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There is an error in the proof of Theorem 3.3 (p. 447). Retaining the notations 
of that proof, we incorrectly claimed that a variety of the form A"/G is a rational 
variety. There are counterexamples to this, due to Saltman [S]. The theorem 
remains correct as stated however, and the main thread of the argument is 
the same. The following should replace paragraph 3 of page 448, "Since G 
acts linearly... ". 

Let W be the blowup of A" at the origin 0, P the exceptional divisor. The 
inclusion of P in Wis split by the map n: W ~ P  sending a line through the 
origin to the associated point on P=PT0(A"). G acts on W a n d  on P, and 
since the action is linear, the projection g: W ~ P  induces a map p: WIG ~ PIG. 
Each fiber of p is an affine line, and we have a morphism h: W / G ~ X  which 
is an isomorphism over U. We may assume that the map f: Z ~  X factors 
through some projective closure of WIG. 

If Visa  Noetherian scheme, we have the Quillen spectral sequence 

@ K_,_,(k(x)) K _,_,(V). 
xEVv 

For Z a closed subscheme of V of pure codimension d, U = V -  Z, there is an 
exact localization sequence for the E2 terms: 

-+ E2 p-d, q - d ( Z  ) -~ E2P, q (v )  ~ EzP, q (u )  -~ E2 p-d+ 1,q- d (z  ) --+. 

If V i s a  regular scheme over a field, then Quillen [Q] shows there is a natural 
isomorphism Hv(V, 3Uq) ~- E2 p' -q(V). 

Lemma. Let V be an n-dimensional variety over an algebraically closed field k. 
Suppose V is a finite union of disjoint, locally closed subsets Vi, where each Vi 
is a locally trivial A 1 bundle, Pi: Vi ~ Bi. Then the map CHa(V ) | k* ~ E2n- 1 , -n (V)  
is surjective. 

Proof Sherman [Sh] shows that the Ez term is a homotopy invariant. Thus, 
for a variety B, the map pl*: E 2 ' - l ' - r ( B ) ~  E2 ' - I ' - " (B  x A 1) is an isomorphism. 
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If B has dimension r - l ,  then E2r-l"-r(B) is generated by CHo(B)| so 
E2"- 1,-r(B x A t) is generated by CH 1 (B x A 1) | k*. The result then follows from 
localization. [] 

We can stratify PIG by locally closed subsets Bi so that p: p-l(Bi)-* B~ 
is a locaIly trivial A ~ bundle. From the lemma, it follows that Eft-:'-"(W/G) 
is generated by CHa(W/G)| k*. Factoring the map H"-1(Z, X , ) ~  H"-I(U, ~ )  
through Ez"- 1,-.(W/G), it follows that the image of H"- I(Z, ~ )  in H"-a(U, ,g~) 
is generated by CH"- a(U) | k*. Since H "- I(Z, o~V~) ~ H"- ~(Z, )ft.) is surjective, 
this implies that the image ImH of H"-I(Z, ~r in H"-I(U, ~ )  is generated 
by CH"- I(U) | k*. The surjective map H"-  x(Z, ~ ) - ~  F"SKo factors through 
ImH, hence F"SKo is divisible. F"SKo is IGl-torsion by Theorem 2.7, hence 
zero. 

In addition, there is an incorrect reference on page 449, line 3: the injectivity 
of the Bloch map was shown by Merkurjev and Suslin in I-M-S]. Finally, the 
paper [-Q2] "Higher algebraic K-theory II" was written by D. Grayson, after 
notes of D. Quillen. 

We would like to thank Prof. J.L. Colliot-Th616ne for pointing out these 
errors. 

References 

[M-S] 

[Q] 

IS] 

[Sh] 

Merkurjev, A.S., Suslin, A.A.: K-cohomology of Severi-Brauer varieties and the norm residue 
homomorphism. Math. USSR 21, 307-340 (1983) 
Quillen, D.: Higher algebraic K-theory I. In: Bass, H. (ed.) Algebraic K-theory I (Lect. 
Notes Math. Vol. 341). Berlin Heidelberg New York: Springer 1972 
Saltman, D.J.: Noether's problem over an algebraically closed field. Invent. Math. 77, 71-84 
(1984) 
Sherman, C_C.: K-cohomology of regular schemes. Commun. Algebra 7 No. 10, 999-1029 
(1979) 

Oblatum20-V-1988 


