

The fundamental group of the complement of a union of complex hyperplanes: correction

Richard Randell

Department of Mathematics, University of Iowa, Iowa City, Iowa 52242, USA

In this note we correct the main result (Theorem 1) of [1]. The error involves the local description in the neighborhood of a singularity. In order to correct this we must assume that the arrangement is real and specify an ordering of its hyperplanes.

Thus we consider a collection of linear forms $\phi_1, ..., \phi_n, \phi_{n+1}$ in the complex variables (z_1, z_2, z_3) , with zero loci $V_1, ..., V_n, V_{n+1}$ respectively. Without loss of generality we may assume that $\phi_{n+1}(z_1, z_2, z_3) = z_3$, so that if we identify \mathbb{C}^2 (with coordinates $Z_1 = z_1/z_3$, $Z_2 = z_2/z_3$) with $\mathbb{CP}^2 - V_{n+1}$, we have $\mathbb{CP}^2 - (V_1 \cup ... \cup V_n \cup V_{n+1}) \cong \mathbb{C}^2 - (V_1 \cup ... \cup V_n)$. We henceforth work with the latter space, which we call N. Notice that if $\phi_1, ..., \phi_n, \phi_{n+1}$ are real forms (their coefficients are real), we may make the appropriate change of coordinates as above so that $V_1, ..., V_n$ are defined by real forms.

We now specialize to the real case. First write $Z_1 = u_1 + iv_1$, $Z_2 = u_2 + iv_2$. Then we have the canonical $\mathbb{R}^2 \subset \mathbb{C}^2$ given by $v_1 = v_2 = 0$, and letting $L_i = V_i \cap \mathbb{R}^2$, i = 1, ..., n we have the representation of the arrangement by *n* lines in \mathbb{R}^2 .

To specify the algorithm, we first order and orient these lines. Then we specify generators and relations for $\pi_1(N)$, based upon this choice of order and orientation:

By a change of coordinates we may assume without loss of generality that no line L_i is vertical or horizontal in \mathbb{R}^2 . Thus each line L_i is defined in \mathbb{R}^2 by a linear equation $u_2 = m_i u_1 + d_i$, where $m_i \in \mathbb{R} - \{0\}$, $d_i \in \mathbb{R}$. We order the lines by the lexicographical order for (m_i, d_i) . Thus $L_i < L_j$ if and only if i < j if and only if $m_i < m_j$ or $m_i = m_j$ and $d_i < d_j$. We orient the line L_i by taking the positive direction to be that of increasing u_1 .

Next we specify generators for $\pi_1(N)$. Note that $\mathbb{R}^2 \cap (V_1 \cup ... \cup V_n) = \Gamma \subset \mathbb{R}^2$ is a planar "graph" (allowing rays). Let $W = \{w_1, ..., w_k\}$ denote the set of vertices of Γ . Then $\Gamma - W$ has several components. For each component we introduce a generator of $\pi_1(N)$ as follows. For the components of L_i we will have generators $a_i, b_i, c_i, ...$ where a_i corresponds to the component of $L_i - W$ which is farthest to the right along L_i , b_i corresponds to the next farthest to the right, etc. Let G denote the set of such generators. Finally, we specify relations for $\pi_1(N)$. They are of three types, all of which arise from vertices of Γ . Suppose we consider a vertex w_i of Γ :

Then we have relations:

$$R_{1j}: \alpha_1^{-1} \alpha_2^{-1} \dots \alpha_r^{-1} \beta_1 \beta_2 \dots \beta_r = 1,$$

$$R_{2j}: \beta_1 = \alpha_1$$

$$\beta_2 = \alpha_1^{-1} \alpha_2 \alpha_1$$

$$\vdots$$

$$\beta_r = \alpha_1^{-1} \alpha_2^{-1} \dots \alpha_{r-1}^{-1} \alpha_r \alpha_{r-1} \dots \alpha_2 \alpha_1,$$

$$R_{3j}: \alpha_1 \alpha_2 \dots \alpha_r = \alpha_2 \alpha_3 \dots \alpha_r \alpha_1 = \alpha_3 \dots \alpha_r \alpha_1 \alpha_2 = \dots = \alpha_r \alpha_1 \dots \alpha_{r-1}.$$

Relations R_{1j} arise from a Wirtinger-type presentation of $\pi_1(\mathbb{R}^3 - \Gamma)$ where $\mathbb{R}^3 = \{v_2 = 0\} \subset \mathbb{C}^2$. Since β_1 is a conjugate of α_1 , relations R_{2j} specify precisely how this occurs. And the relations R_{3j} are the relations for the group of the Hopf link as in [1].

The correct statement is then:

Theorem 1. Suppose N is the complement of a real arrangement of lines in $\mathbb{C}\mathbb{P}^2$ as above. Then

$$\pi_1(N) \cong \langle G | R_{1i}, R_{2i}, R_{3i}, j = 1, \dots, k \rangle.$$

Comment. The relation R_{1j} is a consequence of the set of R_{2j} , and R_{2j} , j = 1, 2, ..., k may be used to obtain a presentation of $\pi_1(N)$ with generators $a_1, ..., a_n$ and relations R'_{3j} , where R'_{3j} is simply R_{3j} written in terms of $a_1, ..., a_n$.

In [1] the relations R_{2j} were incorrectly given (in other notation) as $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2, ..., \beta_r = \alpha_r$.

Reference

1. Randell, R.: The fundamental group of the complement of a union of complex hyperplanes. Inventiones math. 69, 103-108 (1982)