Invent. math. 64, 167-169 (1981)

Inventiones mathematicae © Springer-Verlag 1981

Correction to: SK₁ for Finite Group Rings: I

Robert Oliver

Matematisk Institut, Universitetsparken, Ny Munkegade, 8000 Aarhus C, Denmark

Ulf Rehmann has pointed out an error in the proof of Lemma 9 in [2]. A certain field extension was assumed there to be Galois; and although this was the case in later applications, it did not follow from the hypotheses. In addition to correcting the proof, we take the opportunity (as a result of comments by various people) to fill in some of the details which were omitted in [2].

We use N and nr to denote the norm and reduced norm maps, respectively. A lemma is first needed.

Lemma. Let $E \supseteq F$ be finite extensions of the p-adic rationals \hat{Q}_p , such that E/F is a cyclic Galois extension. Then $K_2(F)$ is generated by symbols of the form $\{x, N_{E/F}(y)\}$ for $x \in F^*$ and $y \in E^*$.

Proof. Let n = [E: F]; then ([1], p. 140, Theorem 2):

$$F^*/N_{E/F}(E^*) \cong \operatorname{Gal}(E/F) \cong \mathbb{Z}/n.$$

We must show that the surjection (induced by the symbol map)

$$F^*/N(E^*) \otimes F^*/N(E^*) \cong \mathbb{Z}/n \twoheadrightarrow K_2(F)/\{F^*, N(E^*)\}$$

is trivial. If for some $a \in F^*$, a and -a both generate $F^*/N(E^*)$, we are done since $\{a, -a\} = 1$.

The only case this does not occur is when $-1 \notin N(E^*)$ and $n \equiv 2 \pmod{4}$. In this case let $\overline{E} \subseteq E$ be the degree two extension of F. Since for any $a \in F^*$ generating $F^*/N(E^*)$, -a is the square of a generator, -a generates the subgroup

$$N(\overline{E}^*)/N(E^*) \subseteq F^*/N(E^*)$$

of index two. Hence it remains only to find $a, b \in F^* - N(\overline{E}^*)$ such that $\{a, b\} = 1$.

So assume that $\{a, b\} \neq 1$ for any $a, b \notin N(\overline{E}^*)$. Since $-1 \notin N(\overline{E}^*)$,

$$2 \in N(\bar{E}^*) \quad (\text{since } \{-1, 2\} = 1), \text{ so } -2 \notin N(\bar{E}^*); \\ 3 \in N(\bar{E}^*) \quad (\text{since } \{-2, 3\} = 1), \text{ so } -3 \notin N(\bar{E}^*); \end{cases}$$

etc. But this contradicts the fact that $N_{E/F}(\bar{E}^*)$ is closed ([1], p. 143, Theorem 3).

Proposition (Lemma 9 in [2]). Assume A is a finite dimensional simple \hat{Q}_p -algebra with center F, and let $E \subseteq A$ be any maximal subfield containing F such that $[E:F] = [A:F]^{\frac{1}{2}}$. Then the image of the induction map

$$i_{\star}: K_2(E) \rightarrow K_2(A)$$

contains the image of the symbol map

$$c^A \colon F^* \otimes A^* \to K_2(A).$$

Proof. It follows from ([1], p. 143, Proposition 4) that either $N_{E/F}$ is onto, or there is a cyclic extension $F_1 \supseteq F$ in E. Repeating this gives a sequence of fields

$$F = F_0 \subseteq F_1 \subseteq \ldots \subseteq F_k = E;$$

such that F_i/F_{i-1} is a cyclic extension for all $1 \le i \le k-1$, and such that $N_{F_k/F_{k-1}}$ is onto. Let A_i be the centralizer in A of F_i . Then by Theorems 7.11 and 7.13 in [4], F_i is the centralizer (in particular, the center) of A_i for all i; and $[F_i: F] = [A:A_i]$. Note in particular that $A_k = F_k = E$.

For $1 \leq i \leq k$, consider the following diagram:

$$\begin{array}{c} F_{i-1}^{*} \otimes A_{i-1}^{*} \xrightarrow{1 \otimes nr} F_{i-1}^{*} \otimes F_{i-1}^{*} \xrightarrow{c^{F_{i-1}}} K_{2}(F_{i-1}) \xrightarrow{\psi} K_{2}(A_{i-1}). \\ & \uparrow & \uparrow & \uparrow & \downarrow \\ & & \uparrow & \uparrow & \downarrow \\ F_{i-1}^{*} \otimes A_{i}^{*} \xrightarrow{1 \otimes nr} F_{i-1}^{*} \otimes F_{i}^{*} \end{array}$$

Here, ψ is the map defined in [3] so that the composite of the top row is the symbol map $c^{A_{i-1}}$. Although ψ was defined in [3] only for division algebras, the construction clearly extends to matrix algebras.

The square commutes by ([5], p. 28). If i < k, then the composite

$$c^{F_{i-1}} \circ (1 \otimes N_{F_i/F_{i-1}})$$

is surjective by the lemma; and if i=k it is surjective by the assumption on $N_{F_i/F_{i-1}}$. It follows that

$$\{F_{i-1}^*, A_{i-1}^*\} = \{F_{i-1}^*, A_i^*\} \subseteq \{F_i^*, A_i^*\}$$
 in $K_2(A)$

for all $1 \leq i \leq k$; and hence

$$\operatorname{Im}(c^{A}) = \{A_{0}^{*}, F_{0}^{*}\} \subseteq \{A_{k}^{*}, F_{k}^{*}\} = i_{*}(K_{2}(E)). \quad \Box$$

References

- 1. Cassels, J.W.S., Fröhlich, A.: Algebraic number theory, Academic Press 1967
- 2. Oliver, R.: SK₁ for finite group rings: I, Invent. math. 57, 183-204 (1980)
- 3. Rehmann, U., Stuhler, U.: On K_2 of finite dimensional division algebras over arithmetical fields, Invent. math. **50**, 75-90 (1978)
- 4. Reiner, I.: Maximal orders, Academic Press 1975
- Draxl, P., Kneser, M.: SK₁ von Schiefkörpern. Lecture Notes in Mathematics no. 778, Springer-Verlag 1980

Received November 27, 1980