Correction to: $\mathbf{S K}_{\mathbf{1}}$ for Finite Group Rings: I

Robert Oliver
Matematisk Institut, Universitetsparken, Ny Munkegade, 8000 Aarhus C, Denmark

Ulf Rehmann has pointed out an error in the proof of Lemma 9 in [2]. A certain field extension was assumed there to be Galois; and although this was the case in later applications, it did not follow from the hypotheses. In addition to correcting the proof, we take the opportunity (as a result of comments by various people) to fill in some of the details which were omitted in [2].

We use N and $n r$ to denote the norm and reduced norm maps, respectively. A lemma is first needed.

Lemma. Let $E \supseteq F$ be finite extensions of the p-adic rationals \hat{Q}_{p}, such that E / F is a cyclic Galois extension. Then $K_{2}(F)$ is generated by symbols of the form $\left\{x, N_{E / F}(y)\right\}$ for $x \in F^{*}$ and $y \in E^{*}$.
Proof. Let $n=[E: F]$; then ([1], p. 140, Theorem 2):

$$
F^{*} / N_{E / F}\left(E^{*}\right) \cong \operatorname{Gal}(E / F) \cong \mathbb{Z} / n .
$$

We must show that the surjection (induced by the symbol map)

$$
F^{*} / N\left(E^{*}\right) \otimes F^{*} / N\left(E^{*}\right) \cong \mathbb{Z} / n \rightarrow K_{2}(F) /\left\{F^{*}, N\left(E^{*}\right)\right\}
$$

is trivial. If for some $a \in F^{*}, a$ and $-a$ both generate $F^{*} / N\left(E^{*}\right)$, we are done since $\{a,-a\}=1$.

The only case this does not occur is when $-1 \notin N\left(E^{*}\right)$ and $n \equiv 2(\bmod 4)$. In this case let $\bar{E} \subseteq E$ be the degree two extension of F. Since for any $a \in F^{*}$ generating $F^{*} / N\left(E^{*}\right),-a$ is the square of a generator, $-a$ generates the subgroup

$$
N\left(\bar{E}^{*}\right) / N\left(E^{*}\right) \subseteq F^{*} / N\left(E^{*}\right)
$$

of index two. Hence it remains only to find $a, b \in F^{*}-N\left(\bar{E}^{*}\right)$ such that $\{a, b\}$ $=1$.

So assume that $\{a, b\} \neq 1$ for any $a, b \notin N\left(\bar{E}^{*}\right)$. Since $-1 \notin N\left(\bar{E}^{*}\right)$,

$$
\begin{array}{llll}
2 \in N\left(\bar{E}^{*}\right) & (\text { since }\{-1,2\}=1), & \text { so } & -2 \notin N\left(\bar{E}^{*}\right) ; \\
3 \in N\left(\bar{E}^{*}\right) & (\text { since }\{-2,3\}=1), & \text { so } & -3 \notin N\left(\bar{E}^{*}\right) ;
\end{array}
$$

etc. But this contradicts the fact that $N_{E / F}\left(\bar{E}^{*}\right)$ is closed ([1], p. 143, Theorem 3). []
Proposition (Lemma 9 in [2]). Assume A is a finite dimensional simple $\hat{Q}_{p^{-}}$ algebra with center F, and let $E \subseteq A$ be any maximal subfield containing F such that $[E: F]=[A: F]^{\frac{1}{2}}$. Then the image of the induction map

$$
i_{*}: K_{2}(E) \rightarrow K_{2}(A)
$$

contains the image of the symbol map

$$
c^{A}: F^{*} \otimes A^{*} \rightarrow K_{2}(A) .
$$

Proof. It follows from ([1], p. 143, Proposition 4) that either $N_{E F F}$ is onto, or there is a cyclic extension $F_{1} \supsetneq F$ in E. Repeating this gives a sequence of fields

$$
F=F_{0} \subseteq F_{1} \subseteq \ldots \subseteq F_{k}=E ;
$$

such that F_{i} / F_{i-1} is a cyclic extension for all $1 \leqq i \leqq k-1$, and such that $N_{F_{k} / F_{k-1}}$ is onto. Let A_{i} be the centralizer in A of F_{i}. Then by Theorems 7.11 and 7.13 in [4], F_{i} is the centralizer (in particular, the center) of A_{i} for all i; and $\left[F_{i}: F\right]$ $=\left[A: A_{i}\right]$. Note in particular that $A_{k}=F_{k}=E$.

For $1 \leqq i \leqq k$, consider the following diagram:

$$
\begin{aligned}
& F_{i-1}^{*} \otimes A_{i-1}^{*} \xrightarrow{\underline{1} \otimes n r} F_{i-1}^{*} \otimes F_{i-1}^{*} \xrightarrow{c_{i-1}} K_{2}\left(F_{i-1}\right) \xrightarrow{\psi} K_{2}\left(A_{i-1}\right) . \\
& \prod_{\text {incl }} \quad \prod_{1 \otimes N_{F_{l} / F_{i-1}}} \\
& F_{i-1}^{*} \otimes A_{i}^{*} \xrightarrow[\cong]{\stackrel{1 \otimes u r}{\longrightarrow}} F_{i-1}^{*} \otimes F_{i}^{*}
\end{aligned}
$$

Here, ψ is the map defined in [3] so that the composite of the top row is the symbol map $c^{A_{1}-1}$. Although ψ was defined in [3] only for division algebras, the construction clearly extends to matrix algebras.

The square commutes by ([5], p. 28). If $i<k$, then the composite

$$
\left.c^{F_{i-1} \circ\left(1 \otimes N_{F_{l} / F_{i-1}}\right.}\right)
$$

is surjective by the lemma; and if $i=k$ it is surjective by the assumption on $N_{F_{i} / F_{\mathrm{L}}-1}$. It follows that

$$
\left\{F_{i-1}^{*}, A_{i-1}^{*}\right\}=\left\{F_{i-1}^{*}, A_{i}^{*}\right\} \subseteq\left\{F_{i}^{*}, A_{i}^{*}\right\} \quad \text { in } K_{2}(A)
$$

for all $1 \leqq i \leqq k$; and hence

$$
\operatorname{Im}\left(c^{A}\right)=\left\{A_{0}^{*}, F_{0}^{*}\right\} \subseteq\left\{A_{k}^{*}, F_{k}^{*}\right\}=i_{*}\left(K_{2}(E)\right) .
$$

References

1. Cassels, J.W.S., Fröhlich, A.: Algebraic number theory, Academic Press 1967
2. Oliver, R.: $S K_{1}$ for finite group rings: I, Invent. math. 57, 183-204 (1980)
3. Rehmann, U., Stuhler, U.: On K_{2} of finite dimensional division algebras over arithmetical fields, Invent. math. 50, 75-90 (1978)
4. Reiner, I.: Maximal orders, Academic Press 1975
5. Draxl, P., Kneser, M.: $S K_{1}$ von Schiefkörpern. Lecture Notes in Mathematics no. 778, SpringerVerlag 1980

Received November 27, 1980

