The fundamental group of the complement of a union of complex hyperplanes: correction

Richard Randell
Department of Mathematics, University of Iowa, lowa City, Iowa 52242, USA

In this note we correct the main result (Theorem 1) of [1]. The error involves the local description in the neighborhood of a singularity. In order to correct this we must assume that the arrangement is real and specify an ordering of its hyperplanes.

Thus we consider a collection of linear forms $\phi_{1}, \ldots, \phi_{n}, \phi_{n+1}$ in the complex variables $\left(z_{1}, z_{2}, z_{3}\right)$, with zero loci $V_{1}, \ldots, V_{n}, V_{n+1}$ respectively. Without loss of generality we may assume that $\phi_{n+1}\left(z_{1}, z_{2}, z_{3}\right)=z_{3}$, so that if we identify \mathbb{C}^{2} (with coordinates $Z_{1}=z_{1} / z_{3}, Z_{2}=z_{2} / z_{3}$) with $\mathbb{C P}^{2}-V_{n+1}$, we have $\mathbb{C P P}^{2}$ $-\left(V_{1} \cup \ldots \cup V_{n} \cup V_{n+1}\right) \cong \mathbb{C}^{2}-\left(V_{1} \cup \ldots \cup V_{n}\right)$. We henceforth work with the latter space, which we call N. Notice that if $\phi_{1}, \ldots, \phi_{n}, \phi_{n+1}$ are real forms (their coefficients are real), we may make the appropriate change of coordinates as above so that V_{1}, \ldots, V_{n} are defined by real forms.

We now specialize to the real case. First write $Z_{1}=u_{1}+i v_{1}, Z_{2}=u_{2}+i v_{2}$. Then we have the canonical $\mathbb{R}^{2} \subset \mathbb{C}^{2}$ given by $v_{1}=v_{2}=0$, and letting L_{i} $=V_{i} \cap \mathbb{R}^{2}, i=1, \ldots, n$ we have the representation of the arrangement by n lines in \mathbb{R}^{2}.

To specify the algorithm, we first order and orient these lines. Then we specify generators and relations for $\pi_{1}(N)$, based upon this choice of order and orientation:

By a change of coordinates we may assume without loss of generality that no line L_{i} is vertical or horizontal in \mathbb{R}^{2}. Thus each line L_{i} is defined in \mathbb{R}^{2} by a linear equation $u_{2}=m_{i} u_{1}+d_{i}$, where $m_{i} \in \mathbb{R}-\{0\}, d_{i} \in \mathbb{R}$. We order the lines by the lexicographical order for (m_{i}, d_{i}). Thus $L_{i}<L_{j}$ if and only if $i<j$ if and only if $m_{i}<m_{j}$ or $m_{i}=m_{j}$ and $d_{i}<d_{j}$. We orient the line L_{i} by taking the positive direction to be that of increasing u_{1}.

Next we specify generators for $\pi_{1}(N)$. Note that $\mathbb{R}^{2} \cap\left(V_{1} \cup \ldots \cup V_{n}\right)=\Gamma \subset \mathbb{R}^{2}$ is a planar "graph" (allowing rays). Let $W=\left\{w_{1}, \ldots, w_{k}\right\}$ denote the set of vertices of Γ. Then $\Gamma-W$ has several components. For each component we introduce a generator of $\pi_{1}(N)$ as follows. For the components of L_{i} we will have generators $a_{i}, b_{i}, c_{i}, \ldots$ where a_{i} corresponds to the component of $L_{i}-W$ which is farthest to the right along L_{i}, b_{i} corresponds to the next farthest to the right, etc. Let G denote the set of such generators.

Finally, we specify relations for $\pi_{1}(N)$. They are of three types, all of which arise from vertices of Γ. Suppose we consider a vertex w_{j} of Γ :

Then we have relations:

$$
\begin{aligned}
& R_{1 j}: \alpha_{1}^{-1} \alpha_{2}^{-1} \ldots \alpha_{r}^{-1} \beta_{1} \beta_{2} \ldots \beta_{r}=1 \\
& R_{2 j}: \beta_{1}=\alpha_{1} \\
& \beta_{2}=\alpha_{1}^{-1} \alpha_{2} \alpha_{1} \\
& \quad \\
& \quad \beta_{r}=\alpha_{1}^{-1} \alpha_{2}^{-1} \ldots \alpha_{r-1}^{-1} \alpha_{r} \alpha_{r-1} \ldots \alpha_{2} \alpha_{1}, \\
& R_{3 j}: \alpha_{1} \alpha_{2} \ldots \alpha_{r}=\alpha_{2} \alpha_{3} \ldots \alpha_{r} \alpha_{1}=\alpha_{3} \ldots \alpha_{r} \alpha_{1} \alpha_{2}=\ldots=\alpha_{r} \alpha_{1} \ldots \alpha_{r-1} .
\end{aligned}
$$

Relations $R_{1 j}$ arise from a Wirtinger-type presentation of $\pi_{1}\left(\mathbb{R}^{3}-\Gamma\right)$ where $\mathbb{R}^{3}=\left\{v_{2}=0\right\} \subset \mathbb{C}^{2}$. Since β_{1} is a conjugate of α_{1}, relations $R_{2 j}$ specify precisely how this occurs. And the relations $R_{3 j}$ are the relations for the group of the Hopf link as in [1].

The correct statement is then:
Theorem 1. Suppose N is the complement of a real arrangement of lines in $\mathbb{C P}^{2}$ as above. Then

$$
\pi_{1}(N) \cong\left\langle G \mid R_{1 j}, R_{2 j}, R_{3 j}, j=1, \ldots, k\right\rangle .
$$

Comment. The relation $R_{1 j}$ is a consequence of the set of $R_{2 j}$, and $R_{2 j}$, j $=1,2, \ldots, k$ may be used to obtain a presentation of $\pi_{1}(N)$ with generators a_{1}, \ldots, a_{n} and relations $R_{3 j}^{\prime}$, where $R_{3 j}^{\prime}$ is simply $R_{3 j}$ written in terms of a_{1}, \ldots, a_{n}.

In [1] the relations $R_{2 j}$ were incorrectly given (in other notation) as $\beta_{1}=\alpha_{1}$, $\beta_{2}=\alpha_{2}, \ldots, \beta_{r}=\alpha_{r}$.

Reference

1. Randell, R.: The fundamental group of the complement of a union of complex hyperplanes. Inventiones math. 69, 103-108 (1982)
