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Summary. Jointly continuous local times are constructed for Brownian motion 
on the Sierpinski carpet. A consequence is that the Brownian motion hits 
points. The method used is to analyze a sequence of eigenvalue problems. 

1. Introduction 

The Sierpinski carpet is the fractal formed by dividing the unit square into 9 equal 
squares, removing the central one, dividing each of the 8 smaller squares into 9 
equal pieces, and continuing the process. In [1] Brownian motions on the Sier- 
pinski carpet were constructed. These are strong Markov processes with continu- 
ous paths whose state space is the Sierpinski carpet. The justification for the name 
"Brownian motion" is that the processes are continuous and are invariant under 
the appropriate class of translations, rotations, and reflections. We refer to Brow- 
nian motion s because there is at present no uniqueness result available, and it is 
conceivable that there might be more than one such process. 

In this paper we study some of the properties of these processes. We prove that 
the Brownian motions have jointly continuous local times. A consequence is that 
these processes hit points. We concentrate exclusively on the Sierpinski carpet in 
this paper, but our methods and results apply equally well to the other fractals 
considered in [1]. 

In [3] local times were constructed for Brownian motion on the Sierpinski 
gasket. However the construction in [3] relied heavily on the fact that the 
Sierpinski gasket is a finitely ramified fractal, i.e., it can be disconnected by 
removing finitely many points. The Sierpinski carpet, however, is infinitely rami- 
fied, and quite different techniques are necessary. 

For  other work on diffusions on fractals, see [11, 13, 14], and see [12] for a 
survey of the vast physics literature on random walks on fractals. We found [8] 
useful as a guide to our intuition. 

The idea of our method is this: let F,  be the nth stage of the construction of the 
Sierpinski carpet, and let W~ be Brownian motion in F,  with normal reflection at 
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the boundaries. In Sect. 2 we tie together the lifetime of W~' with the first eigenvalue 
2. of the Laplacian on F,  with appropriate boundary conditions. By an analysis of 
the eigenvalue problems, we show that 2. is nearly decreasing in n. In Sect. 3 we use 
a scaling argument to show that each of the Brownian motions constructed in [1] 
has a bounded H61der continuous Green function. Then in Sect. 4 we construct our 
local times and obtain the point recurrence by use of a combination of potential 
theory and stochastic calculus. 

The letter c will denote constants whose value is unimportant  and may change 
from line to line. Let B~(x) be the ball of radius e about x. Other notation will be 
introduced as needed. 

2. Eigenvalues 

Let F 0 = [0,1] 2, F a = [0, 1] 2 -  (1/3, 2/3) 2, and let F,  be the nth stage of the 
construction of the Sierpinski carpet. Let #, be Lebesgue measure on F,  normalized 
so that # , (F . )  = 1. Let OaF, = {(xl ,Xz)e[0 ,  112:xl = 1 or x2 = 1} (a stands for 
absorbing); let drF, = ~F. - ~aF. (r stands for reflecting). 

Define W~ to be Brownian motion on F.  with absorption on OaF, and normal 
reflection on ~,F,. (There are a number of equivalent ways to define W7 starting at 
a corner of one of the removed squares; we choose to do it by conformal mapping: 
see the proof of Lemma 2.1.) Let 

T, = inf{t: W~' ~ ~aF.} . (2.1) 

Let 

Define 

~. = sup E~z . ,  ft, = inf E~z , .  (2.2) 
x a F ,  x ~F,  c~ [0, 1/2] 2 

2 , = i n f t  ~ lVul2(x)kt.(dx)/Su2(x)#,(dx):u=OondaF.}. (2.3) 
k F.  

Then, as is well-known [6, Chap. 6], the inf is attained for some function v. that is 
nonnegative, bounded, and continuous on F,,  solves the equation A v, = - 2 . v ,  in 
the interior of F, ,  and has zero normal derivative a.e. on 0,F.  with respect to 

Zn 

surface measure on 0rF.. If  U,f(x) is defined to be E ~ ~ f(W~)dt for f bounded, 
o 

then 
U.v, = 22.- 1 Vn . (2.4) 

One advantage of expressing the smallest eigenvalue 2. in terms of a variational 
problem such as (2.3) is that v, automatically has Neumann boundary conditions 
on OFF,. 

We want to show 2.- 1 ~ c~.. First, define 

h,(x) = EX% . 
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Lemma 2.1. ~ l VhnlZ(x)pn(dx) = 2~ hn(x)#n(dx ) . 

Proof. Since h, = U,1, then �89 = - 1 .  Trivially h . ( x ) <  ~,. 
Suppose we had proved: 

(i) [Thn~LZ(F.) (with respect to #,); and 

(ii) Vh, eLI (0 ,F , ) ,  Oh~Or = 0, a.e. (with respect to surface measure on 0,F.), 
where Oh~Or denotes normal derivative. (2.5) 

Applying Green's first identity to a C ~ function g on F., we get 

0g 
IV  gl 2 = - ~ gAg + ~ ~ g  . (2.6) 

F. Fn ~F. 

Taking a sequence g~ of such functions such that gm--' hn uniformly on F., 
A g m ~ - 2  boundedly pointwise, Vgm-o Vh. in L2(F.)  and in LI(OF,), and 
Og,~/Ov-o 0 in LI(0F.),  we get our result. So it suffices to prove (2.5). 

By the usual properties of Brownian motion in a domain, h. is C ~ in the 
interior of F, and on OaF, - {(1, 1)}. Suppose Xo c 0rF. but Xo is not the corner of a 
removed square nor the origin. Take c sufficiently small so that B~(xo)r~ F. is a 
semicircle, and let S = inf{t:[ W~ - Xol ~ e}. Let h',(x) = E~$, h"(x) = E~h , (W]) .  
If x ~ B, (xo)  r~ F.,  the strong Markov property gives 

h.(x) = E~S + E~EW"~z. = h'.(x) + h"(x) . (2.7) 

Now h', is the time for reflecting Brownian motion to leave a semicircle, or 
equivalently, for Brownian motion to leave a circle. As is well-known [9, 
Sect. 1.11], this is C oo in the interior of the circle, and by symmetry, Oh'. (Xo)/Ov = O. 

Also, h~' (x) is harmonic for reflecting Brownian motion in a semicircle. By the 
Schwartz reflection principle, h~' can be extended to a harmonic function in B,(xo). 
Hence h~' is C ~176 in the interior, and by symmetry, Oh2(xo)/Ov = O. 

Next suppose Xo e 0,F, is the corner of one of the removed squares, and choose e 
small enough so that B,(xo) c~ F. is a 3/4-circle. Define S as before, and again write 
hn = h', + h~'.,Let us introduce complex coordinates so that Xo = 0 and B,(xo) c~ F, 
= {z = (r, 0):0 < r < e, 0 _< 0 < 3n/2}. Using the conformal mapping z -o zZ/3, 

the domain B~(xo)c~F . gets mapped into A = {(r, 0):0 _< r < e 2/3, 0 ~ 0 ~ g}. By 
L6vy's theorem [9, Sect. 5.1] (W~) 2/3 is the time change of  Brownian motion in the 
interior of A. Since the mapping is conformal, angles are preserved, so normal 
reflection is preserved, hence (W~) 2/3 is the time change of reflecting Brownian 
motion in A. Sorting out the time change, we get 

h',(z) = E z~" i l m t l - 2 / 3 d t  = ~ O(Z2/3, x ) l x l - 2 / 3 d x ,  
o B~,(O) 

where W t is standard Brownian motion, T = inf { t :l Wt ] _-> e 2/3 }, and g is the Green 
function for the ball of radius ~2/3. The function ]x I-2/3 is in L 1 (B~:~3 (0)), and known 
estimates [10, Sect. 4.2] imply that ~ g(z, x)[x[-2/3 dx is C 1 in the  interior of 

B~.(O) 
B~, (0). It follows that Vh' (z)~ L 2 ( B~(xo) ~ F~) n L 1 ( B~(xo) ~ 0,F,). A similar argu- 
ment holds for h~'. 
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The origin and (1, 1) are treated in the same manner. Thus (2.5) (i, ii) holds, and 
the lemma is proved. [] 

Remark. Note that the only way the geometry of F.  enters the proof of Lemma 2.1 
is through the fact that 0F. is piecewise linear. 

Proposition 2.2. There exists c 1 independent of n such that 

C 10~. ~ 2 n  1 ~ ~,/2 . 

Proof. Let us normalize v, so that supv,(x) = 1. Pick Xo so that Vn(Xo) = 1. Then 
x 

1 = v.(Xo) = �89 U.v.(Xo) <__ �89 U,1 (Xo) <= �89 h.(x) = �89 
x 

To get the other inequality, using Lemma 2.1 observe that 

2.<= ~ ]Vh. lZ / I  h2. = 2  ~ h . / I  h2" 
Fn 1F~ F~ / F ~  

= = ~fl.. So But h.(x) > [3. on F. c~ [0, 1/2J 2, hence j" h~ > 1 2 
F. 

~. <= 8 ~ . / f l ~  . 

And by [1, Prop. 4.2], there exists c independent of n such that 

c~. <= [3. <__ ~. . [] (2.8) 

We now replace h. by a function with more manageable boundary values. Let 

g . ( x l , x z ) = f l ; l h , ( 1  - -X l ,X2 )A  1 for x z <  1/2,  (2.9) 

and define 9.(x 1, xz) = g,(Xl, 1 - x2) for x z > 1/2. Since h.(O, xz) > [3, ifx2 < 1/2 
and h.(1, x2) = O, we get 

g,(O, x 2 ) -  O, g.(1, x2) - 1 . (2.10) 

We next consider the variational problem 

p. = inf f ~1Vul2(x)#n(dx):u(O' X 2 ) ~ - - 0 '  u(1, x 2 ) ~ l  t "  (2.11) 
l Fn ) 

Letf.  be the function at which the minimum is attained. We do not need this fact, 
but one can show using calculus of variations that 

f.(x) = Px(ZThits{1} x [0, 13 before hitting {0} x [0, 1]), 

and p. is the energy of the harmonic functionf., where Z7 is Brownian motion on F. 
with normal reflection on 8F.. 

Proposition 2.3. There exist constants c2 and ca independent of n such that 
C2.~ , <-- pn ~ C3"~n. 
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Proof Using Lemma 2.1, (2.10), and the fact that 0, satisfies the constraints of the 
variational problem (2.11), 

p . ~  j" I Vg.12 = 2 j" [V(l^HZ*h.)l  2 
F. F . ~  [0, 1] x [0, 1/2] 

__< 2/U 2 ~ I Vh.J 2 = 4/V 2 ~ h. =< 4~.//~. ~ 
Fn Fn 

Applying (2.8) gives the second inequality. 
To get the first, define ~b, on F, c~ {(xl, x2):x2 < xl} by 

f i  if x I < 1/3 
~n(X1, X2) = -1(2 - 3xx, 3x2) i f l / 3 < x l < 2 / 3  

if 2/3 < xl , 

and define ~. on /7. c~ {(xl, XE):Xz > Xl } by symmetry about the line x 1 = x 2. 

Since ~. = 1 on [0, 1/3] 2, then ~ ~2 > 1/8. Using scaling, 
En 

~ llT~p. 12 < 2 " ~rj_ '17f.-ll2 = ~P.-  
Fn 

Hence 
2. < 18p,_1 �9 

By [1, Prop. 4.2] there exists constants c 4 and c s such that 

C40~ n ~ O~n-- 1 ~ C50~ n. 

Then by Prop. 2.2, 
tt ~.-1 < c~2-11 < c' ~2 ' < c 4 . .  

Combining (2.12) and (2.14) gives the first inequality. [] 

The main result of this section is 

27 T h e o r e m  2.4. p .  < ~ p . _  1. 

Proof Let a = 2/7, and let 

f a f . - l (3Xl ,  3x2 - [3x2]) 
e,(xl,  x2) = a + (1 - 2a)f,_l(3xl -- 1, 3x2 - [3x2]) 

1 -- a + af ._l(3x 1 - 2, 3x2 - [3x2]) 

Then 

9 9 9 
P,, ~ S I Ven [2 = 3a2 "~Pn-1 -+- 2(1 - 2a) 2 '  ~P,-a q- 3a2~p,,-1 

Fn 

27 
= ~ p . _ ~ .  

(2.12) 

(2.13) 

(2.14) 

if 0 < x2 < 1/3 

if 1/3 < x~ < 2/3 

if 2 / 3 < x ~ < 1  

(Of course, a was chosen to minimize the right hand side.) [] 
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Corollary 2.5. There exists c 6 independent of n and r such that 

a,_~/~, < c 6 (27/28) ~ < c 6 . 

We can also give a lower bound  for p,/p, 1. 

Theorem 2.6 p,  > 43-p,_ 1. 

Proof. (cf. [4]) Let A = F, c~ ([0, 1] x [0, 1/3]), B = F, n ([0, 1] • [2/3, 1]), 
C = F, n [0, 1/3] z, and A i = {i/3} x [0, 1/3] for i = 0, 1, 2, 3. Let  Z~ be Brownian 
mot ion  in A with normal  reflection on the bounda ry  of A. 

If  Z~ ~ A1, then by symmet ry  Z~ is equally likely to hit A o and A2 first, with a 

similar statement if Z"~ Let S~ = inf {t:Z~ ~ ~J Ak } ' let V~ be the value ~ 

suchthatZ~~ ~v, A k } ' a n d l e t V ~ + ~ b e t h e v a l u e ~  

such that  Z"s, +~ ~ A,. So Vii is the sequence of Ak'S that  Z~ visits. Then V i is a simple 
r a n d o m  walk on {0, 1, 2, 3} with reflection at 0 and 3. Therefore,  

Px(Z~ hits A 3 before hitting Ao) = k/3 if x~A k . (2.15) 

N o w  consider the variat ional  p rob lem 

~ S]Vul2(x)#"(dx):u=OA on A o , u = l  o n  A 3 t  , (2,16) 

and let g. be the minimizing function. By s tandard  calculus of variat ions techni- 
ques, we see that  g. is the harmonic  function having bounda ry  values 0 on A o and 1 
on A 3 and having zero normal  derivative on the remainder  of  the bounda ry  of A. 
Hence 

g.(x) = Px(Z 7 hits A 3 before hitting A o ) .  

Let 

z .=inf{! lVulZ(x)# . (dx):u=O on Ao, u= 1/3 o n  A 1 } .  (2.17) 

Using (2.15) and the fact that  A is the union of C and two of its translates, we see 

( D  n = 3 ~ Z  n . 

By scaling, the function that  minimizes the variat ional  p rob lem (2.17) is 
u(x) = i f . _  1 (3x), and so 

Finally, using symmetry,  

Corollary 2.7 

~n ~ P n - 1 / 8  �9 

3 
P. = S [Vf~l 2 > 2S I Vf~l z ~ 20). = 6n. = ~ P . - 1  - 

Fn A 

There exists c7 independent of n and r such that 

e ._ r /e .  > c 7 (3/4) r �9 

[] 
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Remark. A paper in preparation I-2] will show that Corollaries 2.5 and 2.7 lead to 
upper and lower bounds for the spectral dimension of the Sierpinski carpet. 
Specifically, Corollary 2.5 leads to the upper bound 2log 8/log (28/3) ,~ 1.862, while 
Corollary 2.7 leads to the lower bound 21og8/log12 ,~ 1.674. Refinements to 
Theorems 2.4 and 2.6 lead to slight improvement of both the upper and lower 
bounds. Numerical calculations suggest that the actual value of the spectral 
dimension is approximately 1.81. 

3. Green Functions 

We need to introduce some more notation. Let F = (] F., gaF = OaF 1. Let 
n = 0  

df = log 8/log 3, the Hausdorff dimension of F. Let # be the weak limit of the #n; # 
is a multiple of the Hausdorff xnS-measure on F. 

For x = ( x l , x 2 ) ,  define D r ( x ) = [ ( j - 1 ) / 3  r, ( j + 1 ) / 3  r) x [ ( k - 1 ) / 3  r, 
(k + 1)/3 r) i f ( j  - 1 )3- '  < Xl < (j + �89 (k - �89 -" < x2 < (k + �89 k in- 
tegers. Note that 

inf 3'dist (aD,(x), 0Dr- 1 (x)) > 0 .  (3.1) 
r , x  

Let s be the collection of continuous paths in [0, 1] 2 and let X t be the canonical 
coordinate process. Let P~ be the law of W~",t starting at x. Let r = inf { t: Xt ~ 0, F } 
and let 

a~(x) = inf{t:XtCD~(x)} ^ T . 
x Let n i be any sequence tending to infinity such that for each x ~ F, Pnj converges 

weakly, say to P~, and (P~, Xt) forms a strong Markov process on F with 
continuous paths. The existence of such sequences nj is one of the main results 
of [1]. 

Finally, let tin, Un(X, y) and U, u(x, y) be the Green potential and function for 
(P~, Xt)  and (W, Xt), respectively. So, for instance, 

E~ i la(X~)ds = Un la(x) = ~ u,,(x, y)pn(dy) . 
0 A 

By [1, Sect. 7], given e, there exists Ca(e), Cg(e ) and ~ (independent of n) such that 

u,,(x,y),u(x,y) <__ c 8 whenever x , y ~ F ,  l x -  y[ > e (3.2) 
and 

lu.(x, y ) -  u.(x,z)L < c 9 1 y -  zL ~ , [u(x, y ) -  u(x ,z) l  < c 9 l y -  zl ~ 

whenever x, y, z E F, Ix - y ], Ix - z] > e .  (3.3) 

Remark. Note that if x 4 : y ,  EYi l {x} (Xs )ds= S u(y ,z )#(dz)=O.  And by 
o {x} 

[1, Sect. 6], X t started at x leaves {x} immediately. So by the strong Markov 
property, 

EX i l{x}(Xs)ds = 0 .  (3.4) 
0 
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A consequence of (3.2) is that  if #(A) = 0, e > 0, then 

EX i 1Ac~B~(x)(X~)ds = S U(X, y)~(dy) < c s # ( A n  B~e(x)) = O. 
0 A ~ B~(x) 

Lett ing s ~ 0 and using (3.4) then tells us that  if/~(A) = 0, U1 a -= 0. 
Another  consequence of (3.4) is that  we m a y  define u(x, x), i.e., u on the 

diagonal,  arbitrarily, without  violating (3.2) or  (3.3). We choose to define 

u(x, x) = lira sup u(x, y ) .  (3.5) 
y ~ x  

We now prove  that  the restriction Ix - y[ > e in (3.2) can be dispensed with for 
u(x, y). 

Theorem 3.1. There exists elo such that 

u(x, y) < Clo whenever x, y ~ F  (3.6) 

Proof Fix x , y ~ F , x  4: y. Let e > 0 and set A = A(e) = F o c~ B~(x). Note  that  for 
n > l  

/~n(A) < 12#(A) .  

The main  step of the p roof  is to get an upper  bound  for 

a,.(x) 
q,,(y, A) = E~ ~ 1A(X~)ds (3.7) 

,7. + 1 (x )  

for n > r > O. Using the strong M a r k o v  proper ty  we have 

a, (x) 
q,,(y,A)< sup E~ ~ la(Xs)ds. (3.8) 

z ffOD,+l(x ) 0 

Also, qnr(Y, A) = qnr(Y, A n D,(x)), and qn,(y, A) = 0 for y C D,(x). 
First  consider the ease r < 4. Then by (3.8) 

qnr(y, A) < sup E~i la(Xs)ds  �9 
z EcODr+l(x ) 0 

If  A _ D,+ t (x) then by (3. t) there exists a 6~ > 0 ( independent  of  r and x) such that  
dist (QD,+~(x), D,+2(x)) > 61. So, by (3.2), 

sup EZ i la(X~)ds < Itn(A) sup Un(Z, W) < 121~(A)c8(61) . 
z ~ODr+~(x ) 0 z ~ODr+I(x ) 

weA 

On the other  hand, if A 7~D,+a(x) then /~(A)> 6z > 0 for some constant  62 
independent  of x and r. So 

E~, i 1A(XDds <-_ E ~  
0 

< 1 <_ (5; 1 I~(A). 

Combin ing  the last two inequalities we have that, for  some constant  c~o < oc, 

qn~(y,A)<c~ola(A),  O < r < 4 ,  n > r .  (3.9) 
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We now use scaling to generalize (3.9). Let r > 4, and p = r - 3. Suppose for the 
moment that D,+l(X ) ~ [0, 3 - '+x)  2. The law of W"(t) started at x is the same as 
the law of 3-v  W"-P(9vt) starting at 3-Vx. So X t under P.~ has the same law as 
3-vX(t9v~,/~._p) under _._p.P3~ Hence, writing 0.v = 9v~,/~,_p, 

On v tr3 (3v x) 
q,,(y, A) = E 3~y._p ~ la(3-eX(tO,v))dt 

O .  v a4  (3v x) 

a3(3Px) 
__ i ~ 3 V Y  ~ la(3-vX~)ds - O~ l _ . _ p  

or4 (3v x) 

Thus by (3.9) 
= O~ 1 q._v,3(3Py, 3PA). 

q,,(y, A) < O~ 1Clo#(3VA). 

Now #(3VA) < 3PaS/~(A), and so, using Corollary 2.5, 

q,,(y, A) < Clo9-Vct._vo~13~'aS #(A) 

< c6cao9-V(27/28)v3PaY#(A) 

Let n --+ c~ 
following (3.3), 

= C6Clo(6/7)Vp(A) = c(6/7) '#(A).  (3.10) 

along the sequence nj. Then since Ulna _= 0 by the remark 

a. (x) 

E y ~ la(Xs)ds < c(6/7)'#(A). (3.11) 
a .  + 1 ( x )  

We now remove the restriction D,(x) ~_ [0, 3 - '+  1 )2. If D,(x)7~ [0, 3 - '+  i )2 .w  e 
can perform suitable translations, rotations, and reflections to find ~, j), and A so 
that or,(1) 

q,,(y, A) < q.,(.9, .4) = E~, S 12(X~)ds 
a,+l(~) 

with /),(~) = [0, 3 - r + l )  2 and #.(A) > #.(/i).  Applying the above argument to 
q.,(33, A), we get the bound (3.11) as before. 

For  use in Theorem 3.2, note that the only reason we may have to have 
q,,(y, A) < q,,(~, ,4) is because x and y may be too close to ~3,F. 

Finally, summing over r gives 

E" f la(Xs)ds < e (6/7)'#(A) < c#(A) (3.12) 
0 r=O 

for all 5. By the continuity of u(x, y) off the diagonal (see (3.3)), letting ~ --. 0 gives 
(3.6) if x 4: y. Using (3.5) completes the proof. [] 

We now obtain the joint continuity of u(x, y). 

Theorem3.2. There exists Cll and ct > 0 such that 

[u(x, y) - u(x, z)J < cll  {y - zJ ~ whenever x, y, z ~ F .  (3.13) 

Proof We prove the estimate (3.13) for the case x 4: y, x 4: z. Once we have this, 
we get (3.13) for all x, y, z by (3.5). 
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Suppose for now that y 6 F c ~  [0, 8/9) 2. In view of (3.3), we may suppose 
lY - z l < 3-4. By the strong Markov  property,  the continuity o fu  off the  diagonal, 
and the fact that u( ' , - )  is harmonic  in each variable off the diagonal, 

u(x, y) - u(x, z) = EX[u(Xs ,  y)  - u(Xs ,  z)]  , 

where S = inf{t :  [Xt - y[ < 31y _ z[}. Hence it suffices to obtain the bound  (3.13) 
for I x -  yl, l x -  z[ < ~ l y -  zl. 

Let e <  l Y - z l / 5 ,  let A = A ( e ) = B ~ ( x ) ~ F  o, and define q n , ( z , A ) , q , , ( y , A )  
by (3.7). 

First, consider the case: ly - z[ < 3 - ' - 4  and r > 4, As in the proof  of Theorem 
3.1, we may suppose {x, y, z} u A ~ [0, 3-~+1) 2. Let  p = r - 3. Using scaling as 
in (3.10), 

q,,(y, A) = r3~r  r4 tX ~ (3.14) 
" - ' n - p  " ~  ~, e%(Mx): ' 

where 
a3 (3P x) 

H(w)  = E,~_p S l(3"A)(X(9Pt~"/~n-p))dt 
o 

< c3,(a:- 2)be(A ) , (3.15) 

and similarly for q,,(z, A). 
By [1, Sect. 3], since 3Py, 3PzeF  n [0, 8/9) 2, there exists ~ < (2 - d:) /2  so that 

[q,r(Y, A)  -- qnr(Z, A)I < C IIHII [3PY - 3Vzl r 

< c3"(a:-2+r - zlCbe(A). (3.16) 

The second case: l Y -  z l < 3 - r - 4  and r < 4, is similar, but  no scaling is 
necessary (cf. the p roof  of Theor.  3.1). 

In both the first and second cases, letting n ~ co along the subsequence nj and 
using the fact that  UIoA =-- O, 

~,(x) ~,(~) (Xs)ds E r y 1A(Xs)ds - E ~ ~ 1A < c3,(a:-2+e)ly _ zlCbe(a). 
Or-+ 1 (X) O'r + I (X) 

(3.17) 

For  the third case: lY - zl > 3 - r -4 ,  

[q,,(y, A)  - q,,(z, A)] < Iqnr(Y, A)I + ]q,,(z, A)I < c Y ( a : - z ) # ( A )  

by (3.10). Again, let n ~ oo along the subsequence nj. 
Then, summing over r, for all ~, 

E Y i l A ( X s ) d s - - E ~ i l A ( X ~ ) d s  < ~ c 3 ' ( a : - z + r 1 6 2  
o o { r : l y - z l  < 3  . . . .  } 

+ ~, cy (a : -  2)#(A) 
{r:ly- zl > 3 . . . .  } 

< c # ( A ) [ l y  - zl r + [y - zl - (a : -  2)] . 

D iv id ing  both  sidea by #(A), letting e ~ 0, and recalling u(x, y) is cont inuous off the 
diagona l  gives (3.13) if y ~ F c~ [0, 8 /9)  2. 
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But the restriction y E F c~ [0, 8/9) 2 may be removed by a very similar proof to 
that of [1, Theor. 7.2]; the details are left to the reader. [] 

4. Local Times 

Once we have u(x, y) bounded and H61der continuous, the co'nstruction of jointly 
continuous local times is routine. 

Proposition 4.1. For each y ~ F, u(x, y) is excessive. 

Proof The function x -4  ~ u(x, z)#(dz) = ExS 1BAy)~ F (Xs)ds is a potential, 
BE(y ) n F 0 

hence excessive. By the continuity of u, the function x -4 u(x, y) is the uniform limit 
of 12(B~(y) n F ) -  1 ~ u(x, z)#(dz) as ~ ~ 0, and hence is also excessive. [] 

B~(y) c~ F 

Proposition4.2. For each y ~ F, u(x, y) is a regular potential. 

Remark. Recall that u(x, y) is a regular potential if for each z, EZu(Xr. ,  y)-4  
EYu(Xr,  y) whenever T, are stopping times increasing to T. 

Proof This is clear by the boundedness and continuity of u and the continuity 
of X t. [] 

We now use [-5, Theor. IV. 3.13] to see that for each y there exists a continuous 
additive functional Lt r whose potential is u(x, y). Since by the Markov property 

E~LY t = u(x, y) - E~u( Xt ^ ~, y) 

for each z, it follows easily that 

M r, = u (X  t ^~, y) - u(Xo, y) + L, r (4.1) 

is a martingale with respect to PX for each x. Moreover, Mg = 0, PX-a.s. for each x. 
We now want to show we can choose a version of L~ that is jointly continuous 

in t and y. Since u(X  t ^ ~, y) is continuous in t and y jointly, we can concentrate our 
attention on M, r. 

Let U ~ = u ( X  t ^ ~ , y ) - u ( X o , y ) ,  let N~(y~ ,y2 )=M~ ' - M ~  ~, and let 

N* (Yl, Y2) = sup INs(y1, Y2)I 
S~'C 

Proposition 4.3. There exists ~ and 0 > 0 such that for all z 

P~(N*(y~ 'Y2)>  2 ) < e x p ( ~ - Y  21r 

Proof Fix y~ and Yz, let A = supu(x ,y) ,  and let 6 = sup l u ( x , y ~ ) -  u(x, y2)[. 

Trivially, 6 < 2A. 
By Ito 's  formula, for each z and t 

- -  ~ - -  y 2  yl -- g z Ez(uYt~ UtY~) 2 2EZ~ U~ ~ U, )d(U~ U~ 2) + ( N ( y x , Y 2 ) ) t  , 
o 
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and hence 
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t 

E~(N(y l , y z )> ,  <_ (26) 1 + 26EZSd(Uf ~ + Uf 2) 
0 

<= 462 + 43A 

<= 123A. (4.2) 

By monotone convergence, we get the same bound for E Z ( N ( y l ,  Y2)),.  
Suppose S and T are bounded stopping times with S < T. Then by the strong 

Markov property and Cauchy-Schwartz, 

E~(I Nr(y i ,  Y2) - Ns(yl ,  Y2)[ I ~-s) < (E'(( NT(yl,  Y2) - Ns(Yi ,  YE))21~s)) i/2 

< (EZ((N(Yi ,  Y2))r - -  ( N ( y t ,  Y2))sl ~S)) 1/2 

< (EZEXs((S(yl ,  y2)),))  1/2 

< (126A) 1/2 . (4.3) 

We can then apply [7, p. 193], and get 

E~exp(yN*(yi ,  Y2)) < 2 

provided 7 < (8(126A)~/2) -~. The proposition now follows by Chebyshev's in- 
equality together with the fact that 6 < K[y~ - yz] ~ for some K and ~ > 0. [] 

With the estimate of Proposition 4.3, we can now appeal to [3, Sect. 6] to 
conclude that there is a version of L~ that is jointly continuous in t and y. 

We have 

Proposition 4.4. Except for a set N such that pX(N) = 0 for all x, 

t a t  

f (Xs )ds  = ~f(y)L~#(dy)  
0 

for all f bounded on F. 

Proof Supposef is  continuous on F. Multiplying M~ b y f ( y )  and integrating with 
respect to #, we see that 

~f(y) U~#(dy) + ~f(y)L~#(dy) is a PX-martingale for all x .  

On the other hand, under px 

j f ( y )  UY#(dy) = S f ( y ) [u (X  t ^ , ,  y) - u(X o, y)]#(dy)  

= E x'^~ ~f(Xs)ds - E ~' ~f(X~)ds 
0 0 

= E~ f ( X ~ ) d s l ~ t  ^ ,  -- E~ I f (X~)  ds 
t ^ ~  0 

= e ~ X ~ ) d s l  ~ ^ ~  - I f ( X ~ ) d s  - e ~ I f ( X ~ ) d s .  
0 0 
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t A T  

Hence ~f(y)Lrt#(dy)  - ~ f (X~)ds  is a W-martingale that is null at 0, continuous, 
0 

and of bounded variation. But the only such martingale is O, and hence if 

IV: = o~: ~ f ( y ) L f # ( d y )  + ~ f ( X s ) d s  for some t__< z , 
0 

then PX(N:)  = O. 
Let f~ be a countable collection of continuous functions, the closure of whose 

linear span is C~(F). Let N = 0 N:~. Then for each x, PX(N) = 0; while if o~r 
i = 1  

the equality asserted in the statement of Proposition 4.4 holds for all con t inuousf  
By a monotone class argument the equality holds for all bounded f when co r N, 
proving the proposition. [] 

Point recurrence is an easy consequence of the existence of local times. Let 

Ty = in f { t :X  t = y} . 

Theorem4.5. I f  x, y ~ F  - a~F, then PX(Ty < ~ ) > O. 

Proof. If  x = y, choose r large enough so that Dr(x ) n Oa F = ~ ,  and then 

P*(Ty< ~ ) >  Expxo.~x)(Tr < oo).  

So it suffices to consider the case x 4= y. 

Since ~ u(x, z)#(dz) > 0, there exists z 4: x such that u(x, z) > 0. Since u(x, . )  is 
F 

harmonic on F - {x}, this implies by the Harnack inequality that u(x, y) > 0 (see 
[1, Sect. 3]). But u(x, y ) =  ExL~, which implies P*(L~ > 0 ) >  0. And since L~ 
increases only when Xt is at y, this proves the theorem. [] 

Remark. If the boundary 0, F were changed from absorbing to reflecting, a renewal 
argument could be used to show PX(T r < ~ ) = 1. 

Closely related to the notion of point recurrence is that of points being regular 
for themselves. 

Theorem 4.6. I f  x ~ F - O~ F, then P~(T~ = O) = 1. 
Proof Fix x ~ F - OaF, let e > 0, and set A(e) = B~(x) c~ F. Let 

S~ = inf{ t :X t e 0B~(x)} . 

By the strong Markov property, if e < l Y - x [, 

U1At~)(y ) = Er(Ula~o(Xs);S~ < z ) .  (4.4) 

Multiply both sides of (4.4) by/z(A(e))-1 and let e ~ 0. Using the continuity and 
boundedness of u, the continuity of Xt, and dominated convergence, we get 

u(y, x) = u(x, x)Pr(Tx < z) .  (4.5) 

Since u(x , ' )  is harmonic off {x} and u(x, . )  = 0 o n  OaF , then u(x , ' )  takes its 
maximum at x. Since u(x, y) > 0 if y 4= x (see the proof  of Theor. 4.5), this implies 
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u(x, x)  > 0. Le t t ing  y ~ x in (4.5) an d  us ing  the c o n t i n u i t y  of u t hen  gives 

l im PY(Tx < ~) = 1. (4.6) 
y -'-~ X 

Recall  tha t  s t a r t ing  at  x, X leaves {x} i mme d ia t e ly  ([1, Sect. 6]), hence  S~ $ 0, 
px-a.s. Since 

P~(Tx < ~) > P~(S~ < T~ < ~) = E~px~(T~ < ~) ~ 1 

as e ~ O ,  then  
p X ( T  x < r ) =  1.  

Fina l ly ,  choose  Yo such tha t  d is t (yo,  OaF) = 1/9, [Yo - x[ > 1/3. By a c o m b i n a -  
t ion  of kn igh t ' s  moves  a n d  co rne r  moves  (see [1, Sect. 2]), PY~ x = ~ )  > O. 
By the H a r n a c k  inequa l i ty  of  [1, Sect. 3], if ~ ~ (0, dis t(x,  6a F)/2) ,  there  exists c( t)  
such tha t  PY(T  x = ~ ) > c(e) whenever  [y - x[ = e. But  t hen  

1 = PX(T~ < z) = pX(T~ <= S~) + E:'(PX~,(rx < z); T. > S~) 

<= W'(Tx < S~) + (1 - c(e))PX(Tx > S~) 

= 1 - c(~)P~(T~ > S~). 

Hence  W ( T x  > S~) = 0, a n d  le t t ing e ~ 0 proves  W ( T ~  > 0) = 0. [] 
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