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Summary. Jointly continuous local times are constructed for Brownian motion
on the Sierpinski carpet. A consequence is that the Brownian motion hits
points. The method used is to analyze a sequence of eigenvalue problems.

1. Introduction

The Sierpinski carpet is the fractal formed by dividing the unit square into 9 equal
squares, removing the central one, dividing each of the 8 smaller squares into 9
equal pieces, and continuing the process. In [1] Brownian motions on the Sier-
pinski carpet were constructed. These are strong Markov processes with continu-
ous paths whose state space is the Sierpinski carpet. The justification for the name
“Brownian motion” is that the processes are continuous and are invariant under
the appropriate class of translations, rotations, and reflections. We refer to Brow-
nian motion s because there is at present no uniqueness result available, and it is
conceivable that there might be more than one such process.

In this paper we study some of the properties of these processes. We prove that
the Brownian motions have jointly continuous local times. A consequence is that
these processes hit points. We concentrate exclusively on the Sierpinski carpet in
this paper, but our methods and results apply equally well to the other fractals
considered in [1].

In [3] local times were constructed for Brownian motion on the Sierpinski
gasket. However the construction in [3] relied heavily on the fact that the
Sierpinski gasket is a finitely ramified fractal, ie., it can be disconnected by
removing finitely many points. The Sierpinski carpet, however, is infinitely rami-
fied, and quite different techniques are necessary.

For other work on diffusions on fractals, see [11, 13, 14], and see [12] for a
survey of the vast physics literature on random walks on fractals. We found [8]
useful as a guide to our intuition.

The idea of our method is this: let F, be the nth stage of the construction of the
Sierpinski carpet, and let W} be Brownian motion in F, with normal reflection at
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the boundaries. In Sect. 2 we tie together the lifetime of /7 with the first eigenvalue
A, of the Laplacian on F, with appropriate boundary conditions. By an analysis of
the eigenvalue problems, we show that 4, is nearly decreasing in n. In Sect. 3 we use
a scaling argument to show that each of the Brownian motions constructed in [1]
has a bounded Hélder continuous Green function. Then in Sect. 4 we construct our
local times and obtain the point recurrence by use of a combination of potential
theory and stochastic calculus.

The letter ¢ will denote constants whose value is unimportant and may change
from line to line. Let B,(x) be the ball of radius ¢ about x. Other notation will be
introduced as needed.

2. Eigenvalues

Let F, =[0,1]% F, =[0,1]* —(1/3,2/3)%, and let F, be the nth stage of the
construction of the Sierpinski carpet. Let p, be Lebesgue measure on F, normalized
so that p,(F,) = 1. Let 0,F, = {(x;, x,)€[0, 1]*:x; = 1 or x, = 1} (a stands for
absorbing); let 0,F, = dF, — d,F, (r stands for reflecting).

Define W7 to be Brownian motion on F, with absorption on ,F, and normal
reflection on 0, F,. (There are a number of equivalent ways to define W7 starting at
a corner of one of the removed squares; we choose to do it by conformal mapping:
see the proof of Lemma 2.1.) Let

1, =inf{t:W;e€d,F,}. .1
Let
«, = sup E*t,, fB,= inf E*t, . (2.2)
xeF, x€F,n{0,1/2)*
Define
Ay = inf{ il Vu|2(x)u,,(dx)/j'uz(x)u,,(dx):u =0on aaF,,} . 2.3
Fn

Then, as is well-known [6, Chap. 6], the inf is attained for some function v, that is
nonnegative, bounded, and continuous on F,, solves the equation Av, = — 4,0, in
the interior of F,, and has zero normal derivative a.e. on J,F, with respect to

surface measure on 4,F,. If U, f(x) is defined to be E* jn F(Wdt for f bounded,
0

then
Uw, =24 tv,. (2.4)

One advantage of expressing the smallest eigenvalue 4, in terms of a variational
problem such as (2.3) is that v, automatically has Neumann boundary conditions
on J0,F,.

We want to show A, ! = «,. First, define

hy(x) = E*1, .
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Lemma 2.1. (| Vh,|?(x) ,(dx) = 2| h,(x) p, (dx) .

Proof. Since h, = U,1, then $4h, = —1. Trivially h,(x) < a,,.
Suppose we had proved:

(i) Vh,eL?(F,) (with respect to u,); and

(i) Vh,eL'(0,F,), 0h/dv =0, a.e. (with respect to surface measure on 4,F,),
where 0h/0v denotes normal derivative. 2.5

Applying Green’s first identity to a C* function g on F,, we get

%9
ov

Taking a sequence g, of such functions such that g, — h, uniformly on F,,
A4g, — —2 boundedly pointwise, Vg, — Vh, in L*(F,) and in L'(9F,), and
09,,/0v — 0 in L'(0F,), we get our result. So it suffices to prove (2.5).

By the usual properties of Brownian motion in a domain, h, is C® in the
interior of F, and on 0, F, — {(1, 1)}. Suppose x, €4, F, but x, is not the corner of a
removed square nor the origin. Take ¢ sufficiently small so that B,(x,)nF, is a
semicircle, and let S = inf {¢t:| W} — x| = ¢}. Let h,,(x) = E*S, h)(x) = E*h,(W?).
If xe B,(x,) n F,, the strong Markov property gives

h,(x) = E*S + EXEW}1, = I,(x) + h!(x) . @2.7)

[1Vglr= —{gdg+ |
Fn Fr oF,

g. (2.6)

Now h;, is the time for reflecting Brownian motion to leave a semicircle, or
equivalently, for Brownian motion to leave a circle. As is well-known [9,
Sect. 1.11], this is C* in the interior of the circle, and by symmetry, 0k, (x,)/év = 0.

Also, h,/(x) is harmonic for reflecting Brownian motion in a semicircle. By the
Schwartz reflection principle, h,, can be extended to a harmonic function in B,(x,).
Hence A, is C® in the interior, and by symmetry, ok} (x,)/dv = 0.

Next suppose x, € 0, F, is the corner of one of the removed squares, and choose ¢
small enough so that B,(x,) N F, is a 3/4-circle. Define S as before, and again write
h, = h, + h; . Let us introduce complex coordinates so that x, = 0 and B,(x,) N F,

={z=(r,0):0=r=<¢0=<6<3n/2}. Using the conformal mapping z — z2/3,

the domain B,(x,) N F, gets mapped into 4 = {(r, 0):0 S r < ¢¥*,0< 0 < n}. By
Lévy’s theorem [9, Sect. 5.17 (W)*? is the time change of Brownian motion in the
interior of A. Since the mapping is conformal, angles are preserved, so normal
reflection is preserved, hence (W7)*? is the time change of reflecting Brownian
motion in A. Sorting out the time change, we get

2/3 T
@) =E7 [IW7Pdt= | g(z*3 x)|x|"%dx ,
0 Bas(0)
where W, is standard Brownian motion, T = inf {¢:| W,| Z £¥3}, and g is the Green
function for the ball of radius £*/°. The function | x|~/ is in L!(B,2»(0)), and known
estimates [10, Sect. 4.2] imply that | g(z, x)|x|~*3dx is C! in the interior of
B,.:(0). It follows that VI'(z)e LZ(BB(J:?O) N F,) 0 LY(B,(xo) N 8,F,). A similar argu-
ment holds for A .
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The origin and (1, 1) are treated in the same manner. Thus (2.5) (3, ii) holds, and
the lemma is proved. O

Remark. Note that the only way the geometry of F, enters the proof of Lemma 2.1
is through the fact that 0F, is piecewise linear.

Proposition 2.2. There exists ¢, independent of n such that
clocnéln_1 éocn/2 .

Proof. Let us normalize v, so that supv,(x) = 1. Pick x, so that v,(x¢) = 1. Then

1 = Un(XO) = %j’n Unvn(xo) g l’1“71 Unl(xo) é %}'nsup hn(x) = lln‘xn -

To get the other inequality, using Lemma 2.1 observe that

/1,,§j'|Vh,,|2/jh,%=2§h.,/jh,%.
Fpn Fn Fn

Fn
But 4,(x) = B, on F,n [0, 1/2]?, hence if h2 = 4B2. So
I < 8ot/ B
And by [1, Prop. 4.2], there exists ¢ independent of n such that
ct,<f, s, O (2.8)
We now replace h, by a function with more manageable boundary values. Let
gn(x1,%3) = By h,(1 — xy,x,)A 1 for x,£1/2, (2.9)

and define g,(x,, x;) = g,(x;, 1 — x,)for x, = 1/2. Since h,(0, x,) = ,if x, < 1/2
and h,(1, x,) = 0, we get

gn(oa x2) = 0 ’ gn(l’ x2) = 1 . (210)

We next consider the variational problem

P, = inf{ § Va2 (%) (dx): (0, x,) = 0, u(l, x,) = 1} ) (2.11)
Fn

Let £, be the function at which the minimum is attained. We do not need this fact,
but one can show using calculus of variations that

£.(x) = P*(Z"hits{1} x [0, 1] before hitting {0} x [0, 1]),

and p,, is the energy of the harmonic function f,, where Z} is Brownian motion on F,
with normal reflection on JF,.

Proposition 2.3. There exist constants ¢, and c, independent of n such that
CZJ'n é P é C3ln'
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Proof. Using Lemma 2.1, (2.10), and the fact that g, satisfies the constraints of the
variational problem (2.11),

P = [ IVga? =2 | [V A By Ry
Fn F,n[0,1] x [0, 1/2]
<28, [ | Vh, )P =4B,% | h, < 4a,/B% .
Fn Fﬂ

Applying (2.8) gives the second inequality.
To get the first, define Y, on F, N {(x;, x,):x, < x;} by

1 ifx, £1/3
Yalxysxz) = § fo-1@2 = 3x1,3x,) if 1/3<x, £2/3
0 if 2/3 < x,,

and define ¥, on F,n {(x;, x,):x, > x; } by symmetry about the line x, = x,.

Since y, = 1 on [0, 1/3]% then | ¥? = 1/8. Using scaling,
Fp

9 9
jIanI2§2§Fj Ivﬂl'lizzzpﬂ-l'
Fn n-1

Hence i <18p, .. 212
By [1, Prop. 4.2] there exists constants ¢, and ¢ such that
Cally = Uy gcsan- (2.13)
Then by Prop. 2.2,
Aoy Scaly Scat <A, (2.14)

Combining (2.12) and (2.14) gives the first inequality. [
The main result of this section is
Theorem 24. p, < %p,_,.
Proof. Let a = 2/7, and let
af,_1(3x;,3x, — [3x,]) if0<x,<1/3
e (x,x,)=< a+(1—2a)f, (3x, —1,3x, —[3x,]) if1/3<x,<2/3
l—a+af,_Bxy —2,3x, — [3x,]) if2/3<x, 1.

Then
2 2 9 2 9 29
pné j' lven{ =3a T Pn-1 + 2(1 _26) T oPr-1 +3a oPn-1
z 8 8 8
7
_28pn—1 .

(Of course, a was chosen to minimize the right hand side) O
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Corollary 2.5. There exists cg independent of n and r such that
Gy -/ = €6(27/28)" = c6 -
We can also give a lower bound for p,/p,_ ;-
Theorem 2.6 p, = 3p,.,.

Proof. (ef. [4]) Let A=F,n([0,1] x [0,1/3]), B=F,n([0,1] x [2/3,1]),
C =F,n[0,1/3]% and 4; = {i/3} x [0,1/3]fori=0, 1,2, 3. Let Z" be Brownian
motion in A with normal reflection on the boundary of A.

If Z{e A,, then by symmetry Z7 is equally likely to hit A, and A, first, with a

3
similar statement if Z{e A,. Let Sy = inf {t:Z;’e U 4 }, let V, be the value of k
k=0

such that Z% e A, let S;1, = inf{t >S8:Ze | Ak}, and let V;, ; be the value of k
k¥ V;

such that Z§,, e A,;. So V] is the sequence of A,’s that Z} visits. Then ¥ is a simple
random walk on {0, 1, 2, 3} with reflection at 0 and 3. Therefore,

P*(Z" hits A, before hitting A,) = k/3 if xed,. (2.15)

Now consider the variational problem
w, = inf{ §IVu?(x)p,(dx):u=0 on Ay,u=1 on A3} ,  (2.16)
A

and let g, be the minimizing function. By standard calculus of variations techni-
ques, we see that g, is the harmonic function having boundary values 0 on A, and 1
on A, and having zero normal derivative on the remainder of the boundary of A.
Hence

gn(x) = P*(Z7 hits A; before hitting A4,) .

Let
n,,:inf{leull(x),u,,(dx):uzo on Ag,u=1/3 on Al}. 217
c

Using (2.15) and the fact that A is the union of C and two of its translates, we see
w, =3n, .

By scaling, the function that minimizes the variational problem (2.17) is
u(x) = 1f,_,(3x), and so
n, = pn— 1/8 .

Finally, using symmetry,

3
pa= T IVAR 22[ |V 220, = 6m = 2p,os - O
Fn A

Corollary 2.7 There exists ¢, independent of n and r such that
ocn—r/o‘n g Cq (3/4)r .
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Remark. A paper in preparation [2] will show that Corollaries 2.5 and 2.7 lead to
upper and lower bounds for the spectral dimension of the Sierpinski carpet.
Specifically, Corollary 2.5 leads to the upper bound 2log8/log(28/3) =~ 1.862, while
Corollary 2.7 leads to the lower bound 2log8/log12 ~ 1.674. Refinements to
Theorems 2.4 and 2.6 lead to slight improvement of both the upper and lower
bounds. Numerical calculations suggest that the actual value of the spectral
dimension is approximately 1.81.

3. Green Functions

We need to introduce some more notation. Let F = ﬂ , 0,F =0,F,. Let

d,; = log 8/log 3, the Hausdorff d1mens1on of F. Let u be the weak limit of the p,;
is a multiple of the Hausdorfl x*’-measure on F.

For x=(xy,x,), define D, (x)=[(j—1)/3, (j+1)/3)x[(k— 1)/3,
(k+1)/3)if (j—$)37"Sx, <(+3)37" (k=337 <x, <(k+3)37",j, kin-
tegers. Note that

inf 3 dist (8D, (x), dD,_,(x)) > 0 . (3.1)

Let Q be the collection of continuous paths in [0, 172 and let X, be the canonical
coordinate process. Let P; be the law of W}, , starting at x. Let t = inf {¢: X,€0,F}
and let

o,(x)=1inf{t: X, ¢D,(x)} A 7.

Let n; be any sequence tending to infinity such that for each xe F, P;, converges
weakly, say to P*, and (P* X,) forms a strong Markov process on F with
continuous paths. The existence of such sequences n; is one of the main results
of [1].

Finally, let U,, u,(x, y) and U, u(x, y) be the Green potential and function for
(P, X,)and (P*, X,), respectively. So, for instance,

EI La(Xo)ds = Uy L) = | (5 3) ()

By [1, Sect. 7], given &, there exists cg(e), ¢g(e) and o (independent of n) such that

u,(x, y), u(x, y) < cg whenever x,yeF,|x —y|>¢ 3.2)
and
|un(x9 y) - un(x:v Z)l é CQ|y - Zla s lu(x’ y) - u(x7 Z)| é C!)‘y - z|‘z

whenever x, y,zeF,|x — y|,|x —z| > ¢. (3.3)

Remark. Note that if x #y, Eyjl{x}(X )ds= | u(y,z)u(dz) =0. And by
{x

[1, Sect. 6], X, started at x leaves {x} immediately. So by the strong Markov
property,

E*[1,,(X,)ds=0. (3.4)
0
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A consequence of (3.2) is that if u(A4) =0, & > 0, then

Exj lAnB;(x)(Xs)ds = j u(x, y)u(dy) < cgu(An By (x)) = 0.
0 An Bi(x)

Letting ¢ — 0 and using (3.4) then tells us that if 4u(4) =0, Ul, = 0.
Another consequence of (3.4) is that we may define u(x, x), i.e., u on the
diagonal, arbitrarily, without violating (3.2) or (3.3). We choose to define

u(x, x) = lim sup u(x, y) . (3.9
y—x
We now prove that the restriction |x — y| > ¢ in (3.2) can be dispensed with for
u(x, y).
Theorem 3.1. There exists ¢y such that

u(x, y) £ c,q whenever x,yeF (3.6)

Proof. Fix x,yeF,x + y. Let ¢ > 0 and set A = A(¢) = Fy n B,(x). Note that for
nz1
Hn(A) £ 12p(A) .

The main step of the proof is to get an upper bound for

Gr(X)
an(ya A) = Ei j IA(Xs)dS (37)

Gr+1(x)

for n > r 2 0. Using the strong Markov property we have

ar(x)
an(y7 A) é Sup E: j lA(Xs)ds . (38)
z€dD,, (x) Y

Also, 4, (y, A) = qu (¥, AN D,(x)), and gq,,(y, A) = 0 for y¢ D,(x).
First consider the case r < 4. Then by (3.8)

an(yaA)é SuP E:j’ lA(Xs)ds .
2€0D,,(x) Y
If A = D, (x) then by (3.1) there exists a ¢; > 0 (independent of r and x) such that
dist (0D, ., (x), D, . ,(x)) > é;. So, by (3.2),

sup  E; [ 1,(X,)ds < p,(A4) sup  u,(z,w) < 12u(A)cs(dy) -
z€dD,, (x) Y z€0D,(x)

wed

On the other hand, if A € D,,(x) then u(4)> 4, >0 for some constant 0,
independent of x and r. So

E: [ 14(X,)ds < Bt
0

<107 u(4).
Combining the last two inequalities we have that, for some constant ¢;q < 0,

(¥, A) S ciou(4), 0Zr=<4, nxr. (3.9
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We now use scaling to generalize (3.9). Letr > 4, and p = r — 3. Suppose for the
moment that D, (x) = [0,37"*1)2 The law of W"(t) started at x is the same as
the law of 377 W"™P(9%¢) starting at 37 ?x. So X, under P? has the same law as
377X (¢9%a,/a,_,) under P2°%. Hence, writing 6,, = 9 a,/a, _ ,,

Onp o3 (3P )
an(y9 A) = Er?i};: _’l IA(S—pX(thp))dt

Onpa4{(3PXx)
63(37x)
=0 VEF [ 1,(377X,)ds
a4 (3PXx)
= 97;1 qn—p,3(3pya 3PA) .
Thus by (3.9)

G (¥, A) < 9:;1 crou(374) .
Now u(37A) < 3**/ u(A), and so, using Corollary 2.5,
Gur (¥, A) S €109 7Pty p0t, 137 p(A)
< C6C10977(27/28)7 377 pu( A)
= ¢6C10(6/7V u(A) = c(6/7) u(4) . (3.10)

Let n—> oo along the sequence n;. Then since Ul,, = 0 by the remark
following (3.3),
Gr(x)
E* | 1,(X,)ds < c(6/7) u(A) . (3.11)
ayr+1(x)

We now remove the restriction D,(x) < [0,37"* )2 If D,(x) £ [0,37"*')?, we
can perform suitable translations, rotations, and reflections to find %, , and A4 so
that A

” . Or(X)
G (3, A) S g (), A)=E; | 1;(X,)ds
6,+1(%)
with D, (%) = [0,37""!)* and p,(4) 2 t,(A). Applying the above argument to
Gnr (7, A), we get the bound (3.11) as before.

For use in Theorem 3.2, note that the only reason we may have to have
G (¥, A) < g, (3, A) is because x and y may be too close to ¢, F.

Finally, summing over r gives

B[ 1L(X)ds S ¢ 3, (6/77u(4) S cul4) (3.12)
o K=
for all e. By the continuity of u(x, y) off the diagonal (see (3.3)), letting £ — 0 gives
(3.6) if x & y. Using (3.5) completes the proof. O
We now obtain the joint continuity of u(x, y).
Theorem 3.2. There exists ¢,, and o > 0 such that
lu(x, y} —u(x, z)] £ ¢y — z{* whenever x, y,zeF . (3.13)

Proof. We prove the estimate (3.13) for the case x + y, x # z. Once we have this,
we get (3.13) for all x, y, z by (3.5).
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Suppose for now that ye F ~[0,8/9)%. In view of (3.3), we may suppose
ly — z| £ 3% By the strong Markov property, the continuity of u off the diagonal,
and the fact that u(-,-) is harmonic in each variable off the diagonal,

u(x, y) — u(x, z) = E*[u(Xs, y) — u(Xs, 2)] ,

where § = inf{¢:|X, — y| < 3|y — z|}. Hence it suffices to obtain the bound (3.13)
for |x — yl, |x — z| <3|y — z|.

Let ¢ <|y—z|/5, let A= A(g) = B,(x)n F,, and define q,(z, 4), q,,.(y, A)
by (3.7).

First, consider the case: |y — z| £ 37" % and r = 4. As in the proof of Theorem
3.1, we may suppose {x, y,z} U A = [0,377*1)2 Let p = r — 3. Using scaling as
in (3.10),

qu (), A) = Er?iJ;H(X%(yx)) ’ (3.14)
where

63(37x)

H(w)=Ey_, (j) 104y (X (97101, /01, _, ) dt

S e3P pu(4), (3.15)

and similarly for g,,(z, 4).
By [1, Sect. 3], since 37y, 37ze F N [0, 8/9)?, there exists & < (2 — d;)/2 so that
!an(ya A) - an(za A)' é c “H“ I3py - 3pZ|§
<3Gy — 21 u(4) . (3.16)
The second case: |y —z| <377"% and r £4, is similar, but no scaling is
necessary (cf. the proof of Theor. 3.1).

In both the first and second cases, letting n — oo along the subsequence n; and
using the fact that Ul,, = 0,

E’ j() LX)ds— B [ 1,0X,)ds| < c3 @29y _ zFu(a)
a1 (%) a1 () a1
For the third case: |y — z| > 3774,
|G (3, A) = G (2, AN = 1 (0, A + |2, A)] S 37972 p(4)
by (3.10). Again, let n — oo along the subsequence n;.
Then, summing over r, for all ¢,
E? [ 1,(X,)ds — E* [ 1,(X,)ds| < T 3@ty g (4)
0 0 {rily—z 53774
+ Y e¥ar2yg)

{rily —z| > 37774}
Scp(A)ly —z1f+ |y —z|"@ 2],

Dividing both sidea by u(A4), letting ¢ — 0, and recalling u(x, y) is continuous off the
diagonal gives (3.13) if ye F n [0, 8/9).
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But the restriction ye F n [0, 8/9)2 may be removed by a very similar proof to
that of [1, Theor. 7.27; the details are left to the reader. O

4. Local Times

Once we have u(x, y) bounded and Hélder continuous, the construction of jointly
continuous local times is routine.

Propositiond.1. For each yeF, u(x, y) is excessive.

Proof. The function x —» | u(x,z)u(dz) = E*[ 15, ¢ (X,)ds is a potential,
B.y)nF 0
hence excessive. By the continuity of u, the function x — u(x, y) is the uniform limit

of u(B(y)nF)™* [ u(x,z)u(dz) as e — 0, and hence is also excessive. [
B.(y)nF

Proposition4.2. For each yeF, u(x, y) is a regular potential.

Remark. Recall that u(x, y) is a regular potential if for each z, E*u(X¢ ,y)—
E?u(X ;, y) whenever T, are stopping times increasing to T.

Proof. This is clear by the boundedness and continuity of u and the continuity
of X,. [

We now use [ 5, Theor. I'V. 3.13] to see that for each y there exists a continuous
additive functional L? whose potential is u(x, y). Since by the Markov property

E*L} = u(x, _V) - Ezu(Xt AT y)
for each z, it follows easily that
M =u(X,, ., y)—u(Xo,y) + L} (4.1)

is a martingale with respect to P* for each x. Moreover, M}, = 0, P*-a.s. for each x.
We now want to show we can choose a version of L that is jointly continuous
intand y. Since u(X, , ., y)is continuous in ¢ and y jointly, we can concentrate our
attention on M7.
Let Ul=u(X,, ., y)—u(lX,,y), let N(yy,y,) =M —M}?, and let

N*(y1>y2) = Suple(ylay2)|

s=1

Proposition 4.3. There exists { and 6 > 0 such that for all z
-2
PO 002> ) S exp( o)
i P\0ly, — aF
Proof. Fix y, and y,, let A = supu(x, y), and let 6 = sup |u(x, y,) — u(x, y,)|.
X, ¥ x
Trivially, 6 £24.

By Ito’s formula, for each z and ¢

t
E*(UY — UP)? = 2E° [ (UY — UP)d(UL — UP) + E*XN(y1, 92) D
0
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and hence
t
E*{N(p1, y2)> £ (26) + 20E* [ d(UY' + UP?)
0

< 48% + 464
<1264 . 4.2)

By monotone convergence, we get the same bound for E*{N(y{, y,) ..
Suppose S and T are bounded stopping times with S < T. Then by the strong
Markov property and Cauchy-Schwartz,

E*(IN7(y1, ¥2) = Ns(y1, Y21 Fs) S (E*(Ny(y1, y2) — Ns(y1, 92 )21 F )2
S(E*(KN(y1,92) 0 = {N(y1, y2) s Z )2
< (EPEX((N(y1, 92) > )2
<(1264)V2 . (4.3)
We can then apply [7, p. 193], and get

EZexp(yN*(y1,¥,)) =2

provided y < (8(1264)Y?)~ 1. The proposition now follows by Chebyshev’s in-
equality together with the fact that § < K|y, — y,|* for some K and o > 0. [J

With the estimate of Proposition 4.3, we can now appeal to [3, Sect. 6] to
conclude that there is a version of L} that is jointly continuous in t and y.
We have

Proposition 4.4. Except for a set N such that P*(N) = 0 for all x,

tAz
(f) f(X,)ds = {f(y) LY u(dy)

for all f bounded on F.

Proof. Suppose fis continuous on F. Multiplying M7 by f(y) and integrating with
respect to p, we see that

[f) U2 u(dy) + [ f(y) LY u(dy) is a P*-martingale for all x .
On the other hand, under P*

§f0)Utudy) = [fu(X, , ., ¥) — u(Xo, y)]u(dy)

= EXoos [ f(X,)ds — E* [f(X,)ds
0 0

=E"[ if(Xs)ds|ftM]—Exjf(Xs)ds

At

_ E"[]Ef(Xs)dsl 7, | } =T ) ds — EX[£(X,)ds |
0 0 (4]



Local Times for Brownian Motion on the Sierpinski Carpet 103

tTAT
Hence [ f(y) L u(dy) — | f(X,)dsisa P*-martingale that is null at 0, continuous,
0

and of bounded variation. But the only such martingale is 0, and hence if

tAT
N, = {a): §fMLIudy)y £ | f(X,)ds for some ¢t < 7:} ,
0
then P*(N,) = 0.
Let f; be a countable collection of continuous functions, the closure of whose
linear span is €(F). Let N = () Ny,. Then for each x, P*(N) = 0; while if ¢ N,
i=1

the equality asserted in the statement of Proposition 4.4 holds for all continuous f.
By a monotone class argument the equality holds for all bounded f when w¢ N,
proving the proposition. O

Point recurrence is an easy consequence of the existence of local times. Let
T,=inf{:X,=y}.
Theorem4.5. If x,ye F — 0,F, then P*(T, < o) > 0.
Proof. If x = y, choose r large enough so that D,(x)nd,F = (F, and then
PX(T,< )2 E*PXee(T, < ).
So it suffices to consider the case x 3 y.
Since i u(x, z) u(dz) > 0, there exists z # x such that u(x, z) > 0. Since u(x,-) is

harmonic on F — {x}, this implies by the Harnack inequality that u(x, y) > 0 (see
[1, Sect. 3]). But u(x,y) = E*L?, which implies P*(L! > 0) > 0. And since L’
increases only when X, is at y, this proves the theorem. [

Remark. 1f the boundary 0, F were changed from absorbing to reflecting, a renewal
argument could be used to show P*(T, < o ) = 1.

Closely related to the notion of point recurrence is that of points being regular
for themselves.

Theorem 4.6. If x € F — 0, F, then P*(T, =0)= 1.
Proof. Fix xe F — 0,F, let ¢ > 0, and set A(¢) = B,(x)n F. Let
S, =inf{z: X, € dB,(x)} .
By the strong Markov property, if ¢ < |y — x},
Ulyy(y) = B2 (Ul 4,(X5 ); S, < 7). 4.4)

Multiply both sides of (4.4) by u(A(g))~! and let ¢ — 0. Using the continuity and
boundedness of u, the continuity of X,, and dominated convergence, we get

u(y, x) =ulx, x\)P(T, < 7). 4.5)

Since u(x, ") is harmonic off {x} and u(x,-) = 0 on J,F, then u(x,-) takes its
maximum at x. Since u(x, y) > 0if y + x (see the proof of Theor. 4.5), this implies
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u(x, x) > 0. Letting y — x in (4.5) and using the continuity of u then gives

lim PY(T, <1)= L. (4.6)

y—ox

Recall that starting at x, X leaves {x} immediately ([1, Sect. 6]), hence S, | 0,
P*-as. Since

PYT. <1) 2 PX(S,< T, < 1) = E*PXs(T, < 1) > 1

as ¢ — 0, then
P(T,<7)=1.

Finally, choose y, such that dist(y,, d,F) = 1/9, |y, — x| = 1/3. By a combina-
tion of knight’s moves and corner moves (see [1, Sect. 2]), P*(T, = ) > 0.
By the Harnack inequality of [1, Sect. 3], if e€(0, dist(x, 8, F)/2), there exists c(¢)
such that P*(T, = o0} > c(g) whenever |y — x| = ¢ But then

=P (T, <1t)=PXT,<S,)+ EX(PX(T, <t} T, > S,)
SPT = 85) + (1 —c(eh) PX(T > S,)
=1—c(e)P(T, > S,) .
Hence P*(T, > S,) = 0, and letting ¢ - 0 proves P*(T, > 0)=0. O
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