (p) (K > 2) 

FIJj<=,~4(p) e -3A /~ (P) (J - -2 )e -2 (J -2 )L / r  ( J ~ 3 )  

l [ J j<  J~4 (P) e-4A/r J -  2) e - 2(J -  2)L/#(p) ( J  > 3) 

with 2 i (p )  , ~i(p) < oo uniformly in A, R, L, K and d Vp<pc. 
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Remark. As will become apparent in the following proof, the functions VK(p), 
lIJj(p), ~K(P) and l[lj(p) represent the weights of various unlikely ("recurrent") 
configurations contributing to the rescaled functions. 

Proof. Our strategy is to decompose ~N,, into a union of disjoint events: 

(5.15) 
N 

~N,, ((NL, a); R) = ~ ~(NK), ((NL, a); R) 
K = I  

N N 

= ~) ~) ~ ) ( ( N L ,  a); R). 
K = I J = K  

Let us first describe the K-decomposition. The configurations in x(K) ~N,, are those 
configurations in tiN., for which K is the smallest integer in [1, ..., N] such 
that ]C((--n,O))IIn(KL)aP(j)]>2Vj with A < j < A + R ,  i.e. such that C(( 
--n, 0))lln(KL) double-covers So(l). (See Eq. (5.12) for a definition of So(l).) For 
example, the configuration depicted in Fig. 4b is in ~(~,),, since the cluster "ven- 
tures" into the second slab before satisfying the C-condition in every plane 
of the central region of the first slab. 
As usual, we can define the connectivities 

(5.16a) b(NK,),,((NL, a); R; p)= P(~)n((NL, a); R)) 

(5.16b) 1B~),,(L;R;p)= ~ b(K)N,,~aNL, a);R;p). 
a ~ Z d  - 1 

Next, let us describe how J is chosen for a given K. Let ~(K) coeoN, . and consider 
the set of points 

(5.17) Q(K; co) - Q(K) = C((--n, 0)) [I n(KL) C~ P (KL). 

By the definition ~,r x(K) ,,1 ~N,,, Q(K) must contain a non-empty subset 

(5.18) 
q(K; oJ) = q(K) 

= {x ~ Q (K)[ x is connected to (NL, a) by a path of occupied bonds in 

H(NL) in the complement of the sites of 

c ( ( -  n, O))II.</,L)\{X} }, 

i.e, q(K) is the set of sites in Q(K) which actually reach (NL, a). Furthermore, 
since all points x~q(K) are connected to (NL, a), the cluster that accomplishes 
this connection must be the same for all these points, i.e. the set 

(5.19) CN (q(K)) = C (X)II.(NL)\ { C ((--n, 0))II.(KL>\{X}} 

is independent of the site xeq(K). If CN(q(K)) double-covers Sc(M) for every 
M = K + 1, ..., N, we define J = K. Otherwise, we define J to be the largest integer 
in [K + 1, ..., N] such that So(J) is not double-covered by CN(q(K)). For example, 
the configuration depicted in Fig. 4b is in ~ ' 2 )  since the component from the 
plane P(2L) which eventually reaches (NL, a) does not double-cover Sc(4), 
although it does double-cover all later central regions. 
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Again, we can define the connectivities 

(5.20a) b~)((NL, a); R; p )=  P(~K;/)((NL, a); R)) 

(5.20 b) re(K, J) I t .  o .  , ~u,, t~,*', P)= Z b~" s)((NL' a); R;p). 
a E Z d -  1 
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We will also use the rotation 

(5.21 a) 
A+R 

N~,J)(L; R; p) = Z I B ~  J) (L; R; p) 
n=A 

(5.21 b) B~,  S)(L; R; p) = N~b s~ (L; R; p). 

Due to the disjoint union, we have 

N J 

(5.22) .= Z Z , XL~N, n 
J = I K = I  

with similar expressions for NNand BN. We claim that the first sums in the 
renewal inequalities come from the terms with K = J, and that the second sums 
come from the K < J terms. Thus we will treat these cases separately. Further- 
more, in each case, we will treat K = 1 separately from K > 2. 

Let us begin with K = J. Thus take e)~d~'f)((NL, a); R). First, by the defini- 
tion of K, there is a point (KL, b)eq(K) (defined in Eq. (5.18)) such that C(( 
- -  n ,  O ) ) I l l t ( K L )  provides a realization of d~'nK)((KL, b);R). Furthermore, by the 
definition of J, CU(q(K)) (defined in Eq.(5.19)) gives a realization of 
T(KL'b~dN_K,o(((N--K ) L, a - b ) ;  R) disjointy from C((--n, 0))r[mKL). Notice that 
this second event begins at n = 0, i.e. is a translate of ~ U - K "  Thus by subadditivity, 
the van den Berg-Kesten inequality (2.12) and translation invariance, we have 

(5.23) b~'f)((NL, a); R; p)< ~ P(~'~K)((KL, b), R))) 
b ~ a  1 

x b N_ K (((N-- K) L, a -- b); R; p). 

Now suppose K = 1 (and still assume K=J). Then d]l, hl)((L , b); R)=  gt,,((L, b); R), 
i.e. there is no further decomposition. Summing (5.23) over a and b, we obtain 

( 5 . 2 4 )  B(~,'~ ) ~ ~ 1  ,n INN -1"  

This immediately gives the first nontrivial terms in the first sums of the renewal 
inequalities. Indeed, for n = 0, (5.24) becomes 

(5.25 b) 1B(1,1) <~ ]B 1 ]B N -  . N ~--- 1~ 
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(~n,0) 

I 

f 

/ -- 

Fig. 5. A configuration in d~((KL, b); R)) 

/ ~ (KL, b) 

P ~KL) 

the r.h.s, of (5.25b) is the K = 1 term of the inequality (i) with Va = Bt .  Similarly, 
summing n from A to A + R, (5.24) gives 

(5.25 a) &~, 1)-------~1 ] B N -  1 ,  

the r.h.s, of which is the K = 1 term of the inequality (ii) with ~ r  = & t .  
Now suppose K > 2 and o)~',I()((KL, b); R)), (See Fig. 5.) Then, by the defi- 

nition of K, there must exist two points xeS(K) and yeSc(1) and two occupied 
paths: 

~tu: from ( - n ,  0) to x 

~t21" from x to y 

with ~[1] and ~t21 site-disjoint except for the point x. Furthermore, by the defini- 
tion of ~K,,((KL, b);R)), there must exist a point ze~11w~t2 ~ and an occupied 
path 

~31: from z to (KL, b) 

which is site-disjoint from ~m and ~t2a, except for the single point z. There 
are two topologically distinct cases: zest11 or ze~t: l ;  however, these lead to 
the same final estimate, so we will explicitly treat only the latter. Again, using 
the van den Berg-Kesten inequality, Eq. (5.23) and the above reasoning imply 

(5.26) b~'f') ((NL, a)) < ~ z(_,, o),~ Zx,~ zz.r Z.,(KL,b) bu- ~ (((N -- K) L, a - b))). 
b e ~ d  - 1 

x e S ( g )  
yeSc (1 )  

zeH(KL)  

Summing over a and b and the transverse coordinates, and using the notation 
Xl ~X,  Yt=- Yand z~=Z,  we have 

(5.27) �9 ~;~)< ~ (F,.+x r r ~lKL-zl ~N-I~. 
( K -  1)L<--X<~KL 

A < ~ Y ~ A + R  
Z<=KL 
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Finally, using the a priori bounds ~L < fl-  a (P) e -  L/r from Proposition 3.1 and 
performing the remaining sums, we obtain 

(5.28) ] a ~ f )  ~ 23 (p) e -  n/r e - me(v) e - 2 ( K  - 1 ) L / r  ] a  N _ K 

with 23(p)< ~ for p<pc. The contribution from the case Z ~ l j  only modifies 
the constant 23 (p). 

It is easy to see that (5.28) provides the K > 2  terms in the first sums of 
the inequalities (i) and (ii). Indeed, for n = 0 we obtain 

(5.29 b) ]a(N~c,K) < WK ]au-K 

with WK of the stated form, while if we sum n from A to A + R, we have 

(5.29 a) Z ~ '  K) _< ~ ]aN- r 

with 

(5.30) 
A + R  

__~r _< 23 (P) e - A/r (p) e - 2 (t~ - 1 )LIe (p) 7, e - ,/r (p) 
? I = A  

and ,~3 (p) < ov for p<p~. 
Now we will treat the case K < J. Here we will first assume K > 2 (so that 

J ~ 3 ) ,  and then explicitly consider the case K = I ,  J = 2 .  Thus we take 
coed(uK;/)((NL, a);R), J > K > 2 .  Then, by exactly the same reasoning as in the 
case J = K > 2 ,  the definition of K implies that there exist points (KL, b)eq(K), 
x~S(K) and yeSc(1), and two occupied paths 

~11: from ( - n ,  0) to x 

~[2] : from x to y 

with ~11 and ~[2] site-disjoint except for x, as well as a point Z~[1]k.J~[2 ] and 
an occupied path 

~3~ : from z to (KL, b) 

which is site-disjoint from 411 and ~zl except for z. Again, we will explicitly 
consider only the case zE~zl ,  since the other case leads to an upper bound 
of the same form. 

Now, by the definition of J, we know that CU(q(K)) (defined in (5.19)) does 
not double-cover the region So(J), although it does double-cover Sc(M) V M >  J. 
Thus there must exist a rightmost plane in S~(J) in which the (E-condition is 
not satisfied by CN(q(K)), i.e. there must be a largest integer W in [ ( ( J - 1 ) L  
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I 
5 

(NL a) 

I-n,01 

P (01 P [KL) P IJk) P (NL} 

Fig. 6. A configuration in ~J~((NL, at; R) with 7>K 

+ A, ..., ( J -  1) L + A + R] such that P(W) n CN(q(K)) contains only a single 
point�9 Let us denote this point by w* = (W, w). (See Fig. 6.) 

By the definition of CN(q(K)), w* is connected to (KL, b) in the complement 
of C ( ( -  n, 0))II n(KL)\Q (K). Thus there is an occupied path 

44] : from (KL, b) to w* 

which is site-disjoint from 41], 42] and 43j (except for the point (KL, b)). Fur- 
thermore, since S~(J + 1), Sc(N) are double-covered ;~ ~(K,J) but are not dou- 
ble-covered by CN(q(K)), there must exist points r e 4 1 ] w 4 2  ] u 43] and seSc(J), 
sl = W -  1, and a path in CN(q(K)) 

~5] : from r to s 

which, except for the point r, is site-disjoint from 417,427 and ~t31, and which 
is also site-disjoint from 441. Indeed, if 421 were not disjoint from 447, then 
we would have had 45]cC~(q(K)), which would mean that CN(q(K)) double- 
covered Sc (M) for every M > K + 1, contradicting our asumption J > K. 

As with our placement of z, there are several topologically distinct choices 
for our placement of r: given Zff~[2], we could have r e ~  m, re43],  re{the seg- 
ment of ~t2] between y and z} or re{the segment of 42] between z and x}. 
However, as before, each of these choices will lead to an upper bound of the 
same form, so we explicitly treat only r e ~  m. 

Finally, and most importantly, since every connection from q(K) to (NL, a) 
must pass through the point w* =(W, w)eSc(J), and since by the definition of 
J, CN(q(K)) double-covers Sc((J+ 1), ..., So(N), there must be a realization of 
T(W,w) dN-J,JL-W(( N - -J)  L, a--w); R) in C N (q (K)). This realization is clearly site- 
disjoint from 41], 42] and 431, since it is a subset of CN(q(K)) which is by 
definition disjoint from these paths. The realization is also site-disjoint from 
~t5]; indeed, were this not the case, we would have had ~57cCU(q(K)), again 
contradicting our assumption J >  K. Finally, the realization is also site-disjoint 
from 44], except for the single point w*. Indeed, this follows immediately from 
the fact that both the realization and ~41 are subsets of CN(q(K)), and that 
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w* is by definition the only point of intersection of CN(q(K))  with the plane 
P(W). 

By subadditivity, the van den Berg-Kesten inequality (2.12) and translation 
invariance, we have 

(5.31) b<N~)((gL, a))<= ~ 72(_n,O),r'~r, x 72x,z rz,y Zz,(KL, b) 75r, s TJ(KL, b),w, 
b~Z/d- 1 

xeS(K) 
y~Sc(1) 

zeH(KL) 
w*eS~(J) 
rcH(KL) 
seS~(J) 

�9 b N - j , j L -  w ( ( ( N - -  J) L, a - w))). 

Summing over a, b and the transverse coordinates, and using the notation Xl -= X, 
Yl -- Y, zl = Z  and wl -~ W, we have 

2 
(5.32) IB<~K'.J)<<_ (K-1)L<-X<-KL ( l~ln_r ,  I ~ ] u  ~ l X _ Z l  ~ l Z _ y [  

A<_Y<_A+R 
Z < K L  
rl <_ KL 

( J -  1 ) L + A < W < ( J  - 1 ) L + A + R  
s l = W - 1  

" I ~ I K L - Z I  ( l~ l r , - s ,  I ~ I K L - - W I  ~ N - J , J L - W "  

Using the a priori bound on ~L and performing the final sums, we have 

(5.33) IB(K,~ )< 2 4(p) e-~/r e-  3 A/r e -  2(J- 2 ) L / r  J 

with 24(p)<oo for P<Pc.  Here the factor of ~N-J  came from summing 
~3~r-~,jL-w over Win  the allowed range. As before, the other possible positions 
of z and r yield estimates of the same form, and thus only modify 24(p). Finally, 
noting that the expression on the r.h.s, of (5.33) is independent of K (and recalling 
that we have restricted to the case J > K > 2), we obtain 

(5.34) 
J - 1  

I~(K,J) <_ 24(2)) e - , / r  2) e- 3A/r e -  2(J- e)L/~(P)AN j Jut~N, tl - -  -- �9 
K = 2  

Again, it is easy to see that this produces all but the first nontrivial terms 
in the second sums of inequalities (i) and (ii). Indeed, for n = 0, we get 

J - 1  

(5.35 b) ~ ~Nr~(~:'J) =< 1Uj &N-J 
K = 2  

with Ilj of the stated form, while performing the sum over n: A to A + R, we 
get 

J - 1  

(5.35 a) ~ ~x<,J) < tDj AN-s 
K = 2  
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with 

A+R 
(5.36) l~lj =< 24(P)(J-- 2) e-  3A/r 2(J- 2)L/r 2 e-"/e(v) 

n=A 

< ~4 (P) e- 4A/~(p)(j_ 2) e- z (s- 2)L/~ (p) 

and ,T4(p) < oo for p<p~. 
Let us now attend to the single remaining case K = 1, J = 2, and prove that 

it yields the remaining nontrivial term ~[f2 ~kN--2 in (i) and ]~2 ~N--2 in (ii). To 
this end, take co~d~',z)((NL, a);R). Then, by the definition of K and the fact 
that K = 1, there must exist a point (L, b)~q(1) and a path 

~tll : from ( -  n, 0) to (L, b) 

in C((-n,O))][mL)\Q(1 ). Furthermore, following exactly the reasoning in the 
case J > K > 2 ,  there must exist points w*=(W,w)~S~(2), r ~ t l  J and s~S~(2), 
s~ = W -  1, defined as before, and two occupied paths 

~t41 : from (L, b) to w* 

~t51 : from r to s 

which are site-disjoint from each other and from ~tll except at the specified 
points of intersection. Finally, as before, there must be a realization of 
T(W'w)dN_2,zr_w(( (N-2)L,a-w);  R) which is site-disjoint from ~t11, ~41 and 
~tsl, except at w*. Thus we obtain 

(5.37) b~,'z)((NL, a)) 

<= 2 Z(-n,O),r'Cr,(L,b)Zr, s 'C(L,b) ,w*bN-2,2L - W ( ( ( N - 2 )  L ' a - w ) ) ) "  
b~Ea- I 
w*ES~(2) 
r6H(L) 
s~S~(2) 

which yields 

(5.38) IB(1,2) • 22 (p)  C - nR/~ (p) C + R/~(p) e - 2 L/~ (p) ~l~k N _ 2 

with 2z(p)< zo for P<Pc. Setting n=0,  we get 

(5.39b) 

while summing over n gives 

(5.39a) 

]B(N 1 , 2) ~ ~J2 ~kN - 2, 

~ ( 1 , 2 )  ~.~ 
~ 2 ~ N - 2  

with ~IJ 2 and ~)z of the stated forms. [] 

Theorem 5.4. Let ~(p) and ~c(P) be the decay rates of  Zo,L(P) and Co,L(p) as 
defined in (1.2) and Proposition 3.2. Then V p < Pc, ~c(P) < ~ (P). 

Proof. As explained earlier (cf. Eq. (5.14) and the discussion following the proof 
of Proposition 5.2), the decay rate ~b provides a bound on the decay rate of 
the C-functions: 4o- 1 L > ~ 1 (L; R). Thus it suffices to show that, for some choice 
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of R and L,  ~ b l ( L ; R ) > ~ - I L ,  for which we need an upper bound on the It N. 
To this end, let us examine the system of coupled renewal inequalities derived 
in Lemma 5.3: 

N N 

(5.40a) n3N< ~ WK~3N_r+ ~ 1LTj&s_j; N=>I 
K = O  J = O  

N N 

(5.40b) A~N----< Z ~ N - K +  ~ I[IjA~N_j; N=>I. 
K = O  J = O  

Given these inequalities (and the bounds on the coefficients as derived in Lem- 
ma 5.3), we may prove the desired result either by induction in N, or by studying 
the transforms of B3 N and &N- Here we give a proof based on the transforms. 

First, it is clear that were (5.40a) and (5.40b) equalities, then the sequences 
(IBN) and (&N) could be generated, recursively, via knowledge of ~3o, B~, &o, 
&l ,  (WN), 0L!N), (~N) and (if.IN). Similarly, provided all of the quantities are non- 
negative, upper bounds on the these eight (sets of) quantities systematically 
generate upper bounds on the IB2, ~33, ...,; &2, &3 . . . .  by substituting into 
(5.40a) and (5.40b) as though they were equalities. We may therefore consider 
the system 

(5.41 a) 

(5.41 b) 

(5.42 a) 

(5.42b) 

(5.42c) 

(5.42d) 

(5.42e) 

(5.420 

(5.42g) 

(5.42h) 

(5.42i) 

(5.42j) 

(5.42k) 

N N 

(BN= ~ VKBN-~+ ~ Us AN-j 
K = O  J = O  

N N 

AN= Z LBN- + Y VjAN-j 
K = O  J = O  

Bo= 1 
A o = ~e-A / r  

Vo=Uo=%=fJo=0 
B 1 = V l  = / ~  t~ (R) e - L/e( ,)  

A1 = ~I'1 = 2 e -  A/~(P) g (R)  e -L/C(') 

151 =U1 =0 

Uz=~e+R/~(P)e -ZL /~ (P) ,  ~2=,,~e-A/r162 

VK = 2 e - Ale(p) e - 2 (K -- 1)L/r (p) ( K  > 2) 

"V r = 2 e - 2 A/r (p) e - 2 ( r  - 1) LIe 0,) ( K  > 2) 

U j  = 2 e -  3A/g(p)( j  _ 2) e-  e{s- 2)L/etp) (J >= 3) 

f J s = 2 e - 4 A / e t P ) ( J - - 2 ) e  -2(s-2)r/r ( J_3)  

and use the solution BN>IB N to derive our bound on ~b. Here (5.42a) and 
(5.42 b) come from (5.10) and (5.11); (5.42 d) and (5.42e) follow from Lemma 5.1; 
and the remaining equations follow from Lemma 5.3. Note that we have replaced 
all the various 2's - which are A and R independent - by 2=max{1,22(p), 
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~2 (P), 23 (p), "~3 (P), J~4(P), ~4 (P)}, and (for reasons which will shortly become clear) 
we have degraded the bound of Lemma 5.1 by inserting an extra factor of 2 
into (5.42d). 
Transforming the system (5.41) we have 

(5.43 a) 1~ (z) = 1 + 9 (z) B (z) + U (z) A (z) 

(5.43 b) .~ (z) = Ao + 9 (z) B (z) + ~J (z) A (z); 

or, after a bit of algebra, 

(5.44a) f3(z)=[1-~(z)+AofS(z)]/[1-('r 
- fJ (~) 9 (z))] 

(5.44b) A(z)=[.Ao(1.-9(z))+9(z)]/[1-(9(z)+fJ(z))+(V(z)~5(z) 
- u (z) 9 (z))]. 

The leading large-N behavior of Bu (or AN) is determined by the earliest pole 
of (5.44). Thus the solutions to the equation 

(5.45) 1 = 9 (z) + ~ (z) + (V (z) l~ (z) - U (z) #r (z)) 

will provide a lower bound on e 1/~b and hence an upper bound on ~c. Will 
not actually solve (5.45). 

Instead we will choose values of R and A such that we obtain a lower 
bound on the solution of (5.45) which separates r from ~z 

First, it is observed that since we have arranged U(z)=e-'4/~-(P)fS(z) and 
V(z)=e-A/~P)~r(z), the cross term vanishes identically. This renders the r.h.s. 
of (5.45) a (strictly) monotone increasing function for zs lR +. From Eqs. (5.42), 
we have: 

(5.46) ~g(z)+~J(z)=26(R)~cz + 2e-A/r + T1(z)+ Tz(z) 

where 

�9 ~ e - A/r 1~2 Z 2 

(5.47 a) T1 (z) = 1 - ~:z z 

and 

,~ e -  4 A/r K 2  Z 3 

(5.47b) Tz(z)= [1--~cZz] z ' 

and, for algebraic ease, we have temporarily adopted the notation ~:=-~c(R, A) 
- L /  

= e  

Our scheme is as follows: Let z* =z*(R, A) denote the solution to (5.45). 
We pick R o large enough so that 

(5.48) ,~6 (Ro) <�88 

Next, define zo(Ro, A) to undershoot a crude version of (5.45), i.e. 

(5.49) )~6 (Ro) ~: z 0 = �89 
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Then, we claim that we can find A(Ro) large enough so that 

(5.50) 

and hence, by monotonicity, 

(5.51) 

9(Zo) + 13(Zo) < 1, 

Z o < Z*.  

By the above reasoning and Eqs. (5.48), (5.49) and (5.51), we have 

(5.52) e LIr > e 11r >- z* >_ 2 e L/r 

and hence, since L = 2A + R, 

1 log 2 1 
(5.53) - - >  ~-~- 

~c = 2A(Ro)+ Ro 

which is the desired result. 
It remains to satisfy (5.50). Setting 2~CZo=1/26, the second term 

r.h.s, of (5.46) becomes 

1 
(5.54a) 4)~(~2 e-  A/r e + R~ 

while Ta becomes 

(5.54b) 1 -A/r [1 1 - a 4 2 6 2 e - -  2 ~  e -  2 Ale(p) e -  R~ (P)] 

and T 2 is given by 

(5.54c) 822~ 3 e-2A/~(V)e +R~162 1----e-2A/~(P)e-R~ . 

It is manifest that the quantities in (5.54) tend to zero as A ~ oo. [] 
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6. Fluctuations of paths in percolation 

In this section, we establish our principal results: First, in Sect. 6a, we prove 
results (I)-(III) of the introduction for the standard connectivities (Theorem 
6.2). Next, in Sect. 6b, we use these results to establish a multidimensional local 
limit theorem for percolation clusters (Theorem 6.3). Finally, in Sect. 6c, we 
prove absence of a roughening transition in two-dimensional percolation (Theo- 
rem 6.4). 

6a. Asymptotic properties of the standard connectivity functions 

Using the knowledge that Vp <Pc, ~c is strictly less than ~ (Theorem 5.4), results 
(I)-(III) of Theorem 4.4 now hold for the quantities ho,(L,a ) and l-I L throughout 
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the subcritical regime. However, the purpose of this investigation was, of course, 
to establish such results for the "real" connectivity functions, namely Zo,(L,,) 
and II; L. This has already been done for result (III) since we have proved that 
the decay rates for the g's and h's are identical (Proposition 3.1). The analogues 
of (I) and (II) will follow by analytically relating the transforms of ZO,(L,a) and 
h0,(L,a)" 

Proposition 6.1. Let the direct connectivities cx,r and kx,r(P) be defined as in 
Eqs. (3.24) and (3.37) (and recall that they are related by the uniform bounds 
of Proposition 4.3, with common decay rate ~(p)). Let h, r(P) and z, r(P) be 
the cylinder and free connectivities, defined in Eqs. (3.2) and (]'.1), and let ~[(z, k; p) 
and "~(z,k;p) denote their Laplace-Fourier transforms. Then f(z,k;p) may be 
expressed as 

-~ (z, k; p) = A 1 (z, k; p) + A2 (z, k; p) ~(z, k; p) 

where Al(z, k) and A2(z, k) have the same joint analyticity that was established 
for d(z, k) in Proposition 4.2 (ii). Explicitly: 

Vp<pr V[ZO[<el/~c(P);3CSk=6k(P, Zo)>O such that Al(z,k) and A2(z,k) are 
analytic in the regions Izl _-< Izol and Ikl--<~k. 

Moreover, Aj(z,k) is (a constant plus) the transform of ko,(L,,), while A2(z, k) 
is the (square of the) transform of another modification of the direct correlation 
function. 

Proof. Let us define direct correlation events dO,(L,,) which behave like the 
c-events at the left boundary (P(0)), but which are permitted the freedom of 
d-events at the right boundary (P(L)): 

(6.1 a) dO,(L,,) = {CO~dO,(L,,)lC(O)11S(L) ( ~  P (0) = {0}} 

(6.1 b) d0,(La) = P(do,(c,,)). 

(Note that these d-functions do not coincide with any of the additional direct 
connectivities introduced in the Appendix, since the connections contributing 
to the latter functions were always required to occur in the cylinder.) Now, 
the d-functions obviously satisfy 

(6.2) Co,(L,a ) ~ d0,(L,a ) ~ kO,(L,a ). 

Thus ~r is the decay rate for all of these direct correlation functions. 
Given this, we can follow exactly the derivation in Eqs. (4.7)-(4.10) to prove 

that d(k, z) and ~(k, z) are both jointly analytic in z and k, for ]zl =< Zo Ik[ G 6k(p, ZO), 
Vz o, 0 < Zo < e t/e(v) for some 6k(p, Zo) > 0. 

Let us now show that d(k, z) and ~(k, z) can be used to relate the transform 
functions ~(z,k;p) and /~(z, k; p). To this end, let COe~0,(L,, ) and consider the 
intersection of C (0; co) ___ C(0) with the planes P (j), 1 __< j _<__ N- -  1. Obviously there 
are only three possibilities: 

(a) All of the planes satisfy [P(j) c~ C(0)] > 2. 
(b) Exactly one of the planes, say j =  N, satisfies IP(j)c~ C(0)I = 1. 
(c) More than one of the planes satisfies ]P(j)c~ C(0)1 = 1. In this case, denote 

the leftmost such plane by j = N, and the rightmost by j - - M  > N. 
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In case (a), it is clear that 

(6.3 a) co e ~fo,(L,. )- 

In the second instance, we let b e Z  d- ~ denote the transverse coordinate of the 
unique point in P(N) belonging to C(0). Then one has 

(6.3 b) co ~ Z{O,~N,b) n Z{(~,b),(L,a). 

Finally, letting (N, b) and (M, c) denote the unique points in P(N) and P(M) 
belonging to C(0), case (c) implies that 

(6.3 c) co ~ d 0 , ( N , b )  ('~ ~(n ,  b),(M,c) (-~ d (M,c) , (L ,a )  �9 

Using the (near) factorization property of the various events and the fact that 
these events represent disjoint possibilities which exhaust ~o,(L,~), we have 

(6.4) Z0,(L,~) = ko,(L,.) + f (P) ~, d0,(N,b) d~N,b),(L,~) 
N,b 

+f2(p)  ~ do,~u,b) h(u,b),(~,~)d(M,~),(L,.), 
N,b 
M,e 

M > N  

where f (p)  is the "patching factor" defined in the statement of Proposition 
4,1. Recalling that ho,(o,,)=f-~(p)~o,~, it is seen that the second term in (6.4) 
may be absorbed into the third provided that we relax the requirement of strict 
separation of M and N. Defining the various transform functions (see also (4.3 a)): 

(6.5 a) "~(z, k; p )=f (p)  ~ %,~L,~)(P) z%ik'" 
L,a 

(6.5 b) ~(z, k; p )=f (p)  ~ ko,~L,a)(P) zLe ~k" 
L,a 

(6.5 c) cT(z, k; p )=f (p)  ~ do, (L, .) (p) z% ik'a, 
L,a 

with the stipulation that "Co,(o,a)= fio.~ and ko,~o,. ) = do,~o,~- 0, the relationship 

(6.6) ~(z, k; p) = 1 + ~(z, k; p) + cTZ(z, k; p)/~(z, k; p) 

is easily verified. [] 

Theorem 6.2. Let Zx,y(P) and ~L(P) denote the standard percolation connectivity 
functions as defined in Eqs. (1.1) and (1.4), with common decay rate ~(p) given 
by Proposition 3.1. Then V p < pc : 

(I) 3 K2 (p) > 1, A (p) > 0 such that 

I ~L (P) e + L/e~p) - K 2  (p)[ < e -~(p)L. 

(II) 3c~(p)>0 such that VaeTZ ~- 1 satisfying lal < g  3/~-~ with ~>0, 

1 
%,(L,a) "~ K2 (p) [c~ (p) roLl(d- t)/2 e -  L/r e-"2/t~ (p) L~ [1 + O (L- 1, L- 4~)]. 
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In particular: 

(i) The expression above represents the first term in an asymptotic expansion: 
i.e., for any fixed function a(L), [a(L)[ < L 3/4-~, with a(L) tending to infinity (e.g., 
as a power of L), the O(L- t ,L  -4~) terms can be systematically calculated in an 
asymptotic series. 

(ii) The error term is uniform in a: i.e. 3d'l(p), d;(p)<oo such that Va~Z d-~ 
satisfying ]a] ~ L 3/4-~ 

LZo,a.,j[~(p ) rcL](a_ 1)/2e+L/4(p)e+a2/[~(p)gl I(z(p) [ = L ~ L di(p) . d'2(p) 

(iii) The tail of the distribution is uniformly bounded: i.e., ~d~(p)< co such that 
Va~Z a-1 satisfying ]a[ <-L 3/4-~ 

ZO,(L,b) <=d'3(p) lja- t)/Z e-L/r e-a2/[~(P)Ll 
b:lbjl>-_lajl 

where aj and bj are the jth components of the vectors a and b. 

(lII) ~(p) is real analytic. 

Proof. As previously remarked, (III) has already been established in Theore- 
m 4.4 (III). To establish (I) and (II), we use the fact that B(z, k; p) and r k; p) 
are analytically related by Proposition 6.1. Thus the manipulations performed 
on B(z, k; p) in the proof of Theorem 4.4 may be directly carried out on ~(z, k; p). 
The only change is that the function F(z, k) introduced in Eq. (4.26) is replaced 
by another function, computable via Proposition 6.1, which modifies the con- 
stant /~2(P). The fact that K2(p)> 1 follows from the a priori lower bound on 
II~L, given in Proposition 3.1. [] 

6b. A multidimensional local limit theorem 

Using the results of the previous subsection (and of previous sections), we will 
establish a local limit theorem for the transverse fluctuations of subcritical paths. 
Here we will consider a situation in which the system contains a long path 

in particular from 0 to (L, 0, ..., 0) - and obtain detailed information on 
the location of the cluster in the intervening planes. Since the cluster will often 
have multiple intersections with any given intermediate plane, we will employ 
the following device: 

Definition 6.1. Let (L,a)~;g a and denote by ~b~ the event that the origin is 
connected to P(L) and that the maximum extent of the cluster in P(L) in the 
i th coordinate direction is al, i=  2 . . . . .  d. 

(6.7) ~,--L _ {e3 [ ~ X E P (L) such that x ~ C (0); and 

max {yi[y~P(L) c~ C(0)} = ai, i = 2, ..., d }. 

Note that, for d > 2, B E does not necessarily imply that 03 ~O,(L,,)" 
Our local limit result is as follows: 
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Theorem 6.3. Suppose P<Pc. Let r 1), ~eNa-1 and L-2g,  and denote by 
Qe2g the smallest integer larger than eL, and by v~Z a-1 the vector whose i th 

component is the smallest integer larger than ~/Lvi. Let the events ~o,(L,o) and 
4)~, be defined as in Eqs. (3.1) and (6.7), and from these events define 

pq(~)=_p~(~; p)=12d-1)/2p:'m? ' 
[ '~v  I~O,(L,O):- 

Then, as L --* ~ ,  for every ~ > O, 

1 
P~(v) : [q(1 --q) ~ c~(p)] (d- 1)/2 e-~2/[q(1-q)~(P)](1 -{-O(L -(1 -~)), 

where ~(p)> 0 is defined in Eq. (4.23), and is the same constant appearing in Theo- 
rems 4.4 and 6.2. 

Proof. Let Q and v be as defined in the statement of the proposition, and 
suppose co e ~a  c~ yo,(L, o). We will distinguish two cases: 

(1) [C(0)(~P(Q)[ = 1 

(2) IC(0)~P(Q)I> 1. 

Before doing detailed estimates on these two cases, let us dispense with 
an unlikely set of possibilities. Given that co ~ ~ (~ po,~L, o), it is of course possible 
that co~c~fo , (L ,o) ,  or at least that co contains a (translate of a) realization 
of '(0,~at~,b) o r  z2(0,(AL, b) for some b~Z  ~-1 and some 2>0.  However, the fact 
that ~c < ~ (Theorem 5.4) implies that these configurations are (relatively) expon- 
entially unlikely. 2 Thus in our subsequent estimates, we can neglect terms con- 
taining k-functions or d-functions of order O(L) (i.e. configurations in which 
there are O(L) consecutive planes P(j) with [C(0)(aP(j)[>I) at a cost of no 
more than e-L/~e -~ for any e~(0, 1). 

Let us first consider case (1): i.e., the case in which C(0) has only a single 
point of intersection with P(Q). Then, by definition, (Q, v)E C(0). Assuming they 
exist, let N > 0  be the leftmost plane and M < Q  be the rightmost plane in 
S(Q)\P(Q) in which C(0) contains a unique point. Denote these points by (N, a) 
and (M, b), respectively. To the right of P(Q), we denote the similarly distin- 
guished points by (R, e), R > Q, and (P, d), P < L. Of course, some of these points 
will not exist if co contains a realization of do,(Q:) or zi(Q,v),(L,o); however, 
as discussed above, the probability of either event is easily bounded. Now, if 
e.g. (M, b) does exist, then it is easy to see that in S(Q), co contains realizations 
of ~(~t,b),(~,~), A(N,~),(M,b) and do,(N,,) which are disjoint except for the bounding 
planes P(N) and P(M). Thus, except for configurations containing do,(Q,, ) or 
d(Q:),(L,o), the probability of case (1) is given by 

(6.8) 
fS(p) ~ do,(~,.) h(N,a),(M,b) C(M,b),(Q,v) C(Q,v),(R,c) h(R,c),(e,d) dw, d),(L,O), 

O<N<M<Q<R<P<L 
a;b,c,d~7la-  1 

where f(p) is the "patching factor" defined in the statement of Proposition 
4.1. 

2 Indeed, the result ~c < ~ implies that the only configurations of significance are those with 
O(L) planes in which C(0) has a unique point of intersection 
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Let us now consider case (2): i.e. when C(0) has multiple intersections with 
P(Q). To handle these situations, let us define, for 0 < N <L,  

(6.9) 

and, in general, 

(6.10) 

cNl• :~ CN), 
O,(L,a) = P(zo,(L,a) 

NIb cry, ~),(L, ~) = P (c o, (L, ~) c~ T iv" c) (~bNZcV)) 

where T ( - ) ( - )  denotes the translation operator. As in case (1), we can define 
the points (N, a), (M, b), (R, e) and (P, d). Then, provided that do,(e,.) or dta,.).(L.o ) 
do not occur, we see that the probability of case (2) is given by: 

(6.11) f4(p) 2 do,(N,.) h(N,a),(M,b) C(QM~,Vb),(R,c) h(R,c),(P,d) d(v.d),(L.O). 
O < N < M < Q < R < = P < L  

a ,b ,  c , d ~ g d  1 

Let e~(0,�88 By the above reasoning, up to terms smaller than the order of 
e-LiCe otz~), p(q~Q ~ Po,(L,o)) is given by the sum of (6.8) and (6.11). Furthermore, 
we claim that outside of the ranges 

(i) N, (L-- R), (R-- M) </5 
(ii) lal, Idl<2/-f 

(iii) [b-vl ,  le-vl<3/-Y, 
(iv) Ibl, I% Icl <U/2+~ 

the contribution of (6.8) and (6.11) is also of order e-L/~e -~ 
Indeed, suppose that N >/5.  Then, either sum may be bounded above by 

(6.12) ~ dO,(N,.) Z(N,.),~L,O) <(const.) ~ r(m.),(L,0)e -N/C~ 
N , a  N , a  

L>_N>_L~ L ~ N > _ L  ~ 

=(const.) ~ ffiL_N e-N/c~ 
L>~N>_L ~ 

< (const.) L e- L/~ e-  (~/r ~/r 

By symmetry, we obtain an analogous estimate if L - R  ___/5. When R -  M > I5, 
it is seen that the contribution to the sum in (6.11) may be bounded by 

(6.13) ~ Zo,(M,b) "C(R,e),tL, 0) C(m,b),(g,c) <--e-M/r ~ Z(R,eI,~L,O) C(M,b),tR,~) 
b c b ,c  

M , R :  R - M > = L  ~ M , R : R -  M >  L ~ 

_< (const.) L e -  L/r e-( ~/~- ~/e~176 

with a similar estimate for (6.8). Thus, to within the stated error, we need only 
sum in the range given in (i). 

Violation of the conditions in (ii) and (iii) leads to estimates of the same 
form. Indeed, it is easy to see that a "lateral over-extension" of do,(u,,)(<= %,(u,a)) 
when N < / 5  and La]~2/5 produces a bound of the form (6.12), as is also the 
case, by symmetry, when Id[->2/5. Given that ( Q - M )  and ( P - Q ) < / 5  (which 
we may assume by (1)), a displacement of [b-v[ or l e -v l  exceeding 3/5 would 
be similarly costly. 
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Finally, observe that if any of the points b, e, v exceed L 1/z+~ in magnitude, 
there must be some point in C(0) with a huge lateral fluctuation - say, for 
example, (Q', v')e C(0) with Iv'J> L 1/2 +~ and Q' of order L. The total contribution 
of such configurations may be bounded by 

(6.14) ~ Zo,(q,,v ) Z(Q,,,,),(L,O) <=(const.) I~ d- a)/2~ll~Q, e-(L-Q')/r -L~/~ 
[v'l>=L1/2+n Q' 

(2' 

< (const.)/jd + 1)/z e - L/~ e -  L~/~, 

where we have used property (II iii) of Theorem 6.2 to control the tail of the 
sum. Thus we can restrict in the range given in (iv) at the stated cost. 

Now let us apply the asymptotic formula for ho,(L,a) (Theorem 4.4 II) under 
the restrictions (i)-(iv). Noting that the error terms in this formula are uniform 
in the transverse coordinate (Theorem 4.4 (II ii)), and that, by our restrictions 
(ii)-(iv), we need only consider [a -b [ ,  I c - d l < L  1/2+~, the contribution to 
p (~,e c~ y o,(L, o)) from case (Eq. (6.8)) is equal to 

(6.15) 

fS(p) ~ do,tma )e+s/cc(M,b),(Q,.)e+(Q-M)/~r 
N,M,R,P 
a,b,c,d 

x e -u~ /~z (P) Kz(P) e-(~-a)~/~W-R) 
(c~ rc (M -- N)) (d- 1)/2 e - ca - b ) 2 / ~  ( M  - N)  (~ 7C (P -- R)) (d- t)12 

x [1 + O(L -~1-4"))], 

while case (2) (Eq. (6.11)) yields a contribution of 

(6.16) 

/4(p)  ~ do,(N,a) e+N/~C~,b),(R,~)e+(R-M)/r +(L-P)/~ 
N,M,R,P 
a,b,c ,d 

x e -L/r K2(P) e-ta-bF/~t~t-m K2(p) e-(~-a?/~(e-e) 
- ( f  - e ) ) (  

x [1 + O(L -(~ - 4~))], 

Now by (i), we have restricted the sums to a range in which ( M - N ) = Q  [-1 
+ O(L~)] and ( P - R ) = ( L - Q ) [ 1  + O(L~)], so we may replace the factors of (M 
--iV) with Q and (P- -R)  with ( L - Q )  in the appropriate places in Eqs. (6.15) 
and (6.16) without altering the stated error. Next, using properties (ii)-(iv), it 
is seen that for all a, b, e, d under consideration, the factors of ( a - b )  2 and 
( C  - -  d) 2 are of order v 2 + I vl o (L ~) =< v 2 + O (L 1/2 + 2,); thus if we replace these factors 
by v 2, our error term becomes O(L-(~/=+2~)). Collecting all relevant factors, we 
have 

(6.17) P ( ~  c~ ~o, (L, o)) = (S 1 + $2) [ja- 1)/2 

e -L/~ 1 
x (arcL)ta_ 1)/2 (0~ ~r(Q/L)(1 -- Q/L)} d- ~)/2 e-*~/'L(~ -Q/LXO/~.) 

X [1 +0(L- (1 /2+2~) ) ]  
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where 

(6.18) 

and 

(6.19) 

o + NIr  o + ( Q -  M)/{  SI=fS(P) ~ do,(u,.)~ t~(M,b),(Q,v)U 
N , M , R , P  
a,b,e ,d 

+ ( R - Q ) / r  e + ( L - P ) / ~  
• C(Q,v),(R,c ) e d(p ,d) , (L ,O ) 

S2=f4(p) ~ a ,,+N/r o+(R M)/~a e+(L-P)/e vt'0, (N, a) ~ "~(M, b), (R,c) ~ t*(P,d),(L, 0) "" 
N , M , R , P  
a ,b , c , d  

N o w  it is d e a r  tha t  the er ror  t e rm will be unaffected if we sum S 1 and  S 2 
over  u n b o u n d e d  ranges of  indices - indeed, this will only  incur ano the r  (relative- 
ly) exponent ia l ly  small  error.  Thus,  we m a y  write 

(6.20) $1 = f 5  (p) ( ~  DN e + N/r ( } "  l~ N e + u/e) 2 
N N 

(6.21) S a = f 4 ( P ) ( ~ D u e + N / r  ~ IEN+M e +(u+m/r 
N N , M > I  

instead of (6.18) and (6.19), where we have  used 

(6.22) IDN= 2 d0,(N,b) 
beT.a-  1 

and invoked  the " s u m  rule"  

(6.23) ~ '  c QIv - c  (M,b),(R,c) - -  (M,b),(R,c) 
VETZd- 1 

and t rans la t ion invar iance to obta in  

(6.24) ~ ~olv =IER_ M "~(M, b), (R, e) 
b, ee 7/a - a 

Finally, let us replace Q/L by ~ and v2/L by 2 (a negligible error), and  c o m p a r e  
Eq. (6.17) to the s ta tement  of  the theorem.  Observe  tha t  one factor  of  L -ta- 1)/z 
is cancelled by the definit ion of  p~(v). To  obta in  a condi t ional  probabi l i ty ,  we 
mus t  place "Co,tL, O ) in the d e n o m i n a t o r  of  (6.17). Us ing  the a sympto t i c  fo rmula  

K2 (p) e-  z/r162 
(6.25) Zo,(z,o) Ion(p) ~L] (d- ~)/2 

of T h e o r e m  6.2, it is seen that  the t heo rem is p roved  if we can establish 
(KZ/K2)(S1 + $2) = 1. 

T o  this end, we start  by recalling ( L e m m a  4.3(i)) tha t  f(p)~l~Ne+N/r 
N 

Now,  according to the p r o o f  of  T h e o r e m  4.4 (I) (see, e.g., Eq. (4.17)), we m a y  
write 

(6.26) ~-I (z) = [1 -- 112 (z)] - 1 = F (z)[1 -- z e -  1/~] - 
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where R 2 is computed  via 

(6.27) f (P) /~2  = f ( e l / ~ )  �9 

Writing F(z)= [ 1 -  ze-1/r  ~ ( z ) ] -  1, we may  expand ~(z)  about  z = e 1/r with 
the result 

(6.28) f ( P ) / ~ 2 = e - 1 / e [ ~ ' ( e U r  1, 

where liT' is the derivative of ~.  N o w  

(6.29) e 1/r d2' (e 1/r = ~ LCL e + r/C, 
L 

so that  

1 
(6.30) Z L(I~L e +r/r  - -  

f (p) g 2 " L 

However ,  

(6.31)f(p) 
N,M> 1 

whence 

~N + M e +(N +M)/r = f (p) ~ (L-- 1) CL e +LIe= ~ LII;L e +LIe- 1; 
L L 

f z (p)(E IDN e + u/r 

(& + $2) = N 
g2 

(6.32) 

Finally, let us examine K 2 . By definition, were we to write 

(6.33 a) G(z) = G(z)[1 - ze -  1/r - 1, 

then 

(6.33 b) f (p) K2 = G(el/r 

Using the expression (6.6) at k = 0  to compute  ~(z),  it is seen that  

G (z) = [1 -- z e -  1 /~ ]  [1 + IK (z)] + ID2 (z)[ 1 -- z e -  1 / { ]  [ 1 -- ~ (Z)] - 1 (6.34) 

so that  

(6.35) 

o r  

(6.36) 

K 2 = ID 2 (z) K2 

K2 = f 2  (p) ( ~  D N  e + N/r 
N 

Combin ing  (6.36) with the expression (6.32) for (S 1 +$2),  the desired result is 
achieved. No te  that  we obtain the er ror  estimate f rom (6.17) and the st ipulat ion 
~s(0, �88 [ ]  



318 M. Campanino et al. 

6c. The absence of  a roughening transition in two dimensions 

The roughening problem in the context of percolation was introduced in 
[-ACCFRl. Here we present a complete (but not altogether surprising) solution 
of the two-dimensional problem. 

The set up is as follows: We start with a box of scale L 

(6.37 a) AL= {x~ZdlIxl ~L}, 

with upper boundary 

(6.37b) OA~- = {X~AL] Ix[ =L ,  xd> 0} 

and lower boundary 

(6.37c) OAZ = {XeALllxl =L ,  xd<0}. 

Notive that OA + u OA[, does not include the points where x l =0.  We will be 
concerned with the behavior of configurations inside A L. In particular, let us 
define the event 

(6.38) J L  = {on [there is no path of occupied bonds between OA[ and OA~ }. 

The event ~r. has the (dual) interpretation of the presence of an interface separat- 
ing 0At~ from ~A[ .  The idea is to study the density P>Pc Bernoulli measures 
conditioned on the event JL .  In the limit L ~ 0% there are two essentially differ- 
ent possible outcomes: 

(1) The interface remains localized. 
(2) The interface fluctuates outside of any finite region. 

Obviously (1) and (2) must be quantified. However, given any acceptable defini- 
tion, a transition from behavior (1) to behavior (2) which occurs at a value 
of p distinct from Pc isa called a roughening transition. It is believed but it 
is not proven that a roughening transition occurs in three or more dimensions. 

There are two reasonable criteria to distinguish cases (1) and (2). First, we 
can extract some limiting measure and determine whether or not it is Bernoulli. 
Second, we can examine the so-called roughening order parameter [ACCFR]  : 

Let h s Z  d be the point (0, ..., h) which is h units above the midplane. 
We define 

(6.39a) TZ (h) = {co I C(h) c~ 0A + 4= 0} 

and 

(6.39 b) TL- (h) = {co lC (h) n OA[ + 0}. 

Clearly, when COeJL, it cannot be the case that both TZ (h) and TL-(h) happen. 
We denote the difference between the conditional probabilities by OL(h): 

(6.40 a) 0 L (h) = P (T i f  (h)lJL) -- P (TL (h)[ JL). 
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Presumably, for finite L and h>0,  OL(h) is positive. One is interested in the 
limit 

(6.40b) 0(h)= lim OL(h) 
L ~ c o  

should such a limit exist. If O(h) is zero for every h, we are in the rough phase; 
otherwise, the interface is said to be rigid. Of secondary importance, one could 
consider the hToe limit of O(h). It is natural to assume that if the interface 
is rigid, O(h) will tend to the percolation density. 

We will examine the question of roughening in two dimensions from both 
perspectives. In particular, we will show: 

Theorem 6.4 a. For the two-dimensional bond percolation problem, whenever p > Pc, 
the vague L ~ o o  limits of the A L density-p Bernoulli measures conditioned on 
the event JL  are the ordinary density-p Bernoulli measures. 

and 

Theorem 6.4b. Under the conditions of Theorem 6.4a O(h)=0 for all h. 

The study of these interracial problems is, for the most part, the analysis of 
the dual model. For  the bond percolation model on Z d (or indeed for any 
two-dimensional percolation model), this amounts to the study of a two-dimen- 
sional subcritical system which contains a long path - a familiar topic in this 
paper. 

Indeed, when a bond of 2~ ~ is vacant, it is customary to represent this by 
the event that the corresponding bond of (7Z + 3) 2 is occupied. On the square 
lattice, the event that the sites dual to x and y, x* and y*, are connected by 
a path of dual bonds will be denoted by ~** y.. When boundary conditions 
are modified, we will denote the corresponding events by * ~x*,y*, etc. Also, we 
will use C*(x*) to denote the dual connected cluster of the point x*. 

_ _  ge Observe that Zx.y.(p)=P(fx.y.) is precisely the ordinary connectivity, Zx, y, 
at density ( i - p ) .  This exact (self) duality, although somewhat helpful, is not 
essential to our arguments. It is worth noting that in d = 2, p >Pc implies that 
the dual correlations decay exponentially [K]. Here we will use the symbol 
~ - ~ ( 1 - p )  to denote the rate of decay of the dual connectivities when the 
(direct) bond density is p. In addition, we will use various other symbols whose 
arguments, strictly speaking, should be (1-p).  
Defining 

(6.41) A* = {x*e(7Z+3)2 [~yeA L such that Ix* - y [  =3}, 

it is seen that the event J L  is precisely the event that one of the (dual) connected 
clusters of (--(L + �89 + �89 or (--(L + �89 --�89 (restricted to A~) contains one of 
the points (+  (L + �89 + �89 or (+  (L + 3), -- �89 In particular, this is essentially the 
event 7r about which we now have some detailed information. 

In order to avoid further typographical and linguistical complications, we 
will "identify" the two nearby points ((L + 3), -+ 3) and similarly identify the 
pair ( - ( L  + �89 -t-�89 Thus, for example, we will use C* (((L + �89 _ 3)) as notation 
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for C* (((L + �89 + �89 ~ C* (((L + �89 - �89 and * Y((L+�89 as notation for the 
union of the events * ]((L+~), +~),x* and ~7~(L+�89 - ~ ) , x * '  

To prove Theorems 6.4a, b we will need the following: 

Lemma 6.5. Let B, L ~  +, B ~ L ,  and consider the density-p Bernoulli 
measure on the configurations in A L. Denote by gB the event that the dual cluster 
C*((( - (L+�89 -----�89 enters the box A* : 

#B = {col C*( ( ( - (L  +�89 -+ �89 c~A* 40}.  

Then V p > p~, Sc(p)< ov such that as L ~ o o  

c(p) B 
P(gB I JL)----< ~ L  " 

Proof. Assume B ~ L  and suppose co~E~C~JL. Then there is a dual cluster 
spanning A*, and this cluster intersects A~. It must be the case that either: 

(a) there is a point y*eOA* B such that the events 

~((-L-~),+~) y* and _ , ~ ( ( L + � 8 9  +�89 

occur disjointly (and within A*); or 
(b) there are points x* ~A*\A~B and y* e A~ such that the events 

* * and * ~ ( ( - - L -  �89 _+ ~-),x*, ~ ( ( L  + ~-), _+ ~),x* ~Tx*,y* 

occur disjointly (and, of course, within A~). 
Note that the two cases above are not disjoint, but they do exhaust #B C~JL. 
Roughly speaking, the first case accounts for those co in which the full interface 
intersects ~A~B, while the second accounts for those co in which the interface 
only sends out a branch which intersects aA*B, as well as some co in which 
the full interface actually intersects ~A*,. 

Let us estimate the probability of the first case. Using subadditivity, and 
the van den Berg-Kesten inequality (2.12), the probability of case (a) is bounded 
above by 

(6.42) ~ Z~-L-~), * - - ~ , ~  a ,(( ~ , - - ~ ,  
y*eOA*3 B 

We will now estimate (6.42) by means of the asymptotic formulas of Theorem 6.2. 
Indeed, letting y* = (Y, y), the two correlation functions in (6.42) may be bounded 
above by a constant times 

(6.43) e - 2 L / ~  e yz/ot(L--Y)e-y2/o:(L+Y) 1 1 
[ L -  Y]~ [ L +  Y ] ~  

Since Yand lY](= O(B)) are small compared with L, we may replace the denomi- 
nators in ((6.43) by (const.)L and discard the Gaussian factors altogether. Then, 
using Theorem 6.2 to estimate P(JL),  the conditional probability can be bounded 
above by C a / ~  for each value of y. Since there are only of the order of B 
terms, case (a) has an upper bound of the stated form. 
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Next we consider case (b), in which C*(((L +�89 +_�89 only visits A* as a 
subsidiary operation. In these instances, the probability can be bounded above 
by 

(6.44) E , * * T((-L--~), •189 Tx*,((+L+�89 -+�89 Tx*,y*' 
X*eA*L\A*3B 

y*egA~b 

We may of course bound Tx. ,* y. above by e -Ix*-y*l / r  However, here, it is worth 
noting that for each y*~A*, [Y*I <2Ix*l, so we may degrade the inequality fur- 
ther: 

(6.45) Z**y. < e-I~* 1/2r 

Clearly, for [x*[ large (say bigger than ~/-s this extra decay renders the contribu- 
tion of such configurations negligible. For smaller values of Ix*l, we may use 
the asymptotic formulas of Theorem 6.2 to obtain, for L sufficiently large, 

(6.46) Z~(-L-~), * * + ~-),x* Tx*,((+L+~), •189 "Cx*,y* 
e-XZ/~(L+X) e-X2/a(L-X) 

< (const) e - 2L/ge -Ix*l/2 r 
[L+X]~ [L-X]~ 

where we have used the notation x* = (X, x). Taking X out of the various denom- 
inators on the grounds that we are in the "small x* region," the resulting expres- 
sion may be freely summed over all x* starting at Ix*i=2B. Doing this for 
each y* in A*, our upper bound on (6.44) is 

(6.47) c b e -  2L/~ B e -  B/r 
L 

for some constant cb. Dividing (6.47) by the known large-L behavior of P(JL), 
we get a contribution which (for B large) is considerably smaller than that 
of case (a). [] 

As an immediate corollary to the above Lemma, we have: 

Proof  of  Theorem 6.4a. To estblish the vague convergence of P ( - ] J L )  to Ber- 
noulli measure at the appropriate density, it is sufficient to demonstrate that 
the probability of any local event (e.g., a cylinder event) converges to its Bernoulli 
value. To this end, let d be any event which is determined by the configurations 
in A B. Obviously, 

(6.48) P (~r limB] c c~ JL) = P (~4) 

where [ _ ] c  denotes complementation. But then 

(6.49) I P (d]  JL)-- P (d)[ = ](P ( d  I [gB] c c~ JL) -- P (d)) P ([gB]Cl Jz)  + P ( d  1[~8] n JL) 

- P(d) )  P(EEB]I JL)I = I(P(~CI[-~B] ~ JL)-- P(d))  P ([SB] IJL)I _-< P([EB] IJL) 
cB 

< --*0 

and the desired result is established. [] 
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Proof of Theorem 6.4b. For xs2g 2, [xl<L,  denote by Tr+(x) and TL-(x) the 
events described in (6.39a) and (6.39b) with h replaced by x. We will show 
that Vx, 

(6.50) lim P(T~ (x)l J r )  = lim P(Tr- (x)] J r )  = �89 (P), 
L ~ a 3  L ~  

from which one obtains 0 ___ 0. 
Let xs2U, [x l<g.  For  L very large, P(TL+(x)~ Tr- (x)) is essentially equal 

to P~(p). We denote the difference, P(TL+(x)w TZ(x))-P~(p), by ec(p;x) and 
note that for p > Pc, ~L is exponentially small in L. By the Harr is-FKG inequality 
(2.10), 

(6.51) P (TZ (x) u TL- (x)l J r )  < P~ (P) + eL (p; x). 

However, with the conditioning, the two events are disjoint, and thus, in the 
L l"oe limit, they cannot both have probability exceeding (k)P~ (p). Therefore, 
to prove (6.50), it is sufficient to establish that for our (arbitrary) x, 

(6.52) lira P (T + (x)l JL) > �89 P~ (P). 
L--+ oo 

To prove (6.52), let B >> Ix] be a fixed but large integer, and assume that already 
L >> B. We first assert that in JL ,  the event 

(6.53) FL={o)IC*((-L-�89 •189 2/3} 

almost always occurs. Indeed, by bound of Theorem 6.2 (II iii), we have 

(6.54) p(I~s176 

Next, note that given an co~r [gs] ~, there are (topologically speaking) only 
two possibilities: either the connected component of occupied bonds from 
( - L - k ,  +3) to (L+�89 • lies above or it lies below A*. We will denote 
these two possibilities be [gB] c+ and [gB] ~-, respectively. Observe that 
[$B] ~+ n [g~]c- # O (since both events contain configurations in which the inter- 
face surrounds A~), although, as will emerge later, this intersection is of small 
conditional probability. By symmetry, 

(6.55) P([Es] "+ loot) = P([gB] c- l J r ) ,  

and by Lemma 6.5, these quantities tend to (at least) �89 as L ~  ~ .  
Since neither the event FL, nor the event [gR]c significantly restricts the config- 

urations in ~r L as L ~ ,  to prove (6,52) it suffices to establish that e.g. in 
the configurations which lie in JLc~ [gB]c-~ FL, the point x is connected to 
dA[ with conditional probability approximately equal to P~(p). Such a proof 
would also establish that P ([~o ]c + c~ [ ~ y -  I JL) is negligible. 

To this end, let ~'* denote the box which is the translate of A* by (1 + 2) T ~ T , 2  

units in the x2-direction. We take T>=2B and 2>�88 Although L is large, we 
may take T as large as 2L ~/3 . Consider the event that the interface visits Y*z: 

(6.56) gzT.~ = {co I C*((-L-�89 +�89 
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We will demonstrate that for B (and T) large, there is a constant c < oo such 
that 

(6.57) P ( ~ z ~ . . z t ~ L  ~ [N~]~-)<=c.T3 e - r~/3/~ 

as L ~  0% where e = e(p) is the constant appearing in Theorem 6.2. 
Let COe~L~[gn] ~-. Then there is point y*=(0* ,y)  with y < - B ,  and two 

disjoint (dual) paths: 

~1" f r o m ( - L - � 8 9  + �89  

~2" from y* to (L + �89 _+ �89 

Denote by ~"* ~T,.~ the set of dual sites a distance no more than (8 ~) Tf rom E*).. 
In order for the event d~T.~ to occur, it is clear that either: 

(a) at least one of the paths, ~ or ~z, enters the region N ~'* �9 ~ T , 2 ,  or 
(b) some point in ~T,Z~'* is connected to #~E*)~ by a path which (necessarily) 

takes place in the complement of ~ w N2. 
These cases are not disjoint, but do exhaust J L m  [~]~. As in the proof 

of Lemma 6.5, case (a) roughly accounts for those configurations in which the 
"full" interface enters ~ ~'* while case (b) also takes into account those config- ~ T , 2 ,  
urations in which the interface only sends out a branch which intersects ~ * , z .  

Case (b) has probability smaller than (const . )T4e-T/r  , and hence, in 
the large-L limit, has conditional probability generously bounded by the estimate 
in (6.57) for T sufficiently large. 

Let us now bound the probability of case (a). We assume, for the sake 
of argument, that it is ~ which visits ~ ' *  and we denote by v*=(V,v) ~ T , 2 ,  
a generic point in ~ n ~ 3 *  z. We may, in fact, assume that the path ~2 starts 
at y*, then goes to v* and then on to (L + �89 _ 1) (otherwise, by relabelling, 
we could identify the path which visits ~ * , ~  as ~a). For  each y* and v*, 
we may bound the contribution by 

(6.58) ' /7((-L-�89 ~+�89 "~y*,v* Tv*,((+ L +�89 +21)" 

To obtain our estimate, we will sum (6.58) over all y < 0  and all v * r  
First observe that the contribution from term with lY] > 2 T is of the same form 
as the contribution in case (b). Indeed, if lYl > 2 T ,  we can use the crude bounds 
%..((+L +~). _~, = 2 e .  . . .<  - (L-2T)]~ ,  "or., v.<e -[(1/s)T+PyI1/r and then sum (6.58) freely over 
lYl _> 2 T (which, of course, "p ins"  the factor * Z((-L-~),_+~),y. near its value when 
lYl=2T). This yields a contribution which is exponentially small in T, and 
thus clearly smaller than the bound in (6.57). 

Evidently, the principal contribution comes from case (a) and lyl < 2  T. In 
this case, we use the bounds 

(6.59) 
, const - -  L/r 

Z((_L_~) ' +~),y.--_< ~ -  e 

from Theorem 6.2 (II ii), and 

"C* ~e-(L-V)/r 
v*,((+ L +~), +~) ~ x J 
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,.-, [k§ 

[k+l] 

I O ~ Ik+1] 
L . . . .  i 

Fig. 7. Arrangement of the boxes 3 [k] 

In (6.60), we have neglected some possible additional aid from power law correc- 
tions. Now when V<(1/16)T ,  we may use the estimate zy , ,v .<e  -(1/8)r/~, and 
the conditional result is again exponentially small in T. Finally, assuming that 
V>(1/16) T (and assuming that T is large enough to satisfy Tz/3 <(1/16) T), 
we may use property (II iii) of Theorem 6.2 to bound Zy,,v,. Multiplying the 
result by the number of such terms, we obtain the stated estimate (6.57). 

We will now use the estimate (6.57) to show that, with probability close 
to 1, there is a large region which the interface does not enter. To this end, 
consider the sequence of boxes, (EEk]), which are translated of A2k B stacked one 
on top of the next as shown in Fig. 7. Each such box (or, more precisely, the 

~'* Thus, using the bound * of each such box) satisfies the criterion to be a ~ r,4- 
(6.57), the conditional probability of the interface "entering" ~[k] _ an event 
denoted by ~[~j - may be bounded above by 

(6.61) P (g_=~l q J r  c~ [gB] c-) __< (const)(2 k B) 3 exp (-- c~- 1 [2 k B] t/3). 

N 

We may estimate the conditional probability of ~ ~c,1, where N is the smallest 
k = l  

integer satisfying 2NB > L 2/3 , by summing (6.61) over k. The result is exponential- 
ly small in a power of B. Beyond ~[u], we are in a region of safety: here we 
may use the event FL to ensure that the interface does not interfere with any 
of the larger ~[k]'s (in AL). Thus, given the event JL ,  with probability larger 
than 

1(1 c'B (6.62) 2 
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Fig. 8. The event Wk 
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with c"(B)  tending rapidly to zero with B, the interface fails to enter any of 
the regions ~tkl, k - -0  . . . . .  M, where M is the smallest integer such that 2 M B  > L 

and 

(6.63) ~to~ _- AB. 

Thus we have shown that a component  of the distribution of configurations 
M 

inside the region ~) S tkl is the usual Bernoulli measure; furthermore the weight 
k = O  

of this component  is very close to �89 
Our final job is to show that, given this lack of interference, the point x 

is connected to c3A[ by a path inside S tkl with probability close to P~ (p). 
k =  

In fact, such arguments are by now quite standard (see, e.g., [C; CC3; CC4; 
CCD]). First, note that x is connected to ~E E~ by a path of occupied bonds 
with probability exceeding P~ (p). Next, consider the event Wk that (see Fig. 8)" 

(1) the four B2 k+l x B 2  k -1  rectangles inside the boundary of ~tkl are crossed 
- the long way - by paths of occupied bonds, and 
(2) there is a path of occupied bonds crossing (upward) the B2 k+2 x B 2  k+ 1 rec- 
tangle whose bot tom half is ~m. 

It is not hard to show that 

(6.64) P (Wk) > 1 -- (const.) 2 k B E e - 2~B/~ 
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Thus, by the Harr is -FKG inequality (or subadditivity) 

(6.65) P (k@o Wk) > l -- e -~ 

It is clear that (once B is large enough), if x is connected to 0~  E~ and if all 
the events Wk occur, then x is connected to ~A[ .  

Thus, given [gB] r we have demonstrated that P(TZ (h)) can be made arbi- 
trarily close to Po~ (P) by taking B (and hence L) large. It then follows from 
Eqs. (6.62), (6.65) and (6.49) that Vh, 0(h)=0. []  

Appendix 

Here we prove Proposition 3.4, restated below for convenience. 

Proposition 3.4. Let eL(P) and ~(L(P) be defined as in Eqs. (3.25) and (3.38), and 
let ~(p) and ~(p) be the decay rates of "CO,L(p) and l~L(p) as given by Eq. (1.2) 
and Proposition 3.2. Then for every pc(O, Pc), either ~(p)=  ~k(P)=�89 or 3D(p) 
< co such that uniformly in L, 

~L (P) <= D (p) eL (p). 

AS a first step in establishing Proposition 3.4, we will prove the following weaker 
statement (which is given as the corollary to the Proposition 3.4 in Sect. 3): 

Proposition A 1. Let ~c(P) and ~k(P) be defined as in Propositions 3.2 and 3.3. 
Then for every pc(O, Pc), ~k(P)= ~r 

Proof. Consider the "tunnel" region 

(A. 1) T = ; g x  [ - T ,  - T + I ,  ..., + T ]  d- l ,  

and its intersection with the slab S(L) (cf. Eq. (2.3)): 

(A. 2) T(L) = S(L) ~ T. 

Let us define tunnel direct connectivity events, r and r ~x,y ~fx,y, in which the 
required connections occur via paths of occupied bonds with both endpoints 
in T. For x, ye7Z d, x e P ( 0 ) ~ T ,  yeP(L)  c~ T, L >  1, we have 

(a .  3) T cx,y = {co ]yE C(x)II T(L), C(X) IiT(L) C~ P(0) = {x}, 
C(X)I[T(L) C~ P(L) = {y}, ] C(X)I[T(L)Ca P(J)] > 2V 1 < j  < L--  1} 

T _ _  (A. 4) i x , y -  {colyzC(X)HT, IC(x)IITc~P(J)I >2V 1 < j < L -  1}, 

and the corresponding connectivity functions are 

(A. 5) r r Cx, y (P)= P (Cx,,) 

(A. 6) r T kx,, r = P ( ~ . , ) .  

As usual, we will denote the on-axis connectivity functions between the origin 
and (L, 0, ..., 0) by C0,LT and ko,L . r  

It is straightforward to show that ~[(p) and ~[(p), defined by the limits 
of L -~ logc~,c and L -~ logkorL, exist (see, e.g., the proof of Proposition 3.3). 
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Furthermore, the functions T k o ,  L a r e  monotone increasing in T, from which it 
easily follows that, as T-*m,  

(A. 7) 3[ (p) 1" ~k (P), 

where ~k(P) is the correlation length Of KL as defined in Proposition 3.3. Unfortu- 
nately, the quantities Co,LT do not necessarily have this monotone property since 
some of the contributing events are negative - specifically, paths which occur 
outside the tunnel could connect other points of P(0) or P(L) to C(0)[]S(L ). 

We claim that V T 

(A. 8) ~[(p) = ~r(p). 

T T First, we clearly have ,(o,a=Co,a, which implies ~[(p)>~r(p). To obtain the 
opposite inequality, let A(j) denote the set of all "horizontal" bonds between 
the points with x l = j  and points with x l = j +  1, and let B(j) denote the set 
of all "vertical" bonds in the plane P(j). Then by vacating all bonds in (A(0) 
B(0))c~T and (A (L --1) u B (L)) c~ T, and occupying the all bonds in B(1)c~T 
and B(L-1)c~  T,  in addition to occupying the two (possibly just vacated) bonds 
between the points x a = 0  and x l= (1 ,  0, ..., 0), and x l = ( L - - l , O  . . . .  ,0) and Xl 
=(L, 0 . . . . .  0), we can "transform" an COS~f0rL into an Co~*TL . Although this 
is expensive, the price is uniform in L, i.e. 

(A. 9) Cro,L > q)(T) k T O,L 

which ~(T)  = e - ~  a). This establishes (A. 8). 
Next, consider the event/~(j), T defined by 

(A.10) fP(j),r = {co J the region P ( j ) \ T  is not connected to the region T 
by a path of occupied bonds}. 

We claim that whenever p < Pc, f ( T )  =- P(/Ptj),T) > 0. Indeed, by translation invar- 
iance 

(A.11) Z= ~ Zx, y. 
xsP(O) 

y:Y2,...,yd=O 

Thus the expected number of connections between P ( j ) \  T and T is given by 

(A.12) ~, zx , ,<(2T)d-2Z< ~ .  
xeP(0)  

yeT 

By the Bortel-Cantelli lemma, with probability one, only a finite number of 
the gx,y events contributing to the sum in (A.12) occur. Using F K G  properties 
of the Bernoulli measure, it is readily established that, with positive probability, 
none of these events occur, i.e. f ( T )  > O. 

Finally, it should be observed that the intersection of~(0),T,/~(L),T and T s 
is contained in the event *O,L- Thus 

(A.13) CO,L> p(,~,(O),Tn~(L),T n T cO,L) = P (~(O),T n~(L),T) cTL 
> f2  (T) c T = 0 ,L ,  

where in the last step we have used the Harr is -FKG inequality (2.10). Taking 
logs, dividing by L and letting L ~ o o ,  (A.8), (A.12) and (A.13) imply ~__>~TVT. 
However ~__< ~k = lim ~[, so the correlation lengths agree. []  

Tl"co 
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We divide the remainder of the proof into two stages, first imposing cylinder 
and then strict cylinder conditions on the k-type (free) direct correlation func- 
tions. For this, we will have to introduce two other direct correlation functions, 
both of which are defined in the cylinder. 

Definition A1. For x, ye •  d, xeP(0), yeP(L),  L>= 1, the non-s tr ic t  direct  connect i-  
v i ty  f u n c t i o n s  are defined by 

(A.14a) cx,y**--{co[yeC(x)lls<L),lC(x)[lS(L)C~P(j)l>2Vl<j<L--1},-- _ = = 

(A.14 b) cx, y(p) - P ( % , ) ,  

with the convention c**(p)=0 for L = 0 ;  and 

(A.15) (El* (P) = ~ Cx**y(p). 
y~P(L) 

The connections contributing to (E** are required to take place in the cylinder, 
but not to respect the strict cylinder condition; thus the relationship between 
(El* and (EL is analogous to that between ]I-I L and IH L (cf. Eq. (3.10)). Halfway 
between (EL and (E**, we have: 

Definition A 2. For x, y e Z a, x e P (0), y e P(L), L _> 1, the half-s tr ict  direct  connet i -  
v i ty  f u n c t i o n s  are defined by 

(A. 16 a) C*,y = {co [ y ~ C (x)H s (L), C (X)[1S(L) (~ P (0) = {x}, 
] C(x)HS(L)c~ P(j)[ > 2 V 1 < j < = L -  1}, 

(A.16 b) c, ,y(p) - P (e,,y), 

again with the convention c*,y(p)= 0 for L = 0; and 

(A.17) (El(p)= ~ c*,r(p). 
yeP(L) 

Remark .  Since 

(A.18) [(L>__C ** >__112" >(EL, 

if follows from Proposition A1 that sharp decay rates exist for both (E~*(p) 
and (E*(p), and that these decay rates are equal to ~c(P). 

Finally, we will also need: 

Definition A 3. For x, y, ze2g e, the three-point  connect iv i ty  event  is 

(A.19) ex,,,z = {co [Y, ze C (x)}. 

In much of what follows, we will make extensive use of the tree-diagram de- 
composition techniques introduced in [AN]. The general strategy will be to 
pick an co purported to satisfy certain conditions, and then to demonstrate 
that co satisfies various other  conditions. This is often exhibited by implementing 
"local growing rules," by which we mean the following: The full configuration, 
co, will be regarded as a fixed, deterministic object. Then various subsets of 
co, e.g., C(0, co), may be grown in a sequence of time steps: One may start 
at t = 0  with {0}. By checking, according to some set of local rules, whether 
or not some bond on the boundary of the current cluster is actually occupied 
or vacant, one obtains the cluster at time t = n +  1 from the cluster at time 
t =  n. The only potential hold-up in such a procedure - which in any case can 
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c d �9 Fig. A l. Configurations in ~fO,(L,.) corresponding to cases (a), (b), (c) and (d) 

be circumvented - is the possibility that various stages in a proof  could (deter- 
ministically) take an infinite amount  of time. Such situations will have Bernoulli 
probability zero (since we are always below threshold), and we will be content 
with w.p.1 statements. For  more details on these methods, see [AN]. 

In the following lemma, we impose non-strict cylinder conditions on the 
free direct connectivity. 

Lemma A 2. Let L >  1. Then Vp~(0, Pc), 9DI (P), D2(p)< oo such that 

~('L<=D1 l ~ *  4- D2 Z {~-Ne-2[L--(P-N)]/~" 
O<=N<P<L 

Proof. Let ~r We consider two situations which we denote by case 
@ and case @, respectively. Case @ consists of those configurations in ~o,{L,a) 
for which, in C(O), the c** event happens somewhere: 

(A.20) ,(| - O,{L,a)- {O)ff/fO,(L,a)] ~ y e  C(O)(3 P(O), uEP(L) such that co~c**}. 

Case @ is the event that no such pair {y, u} exists. 
We claim that under the circumstances which define case @, the following strong- 

er statement is true: There are points, reP(O) and s~P(L), both in C(O), such that 
** unless otherwise noted) one of the the event %**s occurs; and (disjointly from cr,~ 

following events occurs (see Fig. A. 1): 
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(a) there are two disjoint paths, one from 0 to r and one from (L, a) to s: 
explicitly, ~o~c** ~ ~ ; 

(b) O, (L, a) and s belong to the same connected cluster: 
explicitly, co~e~* ~ ; 

(b) O, (L, a) and r belong to the same connected cluster: 
explicitly, m ~ c~* o YO,(L,.),. ; 

(C) 0 is connected to s, and there is some s ' 4 s ,  s ' eP (L)  such that (not necessarily 
disjointly from c*~*) ~o~c**., and (L, a) is disjointly connected to s'" 

~ *  * *  o o explicitly, 3 s' e P (L) such that  co e (% ~, ~ % ~) yo,~ f(L,~),~', 
(C') same as (c) but with sides reversed: 

* *  * *  explicitly, ~r ' eP(0)  such that  e)e(v,,,~ c~ Cr, s ) O ~ 7 ( L , a ) , r v ~ 7 0 , r ,  , 

(d) there are two disjoint paths, one from 0 to s and one from (L, a) to r; 
explicitly, co ~ c** o r ~ y(L,,),*" 

It should be remarked that the above events are not necessarily disjoint; however, 
anything except (a) is absurdly improbable - these events have been listed, roughly, 
in decreasing order of likelihood. 

To show that (a)-(d) exhaust all possibilities, suppose that ye  C(0) is in the plane 
P(0), ueC(0)  is in the plane P(L), and the configuration co satisfies ** (D ~ gy,u. With 
suitable interpretations of various sentences, there is no need to assume that y + 0 
and u * ( L ,  a); however, in what  follows, it pays to think of these points as distinct 

- and to refer to Fig. A1. Denote by Yl,Y2,--- ,  the points of P(0) which belong 
to C(y)lls(L) and by ul,  u2 . . . . .  the points of P(L) which belong t o  C ( u ) l [ S ( L  ).  It is 
worth observing that C(Y)IIS(L)= C(u)llS(L), and that  in fact Vi, j 

(A.21) C (yi)II S(L) = C(uj)II S(L) 

and 

(A.22) o~ec**,,j. 

Now if x~C(0), then either x belongs to  C(y)]]S(L ) or there must be a path between 
x and one of the yi, uj which takes place in the complement of C(Y)IIs<L); indeed, 
if we grow the connected cluster of any x~C(y) \C(y)] ls (L) ,  the only mechanism 
that the growing cluster has to reach C(y)ItmL) is through one of the points yi, uj. 

Let us start growing the clusters of 0 and (L, a ) -  in the complement  of C(y)IIs(L). 
The most  reasonable possibility is that the growing cluster of the origin hits one 
of the y~(= r), while the cluster of (L, a) finds one of the u~(= s). This implies possibility 
(a). On the other hand, before both of these events occur, it could be the case 
that the growing clusters meet. This would (sooner or later) imply possibility (b) 
or (b'). Finally, and least plausible of all, is the situation in which the two "easy 
way"  events do not both happen and the growing clusters never meet. This means 
that one or both of the growing clusters joins with C(y)Ns(L) via the wrong entrance. 
If one of the "easy way"  events occurs, we get (c) or (c'), while if neither occurs, 
we get (d). 

Using subadditivity and the van den Berg-Kesten inequality (2.12), the total 
contribution from these configurations is bounded by 

(A.23a) Y'. ~:o,~ r(L,.),~ G** 
r eP (O)  
s ~ P ( L )  
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from situation (a), 

(a.23b) 2 "C0,X ~'(L,a),x "Cx, r Cr~s ~ 
rEP(O) 
s~P(L) 
x~Z d 

from situation (b), with something similar from (b'), 

(A.23 c) ~ Zo,~ "C(L, ,,), ~, P (c~* ~*, n c*~,~,*~ 
r~P(O) 

seP (L), s '  ~P(L) 

from situation (c), with something similar from (c'), and 

(A.23d) ~ r0.~ Z(L,~),~ C~** 
rEP(O) 
s~P(L) 

from situation (d). 
Summing (A.23 a) first over a, then s and r, yields a net contribution of (const) C**. 

The later (A.23) equations, under similar summation procedures, all produce 
t12~* e -~ and thus may be dismissed entirely. Equation (A.23c) must be broken 
into Is-s ' l  < (const)L and Is-s ' l  > (const)L). We have thus derived 

(A.24) K~< D1 Ill**, 

where we have used the notation 

(A.25) K~ -= Z ~r 
aE~ d 

We now turn to the analysis of case @. Thus take ~O~e~(L,~). Pick any y in P(0) 
that is in the connected cluster of the origin, and such that C(y)lls(L) contains an 
occupied path to P(L). Let ueP(L) denote a point in C(Y)I[StL). Denote by zl, z2, ..., 
those points in P(0) that are attached to the origin but do not belong to C(y)Ils(L), 
and by vl, v2 . . . . .  those points in P(L)c~ C(O)\C(y)IIStL). The hypothesis of case @ 
demands that C(Y)lfS(L) does not produce the event ~**, evidently, 

(i) 3M, 1 < _ M < L - 1 ,  such that C(y)lls(L)C~P(M) contains only a single point. To 
compensate for this deficiency, it must also be the case that: 

(ii) the set of z's and/or the set of v's is not empty. 
We denote by Na ____ N 2 __< ... =< Ark the distances satisfying (i), that is 

(A.26) [C(y)[IS(L)r~P(N~)l=l with I<Nj=<L--1 ,  

and by the vectors bl ,  be . . . .  b k ~  d- ~ the other coordinates of the intersection 
of C(y)H S(L) with these planes. Observe that in the region S(N1), C(y)/I S(L) contains 
a realization of the event * 3 while similarly, in the region Nk<=Xl s ,b l ) ,  
-<L, C(y)l[S(L ) contains a realization of * In general, when k_>2, we have - -  ~ ( N k ,  b k ) ,  u "  - -  

a realization of the e v e n t  e~Nj,bfl ,(Nj +1 ,h i  + 1) for each j < k. 

3 More precisely, in the region S(N1), we have a realization of the mirror image of the event 
~l,bl),y. Of course, by symmetry, these have the same probability, which is the only issue 
of importance here 
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Let 91(z) denote the maximum extent, in the xl-direction, of the z-clusters: 

(A.27 a) 9t (z) = max {x 11 x ~ C (zi)II S(L), i = 1, 2 . . . .  }. 

Similarly, define 

(A.27 b) ~a(v) = rain {X 1 [Xe C(vi)NS(L), i = 1, 2, ...}. 

In cases when 9t(z)<9t(v), the various pieces of C(0) are forced to cooperate 
in order to produce the event tfo,(L,, ). In particular, let N be defined by 

(A.28 a) N = max {No, N1, N2, ..., Nk +1 [Nj < 91 (z)} 

and 

(A.28b) P = rain {N0, N1 . . . . .  Nk+l I N ~  ~(v )} ,  

where N o -  0 and Nk +1--L. It is seen that if N = Ni, then P must equal Ni+l. 
On the other hand, if it happens that ~R(z)>9l(v), we may either deal with 
the case separately (which in light of what follows is inadvisable), or pick, by 
fiat, any N and P, N < P, satisfying N =< 9t (z) and P > ffl (v). 
Let us summarize the situation as it now stands: 

In the region to the left of P(N), 

(1) 3 ysP(0)  and (N, b)~P(N) such that C(y)hls(L)contains (N, b) 
(2) ~zsP(0) and (N, b')~P(N) such that C(z)I]s(L) contains (N, b') 
(3) C (y)I[ S(L) ~ C (z)L/sc~) = O. 

In the region to the right of P(P), we have the analogs of (1)-(3): 

(1') 2u~P(L) and (N,c)~P(N) such that C(u)Hs(L) contains (N, c) 
(2') 3vsP(L) and (N, e')~P(N) such that C(V)Hs(L) contains (N, c') 
(Y) C(u)lls~L)c~ C(v)lls(g)=O. 

$ In between the planes, we have a realization of the event ~(N,b),(p,e)~ 
We claim that, in fact, a slightly stronger statement is true: 

(4) y and z as described in (1)-(3) can be chosen in such a way that 

(A.29 a) 

and 

C(y) lls~N> ~ C(O) LI.<N> 

(A.29b) C (z)II s (N) c C (0)[I .~N), 

with an analogous (4') statement. 
Equation (A.29a) is obvious: Indeed, no point in P(0), including the origin, 

can give rise to an occupied path intersection C(y)Hs(L) in the region xl>N 
without passing through the point (N, b). Thus C(y)IiS(N)C C(0)/In~N~. Equation 
(A.29b) may not necessarily hold for all of the z i. However, were it the case 
that for some chosen z, all paths from 0 to C(z)l]s(N) entered the region x I > N  
before intersecting C (z)l[ S(N), then along any of these paths there must be another 
z1:4: z satisfying (2)-(4). 



Fluctuations of percolation connectivities 

0 

I 
Y' I 

~-----------~ iN, b) 
I 
! 

x' l 
I 

I 
I 
I 
I 

P(O] PIN) 

0 I I 
t 
I 

~ {N,b') 
I 
I 
I 
I 

(0) PIN) 

a b 
Fig. A2. Pieces of configurations in '~(L,~) corresponding to cases a (~) and b (fl) 

333 

We claim that (1)-(4) imply only a few essentially equivalent possibilities 
(see Fig. A 2): 

(~) there is some point x*eH(N), and points y*, z*eS(N) such that the follow- 
ing collection of mutually disjoint paths occur in H(N): 

(a) 0 to x*, (b) x* to y*, (c) x* to z*, (d) (N, b') to z*, 

(e) z* to z, (f) y* to y, (g) (N, b) to y* ; 

(/?') there are points y, z*eS(N) such that the following collection of mutually 
disjoint paths occur in H(N): 

(a) 0 to y, (b) y to z*, (c) y to (U, b), 

(d) z* to z, (e) (N, b') to z* ; 

(/3") the same as (/q') but with the letters y and z exchanged and the letters 
b and b' exchanged. 

To see this, let ~tl] be an occupied self-avoiding path from y to (N, b) in S(N) 
and ~[2] a similar type of path from z to (N, b'). Obviously, we have ~ta] n ~[2] = ~. 

Now, start to grow C(0) via local rules. Eventually, the growing cluster 
must meet ~m or ~2~. Let us say, for the sake of argument, that it meets 
~ u  first, which could of course happen "immediately," e.g., if y =  0. (If the grow- 
ing cluster hits ~t2~ before ~tu, in what follows we will have to make the exchange 
y*--~z, which may lead to the fl" case.) We denote this first point of contact 
by y*. Continue now to locally grow C(0) in the complement of the bonds 
of ~tl]. There are two possibilities: 

(e) The growing C(0) finds ~tzl- 
(fl) The process runs out of occupied bonds before intersecting ~21. 

In the former set of circumstances, denote by z* the first point of intersection 
of C(0) with ~t21, and the stated result is evident. As for the/? incident, when 
C(0) ceases to grow, denote the "stopped" cluster by _C(0). We must now give 
the (untouched sites of) ~[1] a chance to find ~[2]" (Since zEC(0)IIlt(L) , this must 
happen eventually.) Thus let us denote by y** any point of ~tu whose cluster 
- grown in the complement of the bonds of ~tu and, by necessity, in the comple- 
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merit of C(0) - reaches ~21. Denote by z* the first point on ~tzl which is reached 
by the cluster of y**. If ~ passes through y* Before y**, we may identify 
~=y**,  while if #m passes through y** before y*, we may identify ~,=y*. In 
either case, statement (/?') (and similarly (/?")) is verified. 

Obviously, to the right of P(P), the story is the same. Let us denote the 
probabilities of the left and right e-type events by AN(b, b', y, y*, z, z*, x*, 
0) and A*e(e, e', u, u*, v, v*, w*, (L, a)), and similarly for the/?-type events. We 
must consider all nine pairs of left and right possibilities, but each of these 
terms has a bound of the same order of magnitude. We will illustrate with 
only one example. Let us consider, then, 

�9 t , (A.30) ~ AN(b, b', y, y*, z, z*, x*, 0) c(_~,b),Ce,~ ) Ap(c, c ,  I1, u*, v, V*, W*, (L, a)). 

We start by bounding the A correlations via the van den Berg-Kesten inequality. 
For example, 

(A.31) A~(b, b', y, y*, z, z*, x*, 0) < Zo,x, rx,,y, zx,,z, Tz*,(N,b') 

X Tz.,z Ty.,y T(N,b),y. , 

and similarly for A*e. As it turns out, in order to perform the summation, the 
procedure must begin at (L, a), since otherwise there are not enough free indices 
available. Thus, at fixed N and P, let us consider the partial sum 

(A.32) E Tw*,(L,a) Tw*,u* "fw*,v*Tv*,(P,c ') Tv*,v "gu*,u T(P,e),u* C(N,b),(P,e), 
W*:W>=P 

u*,v*:L>=U,V~P 
v,u~P(L) 

where W, U, and V are the xl-coordinates of w*, u*, and v*. Summing (A.32) 
over a and e', then v and u, gives the upper bound 

(A.33) G I L - . . w l G v - e ~ L - v ~ c  v * Tw*.tt* "~w*,v* "C(P,c),u* C(N,b),(P,e)- 
w*,tl*,v* 

W~P 
L>=U,V>P 

Next, we sum over the transverse coordinates of v*, then w*, then u*, which 
gives us 

(A.34) ~ lI}lL-wt ~Irv-P (]~L-V ~:rL-U ~IIW-U I ~IW-V] [~IU-P C(*N,b).(P,e)" 
L>=U,V>P 

W>P 

Observe now that if we sum over the indices W, Y, U, and V, we get an upper 
* term. bound of a constant times e-2(L-P)/~ without having touched our C(N,b),(e.c) 

Finally, we may freely sum over e to get the desired C*_ N term, which frees 
up the index b for future ease of summation. Performing the entire procedure 
again on the other side of P(N), we get a total upper bound of 

(A.35) (const) ~ C* _ N e- 2 (L -(e- N))/r 
O<N<P<L 
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for the ~-c~ term. A similar  analysis on the fi and  mixed terms yields a b o u n d  
of the same  order  of  m a g n i t u d e  as (A.35). This  provides  a b o u n d  on the K ~  
term, which, together with (A.24), is the desired result. [ ]  

Corollary. Let p ~(0, p~). Then either r �89 r or 3D3 (p)< oo such that uniformly 
in L, 

Proof. First, let us define t /via  

KL(p) <D3(P) C** (p). 

1 2 
(A.36) Ck - r 6~/. 

It should be observed that for any integers Q, M, 0 < Q < M, and for any s, te2g a- 1, 
we have the obvious bound 

* *  ~ * * *  (A. 37) Co, (u, s) = a (/9) Co, (e, t) c(0, t), (u,,) 

with a (p)>  0 a harmless patching factor. However,  since the (mirror images of the) 
events co,(o.t)* are disjoint, the stronger statement 

(A.38) "** >a(-~ ~o,(Q,t) ~(O,t),(M,s) 
t~7ld- 1 

is also true. Summing (A.38) over s, one obtains the bound 

(A.39) r  > a(p) r  (~t*- o. 

Using the assumption that  2 /4>  1/r162 it is clear that, uniformly in S, we 
can find an O(p)> 0 such that  

(A.40) C~ * > 12 e -  (2/~- s ~)s. 

Whence, after a little •* algebra, the statement of Lemma A.2 becomes 

(A.41) KL--<r * [D1 +D2 __1 Z e -4 ' (L- (e -m)]  ' 
- -  [ ~ Q a O < N < P < L  

The sum in (A.41) is bounded above by a finite constant uniformly in L. []  

Finally, we relate the direct connectivities with strict and non-strict cylinder boundary  
conditions: 

Proof of Proposition 3.4. For  xeP(0) ,  define 

(A.42a) 

and 

(A.42b) 

EO, (L, a);x = {0.) E ~6~,:~L, a)[ X E C (O) l [ $ (L)} 

* *  _ _  * *  
Co,(L,,):x-- P(eo,(L,a);x). 
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X (L,a) xl ~ ~ (L,B) 

w' I 

0 0 (N, b') 

P(O) P(L) P(O) P(N) 

a b 
Fig. A3. Configurations in c*~c,a);~ corresponding to cases (a) and (b) 

We claim that 3D4(p)< ~ such that 

(A.43) ~ ~** < n  e-,l~Lil2** cO, (L ,a ) ;x  ~ ~ 4  

where q has been defined in (A.36). 
** It If t/=0, Eq. (A.43) is obviously true. Otherwise, let us take an coec0,tL,,);x. 

is seen that inside S(L), there must be a point w* and three disjoint occupied paths: 

(A.44a) ~ [ 1 ] :  from w* to (L, a), 

(A.44b) ~21 : from 0 to w*, 

(A.44c) ~3~: from x to  w*. 

Now grow the cluster of ~1] in the complement of ~2] and ~3]. Denote by 
_C(~1]_1_(9~r2]~31)) the fully grown cluster generated by this procedure. It is not 
unreasonable to hope that (see Fig. A3): 

(a) _C(~1I.• u ~3])) contains a realization of the event ~fw*,(L,.)- 

However, should this not come to pass, there is a rightmost plane, P(N), N < L - 1 ,  
and a b~2g a- t such that 

(A.45) {(N, b)} = ~C(~I~J-(~2j ~ ~3~)) n P(N). 

Then, it has to be the case that either 

(b) ~21 is connected to P(N)in  the complement of _C(~u.• u ~t31)), or 
(b') ~31 is connected to P(N)in  the complement of _C(~1~'• u ~3~)). 

Case (a) implies 3 w* eS(L) such that 
(A.46 a) co e ~7 o ,  w* e ~ . . . .  o ~w*,  (L, a ) ,  

and the probability of this is bounded above by 

(A.47 a) ~ Zo,w. "c . . . .  kw*,(L,a)" 
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Case (b) may be described by the fact that 3w*~S(L), w ~ - W ,  and N with 
W < N < L ,  b, b '~Z ~-1, and z*eS(N) such that 

(A.46b) (-0 E~O,  z* ~ ~z*, w* ~ ~x ,  w* ~ ~Tw*, (N, b) ~ ~Tz*, (N, b') ~ Z~N$,h), (L, a) ,  

similarly for case (b') with 0 replaced by x. The event described in (A.46b) 
has probability bounded above by 

(A.47b) Z TO,z* Tz*,w* Tx,w$ Tw*,(N,b) 'Tz*,(N,bt) C(N,b),(L, a), 
w*,z*,N,b,b' 

with a corresponding equation describing situation (b'). 
Summing (A.47 a) over a e2g a-a , we obtain 

(A.48) ~IK L_ w ~ Zo,(w,w) tx,(y,w), 
W w 

where we have used the notation w* =(W, w). Now, we use the a priori bound 
(2.7) and the obvious bounds [w*] > Wand  ] w * - x l >  Wto  write 

(A.49) "Co,(w, w) "Cx, (w, w) "< e -  (2/~)(I w* I + l w * - x [ )  ~ e -  2 (1 /~ -  2~/)w e - 2 7. 

The bound in (A.49) may be further degraded by noting that 

(A.50) 2([w* 1-4-[w* - x l ) ~  Ixl + Iwi + W, 

so that (A.48) can be bounded above by 

(A.51) e -nlxl ~ ]KL_we-(2/r -'tw. 
W,w 

We now use the corollary to Lemma A.2 to bound ]K L_ w above by a constant 
times lI?**w. Next, since the decay rate of 112" is ~c (see Proposition A1 and 
the Remark following Definition A2), it follows from the definition of t/ (cf. 
Eq. (A.36)), that for W large enough, e - ( 2 / ~ - 4 n ) w  may be bounded above by 
(another constant times) lI;~v. Then, according to Eq. (A.39), the two O's may 
be combined to obtain a total upper bound of 

(A.52) D4, e-"lxl (12"* ~,e -"lw*l 
w* 

on case (a). Performing the sum over w* just modifies the constant D4,. 
The (b) (and (b')) cases follow from a similar, but somewhat more laborious 

analysis. Summing (A.47 b) over a, b', and then b, we get 

(A.53) ~N-Z ~N-W (13L-N tO,,* t~* ,,* Z . . . . .  
O<_W<N 
O<_Z<N 

w,z,N 

where we have again used w* = (W, w), z* = (Z, z). Next, we note that the uniform 
bounds of Proposition 3.1 imply GN- w ( [ ~ u -  Z ~ f l -  2 e-  (2/r e + (1/r + w). Using 
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this and the a priori upper bound Zo,~.<e-lz*l/e, the argument of the sum in 
(A.53) is bounded above by a constant times 

(A.54) ff?**Ne-(2/r e-SmTe+(1/r162162 ,,I/~. 

Now, we use the inequalities 

1 . 1 
(A.55 a) T lzl => ( r  2r/),Z[ + 2q [z*, 

1 , 1 / \ 
(A.55b) ~-,w - x l  > ~ T - 2 q ) ,  Wl +2q  Iw*-x ,  

1 
(A.55 c) ~ I w* - z *  I > 5r/Iw* - z*l, 

together with the bound IE**N e -(2/r s,)N_>_ (const)II;**, valid for N sufficiently 
large, to estimate the quantity in (A.54) by 

(A.56) (const)(E** e-5"N e+2n(z+W)e-2"lz*le-2"lw*-xle -5nlw*-'*l 

Recalling that W, Z_<_ N, the above is pointwise bounded by 

(A.57) (const) 112"* e-rUe - 2.tz*l e-  2qlw*-xl e - 5nlw*-z*l. 

Finally, observing that 

(A.58) 

so that 

(A.59) 

2~t Iz* I-+- 2 q Iw* - x l  + 2~/Iw* - z * l  >= ~/Ixl + ~  Iz*[, 

21/Iz*l+ 2q [w*--xl + 5t/Iw* - z * [ >  r/Ixl + ~-(~ Iz*l+ ~ Iw*l), 

we are left with 

(a.60) 
(const.) e-  "lxl II2~ * ~" e-,N e-(,/a)(lz*l + Iw*l) 

w*:W__<N 
z*:Z<N 

N 

~ D 4 , ,  e-~lxlC~ * 

for the b (and (b')) estimates. Together with (A.52), this establishes Eq. (A.43). 
It is now straightforward to show that (if ~/>0)(;** and (12" are bounded 

by multiples of one another. Indeed, decomposing IE** according to the number 
of intersections of C(0)Iis(L) with the plane P(0) (as was done for the lH's in 
gqs. (3.13)-(3.14)): 

(A.61) C*.*= ~ P({co~*,~L..)IIC(O)Hs~L)~P(O)I=k}), 
a ~ d -  1 
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we have the identi ty 

(A.62) = Z r _ p)2(d- 1)p( 1 _ p)k- ,  

k 

Thus, by the Jensen inequality, 

C*+ ~ => C** (1 _p)2(d- 1)p( 1 _ p)eL- 1 (A.63) 

where 

s = V k  (A.64) L--Z_, G**" 
k L 

Now,  by (A.43), 

(A.65) a~** < "a--'L , k "** < D  5 e-,~k~/~"-" C** " 0 ,  (L, a); x 
[xl > k  ~ / ( a -  ~) 

a e Z d -  1 

with Ds (p )<  oo. Hence/~L(P) < 0% SO that  by (A.63) 

(A.66) {E~ ~ D 6 (I~L* * 

with D6(p)< oo for p<pc, and we are halfway there. 
If  the steps of  this p r o o f  (i.e., Eqs. (A.42)-(A.66)) are carefully examined, 

it is no t  terribly difficult to  see that  the derivat ion proceeds unhindered if, in 
each (E-term, a �9 is removed.  The result is 

(A.67) (E z <~ 0 7 l ~  

with D7(p )<oo  for P<Pc. Combin ing  the corol lary to L e m m a A . 2  with the 
bounds  (A.66) and (A.67), we have the desired result. [ ]  
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