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Summary. The error in the estimate of the kth eigenvalue of a regular 
Sturm-Liouville problem obtained by Numerov's method with mesh length 
h is O(k6h4). We show that a simple correction technique of Paine, de 
Hoog and Anderssen reduces the error to one of O(k3h4). Numerical 
examples demonstrate the usefulness of this correction even for low values 
of k. 

Subject Classifications: AMS(MOS): 65L15; CR: G1.7. 

I. Introduction 

There has been much recent interest in problems requiring efficient and ac- 
curate computation of a long sequence of eigenvalues of regular Sturm-Liou- 
ville problems. (See [2] for References.) It is usually advantageous [2] first to 
transform the problem to the Liouville normal form 

- y "  +qy=2 y. (la) 

We consider the case of essential boundary conditions which may, without loss 
of generality, be written as 

y(0) = y(~)--0. (1 b) 

When finite difference methods are used to approximate the eigenvalues, 
2 1 < 2 2 < 2 3 < . . . ,  of (1), the error in the approximation to 2 k is known to 
increase rapidly with k. For example the usual centred difference approxima- 
tion to (la) with uniform mesh length h. '=~/(n+ 1) approximates 21 . . . . .  2, by 
the eigenvalues 2~")< ...<2{, ") of the n x n matrix - A + Q  where A.'=(aij ) is 
symmetric tridiagonal with 

ali:=-2/h 2, i=1  ..... n, al,i+l:=l/h 2, i=1  . . . . .  n - 1  (2) 

and Q:=diag[q(xO, . . . ,q(x,)] where xj:=jh. In this case the errors satisfy 12 k 
--2{k")[ =O(k 4 h2). For  example when q=0,  2k=k 2 and 2Ck")= 4 sin2(kh/2)/h 2. 
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Recently Paine, de Hoog  and Anderssen [8] observed that this known 
closed form solution when q = 0  could be used to improve dramatically the 
accuracy of the computed higher eigenvalues with negligible extra effort. They 
showed that, for all q ~ C  z [0, re] and all ~ <  1, there exists a constant c(~) such 
that, for all n and all k < ct rr/h, the approximations 

~(kn). _ ~(nl 3- k 2 - 4 sin 2 (k h/2)/h 2 
�9 - -  i ~  k 

satisfy 

} 2tk") -- 2k] < C(Ct) k h 2. (3) 

Although the improvement  is obviously greatest for large k, their numerical 
results indicate that I,(~")-2kl<12~)-2kl even for small k. This analysis has 
subsequently been extended [1] to the problem with (lb) replaced by the more 
general boundary  conditions 

0-1 Y (0) + 0-2 y'(0) = 0" 3 y(Tr) + 0" 4 y' (Tt) = 0. 

Also Paine [7] has shown that the correction technique of [8] can greatly 
increase the efficiency of a certain method for the numerical solution of the 
inverse eigenvalue problem. 

A deservedly popular  technique for computat ion of the lowest eigenvalues 
of (1) is Numerov 's  method,  which approximates  21 , . . . , 2 ,  by the eigenvalues 
./1] ~ < . . .  < A~ "~ of 

- A u +  B Q u =  A B u  (4) 

where 

B: = I + h E A /12  (5) 

and I is the identity. Since [[ytkJ)ll=O(k~HYklI), j = l , 2  . . . . .  where Yk is the eigen- 
function of (1) corresponding to 2 k, it follows from Taylor 's  theorem that 

( - A  + B Q - 2  kB) Yk =- O( k6 h4 IlYkll~) 
and hence since, as shown in [3], 

liB- 111 | = O(1), (6) 

an analysis similar to that in [5], pp. 133-134, shows that 

IA~ ") - 2kl = O(k 6 h4). (7) 

When q = 0  (and hence Q=0) ,  it is readily verified that 

- -  A e ( n )  - -  i , ( n ) / ~  ~ ( n )  "- ok - ~'k ~ ~k (8) 

where Stk"): =(sin(k Xl) . . . . .  sin(k x,)) r and 

~.) 12 [1 - cos(k h)] 
Pk :---~-~ ~ - ~ ~  --- k2 + O(k 6 h4). (9) 

We show here that  the er ror  in the estimates 

2c.~._ .4~.~ ~ ~.2 ,,~.~ (10) 
k " - - ~ k  : ' ~  -- / '~k 
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given by the correction technique of [8] grows more  slowly with k than the 
error in the original estimates Ark "). Specifically we show that, for all functions 
qeC4[0,1t]  and all a < l ,  there exists a constant  c*(a) such that, for all n and 
all k < a rt/h, 

['/i~ ") --~'kl < c*(a) k 3 h 4. (11) 

This can be deduced by a modificat ion of the proof  used in [8]. We use 
instead a slightly different approach  which establishes the following stronger 
result. 

Theorem l. I f  q ~ C 4 [ O , n ]  then there exists a constant c o depending only on q 
such that for  all ne]N and k = l  . . . . .  n, 

I/irk ") -- 2kl < C o k 4 hS/sin (k h). 

Since a/s in(an)  increases monotonica l ly  with a for 0 < a < l ,  (l l) follows 
immediately from Theorem 1 and we have as a bonus the formula  

c* (a )=  c o a n/sin (c~ n). 

The method of proof  used here can also be used to show that  c(a) in (3) has a 
similar form. 

Al though c * ( a ) ~  as a ~ l ,  c*(a) increases slowly at first and c*(�89 
is only n/2. This suggests that, if the first k eigenvalues are required, the 
choice n = 2 k  (suggested in [8] for the second order method)  will be suitable 
and numerical  results confirm this. 

Compar i son  of (3), (7) and (11) makes  it clear that, as an approx imat ion  to 
2 k, /]~k ") will be better than A~k ") for sufficiently large k and better  than 2tk") for 
sufficiently small h. O u r  numerical  results, which are summar ized  in Sect. 3, 
indicate that  the restriction to "sufficiently large k"  and "sufficiently small h" 
is not  serious in practice, at least for reasonably smooth  q. In all cases we 
found /]tk ") to be a bet ter  approximat ion  than A(k "), even for k = 1. In all cases 
with k <n/2  (as recommended) ,  and most  cases with k > n/2, we also found ,4tk") 
to be a better  approx imat ion  than 2~k "). 

2. Proof of Theorem 1 

Since increasing q by a constant  increases 2 k and A~k ") by the same constant,  we 
can assume without  loss of generality (as in [8]) that  

i q ( x )  d x = O .  
0 

This implies [8] that  

2 k = k z + O ( k -  2). (12) 

For  notat ional  convenience, the subscript k and  the superscript  (n) are 
supressed throughout  this proof. Thus y denotes the eigenfunction of (1) corre- 
sponding to the kth eigenvalue and u." = (u 1 . . . . .  u,) r the eigenvector correspond- 
ing to the kth eigenvalue of (4). For  any function p: I - 0 , r t ] ~ R  we use the 
notat ion Pi: = P (xi), P'i: = P' (xi) etc, i = 1 . . . .  , n and p: = (p x . . . . .  Pn) T, P' : = (P'I . . . . .  P'n) T" 
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Since A and B are symmetric commuting invertible matrices 

AB- 1 =B-  1A = ( B -  ~ A) r. (13) 

Hence by (4) 

- u r B - 1 A + u T  Q=Au r. (14) 

Hence A u r y + u r B - 1 A y = u r Q y = 2 u r y + u r y  '' by (1), that is 

(A - 2) u r y = u r (y" - B - x A y). (15) 

Since 
s" = - k 2 s (16) 

it follows from (15) and (8) that 

( A - ~ ) u r y = ( # - k 2 ) u r s + s r ( e " - B - I A e ) + e r ( e " - B - 1 A e ) ,  (17) 

where 
~ : = u - s ,  (18) 

e(x): =y(x)  - sin(k x) (19) 

and hence e = y - s .  The following lemmas enable us to estimate the various 
terms arising in (17). We  assume y normalized as in [8], with analogous 
normalizat ion for u, and show that  e and e are then O(k-~). 

Lemma 1. It~)10o < 2 h  n Ilqll ~ Ilull Jsin(kh). 

Proof. Subtract ing /~ B u + BQ u from both  sides of (4) and multiplying by - [5 
+ cos(kh)] h2/6 yields 

u~_ x - 2 cos (k h) uj + uj + 1 = [-5 + cos (k h)] h 2 [(/~ - A) B u + BQ u] H6, j = 1 . . . . .  n. 
(20) 

Hence, using an argument  analogous to that in the proof  of  Theorem 2.1 of 
[8],  it follows f rom L e m m a  2.3 of  [-8] that  

[5 +cos (kh) ]  h 2 ./~_,1 
e j -  ~ i_~ 1 sin(k(xj-xl))[-(kt-A+qi_x)Ui_l 

+lO(l~-A+ql)ui+(#-A+qi+Oui+l],  j = l  . . . . .  n. (21) 

Since B - 1 A  and  Q are real symmetric  it follows f rom (4), (8) and standard 
per turbat ion theory I-9, p. 102] that  

lit - A I  < IIQlt~ = Ilqll ~o < }}qll o0- (22) 

Hence by (21) and  the triangle inequality 

}eyl < I he (J - 1)/sin (kh)[ m a x @  - A + qil lUll) 
i 

<[2(j-1)hZ/sin(kh)] Ilqll~ Ilull~ 

<[2nh/sin(kh)] Ilqll~ Ilult~, since h ( j - 1 ) < n .  [ ]  
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L e m m a  2. For y normaIised as in [8], 
x 

e (x) = k-  ~ ~ (k2 _ 2 + q(t)) sin [k (x - t)] y (t) dt, 
0 

e ~j) (x) = O (k s- 1 ), j = 0, 1, 2 . . . .  

and 

(23) 

(24) 

f :  =(k 2 - 2  +q) y, (26) 
x + h  

a(x,h): = ~ f ( t ) s in  [ k ( x + h - t ) ]  dt (27) 
x 

and 
E j: = 7(x j, h) + c~(xj, - h ) .  (28) 

Then 

A e - B e" - ( k  a - #) B e = (  l + hZ #/12 ) E/k h 2 - B f. (29) 

Proof By (23), e " =  f - k 2 e  and hence 

B e " = B f  - k 2  Be. (30) 

Also by (2), (23), (28) and (9), 

k hE(A e)~ = k(ej+ t - 2 ej + e j_ 1) 

x 2 

= ~ f (t) {sin [k (x j+ t - t)] - 2 sin [k (xj - t)] + sin [k(xj_ 1 - t)] } dt+ Ei 
0 

- hEpx! f ( t ) { s in[k (x j+  1 1 2  - t)] + 10 sin [k (xj - t)] + sin [k (x j_ 1 - t)] } d t + Ej 

= - h  E p k [e(xi+ 1) + 10 e(xj) + e(x~_ 1)]/12 + (1 + h 2 p/12) Ej. 

Hence 
A e =  - # B e + (  l +hZ #/12) E/kh z. (31) 

Subtracting (30) from (31) and rearranging gives (29). [ ]  

Lemma 4. For all qe  C 4 [0, rc] there exists a constant c I such that 

[ ~ r [ B - 1 A e - e " + ( p - k Z ) e ] l < = c l k 4 h 4 / s i n ( k h ) ,  k = l  . . . . .  n. 

Proof By (28) and (27), 
X3+ 1 X j ~ I  

E~= I f ( t ) s i n [ k ( x j + l - t ) ] d t +  I f ( t ) s i n [ k ( x j - l - t ) ] d t .  
x j  x j  

Expanding f about xj by Taylor 's  theorem in both  integrals and integrating by 
parts shows that 

L e m m a  3.  Let 

e (0) = e(~) = e"(0) = e"(r0 = 0. (25) 

Proof Equations (23) and (25) are proved in [8] and (24) follows from (23) and 
(12) since yCJ) = O(k~). [] 
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E;  = (2/k) E1 - cos (k h ) ] f j  + { ( h 2 / k )  - (2/k 3) I-1 - cos (k h)-]} f j '  

+ O(kh 6 Ilf(4) ll ~)- 

Also B f =  f +  h 2 A f/12 = f + h z f" /12 + O(h 4 II f(4) ll J .  
C o m b i n i n g  this resul t  wi th  (32) and  then  us ing  the  easily verif ied equa t ion  

2 [1 - cos (kh)] (1 + h z #/12) = h 2 # 

shows  tha t  

(l/k) (1 + h 2 #/12) Ej  - h 2 (B f)j = {(2/k 2) [ 1 - cos (k h)] (1 + h 2 p / l  2) - h 2 ) f j  

+ h  2 {k - 2  [1 - ( 2 / h  2 k2)(1 - c o s ( k h ) ) ]  (1 + h  2 # / 1 2 ) - h 2 / 1 2 } f ;  ' '  

+ O(h 6 It f(4)II o~) = (h2/k2) (# - k2)fj + (h 2/k4) (k 2 _ #) (1 - h 2 k2/12)f f  

+ O( h6 Ilf  (4~ II o~) = O( k4 h6), 

s ince # - k  2 = O(k 6 h4), 1 - h  2 k2/12 = 0(1)  and  

fj(p):  =ftP)(xj) = 0(11 f(P) II ~) = O(kP). 
Since also 

18r(B-1Ae--e"  +(#--kE)e)l<nllnlloo [IB-111o~ ILAe-Be"  + ( # - k 2 ) B e [ I ~  

and  n=O(1/h), the resul t  fo l lows f rom (6), (33) a n d  L e m m a s  1 and  3. [ ]  

L e m m a  5. For all OeC 1 [0,r t] ,  

i~=oOi+~cos(2kxi+~) <~llO'll| k - - 1  . . . . .  n, 

where x i + �89 = (x i + x i + 1)/2 and 0 i • ~ : = O(x i • �89 

Proof. Since 

m - - 1  

2 sin (k h) cos  (2 k x i + �89 
i = O  

m - - 1  

= ~ [ s in (2kx i+ l ) - s in (2kx i ) ]=s in (2kxm)  a n d  s i n ( k h ) > 0  
i = 0  

for  1 _< k < n, s u m m a t i o n  by  pa r t s  gives 

L Oi+~cos(2kxi+~)=On+& L c~ 
i = 0  i = O  

i - - 1  

- L (Oi+�89 ~,, c o s ( 2 k x j + ~ )  
i= l  j = o  

= - L (0~ + �89 - 0 i_ �89 sin (2 k xi)/2 sin (k h). 
i = 1  

Since I(Oi+,-Oi_~)sin(2kxi)l <h II0'11| = ~  IlO'll| 1), the  resul t  follows. [Z3 

A.L. Andrew and J.W. Paine 
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Lemma 6. For all qe C 4 [0, n] there exists a constant c 2 such that 

Isrfl<CEk4h4/sin(kh), k = l  .. . .  ,n. 

Proof. Let F(x):=f(x)sin(kx) and let ThF be the approximation to i F(x)dx 
0 

obtained by the trapezoidal rule with subintervals of uniform length h. Then by 
(26) F~ C 4 [0, ~z] and since F(0)= F(n)=0, it follows from the Euler-Maclaurin 
summation formula [4] that 

sTf=h-, r.F=h-1 S F(xtdx + ~. h2[f'(~)-f'(O)] 
o z !  

+~T. h4 [F"'(rt)-F'"(O)] -h4 i P4(x/h)F(4)(x)dx } (34) 

where, as in [4], the Bj are the Bernouilli numbers and/]1 . . . . .  P4 are piecewise 
polynomials of period one satisfying 

P'j+, =Pj on (0,1), P2j+I(0)=P2~+,(1)=0, j = l , 2 , . . .  (35) 

and Pl (x) -x- �89  0 < x <  1. 
It follows from Lemma2 that ~ F(x)dx=O and from (1) and (26) that F'(rr) 

0 

=F'(0)=0 and F'"(rc)-F'"(O)=O(k2). Hence by (34), 

[srft=lh3iP4(x/h)F("(x)dxt+O(k2h~). (36) 

Since, by Lemma 2, y(x)=sin(k x)+ O(1/k) it follows from (26) and (12) that 

F (4) (x) = - 8 k 4 g(x) cos (2 k x) + O(k 3) (37) 

where g:=k~-2+q.  Now define 

g*(x):=g(xi+�89 for xi<x<xi+l, i--0 .... ,n. 

By Eq. (2.9.7) of [4], 

IP4(x)l < ((4)/8 rc 4 = O(1) (38) 

where ( is the Riemann zeta function. Hence by (37), 

I P4 (x/h) F (#)(x) dx = 8 k 4 I P4 (x/h) (g* - g) (x) cos (2 k x) dx 
o o 

7t 

- 8 k 4 ~ P4 (x/h) g* (x) cos (2 k x) dx + O(k3). 
o By (38), 

i P4 (g* -g)(x) cos (2 x) (x/h) k dx 

< IIg* -g l l  oo ((4)/8 re3 < h  Ilg'[Ioo ~(4)/16 zt3 =O(h)=O(1/k)  

(39) 
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since k h < n. Hence by (39), 

I P4(x/h) FC4)(x) dx = - 8 k 4 ~ P4(x/h) g* (x) cos(2 k x) dx + O(k3). 
0 0 

(40) 

Integration by parts using (35) shows that 

X i + l  1 

f P4(x/h)cos(2kx)dx =h ~P4(t)cos[2k(xi+th)]dt 
X~ 0 

B4 B2 
=h ~ [ s i n ( 2 k x i + O - s i n ( 2 k x l ) ]  2!(2kh)3 [sin(2kxi+ 0 

1 
-sin(2kxi)] 2(2kh)4 [c~ O +c~ xl)] 

+ (2k h)- 5 [sin (2 k xi+ 1) - sin(2 k xl)]} 

-sin(kh) sin(kh) cos(kh) 
- 2 h [ 4 ~  2!(2kh)36 2(2kh) 4 

sin(kh)] ,~, 

hsin(kh)~ (kh) 3 kh c o t ( k h ) + ~  cos(2kxi+}). 
" i ~ [  45 3 

Hence 

i P4 (x) (2k x) dx I 
1 

(x/h) g* COS 
i 

n X i + l  

= ~gi+�89 ~ P4(x/h)cos(2kx)dx 
i =0  x i  

hsin(kh)[cot(kh) 1 kh (kh)aq Xi+~}) 
16(kh) 4 L - ~ + - y - + ~ - ]  a. 

gi+~cos(2k 
i=0 

hsin(kh) [ . . . .  1 kh (kh)a-1 ntlg'll~ I 
__< ~ [ c o t t k h ) - - ~ + - ~ - + ~ f f - ]  2 s ~ )  L 

by Lemma 5 

< h-5 ljg'li -M(kh)6 where M:=suplG( 'q/7  
=1 32(k h) 4 sin(k h) to,~l 

and G(x):=xcos(x)+(-l  + x2/3+ x4/45)sin(x)=xsin(x)[cot(x)-l/x + x/3 
+x3/45], since it is readily verified by Taylor's theorem that IG(x)l<Mx 7 
when 0 < x < n .  

Hence 

'~ dx < P4(x/h)g*(x)cos(2kx) =[nllg'll~Mk2h3/32sin(kh)t 

< n  a IIg'll~Mh/32sin(kh) since O<kh<n. 
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The result now follows from (36) and (40) since O< s in (kh )<kh .  [] 

The proof  of  Theorem 1 is now easily completed. By (8), (13), (16) and (30), 
s r (e" - B -  1 A e) = s r (e" + k 2 e) + (# - k 2) S T e = S T f +  (# -- k z) s r e. Hence, since u r s 
+ s r e + e r e = u r y ,  it follows from (17) and Lemmas 4 and 6 that 

]/1 - 21 lu r Yl = I ( A - 2 ) - ( # - k 2 ) l  [u r Yl < c3 k 4 h4/sin(k h) (41) 

where c 3 is the sum of the constants c 1 and c 2 in Lemmas  4 and 6. By Lemmas 
l and 2, [[u-sl l~ and [ ly-s l t~  are both O(k -~) for large k. Hence, since 
(s r s ) - 1 =  O(h), there exist positive constants k o and c 4 such that 

u r y > c4/h, V k > k o. (42) 

Combining (41) and (42) proves the theorem for k > k  o. For  k < k  o the result 
follows from the fact that  (7), (9) and (10) imply that there exists a constant c 5 
such that 

I f l -2l<__csk6h*<csk3k4hS/sin(kh) .  [] (43) 

3. Numerical  Results 

The form of tttk ") given by (9), though it simplifies some calculations in the 
proof, should not be used in numerical work as it is too sensitive to roundoff. 
In the practical evaluation of _/irk") by (10) it is better to use the theoretically 
equivalent form 

12 sin 2 (k h/2) (44) 
#k")-h 2 [3 - s i n  2 (k h/2)] 

which was used in all calculations reported here. 
In order to facilitate comparison with the results of [8], we chose the same 

functions q in (1) for our numerical examples, namely q(x )=e  x and q(x)=(x  
+0.1) -2. We calculated A~k ") and i]~k ") for k = l  . . . . .  n with n = 9  and 19 and for k 
=1 . . . . .  25 with n--39,  79, 159 for each q and also for k = l  . . . . .  4 with n = 4  for 
q(x)=e x. All results shown were computed in double precision so that  the 
structure of the error (which is very small for small k h) can be seen clearly. 

For  q(x )=e  x and n = 3 9 ,  T a b l e l  shows, in order, for k = l  . . . . .  20: (i) the 
exact eigenvalue 2 k, (ii) the error 2k--A~k")in the uncorrected Numerov  es- 

-A~") in the corrected Numerov  estimates, (iv) the timates, (iii) the error "~k "a 
error 2k--dtk") in the corrected second order estimates of [8] and finally (v) the 
ratio ( k2 --#k(n))/('~k--A k(n)). For  each q and all n, this ratio increased monotoni -  
cally with k and was always positive (so that the correction, k 2 - # ~  "), was 
always of the appropriate  sign), and, for all k < n, was less than one (so that  the 
correction was too small). Even for k=n,  the ratio was less than one for q(x) 
--(X+0.1) -2 and so close to one for q(x )=e  ~ that ~")  

To confirm the prediction of  Theorem 1, Table2  gives the value of  (2 k 
-,71tk"))sin(kh)/k4hS with q(x)=e x for n = 9 ,  19, 39, 79 and 159. Table3  com- 
pares the error, 2 k-~(")..k , in the corrected Numerov  estimates obtained with n 
=19, 39 and 79 for q(x)=(x+O.1)  -2 with the exact eigenvalues in that  case. 
For ease of tabulation, the errors in Table3  and the three sets of errors in 
Table 1 are multiplied by 103. 
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Table 1. Errors (x 10 3) in various estimates with n=39 and q(x)=e x 

k 2k (2 k --A~ ~) x 10 3 ()'k --r ~) X 10 3 (.,I k -- ~ ' )  X 10 3 (k2 - #~'~) 
(~k -A~ ~) 

1 4.8966694 0.00282 0.0027 2.4 0.0563 
2 10.045190 0.04268 0.0325 9.1 0.2380 
3 16.019267 0.22720 0.1137 13.1 0.5098 
4 23.266271 0.88366 0.2317 12.4 0.7377 
5 32.263707 2.88017 0.3879 I t .3 0.8653 
6 43.220020 8.04318 0.5820 10.7 0.9276 
7 56,181594 19.6872 0.8158 10.7 0.9586 
8 71.152998 43.2849 1.0913 11.0 0.9748 
9 88.132119 87.2765 1.4108 11.3 0.9838 

10 107.11668 164.024 1.7778 11.8 0.9892 
11 128.10502 290.917 2.1962 12.4 0.9925 
12 151.09604 491.634 2.6709 13.2 0.9946 
13 176.08900 797.568 3.2082 14.0 0.9960 
14 203.08337 1249.40 3.8153 15.0 0.9969 
15 232.07881 1898.85 4.5015 16.0 0.9976 
16 263.07507 2810.51 5.2781 17.3 0.9981 
17 296.07196 4063.87 6.1589 19.0 0.9985 
18 331.06934 5755.41 7.1615 20.4 0.9988 
19 368.06713 8000.64 8.3076 22.4 0.9990 
20 407.06524 10936.3 9.6248 24.5 0.9991 

Table 2. Scaled errors, (2 k -/]~k "~) sin (k h)/k  4 h 5 with q (x) = e ~ 

n 

k 9 19 39 79 159 

1 0,069 0.070 0.070 0.070 0.070 
2 0.103 0.106 0.106 0.107 0.107 
3 0.099 0.106 0.107 0.108 0.108 
4 0.081 0.091 0.093 0.094 0.094 
9 - 0.007 0.043 0.047 0.048 0.048 

14 0.028 0.030 0.031 0.032 
19 -0.004 0.021 0.023 0.023 
25 0.016 0.017 0.018 

T h e  last  two  sen tences  of  the  p r o o f  of  T h e o r e m  1 suggest  tha t ,  for k < ko in 
(42), (2~--/itk ")) cou ld  in i t ia l ly  g r o w  as fast as  O(k 6) b u t  our  e x a m p l e s  d id  not  

exh ib i t  this r ap id  in i t i a l  g r o w t h  o f  error.  T h e  m a x i m u m  of  (2k 
-ffl~k"))sin(kh)/k4h 5 o c c u r r e d  at k = l  for q(x)=(x+O.1)  -2 and  at  k = 2  o r  3 for 
q ( x ) = e  x (after wh ich  it d e c r e a s e d  m o n o t o n i c a l l y  in a l l  cases) a n d  the  increase 
in (2k- - / ] [  ")) for  k < 3  w i t h  q ( x ) = e  x was less t han  O(k*). I n d e e d  o u r  results 

i nd ica t e  t ha t  t he  re la t ive  er ror  (2 k --/]~k"))/2k increases  on ly  s l ight ly  w i t h  k until 
(kh)/sin(kh) begins  to inc rease  s ignif icant ly .  W e  c o n j e c t u r e  tha t  for  a w ide  class 
of  p r o b l e m s  the  e r ror  in  /i~ "~ is in fact O(k3hS/sin(kh)) and  h a v e  m a d e  some 

p rog re s s  t o w a r d s  p r o v i n g  this. W e  hope  to  r e tu rn  to  th is  in a l a te r  paper .  
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Table 3. Errors ( x 103) in corrected Numerov estimates with q(x)=(x +0.1)-2 
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k 2k (2 k -h~ "~) x 103 

n = 1 9  n = 3 9  n = 7 9  

1 1.5198658 0.4325 0.046 0.004 
2 4.9433098 2.7664 0.293 0.024 
3 10.284663 8,6229 0.903 0.073 
4 17.559958 19.436 2.011 0.162 
5 26.782863 36.391 3.717 0.299 
6 37.964426 60.481 6.095 0.486 
7 51.113358 92.608 9.198 0.729 
8 66.236448 133.70 13.07 1.029 
9 83.338962 184.81 17.75 1.386 

10 102.42499 247.30 23.29 1.802 
11 123.49771 322.89 29.72 2.278 
12 146.55961 413.94 37.10 2.814 
13 171.61264 523.64 45.49 3.412 
14 198.65837 656.47 54.97 4.072 
15 227.69803 818.84 65.63 4.795 
16 258.73262 1020.4 77.57 5.584 
17 291.76293 1276.4 90.92 6.440 
18 326.78963 1614.4 105.8 7.365 
19 363.81325 2096.3 122.5 8.361 
20 402.83424 141.0 9.432 

Comparison of p2 k-A~")[ with the values of 12k--2-tk")l given in I-8] and [6] 
for n=19, 39 and 79 and k<20  shows that Zi~k ") is more accurate (much more 
accurate for small kh) than .~k ") in all cases when q(x)=e x and all cases with 
k < 3 n/4 when q(x)= (x + 0.1)-2. This is not surprising since the relative advan- 
tage of Numerov's method is greatest when kh is small and IIq~4)ll~/llq"ll~ is 
not too large. Since computation of the eigenvalues of (4) requires only slightly 
more effort than calculating the eigenvalues of ( - A  + Q), we recommend that 
the corrected Numerov estimates .4~k "~ studied here be used in preference to the 
corrected second order estimates 2~k "~ of 1-8], at least for reasonably smooth q, 
provided k < n/2. 

The "improvement factor" 12k--A~l/IAk--~"~l was always greater for q(x) 
=e x than for the nearly singular q(x)=(x+O.1) -2. With k=25 and n =7 9  for 
example it was over 3,000 for q(x)=e ~ but only just over 150 for q(x)=(x 
+0.1) -2. However perhaps of greatest interest is the fact that for both q and all 
k and n we found [2k--.71tk")l<12k--Atk")l. Since the extra work involved in 
computing the correction (10) is negligible, we believe the correction is poten- 
tially useful even for the lowest eigenvalues. 
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