Local Times for Brownian Motion on the Sierpinski Carpet

Martin T. Barlow ${ }^{1}$ and Richard F. Bass ${ }^{2, \star}$
${ }^{1}$ Statistical Laboratory, 16 Mill Lane, Cambridge CB2 1SB, UK
${ }^{2}$ Department of Mathematics, University of Washington, Seattle, WA 98195, USA

Summary. Jointly continuous local times are constructed for Brownian motion on the Sierpinski carpet. A consequence is that the Brownian motion hits points. The method used is to analyze a sequence of eigenvalue problems.

1. Introduction

The Sierpinski carpet is the fractal formed by dividing the unit square into 9 equal squares, removing the central one, dividing each of the 8 smaller squares into 9 equal pieces, and continuing the process. In [1] Brownian motions on the Sierpinski carpet were constructed. These are strong Markov processes with continuous paths whose state space is the Sierpinski carpet. The justification for the name "Brownian motion" is that the processes are continuous and are invariant under the appropriate class of translations, rotations, and reflections. We refer to Brownian motion s because there is at present no uniqueness result available, and it is conceivable that there might be more than one such process.

In this paper we study some of the properties of these processes. We prove that the Brownian motions have jointly continuous local times. A consequence is that these processes hit points. We concentrate exclusively on the Sierpinski carpet in this paper, but our methods and results apply equally well to the other fractals considered in [1].

In [3] local times were constructed for Brownian motion on the Sierpinski gasket. However the construction in [3] relied heavily on the fact that the Sierpinski gasket is a finitely ramified fractal, i.e., it can be disconnected by removing finitely many points. The Sierpinski carpet, however, is infinitely ramified, and quite different techniques are necessary.

For other work on diffusions on fractals, see [11, 13, 14], and see [12] for a survey of the vast physics literature on random walks on fractals. We found [8] useful as a guide to our intuition.

The idea of our method is this: let F_{n} be the nth stage of the construction of the Sierpinski carpet, and let W_{t}^{n} be Brownian motion in F_{n} with normal reflection at

[^0]the boundaries. In Sect. 2 we tie together the lifetime of W_{i}^{n} with the first eigenvalue λ_{n} of the Laplacian on F_{n} with appropriate boundary conditions. By an analysis of the eigenvalue problems, we show that λ_{n} is nearly decreasing in n. In Sect. 3 we use a scaling argument to show that each of the Brownian motions constructed in [1] has a bounded Hölder continuous Green function. Then in Sect. 4 we construct our local times and obtain the point recurrence by use of a combination of potential theory and stochastic calculus.

The letter c will denote constants whose value is unimportant and may change from line to line. Let $B_{\varepsilon}(x)$ be the ball of radius ε about x. Other notation will be introduced as needed.

2. Eigenvalues

Let $F_{0}=[0,1]^{2}, F_{1}=[0,1]^{2}-(1 / 3,2 / 3)^{2}$, and let F_{n} be the nth stage of the construction of the Sierpinski carpet. Let μ_{n} be Lebesgue measure on F_{n} normalized so that $\mu_{n}\left(F_{n}\right)=1$. Let $\partial_{a} F_{n}=\left\{\left(x_{1}, x_{2}\right) \in[0,1]^{2}: x_{1}=1\right.$ or $\left.x_{2}=1\right\}(a$ stands for absorbing); let $\partial_{r} F_{n}=\partial F_{n}-\hat{\partial}_{a} F_{n}$ (r stands for reflecting).

Define W_{t}^{n} to be Brownian motion on F_{n} with absorption on $\partial_{a} F_{n}$ and normal reflection on $\partial_{r} F_{n}$. (There are a number of equivalent ways to define W_{t}^{n} starting at a corner of one of the removed squares; we choose to do it by conformal mapping: see the proof of Lemma 2.1.) Let

$$
\begin{equation*}
\tau_{n}=\inf \left\{t: W_{t}^{n} \in \partial_{a} F_{n}\right\} \tag{2.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
\alpha_{n}=\sup _{x \in F_{n}} E^{x} \tau_{n}, \quad \beta_{n}=\inf _{x \in F_{n} \cap[0,1 / 2]^{2}} E^{x} \tau_{n} . \tag{2.2}
\end{equation*}
$$

Define

$$
\begin{equation*}
\lambda_{n}=\inf \left\{\int_{F_{n}}|\nabla u|^{2}(x) \mu_{n}(d x) / \int u^{2}(x) \mu_{n}(d x): u=0 \text { on } \partial_{a} F_{n}\right\} . \tag{2.3}
\end{equation*}
$$

Then, as is well-known [6, Chap. 6], the inf is attained for some function v_{n} that is nonnegative, bounded, and continuous on F_{n}, solves the equation $\Delta v_{n}=-\lambda_{n} v_{n}$ in the interior of F_{n}, and has zero normal derivative a.e. on $\partial_{r} F_{n}$ with respect to surface measure on $\partial_{r} F_{n}$. If $U_{n} f(x)$ is defined to be $E^{x} \int_{0}^{\tau_{n}} f\left(W_{t}^{n}\right) d t$ for f bounded, then

$$
\begin{equation*}
U_{n} v_{n}=2 \lambda_{n}^{-1} v_{n} \tag{2.4}
\end{equation*}
$$

One advantage of expressing the smallest eigenvalue λ_{n} in terms of a variational problem such as (2.3) is that v_{n} automatically has Neumann boundary conditions on $\partial_{r} F_{n}$.

We want to show $\lambda_{n}^{-1} \approx \alpha_{n}$. First, define

$$
h_{n}(x)=E^{x} \tau_{n} .
$$

Lemma 2.1. $\int\left|\nabla h_{n}\right|^{2}(x) \mu_{n}(d x)=2 \int h_{n}(x) \mu_{n}(d x)$.
Proof. Since $h_{n}=U_{n} 1$, then $\frac{1}{2} \Delta h_{n}=-1$. Trivially $h_{n}(x) \leqq \alpha_{n}$. Suppose we had proved:
(i) $\nabla h_{n} \in L^{2}\left(F_{n}\right)$ (with respect to μ_{n}); and
(ii) $\nabla h_{n} \in L^{1}\left(\partial_{r} F_{n}\right), \partial h / \partial v=0$, a.e. (with respect to surface measure on $\partial_{r} F_{n}$), where $\partial h / \partial v$ denotes normal derivative.

Applying Green's first identity to a C^{∞} function g on F_{n}, we get

$$
\begin{equation*}
\int_{F_{n}}|\nabla g|^{2}=-\int_{F_{n}} g \Delta g+\int_{\partial F_{n}} \frac{\partial g}{\partial v} g \tag{2.6}
\end{equation*}
$$

Taking a sequence g_{m} of such functions such that $g_{m} \rightarrow h_{n}$ uniformly on F_{n}, $\Delta g_{m} \rightarrow-2$ boundedly pointwise, $\nabla g_{m} \rightarrow \nabla h_{n}$ in $L^{2}\left(F_{n}\right)$ and in $L^{1}\left(\partial F_{n}\right)$, and $\partial g_{m} / \partial v \rightarrow 0$ in $L^{1}\left(\partial F_{n}\right)$, we get our result. So it suffices to prove (2.5).

By the usual properties of Brownian motion in a domain, h_{n} is C^{∞} in the interior of F_{n} and on $\partial_{a} F_{n}-\{(1,1)\}$. Suppose $x_{0} \in \partial_{r} F_{n}$ but x_{0} is not the corner of a removed square nor the origin. Take ε sufficiently small so that $B_{\varepsilon}\left(x_{0}\right) \cap F_{n}$ is a semicircle, and let $S=\inf \left\{t:\left|W_{t}^{n}-x_{0}\right| \geqq \varepsilon\right\}$. Let $h_{n}^{\prime}(x)=E^{x} S, h_{n}^{\prime \prime}(x)=E^{x} h_{n}\left(W_{S}^{n}\right)$. If $x \in B_{n}\left(x_{0}\right) \cap F_{n}$, the strong Markov property gives

$$
\begin{equation*}
h_{n}(x)=E^{x} S+E^{x} E^{W_{s}^{n}} \tau_{n}=h_{n}^{\prime}(x)+h_{n}^{\prime \prime}(x) \tag{2.7}
\end{equation*}
$$

Now h_{n}^{\prime} is the time for reflecting Brownian motion to leave a semicircle, or equivalently, for Brownian motion to leave a circle. As is well-known [9, Sect. 1.11], this is C^{∞} in the interior of the circle, and by symmetry, $\partial h_{n}^{\prime}\left(x_{0}\right) / \partial v=0$.

Also, $h_{n}^{\prime \prime}(x)$ is harmonic for reflecting Brownian motion in a semicircle. By the Schwartz reflection principle, $h_{n}^{\prime \prime}$ can be extended to a harmonic function in $B_{\varepsilon}\left(x_{0}\right)$. Hence $h_{n}^{\prime \prime}$ is C^{∞} in the interior, and by symmetry, $\partial h_{n}^{\prime \prime}\left(x_{0}\right) / \partial v=0$.

Next suppose $x_{0} \in \partial_{r} F_{n}$ is the corner of one of the removed squares, and choose ε small enough so that $B_{\varepsilon}\left(x_{0}\right) \cap F_{n}$ is a 3/4-circle. Define S as before, and again write $h_{n}=h_{n}^{\prime}+h_{n}^{\prime \prime}$. Let us introduce complex coordinates so that $x_{0}=0$ and $B_{\varepsilon}\left(x_{0}\right) \cap F_{n}$ $=\{z=(r, \theta): 0 \leqq r \leqq \varepsilon, 0 \leqq \theta \leqq 3 \pi / 2\}$. Using the conformal mapping $z \rightarrow z^{2 / 3}$, the domain $B_{\varepsilon}\left(x_{0}\right) \cap F_{n}$ gets mapped into $A=\left\{(r, \theta): 0 \leqq r \leqq \varepsilon^{2 / 3}, 0 \leqq \theta \leqq \pi\right\}$. By Lévy's theorem [9, Sect. 5.1] $\left(W_{t}^{n}\right)^{2 / 3}$ is the time change of Brownian motion in the interior of A. Since the mapping is conformal, angles are preserved, so normal reflection is preserved, hence $\left(W_{t}^{n}\right)^{2 / 3}$ is the time change of reflecting Brownian motion in A. Sorting out the time change, we get

$$
h_{n}^{\prime}(z)=E^{z^{2 / 3}} \int_{0}^{T}\left|W_{t}\right|^{-2 / 3} d t=\int_{B_{z^{2 / 3}}(0)} g\left(z^{2 / 3}, x\right)|x|^{-2 / 3} d x
$$

where W_{t} is standard Brownian motion, $T=\inf \left\{t:\left|W_{t}\right| \geqq \varepsilon^{2 / 3}\right\}$, and g is the Green function for the ball of radius $\varepsilon^{2 / 3}$. The function $|x|^{-2 / 3}$ is in $L^{1}\left(B_{\varepsilon^{2 / 3}}(0)\right)$, and known estimates [10, Sect. 4.2] imply that $\int_{B_{z / 3}(0)} g(z, x)|x|^{-2 / 3} d x$ is C^{1} in the interior of $B_{\varepsilon^{2 / 3}}(0)$. It follows that $\nabla h^{\prime}(z) \in L^{2}\left(B_{\varepsilon}\left(x_{0}\right) \cap F_{n}\right) \cap L^{1}\left(B_{\varepsilon}\left(x_{0}\right) \cap \partial_{r} F_{n}\right)$. A similar argument holds for $h_{n}^{\prime \prime}$.

The origin and $(1,1)$ are treated in the same manner. Thus (2.5) ($i, i i$) holds, and the lemma is proved.
Remark. Note that the only way the geometry of F_{n} enters the proof of Lemma 2.1 is through the fact that ∂F_{n} is piecewise linear.
Proposition 2.2. There exists c_{1} independent of n such that

$$
c_{1} \alpha_{n} \leqq \lambda_{n}^{-1} \leqq \alpha_{n} / 2
$$

Proof. Let us normalize v_{n} so that $\sup v_{n}(x)=1$. Pick x_{0} so that $v_{n}\left(x_{0}\right)=1$. Then

$$
1=v_{n}\left(x_{0}\right)=\frac{1}{2} \lambda_{n} U_{n} v_{n}\left(x_{0}\right) \leqq \frac{1}{2} \lambda_{n} U_{n} 1\left(x_{0}\right) \leqq \frac{1}{2} \lambda_{n} \sup _{x} h_{n}(x)=\frac{1}{2} \lambda_{n} \alpha_{n} .
$$

To get the other inequality, using Lemma 2.1 observe that

$$
\lambda_{n} \leqq \int_{F_{n}}\left|\nabla h_{n}\right|^{2} / \int_{F_{n}} h_{n}^{2}=2 \int_{F_{n}} h_{n} / \int_{F_{n}} h_{n}^{2}
$$

But $h_{n}(x) \geqq \beta_{n}$ on $F_{n} \cap[0,1 / 2]^{2}$, hence $\int_{F_{n}} h_{n}^{2} \geqq \frac{1}{4} \beta_{n}^{2}$. So

$$
\lambda_{n} \leqq 8 \alpha_{n} / \beta_{n}^{2}
$$

And by [1, Prop. 4.2], there exists c independent of n such that

$$
\begin{equation*}
c \alpha_{n} \leqq \beta_{n} \leqq \alpha_{n} \tag{2.8}
\end{equation*}
$$

We now replace h_{n} by a function with more manageable boundary values. Let

$$
\begin{equation*}
g_{n}\left(x_{1}, x_{2}\right)=\beta_{n}^{-1} h_{n}\left(1-x_{1}, x_{2}\right) \wedge 1 \quad \text { for } \quad x_{2} \leqq 1 / 2 \tag{2.9}
\end{equation*}
$$

and define $g_{n}\left(x_{1}, x_{2}\right)=g_{n}\left(x_{1}, 1-x_{2}\right)$ for $x_{2} \geqq 1 / 2$. Since $h_{n}\left(0, x_{2}\right) \geqq \beta_{n}$ if $x_{2} \leqq 1 / 2$ and $h_{n}\left(1, x_{2}\right)=0$, we get

$$
\begin{equation*}
g_{n}\left(0, x_{2}\right) \equiv 0, \quad g_{n}\left(1, x_{2}\right) \equiv 1 \tag{2.10}
\end{equation*}
$$

We next consider the variational problem

$$
\begin{equation*}
\rho_{n}=\inf \left\{\int_{F_{n}}|\nabla u|^{2}(x) \mu_{n}(d x): u\left(0, x_{2}\right) \equiv 0, u\left(1, x_{2}\right) \equiv 1\right\} . \tag{2.11}
\end{equation*}
$$

Let f_{n} be the function at which the minimum is attained. We do not need this fact, but one can show using calculus of variations that

$$
f_{n}(x)=P^{x}\left(Z_{t}^{n} \text { hits }\{1\} \times[0,1] \text { before hitting }\{0\} \times[0,1]\right)
$$

and ρ_{n} is the energy of the harmonic function f_{n}, where Z_{t}^{n} is Brownian motion on F_{n} with normal reflection on ∂F_{n}.

Proposition 2.3. There exist constants c_{2} and c_{3} independent of n such that $c_{2} \lambda_{n} \leqq \rho_{n} \leqq c_{3} \lambda_{n}$.

Proof. Using Lemma 2.1, (2.10), and the fact that g_{n} satisfies the constraints of the variational problem (2.11),

$$
\begin{aligned}
\rho_{n} & \leqq \int_{F_{n}}\left|\nabla g_{n}\right|^{2}=2 \int_{F_{n} \cap[0,1] \times[0,1 / 2]}\left|\nabla\left(1 \wedge \beta_{n}^{-1} h_{n}\right)\right|^{2} \\
& \leqq 2 \beta_{n}^{-2} \int_{F_{n}}\left|\nabla h_{n}\right|^{2}=4 \beta_{n}^{-2} \int_{F_{n}} h_{n} \leqq 4 \alpha_{n} / \beta_{n}^{2}
\end{aligned}
$$

Applying (2.8) gives the second inequality.
To get the first, define ψ_{n} on $F_{n} \cap\left\{\left(x_{1}, x_{2}\right): x_{2} \leqq x_{1}\right\}$ by

$$
\psi_{n}\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{1} \leqq 1 / 3 \\ f_{n-1}\left(2-3 x_{1}, 3 x_{2}\right) & \text { if } 1 / 3 \leqq x_{1} \leqq 2 / 3 \\ 0 & \text { if } 2 / 3 \leqq x_{1}\end{cases}
$$

and define ψ_{n} on $F_{n} \cap\left\{\left(x_{1}, x_{2}\right): x_{2}>x_{1}\right\}$ by symmetry about the line $x_{1}=x_{2}$. Since $\psi_{n}=1$ on $[0,1 / 3]^{2}$, then $\int_{F_{n}} \psi_{n}^{2} \geqq 1 / 8$. Using scaling,

$$
\int_{F_{n}}\left|\nabla \psi_{n}\right|^{2} \leqq 2 \cdot \frac{9}{8} \int_{F_{n-1}}\left|\nabla f_{n-1}\right|^{2}=\frac{9}{4} \rho_{n-1}
$$

Hence

$$
\begin{equation*}
\lambda_{n} \leqq 18 \rho_{n-1} \tag{2.12}
\end{equation*}
$$

By [1, Prop. 4.2] there exists constants c_{4} and c_{5} such that

$$
\begin{equation*}
c_{4} \alpha_{n} \leqq \alpha_{n-1} \leqq c_{5} \alpha_{n} \tag{2.13}
\end{equation*}
$$

Then by Prop. 2.2,

$$
\begin{equation*}
\lambda_{n-1} \leqq c \alpha_{n-1}^{-1} \leqq c^{\prime} \alpha_{n}^{-1} \leqq c^{\prime \prime} \lambda_{n} \tag{2.14}
\end{equation*}
$$

Combining (2.12) and (2.14) gives the first inequality.
The main result of this section is
Theorem 2.4. $\rho_{n} \leqq \frac{27}{28} \rho_{n-1}$.
Proof. Let $a=2 / 7$, and let

$$
e_{n}\left(x_{1}, x_{2}\right)= \begin{cases}a f_{n-1}\left(3 x_{1}, 3 x_{2}-\left[3 x_{2}\right]\right) & \text { if } 0 \leqq x_{2} \leqq 1 / 3 \\ a+(1-2 a) f_{n-1}\left(3 x_{1}-1,3 x_{2}-\left[3 x_{2}\right]\right) & \text { if } 1 / 3 \leqq x_{1} \leqq 2 / 3 \\ 1-a+a f_{n-1}\left(3 x_{1}-2,3 x_{2}-\left[3 x_{2}\right]\right) & \text { if } 2 / 3 \leqq x_{1} \leqq 1\end{cases}
$$

Then

$$
\begin{aligned}
\rho_{n} \leqq \int_{F_{n}}\left|\nabla e_{n}\right|^{2} & =3 a^{2} \cdot \frac{9}{8} \rho_{n-1}+2(1-2 a)^{2} \cdot \frac{9}{8} \rho_{n-1}+3 a^{2} \frac{9}{8} \rho_{n-1} \\
& =\frac{27}{28} \rho_{n-1} .
\end{aligned}
$$

(Of course, a was chosen to minimize the right hand side.)

Corollary 2.5. There exists c_{6} independent of n and r such that

$$
a_{n-r} / \alpha_{n} \leqq c_{6}(27 / 28)^{r} \leqq c_{6}
$$

We can also give a lower bound for ρ_{n} / ρ_{n-1}.
Theorem $2.6 \rho_{n} \geqq \frac{3}{4} \rho_{n-1}$.
Proof. (cf. [4]) Let $A=F_{n} \cap([0,1] \times[0,1 / 3]), \quad B=F_{n} \cap([0,1] \times[2 / 3,1])$, $C=F_{n} \cap[0,1 / 3]^{2}$, and $\Lambda_{i}=\{i / 3\} \times[0,1 / 3]$ for $i=0,1,2,3$. Let Z_{t}^{n} be Brownian motion in A with normal reflection on the boundary of A.

If $Z_{0}^{n} \in \Lambda_{1}$, then by symmetry Z_{t}^{n} is equally likely to hit Λ_{0} and Λ_{2} first, with a similar statement if $Z_{0}^{n} \in A_{2}$. Let $S_{0}=\inf \left\{t: Z_{t}^{n} \in \bigcup_{k=0}^{3} \Lambda_{k}\right\}$, let V_{0} be the value of k such that $Z_{S_{0}}^{n} \in A_{k}$, let $S_{i+1}=\inf \left\{t>S_{i}: Z_{t}^{n} \in \bigcup_{k \neq V_{i}}^{\bigcup} A_{k}\right\}$, and let V_{i+1} be the value of k such that $Z_{S_{i+1}}^{n} \in \Lambda_{k}$. So V_{i} is the sequence of Λ_{k} 's that Z_{t}^{n} visits. Then V_{i} is a simple random walk on $\{0,1,2,3\}$ with reflection at 0 and 3 . Therefore,

$$
\begin{equation*}
P^{x}\left(Z_{t}^{n} \text { hits } \Lambda_{3} \text { before hitting } \Lambda_{0}\right)=k / 3 \quad \text { if } \quad x \in \Lambda_{k} . \tag{2.15}
\end{equation*}
$$

Now consider the variational problem

$$
\begin{equation*}
\omega_{n}=\inf \left\{\int_{A}|\nabla u|^{2}(x) \mu_{n}(d x): u=0 \quad \text { on } \quad \Lambda_{0}, u=1 \quad \text { on } \quad \Lambda_{3}\right\} \tag{2.16}
\end{equation*}
$$

and let g_{n} be the minimizing function. By standard calculus of variations techniques, we see that g_{n} is the harmonic function having boundary values 0 on Λ_{0} and 1 on Λ_{3} and having zero normal derivative on the remainder of the boundary of A. Hence

$$
g_{n}(x)=P^{x}\left(Z_{t}^{n} \text { bits } \Lambda_{3} \text { before hitting } \Lambda_{0}\right)
$$

Let

$$
\begin{equation*}
\pi_{n}=\inf \left\{\int_{c}|\nabla u|^{2}(x) \mu_{n}(d x): u=0 \quad \text { on } \quad \Lambda_{0}, u=1 / 3 \quad \text { on } \quad \Lambda_{1}\right\} . \tag{2.17}
\end{equation*}
$$

Using (2.15) and the fact that A is the union of C and two of its translates, we see

$$
\omega_{n}=3 \pi_{n}
$$

By scaling, the function that minimizes the variational problem (2.17) is $u(x)=\frac{1}{3} f_{n-1}(3 x)$, and so

$$
\pi_{n}=\rho_{n-1} / 8
$$

Finally, using symmetry,

$$
\rho_{n}=\int_{F_{n}}\left|\nabla f_{n}\right|^{2} \geqq 2 \int_{A}\left|\nabla f_{n}\right|^{2} \geqq 2 \omega_{n}=6 \pi_{n}=\frac{3}{4} \rho_{n-1}
$$

Corollary 2.7 There exists c_{7} independent of n and r such that

$$
\alpha_{n-r} / \alpha_{n} \geqq c_{7}(3 / 4)^{r}
$$

Remark. A paper in preparation [2] will show that Corollaries 2.5 and 2.7 lead to upper and lower bounds for the spectral dimension of the Sierpinski carpet. Specifically, Corollary 2.5 leads to the upper bound $2 \log 8 / \log (28 / 3) \approx 1.862$, while Corollary 2.7 leads to the lower bound $2 \log 8 / \log 12 \approx 1.674$. Refinements to Theorems 2.4 and 2.6 lead to slight improvement of both the upper and lower bounds. Numerical calculations suggest that the actual value of the spectral dimension is approximately 1.81 .

3. Green Functions

We need to introduce some more notation. Let $F=\bigcap_{n=0}^{\infty} F_{n}, \partial_{a} F=\partial_{a} F_{1}$. Let $d_{f}=\log 8 / \log 3$, the Hausdorff dimension of F. Let μ be the weak limit of the $\mu_{n} ; \mu$ is a multiple of the Hausdorff $x^{d_{f}}$-measure on F.

For $\quad x=\left(x_{1}, x_{2}\right)$, define $\quad D_{r}(x)=\left[(j-1) / 3^{r}, \quad(j+1) / 3^{r}\right) \times\left[(k-1) / 3^{r}\right.$, $\left.(k+1) / 3^{r}\right)$ if $\left(j-\frac{1}{2}\right) 3^{-r} \leqq x_{1}<\left(j+\frac{1}{2}\right) 3^{-r},\left(k-\frac{1}{2}\right) 3^{-r} \leqq x_{2}<\left(k+\frac{1}{2}\right) 3^{-r}, j, k$ integers. Note that

$$
\begin{equation*}
\inf _{r, x} 3^{r} \operatorname{dist}\left(\partial D_{r}(x), \partial D_{r-1}(x)\right)>0 \tag{3.1}
\end{equation*}
$$

Let Ω be the collection of continuous paths in $[0,1]^{2}$ and let X_{t} be the canonical coordinate process. Let P_{n}^{x} be the law of $W_{\alpha_{n} t}^{n}$ starting at x. Let $\tau=\inf \left\{t: X_{t} \in \partial_{a} F\right\}$ and let

$$
\sigma_{r}(x)=\inf \left\{t: X_{t} \notin D_{r}(x)\right\} \wedge \tau
$$

Let n_{j} be any sequence tending to infinity such that for each $x \in F, P_{n_{j}}^{x}$ converges weakly, say to P^{x}, and (P^{x}, X_{t}) forms a strong Markov process on F with continuous paths. The existence of such sequences n_{j} is one of the main results of [1].

Finally, let $U_{n}, u_{n}(x, y)$ and $U, u(x, y)$ be the Green potential and function for (P_{n}^{x}, X_{t}) and (P^{x}, X_{t}), respectively. So, for instance,

$$
E_{n}^{x} \int_{0}^{\tau} 1_{A}\left(X_{s}\right) d s=U_{n} 1_{A}(x)=\int_{A} u_{n}(x, y) \mu_{n}(d y)
$$

By [1, Sect. 7], given ε, there exists $c_{8}(\varepsilon), c_{9}(\varepsilon)$ and α (independent of n) such that

$$
\begin{equation*}
u_{n}(x, y), u(x, y) \leqq c_{8} \quad \text { whenever } \quad x, y \in F,|x-y|>\varepsilon \tag{3.2}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|u_{n}(x, y)-u_{n}(x, z)\right| \leqq c_{9}|y-z|^{\alpha}, \quad|u(x, y)-u(x, z)| \leqq c_{9}|y-z|^{\alpha} \\
\text { whenever } x, y, z \in F,|x-y|,|x-z|>\varepsilon . \tag{3.3}
\end{gather*}
$$

Remark. Note that if $x \neq y, E^{y} \int_{0}^{\tau} 1_{\{x\}}\left(X_{s}\right) d s=\int_{\{x\}} u(y, z) \mu(d z)=0$. And by [1, Sect. 6], X_{t} started at x leaves $\{x\}$ immediately. So by the strong Markov property,

$$
\begin{equation*}
E^{x} \int_{0}^{\tau} 1_{\{x\}}\left(X_{s}\right) d s=0 \tag{3.4}
\end{equation*}
$$

A consequence of (3.2) is that if $\mu(A)=0, \varepsilon>0$, then

$$
E^{x} \int_{0}^{\tau} 1_{A \cap B_{\varepsilon}^{c}(x)}\left(X_{s}\right) d s=\int_{A \cap B_{\varepsilon}^{c}(x)} u(x, y) \mu(d y) \leqq c_{8} \mu\left(A \cap B_{\varepsilon}^{c}(x)\right)=0
$$

Letting $\varepsilon \rightarrow 0$ and using (3.4) then tells us that if $\mu(A)=0, U 1_{A} \equiv 0$.
Another consequence of (3.4) is that we may define $u(x, x)$, i.e., u on the diagonal, arbitrarily, without violating (3.2) or (3.3). We choose to define

$$
\begin{equation*}
u(x, x)=\underset{y \rightarrow x}{\lim \sup } u(x, y) \tag{3.5}
\end{equation*}
$$

We now prove that the restriction $|x-y|>\varepsilon$ in (3.2) can be dispensed with for $u(x, y)$.
Theorem 3.1. There exists c_{10} such that

$$
\begin{equation*}
u(x, y) \leqq c_{10} \quad \text { whenever } x, y \in F \tag{3.6}
\end{equation*}
$$

Proof. Fix $x, y \in F, x \neq y$. Let $\varepsilon>0$ and set $A=A(\varepsilon)=F_{0} \cap B_{\varepsilon}(x)$. Note that for $n \geqq 1$

$$
\mu_{n}(A) \leqq 12 \mu(A)
$$

The main step of the proof is to get an upper bound for

$$
\begin{equation*}
q_{n r}(y, A)=E_{n}^{y} \int_{\sigma_{r}+1}^{\sigma_{r}(x)} 1_{A}\left(X_{s}\right) d s \tag{3.7}
\end{equation*}
$$

for $n>r \geqq 0$. Using the strong Markov property we have

$$
\begin{equation*}
q_{n r}(y, A) \leqq \sup _{z \in \partial D_{r+1}(x)} E_{n}^{z} \int_{0}^{\sigma r(x)} 1_{A}\left(X_{s}\right) d s \tag{3.8}
\end{equation*}
$$

Also, $q_{n r}(y, A)=q_{n r}\left(y, A \cap D_{r}(x)\right)$, and $q_{n r}(y, A)=0$ for $y \notin D_{r}(x)$.
First consider the case $r \leqq 4$. Then by (3.8)

$$
q_{n r}(y, A) \leqq \sup _{z \in \partial D_{r+1}(x)} E_{n}^{z} \int_{0}^{\tau} 1_{A}\left(X_{s}\right) d s
$$

If $A \subseteq D_{r+1}(x)$ then by (3.1) there exists a $\delta_{1}>0$ (independent of r and x) such that $\operatorname{dist}\left(\partial D_{r+1}(x), D_{r+2}(x)\right)>\delta_{1}$. So, by (3.2),

$$
\sup _{z \in \partial D_{r+1}(x)} E_{n}^{z} \int_{0}^{\tau} 1_{A}\left(X_{s}\right) d s \leqq \mu_{n}(A) \sup _{\substack{z \in \partial D_{r+1}(x) \\ w \in A}} u_{n}(z, w) \leqq 12 \mu(A) c_{8}\left(\delta_{1}\right) .
$$

On the other hand, if $A \nsubseteq D_{r+1}(x)$ then $\mu(A)>\delta_{2}>0$ for some constant δ_{2} independent of x and r. So

$$
\begin{aligned}
E_{n}^{z} \int_{0}^{\tau} 1_{A}\left(X_{s}\right) d s & \leqq E_{n}^{z} \tau \\
& \leqq 1 \leqq \delta_{2}^{-1} \mu(A)
\end{aligned}
$$

Combining the last two inequalities we have that, for some constant $c_{10}<\infty$,

$$
\begin{equation*}
q_{n r}(y, A) \leqq c_{10} \mu(A), \quad 0 \leqq r \leqq 4, \quad n \geqq r \tag{3.9}
\end{equation*}
$$

We now use scaling to generalize (3.9). Let $r>4$, and $p=r-3$. Suppose for the moment that $D_{r+1}(x) \subseteq\left[0,3^{-r+1}\right)^{2}$. The law of $W^{n}(t)$ started at x is the same as the law of $3^{-p} W^{n-p}\left(9^{p} t\right)$ starting at $3^{-p} x$. So X_{t} under P_{n}^{x} has the same law as $3^{-p} X\left(t 9^{p} \alpha_{n} / \alpha_{n-p}\right)$ under $P_{n-p}^{3 F x}$. Hence, writing $\theta_{n p}=9^{p} \alpha_{n} / \alpha_{n-p}$,

$$
\begin{aligned}
q_{n r}(y, A) & =E_{n-p}^{3 p y} \int_{\theta_{n p} \sigma_{4}\left(3^{p} x\right)}^{\theta_{n p} \sigma_{3}\left(3^{p} x\right)} 1_{A}\left(3^{-p} X\left(t \theta_{n p}\right)\right) d t \\
& =\theta_{n p}^{-1} E_{n-p}^{3 p y} \int_{\sigma_{4}\left(3^{p} x\right)}^{\sigma_{3}\left(3^{p} x\right)} 1_{A}\left(3^{-p} X_{s}\right) d s \\
& =\theta_{n p}^{-1} q_{n-p, 3}\left(3^{p} y, 3^{p} A\right) .
\end{aligned}
$$

Thus by (3.9)

$$
q_{n r}(y, A) \leqq \theta_{n p}^{-1} c_{10} \mu\left(3^{p} A\right)
$$

Now $\mu\left(3^{p} A\right) \leqq 3^{\text {pd } f} \mu(A)$, and so, using Corollary 2.5 ,

$$
\begin{align*}
q_{n r}(y, A) & \leqq c_{10} 9^{-p} \alpha_{n-p} \alpha_{n}^{-1} 3^{p d f} \mu(A) \\
& \leqq c_{6} c_{10} 9^{-p}(27 / 28)^{p} 3^{p d f} \mu(A) \\
& =c_{6} c_{10}(6 / 7)^{p} \mu(A)=c(6 / 7)^{r} \mu(A) \tag{3.10}
\end{align*}
$$

Let $n \rightarrow \infty$ along the sequence n_{j}. Then since $U 1_{\partial A} \equiv 0$ by the remark following (3.3),

$$
\begin{equation*}
E^{y} \int_{\sigma_{r+1}(x)}^{\sigma_{r}(x)} 1_{A}\left(X_{s}\right) d s \leqq c(6 / 7)^{r} \mu(A) \tag{3.11}
\end{equation*}
$$

We now remove the restriction $D_{r}(x) \subseteq\left[0,3^{-r+1}\right)^{2}$. If $D_{r}(x) \nsubseteq\left[0,3^{-r+1}\right)^{2}$, we can perform suitable translations, rotations, and reflections to find \hat{x}, \hat{y}, and \hat{A} so that

$$
q_{n r}(y, A) \leqq q_{n r}(\hat{y}, \hat{A})=E_{n}^{\hat{y}} \int_{\sigma_{r+1}(\hat{x})}^{\sigma_{r}(\hat{x})} 1_{\hat{A}}\left(X_{s}\right) d s
$$

with $D_{r}(\hat{x}) \subset\left[0,3^{-r+1}\right)^{2}$ and $\mu_{n}(A) \geqq \mu_{n}(\hat{A})$. Applying the above argument to $q_{n r}(\hat{y}, \hat{A})$, we get the bound (3.11) as before.

For use in Theorem 3.2, note that the only reason we may have to have $q_{n r}(y, A)<q_{n r}(\hat{y}, \hat{A})$ is because x and y may be too close to $\partial_{a} F$.

Finally, summing over r gives

$$
\begin{equation*}
E^{y} \int_{0}^{\tau} 1_{A}\left(X_{s}\right) d s \leqq c \sum_{r=0}^{\infty}(6 / 7)^{r} \mu(A) \leqq c \mu(A) \tag{3.12}
\end{equation*}
$$

for all ε. By the continuity of $u(x, y)$ off the diagonal (see (3.3)), letting $\varepsilon \rightarrow 0$ gives (3.6) if $x \neq y$. Using (3.5) completes the proof.

We now obtain the joint continuity of $u(x, y)$.
Theorem 3.2. There exists c_{11} and $\alpha>0$ such that

$$
\begin{equation*}
|u(x, y)-u(x, z)| \leqq c_{11}|y-z|^{\alpha} \quad \text { whenever } x, y, z \in F . \tag{3.13}
\end{equation*}
$$

Proof. We prove the estimate (3.13) for the case $x \neq y, x \neq z$. Once we have this, we get (3.13) for all x, y, z by (3.5).

Suppose for now that $y \in F \cap[0,8 / 9)^{2}$. In view of (3.3), we may suppose $|y-z| \leqq 3^{-4}$. By the strong Markov property, the continuity of u off the diagonal, and the fact that $u(\cdot, \cdot)$ is harmonic in each variable off the diagonal,

$$
u(x, y)-u(x, z)=E^{x}\left[u\left(X_{S}, y\right)-u\left(X_{S}, z\right)\right],
$$

where $S=\inf \left\{t:\left|X_{t}-y\right|<\frac{3}{2}|y-z|\right\}$. Hence it suffices to obtain the bound (3.13) for $|x-y|,|x-z| \leqq \frac{5}{2}|y-z|$.

Let $\varepsilon<|y-z| / 5$, let $A=A(\varepsilon)=B_{\varepsilon}(x) \cap F_{0}$, and define $q_{n r}(z, A), q_{n r}(y, A)$ by (3.7).

First, consider the case: $|y-z| \leqq 3^{-r-4}$ and $r \geqq 4$. As in the proof of Theorem 3.1, we may suppose $\{x, y, z\} \cup A \subset\left[0,3^{-r+1}\right)^{2}$. Let $p=r-3$. Using scaling as in (3.10),

$$
\begin{equation*}
q_{r r}(y, A)=E_{n-p}^{3 p y} H\left(X_{\sigma_{4}\left(3^{3} x\right)}\right), \tag{3.14}
\end{equation*}
$$

where

$$
\begin{align*}
H(w) & =E_{n-p}^{w} \int_{0}^{\sigma_{3}\left(3^{p} x\right)} 1_{\left(3^{p} A\right)}\left(X\left(9^{p} t \alpha_{n} / \alpha_{n-p}\right)\right) d t \\
& \leqq c 3^{r\left(d d_{f}-2\right)} \mu(A), \tag{3.15}
\end{align*}
$$

and similarly for $q_{n r}(z, A)$.
By $[1$, Sect. 3$]$, since $3^{p} y, 3^{p} z \in F \cap[0,8 / 9)^{2}$, there exists $\xi<\left(2-d_{f}\right) / 2$ so that

$$
\begin{align*}
\left|q_{n r}(y, A)-q_{n r}(z, A)\right| & \leqq c\|H\|\left|3^{p} y-3^{p} z\right|^{\xi} \\
& \leqq c 3^{r\left(d_{f}-2+\xi\right)}|y-z|^{\xi} \mu(A) . \tag{3.16}
\end{align*}
$$

The second case: $|y-z| \leqq 3^{-r-4}$ and $r \leqq 4$, is similar, but no scaling is necessary (cf. the proof of Theor. 3.1).

In both the first and second cases, letting $n \rightarrow \infty$ along the subsequence n_{j} and using the fact that $U 1_{\partial A} \equiv 0$,

$$
\begin{equation*}
\left|E^{y} \int_{\sigma_{r+1}(x)}^{\sigma_{r}(x)} 1_{A}\left(X_{s}\right) d s-E^{z} \int_{\sigma_{r+1}(x)}^{\sigma_{r}(x)} 1_{A}\left(X_{s}\right) d s\right| \leqq c 3^{r\left(d_{f}-2+\xi\right)}|y-z|^{\xi} \mu(A) . \tag{3.17}
\end{equation*}
$$

For the third case: $|y-z|>3^{-r-4}$,

$$
\left|q_{n r}(y, A)-q_{n r}(z, A)\right| \leqq\left|q_{n r}(y, A)\right|+\left|q_{n r}(z, A)\right| \leqq c 3^{r\left(d_{f}-2\right)} \mu(A)
$$

by (3.10). Again, let $n \rightarrow \infty$ along the subsequence n_{j}.
Then, summing over r, for all ε,

$$
\begin{aligned}
\left|E^{y} \int_{0}^{\tau} 1_{A}\left(X_{s}\right) d s-E^{z} \int_{0}^{\tau} 1_{A}\left(X_{s}\right) d s\right| \leqq & \sum_{\left\{r:|y-z| \leqq 3^{-r-4}\right\}} c 3^{r\left(d_{f}-2+\xi\right)}|y-z|^{\xi} \mu(A) \\
& +\sum_{\left\{r:|y-z|>3^{-r-4}\right\}} c 3^{r\left(d_{f}-2\right)} \mu(A) \\
\leqq & c \mu(A)\left[|y-z|^{\xi}+|y-z|^{-\left(d_{f}-2\right)}\right] .
\end{aligned}
$$

Dividing both sidea by $\mu(A)$, letting $\varepsilon \rightarrow 0$, and recalling $u(x, y)$ is continuous off the diagonal gives (3.13) if $y \in F \cap[0,8 / 9)^{2}$.

But the restriction $y \in F \cap[0,8 / 9)^{2}$ may be removed by a very similar proof to that of [1, Theor. 7.2]; the details are left to the reader.

4. Local Times

Once we have $u(x, y)$ bounded and Hölder continuous, the construction of jointly continuous local times is routine.

Proposition 4.1. For each $y \in F, u(x, y)$ is excessive.
Proof. The function $x \rightarrow \int_{B_{c}(y) \cap F} u(x, z) \mu(d z)=E^{x} \int_{0}^{\tau} 1_{B_{c}(y) \cap F}\left(X_{s}\right) d s$ is a potential, hence excessive. By the continuity of u, the function $x \rightarrow u(x, y)$ is the uniform limit of $\mu\left(B_{\varepsilon}(y) \cap F\right)^{-1} \int_{B_{\varepsilon}(y) \cap F} u(x, z) \mu(d z)$ as $\varepsilon \rightarrow 0$, and hence is also excessive.
Proposition 4.2. For each $y \in F, u(x, y)$ is a regular potential.
Remark. Recall that $u(x, y)$ is a regular potential if for each $z, E^{z} u\left(X_{T_{n}}, y\right) \rightarrow$ $E^{z} u\left(X_{T}, y\right)$ whenever T_{n} are stopping times increasing to T.

Proof. This is clear by the boundedness and continuity of u and the continuity of X_{r}.

We now use [5, Theor. IV. 3.13] to see that for each y there exists a continuous additive functional L_{t}^{y} whose potential is $u(x, y)$. Since by the Markov property

$$
E^{z} L_{t}^{y}=u(x, y)-E^{z} u\left(X_{t \wedge \tau}, y\right)
$$

for each z, it follows easily that

$$
\begin{equation*}
M_{t}^{y}=u\left(X_{t \wedge \tau}, y\right)-u\left(X_{0}, y\right)+L_{t}^{y} \tag{4.1}
\end{equation*}
$$

is a martingale with respect to P^{x} for each x. Moreover, $M_{0}^{y} \equiv 0, P^{x}$-a.s. for each x.
We now want to show we can choose a version of L_{t}^{y} that is jointly continuous in t and y. Since $u\left(X_{t \wedge \tau}, y\right)$ is continuous in t and y jointly, we can concentrate our attention on M_{t}^{y}.

Let $U_{t}^{y}=u\left(X_{t \wedge \tau}, y\right)-u\left(X_{0}, y\right)$, let $N_{t}\left(y_{1}, y_{2}\right)=M_{t}^{y_{1}}-M_{t}^{y_{2}}$, and let $N^{*}\left(y_{1}, y_{2}\right)=\sup _{s \leqq \tau}\left|N_{s}\left(y_{1}, y_{2}\right)\right|$

Proposition 4.3. There exists ζ and $\theta>0$ such that for all z

$$
P^{z}\left(N^{*}\left(y_{1}, y_{2}\right)>\lambda\right) \leqq \exp \left(\frac{-\lambda}{\theta\left|y_{1}-y_{2}\right|^{\Sigma}}\right)
$$

Proof. Fix y_{1} and y_{2}, let $\Lambda=\sup _{x, y} u(x, y)$, and let $\delta=\sup _{x}\left|u\left(x, y_{1}\right)-u\left(x, y_{2}\right)\right|$. Trivially, $\delta \leqq 2 \Lambda$.

By Ito's formula, for each z and t

$$
E^{z}\left(U_{t}^{y_{1}}-U_{t}^{y_{2}}\right)^{2}=2 E^{z} \int_{0}^{t}\left(U_{s}^{y_{1}}-U_{s}^{y_{2}}\right) d\left(U_{s}^{y_{1}}-U_{s}^{y_{2}}\right)+E^{z}\left\langle N\left(y_{1}, y_{2}\right)\right\rangle_{t}
$$

and hence

$$
\begin{align*}
E^{z}\left\langle N\left(y_{1}, y_{2}\right)\right\rangle_{t} & \leqq(2 \delta)^{2}+2 \delta E^{z} \int_{0}^{t} d\left(U_{s}^{y_{1}}+U_{s}^{y_{2}}\right) \\
& \leqq 4 \delta^{2}+4 \delta \Lambda \\
& \leqq 12 \delta \Lambda \tag{4.2}
\end{align*}
$$

By monotone convergence, we get the same bound for $E^{z}\left\langle N\left(y_{1}, y_{2}\right)\right\rangle_{t}$.
Suppose S and T are bounded stopping times with $S \leqq T$. Then by the strong Markov property and Cauchy-Schwartz,

$$
\begin{align*}
E^{z}\left(\left|N_{T}\left(y_{1}, y_{2}\right)-N_{S}\left(y_{1}, y_{2}\right)\right| \mid \mathscr{F}_{S}\right) & \leqq\left(E^{z}\left(\left(N_{T}\left(y_{1}, y_{2}\right)-N_{S}\left(y_{1}, y_{2}\right)\right)^{2} \mid \mathscr{F}_{S}\right)\right)^{1 / 2} \\
& \leqq\left(E^{z}\left(\left\langle N\left(y_{1}, y_{2}\right)\right\rangle_{\tau}-\left\langle N\left(y_{1}, y_{2}\right)\right\rangle_{S} \mid \mathscr{F}_{S}\right)\right)^{1 / 2} \\
& \leqq\left(E^{z} E^{X_{S}}\left(\left\langle N\left(y_{1}, y_{2}\right)\right\rangle_{\tau}\right)\right)^{1 / 2} \\
& \leqq(12 \delta A)^{1 / 2} \tag{4.3}
\end{align*}
$$

We can then apply [7, p. 193], and get

$$
E^{z} \exp \left(\gamma N^{*}\left(y_{1}, y_{2}\right)\right) \leqq 2
$$

provided $\gamma \leqq\left(8(12 \delta \Lambda)^{1 / 2}\right)^{-1}$. The proposition now follows by Chebyshev's inequality together with the fact that $\delta \leqq K\left|y_{1}-y_{2}\right|^{\alpha}$ for some K and $\alpha>0$.

With the estimate of Proposition 4.3, we can now appeal to [3, Sect. 6] to conclude that there is a version of L_{t}^{y} that is jointly continuous in t and y.

We have
Proposition 4.4. Except for a set N such that $P^{x}(N)=0$ for all x,

$$
\int_{0}^{t \wedge \tau} f\left(X_{s}\right) d s=\int f(y) L_{t}^{y} \mu(d y)
$$

for all f bounded on F.
Proof. Suppose f is continuous on F. Multiplying M_{t}^{y} by $f(y)$ and integrating with respect to μ, we see that

$$
\int f(y) U_{t}^{y} \mu(d y)+\int f(y) L_{t}^{y} \mu(d y) \text { is a } P^{x} \text {-martingale for all } x
$$

On the other hand, under P^{x}

$$
\begin{aligned}
\int f(y) U_{t}^{y} \mu(d y) & =\int f(y)\left[u\left(X_{t \wedge \tau}, y\right)-u\left(X_{0}, y\right)\right] \mu(d y) \\
& =E^{X_{i \wedge}} \int_{0}^{\tau} f\left(X_{s}\right) d s-E^{x} \int_{0}^{\tau} f\left(X_{s}\right) d s \\
& =E^{x}\left[\int_{t \wedge \tau}^{\tau} f\left(X_{s}\right) d s \mid \mathscr{F}_{t \wedge \tau}\right]-E^{x} \int_{0}^{\tau} f\left(X_{s}\right) d s \\
& =E^{x}\left[\int_{0}^{\tau} f\left(X_{s}\right) d s \mid \mathscr{F}_{t \wedge \tau}\right]-\int_{0}^{\tau} \hat{\tau}_{0}^{\tau} f\left(X_{s}\right) d s-E^{x} \int_{0}^{\tau} f\left(X_{s}\right) d s .
\end{aligned}
$$

Hence $\int f(y) L_{t}^{y} \mu(d y)-\int_{0}^{t} f\left(X_{s}\right) d s$ is a P^{x}-martingale that is null at 0 , continuous, and of bounded variation. But the only such martingale is 0 , and hence if

$$
N_{f}=\left\{\omega: \int f(y) L_{t}^{y} \mu(d y) \neq \int_{0}^{t} \hat{0}^{\tau} f\left(X_{s}\right) d s \text { for some } t \leqq \tau\right\}
$$

then $P^{x}\left(N_{f}\right)=0$.
Let f_{i} be a countable collection of continuous functions, the closure of whose linear span is $\mathscr{C}(F)$. Let $N=\bigcup_{i=1}^{\infty} N_{f_{i}}$. Then for each $x, P^{x}(N)=0$; while if $\omega \notin N$, the equality asserted in the statement of Proposition 4.4 holds for all continuous f. By a monotone class argument the equality holds for all bounded f when $\omega \notin N$, proving the proposition.

Point recurrence is an easy consequence of the existence of local times. Let

$$
T_{y}=\inf \left\{t: X_{t}=y\right\}
$$

Theorem 4.5. If $x, y \in F-\partial_{a} F$, then $P^{x}\left(T_{y}<\infty\right)>0$.
Proof. If $x=y$, choose r large enough so that $D_{r}(x) \cap \partial_{a} F=\varnothing$, and then

$$
P^{x}\left(T_{y}<\infty\right) \geqq E^{x} P^{X_{\sigma_{r}(x)}}\left(T_{y}<\infty\right)
$$

So it suffices to consider the case $x \neq y$.
Since $\int_{F} u(x, z) \mu(d z)>0$, there exists $z \neq x$ such that $u(x, z)>0$. Since $u(x, \cdot)$ is harmonic on $F-\{x\}$, this implies by the Harnack inequality that $u(x, y)>0$ (see [1, Sect.3]). But $u(x, y)=E^{x} L_{\tau}^{y}$, which implies $P^{x}\left(L_{\tau}^{y}>0\right)>0$. And since L_{t}^{y} increases only when X_{t} is at y, this proves the theorem.

Remark. If the boundary $\partial_{a} F$ were changed from absorbing to reflecting, a renewal argument could be used to show $P^{x}\left(T_{y}<\infty\right)=1$.

Closely related to the notion of point recurrence is that of points being regular for themselves.

Theorem 4.6. If $x \in F-\partial_{a} F$, then $P^{x}\left(T_{x}=0\right)=1$.
Proof. Fix $x \in F-\partial_{a} F$, let $\varepsilon>0$, and set $A(\varepsilon)=B_{\varepsilon}(x) \cap F$. Let

$$
S_{\varepsilon}=\inf \left\{t: X_{t} \in \partial B_{\varepsilon}(x)\right\}
$$

By the strong Markov property, if $\varepsilon<|y-x|$,

$$
\begin{equation*}
U 1_{A(\varepsilon)}(y)=E^{y}\left(U 1_{A(\varepsilon)}\left(X_{S_{\varepsilon}}\right) ; S_{\varepsilon}<\tau\right) \tag{4.4}
\end{equation*}
$$

Multiply both sides of (4.4) by $\mu(A(\varepsilon))^{-1}$ and let $\varepsilon \rightarrow 0$. Using the continuity and boundedness of u, the continuity of X_{t}, and dominated convergence, we get

$$
\begin{equation*}
u(y, x)=u(x, x) P^{y}\left(T_{x}<\tau\right) \tag{4.5}
\end{equation*}
$$

Since $u(x, \cdot)$ is harmonic off $\{x\}$ and $u(x, \cdot)=0$ on $\partial_{a} F$, then $u(x, \cdot)$ takes its maximum at x. Since $u(x, y)>0$ if $y \neq x$ (see the proof of Theor. 4.5), this implies
$u(x, x)>0$. Letting $y \rightarrow x$ in (4.5) and using the continuity of u then gives

$$
\begin{equation*}
\lim _{y \rightarrow x} P^{y}\left(T_{x}<\tau\right)=1 \tag{4.6}
\end{equation*}
$$

Recall that starting at x, X leaves $\{x\}$ immediately ([1, Sect. 6]), hence $S_{\varepsilon} \downarrow 0$, P^{x}-a.s. Since

$$
P^{x}\left(T_{x}<\tau\right) \geqq P^{x}\left(S_{\varepsilon}<T_{x}<\tau\right)=E^{x} P^{X_{s_{c}}}\left(T_{x}<\tau\right) \rightarrow 1
$$

as $\varepsilon \rightarrow 0$, then

$$
P^{x}\left(T_{x}<\tau\right)=1
$$

Finally, choose y_{0} such that $\operatorname{dist}\left(y_{0}, \partial_{a} F\right)=1 / 9,\left|y_{0}-x\right| \geqq 1 / 3$. By a combination of knight's moves and corner moves (see [1, Sect. 2]), $P^{y_{0}}\left(T_{x}=\infty\right)>0$. By the Harnack inequality of [1, Sect. 3], if $\varepsilon \in\left(0, \operatorname{dist}\left(x, \partial_{a} F\right) / 2\right)$, there exists $c(\varepsilon)$ such that $P^{y}\left(T_{x}=\infty\right)>c(\varepsilon)$ whenever $|y-x|=\varepsilon$. But then

$$
\begin{aligned}
1=P^{x}\left(T_{x}<\tau\right) & =P^{x}\left(T_{x} \leqq S_{\varepsilon}\right)+E^{x}\left(P^{X_{s_{\varepsilon}}}\left(T_{x}<\tau\right) ; T_{x}>S_{\varepsilon}\right) \\
& \leqq P^{x}\left(T_{x} \leqq S_{\varepsilon}\right)+(1-c(\varepsilon)) P^{x}\left(T_{x}>S_{\varepsilon}\right) \\
& =1-c(\varepsilon) P^{x}\left(T_{x}>S_{\varepsilon}\right) .
\end{aligned}
$$

Hence $P^{x}\left(T_{x}>S_{\varepsilon}\right)=0$, and letting $\varepsilon \rightarrow 0$ proves $P^{x}\left(T_{x}>0\right)=0$.

References

1. Barlow, M.T., Bass, R.F.: The construction of Brownian motion on the Sierpinski carpet, Ann. l'IHP, 25, 225-257 (1989)
2. Barlow, M.T., Bass, R.F.: (in preparation)
3. Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpinski gasket. Probab. Th. Rel. Fields, 79, 543-623 (1988)
4. Ben-Avraham, D., Havlin, S.: Exact fractals with adjustable fractal and fracton dimensionalities. J. Phys. A. 16, L559-L563 (1983)
5. Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. New York London: Academic Press 1968
6. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. 1. New York: Interscience 1953
7. Dellacherie, C., Meyer, P.-A.: Probabilités et potentiel: théorie des martingales. Paris: Hermann 1980
8. Doyle, P.G., Snell, J.L.: Random walks and electrical networks. Washington DC: Math. Assoc. Am. 1984
9. Durrett, R.: Brownian motion and martingales in analysis. Belmont CA.: Wadsworth 1984
10. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Berlin Heidelberg New York: Springer 1977
11. Goldstein, S.: Random walks and diffusions on fractals, In: Kesten, H. (ed.) Percolation theory and ergodic theory of infinite particle systems. (IMA Vol. Math. Appl. vol. 8, pp. 121-129) Berlin Heidelberg New York: Springer 1987
12. Havlin, S., ben-Avraham, D.: Diffusion in disordered media, Adv. Phys. 36, 695-798 (1987)
13. Kusuoka, S.: A diffusion process on a fractal, In: Ito, K., Ikeda, N. (eds.) Probabilistic methods in mathematical physics, Taniguchi Symp., Katata 1985, pp. 251-274, Boston: Academic Press, 1987
14. Lindstrom, T.: Brownian motion on nested fractals, Mem. Am. Math. Soc. (to appear)

[^0]: * Research partially supported by NSF grant DMS 87-01073

