
Probab, Theory Relat. Fields 101, 251-276 (1995) 

Probability 
Theory and Related Fie~ds 

�9 Springer-Verlag 1995 

On the existence of positive solutions for semilinear 
elliptic equations 
with Neumann boundary conditions* 

Z.Q. Chen I , R.J. Wi l l iams 2, Z. Zhao 3 

1 Department of Mathematics, Cornell University, Ithaca, NY 14853-7901, USA 
(e-mail: zchen ~ math.cornell.edu) 
2 Department of Mathematics, Universily of California, San Diego, La Jolla, CA 92093-0112, USA 
(e-mail: rjwilliams@ucsd.edu) 
3 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA 
(e-mail: mathzz@mizzou 1 .missouri.edu) 

Received: 14 January 1994 / In revised form: 14 June 1994 
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to some semilinear elliptic equations in unbounded Lipschitz domains D C ~,t 
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on the boundary of D. For this we use an implicit probabilistic representation, 
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W 1'2(D). Special cases include equations arising from the study of pattern for- 
mation in various models in mathematical biology and from problems in geometry 
concerning the conformal deformation of metrics. 
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1 Introduct ion 

Let D be an unbounded Lipschitz domain in ~d (d > 3) with compact boundary 
OD, cr be the surface measure on OD, and n be the unit inward normal vector 
field defined o--a.e, on OD. We shall let D denote the Euclidean closure of 
D, C(D) the space of real-valued continuous functions defined on D, Cb(-D) the 
space of bounded functions in C (D), and Cc2(~ d) the space of twice continuously 
differentiable real-valued functions defined on 11~ d which have compact support. 
The Laplacian in ~d will be denoted by A In the following a positive solution 
on D means a solution that is strictly positive on D. 

In this paper, we study the existence of positive continuous solutions on 
to the following semilinear elliptic equation with nonlinear Neumann boundary 
condition: 

1 
(1.1) -Au+F1(.  u)+g = 0 i n D  

2 ' 
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OU 

(1.2) 0---n + F2( . ,  u) + r = 0 on OD, 

(1.3) lira u(x)  = o~, 
xED 

where a~ is the inward normal derivative of  u, F1 is a real-valued Borel mea- 
surable function defined on D • (0,/3) for some constant/3 E (0, oo] such that 
F1 (x, - ) is continuous on (0,/3) for each x E D and 

(1.4) - Ul(x)u < F l ( x , u )  < Vl(x)f l(u) for all ( x ,u )  E D • (O,/3), 

where Ul and VI are non-negative Green-tight functions on D (see Definition 1.1 
below), and f l  is a non-negative Borel measurable function defined on (0,/3). The 
function F2 is a real-valued Borel measurable function defined on OD • (0,/3) 
such that F2(x, �9 ) is continuous on (0,/3) for each x E OD and 

(1.5) - U2(x)u < F2(x, u) < V2(x)f2(u) for all (x, u) E OD x (0,/3), 

where U2 and V2 are non-negative functions in the class F to be specified below 
in Definition 1.2 and f2 is a non-negative Borel measurable function defined on 
(0,/3). The function g is a non-negative Green-tight function on D, r is a non- 
negative function in F and a > 0. The precise definitions of  Green-tightness on 
D and of the class F are made below. However, to give the reader some concrete 
conditions to keep in mind, we note that if UI, Vl ,9  are in LP(D) with p > d / 2  
and have bounded support then they are Green-tight on D, and if U2, 1/2, ~b are 
in LP(OD, or) with p > d - 1 then they are in F.  Here LP(D) (respectively, 
LP(OD,cr)) is the space of  real-valued Borel measurable functions defined on 
D (respectively, OD) whose absolute pth power is integrable with respect to 
Lebesgue measure on D (respectively, surface measure ~r on OD). 

Solutions of  (1.1)-(1.2) are to be interpreted in the weak sense (i.e., in the 
sense of  distributions). The factor of �89 appears in Eq. (1.1) only for the technical 
reason that our method of proof uses (reflecting) Brownian motion which has 
�89 as its infinitesimal generator. In order for our theorem on the existence of 
positive solutions for (1.1)-(1.3) to apply, we shall need further restrictions on 
f l ,  f2, g, ~ and ce, which are specified precisely in Theorem 1.2 below. But, for 
example, if3~(u) = u "yl with,),/ > 1 for i = 1,2, and 9,r are sufficiently 
small (in a certain potential norm) and at least one of them is positive, then these 
conditions are satisfied. 

Definition 1.1. A function w is Green-tight on D if  and only i f  w is a real- 
valued Borel measurable function defined on D such that the family o f  functions 
{w( . ) / lx  - �9 la-2, x E D )  defined on D is uniformly integrable in the sense that 

w satisfies 

( f } (1.6) ,<A>~olim sup ix id_2 dy = O, 
^ c o  I,.xED J A  - -  Y 

and 
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(1.7) lim / s u p / ~  Jw(Y)J } 
M--.oo I, xe o Ic>Y ix 7 7 - ~ _  2 dy = O, 

where m denotes Lebesgue measure on ]~a. Note that the limit in (1.6) is uniform 
in sets A C D such that re(A) --+ O. 

It follows easily from (1.6)-(1.7) that if w is Green-tight on D then 

(1.8) Ilwllo -z sup fo  
Iw(Y)l 

xeO ix _ yla_2 dY < o o .  

It is known [32] (see also [4]) that a Borel measurable function w is Green-tight 
on D if and only if l o w  E K~ ~ where 

LxE~a j jy j> M ix _ y [d -2  j = 0  . 

Here Ka denotes the Kato class for IR a which consists of all those real-valued 
Borel measurable functions v defined on IRa such that 

(1.10) lim sup Ix yja-2 dy = O. 
rt0 Lxe~ _yl<_r - -  

A real-valued Borel measurable function v defined on IR a is in KJ ~ if and only 
if 1By E Ka for each bounded ball B in IRa. 

A sufficient condition (see [321) for a real-valued Borel measurable function 
w to be Green-tight on D is that w E LP(D) with p > d / 2  and that there is 
M > 0 such that 

r 
(1.11) I(1DW)(X)I <_ ixl---- T- for all Ixl >- M, 

where ~b is a positive function defined on the interval [M, oo) with f ~  s-l~b(s) ds 
< O O .  

To study the Neumann boundary value problem (1.1)-(1.3), we need to in- 
troduce the class _/7 which is an analogue of the Green-tight class but for the 
boundary 0D in place of D, 

Definition 1.2. A function w is in the class F = F(OD ) if  and only if  w is a real- 
valued Borel measurable function defined on OD such that the family o f  functions 
{g0( . ) / l x  _ . Jd--2  X E OD} is uniformly integrable with respect to the surface 
measure ~r on OD, iae., 

(1.12) lim sup ix ~7~-g_2 er(dy) = O. 
~'ga "~ t x~ao  

In (1.12) the limit is uniform in sets A C OD such that ~r(A) ---+ 0. It is not 
difficult to show (see Proposition 2.1 below) that "x E OD" in (1,12) can be 
replaced by "x e D" and therefore if w E -P, 
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fo Iw~y)l (1.13) Ilwllao ~- sup Ix ~ - z  ~(dy) < ~ .  
xEo D 

Since we assume OD is compact, 1" C L 1 (OD, a). It is shown in Proposition 2.2 
that /7  contains all functions in LP(OD, ~r) for p > d - 1. 

The notion of a weak solution of (1.1)-(1.3) can be made precise as follows. Let 

{, 0, 1 WI'2(D) = E LZ(D) �9 ~x/ E L2(D) for i = 1 , 2 , . . . , d  , 

where ~ denotes the distributional derivative o f f  with respect to xi. In this 

paper, a continuous function u on D is said to be a positive solution of (1.1)- 
(1.2) if u > 0 on D, 1B u E wI'Z(D riB) for any bounded'ball B in 1tU, and for 
any ~ E C~2(N 't) we have 

(1.14) ~ V u ( x ) .  V~b(x)dx 

1 

It is known [18] that there exists a unique symmetric strong Markov process 
(X, {Px,x E D})  with continuous paths in D and associated Dirichlet form 
(wI 'Z(D) ,  4 )  defined by 

(1.15) g ( f , 9 )  = g V f .  V 9 d x  for f , 9  E wI'Z(D).  

This process is called normally reflecting Brownian motion on D. To state our 
main theorem, we need the following result which is proved in [5]. 

Proposition 1.1. The transition density function (t ,x,  y) ~ p( t ,x ,  y) of X exists 
as a continuous function on (0, c~) x D • D. Furthermore, there exist constants 
cl = cl(D) > 0 and c2 = c 2 ( D )  ~- 0 such that 

( ,x 
(1.16) p ( t , x , y ) < ~ e x p  - for al l t  > 0 ,  x ~ y E D .  

C2 

Let G(x ,y)  = f ~  p ( t , x , y )d t ,  the Green function for X. Then G(x,y)  is finite 
and continuous on D • D, except on the diagonal. Furthermore, there exists a 
constant c = c(D ) > 0 such that 

C 
(1.17) G(x,y)  < for all x ,y 'C -D. Ix -yl a-2, 
For a non-negative Borel measurable function w defined on D and a non-negative 
Borei measurable function ~b defined on OD, write 

2 - 
(Gw)(x) = G(x,y)w(y)dy for all x E D, 
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and 

(G~b)(x) = JOb G(x,y)~b(y)~(dy) for all x E D. 

The notation I1" Iloo will denote the supremum norm of a real-valued function over 
its domain of definition. Note that by Proposition 1.1, for a Green-tight function 
w on D and a function ~b in F,  IIGwi]oo ~ c IlwllD < ~ and IIG~bil~ ~_ 

c II~lla~ < ~ .  
We now formulate our existence theorem. For A E (0, 1), let 

(1.18) CA = sup e E (0,/3)" \ O < y < ~ - - ~ - /  

/ +2 \0<y<~ 

Here sup0 - 0 and 1/0 - +c~. The factor 1/2 appears in front of IIGVz[[~ 
in (1.18) only for a technical reason which becomes clear in (4.9) below. We 
shall only consider situations in which C;~ > 0 for some A E (0, t). Note that 
in the special case w h e r e , ( u )  = u "Y' with 3'i > 1 for i = 1,2, o r ~ ( u )  = u and 

1 [[GVll[oo + ~IIGV2Hoo < 1, then C~, > 0 for some )~ E (0, 1). 

T h e o r e m  1.2. Suppose that either 9 > 0 on a subset of  D of  positive Lebesgue 
measure or d? > 0 on a subset o f  OD of  positive r or c~ > O, and 

1 IIGgII~ + ~ [[4011oo + c~ < (1 - A)C), for  some A E (0, 1) such that C;~ > O. Then 
the boundary value problem (1.1)-(1.3) has a positive continuous weak solution. 

In general, uniqueness may not hold for the solutions found in Theorem 1.2 
(see the remark following Corollary 1.3 below). However, if F1 (x, u) and F2(x, u) 
are monotone decreasing as functions of u E (0,/3) for each x E D and x ~ OD, 
respectively, we show in Sect. 4 that there is uniqueness of continuous bounded 
solutions to (1.1)-(1.3). (It is implicit here that a solution u takes values in (0, fl), 
so that FI(.,  u), F2(', u) are well defined.) 

In order to keep the exposition as concrete and transparent as possible, we 
have not attempted to optimize the bound on [[GglIoo + �89 + c~, the space 
of Green-tight functions on D, or the class F.  In fact, in the Definition 1.1 for 
Green-tight functions and in the Definition 1.2 for the class F,  one may replace 
the kernel Ix - y 12-d by G(x,  y), the Green function for the reflecting Brownian 
motion on D. Theorem 1.2 remains valid with these modifications. 

Special cases of Eqs. (1.1)-(1.2) arise in pattern formation in various models 
in mathematical biology (see the introduction to [1] and the references therein) 
and in Riemannian geometry in connection with the problem of conformal defor- 
mation of metrics for manifolds with boundary (cf. [12], [13]). More precisely, 
for the latter, let M be a Riemannian manifold with smooth boundary, having 
metric ~0 and dimension d >_ 3. Let k denote the scalar curvature on M and 
h the mean curvature on the boundary OM. (If (M, ~i~) is a Euclidean domain, 
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then k = 0.) The Yamabe problem in Riemannian geometry asks whether, given 
smooth functions K and H defined on M and OM, respectively, one can find 
a Riemannian metric ~ on M which is pointwise conformal to ~0 such that 
(M, ~ )  has K as its scalar curvature and H as its mean curvature on the bound- 
ary. If  one writes ; ~  = u4/(d-Z)~oo , then (cf. [13]) the above deformation problem 
is equivalent to the existence of a positive solution for the Eqs. (1.1)-(1.2) with 

(1.19) F l ( x , u )  

(1.20) F2(x, u) 

d - 2 d - 2 u(d+2)/(d_Z) ' 
4(d - 1) k(x) u + 4(d - 1 ~  K(x)  

d 2- 2h(x)  u + ~ - ~ - H ( x )  u a/(d-2), 

~b = 0 and A = AN,  the Laplace-Beltrami operator on (M, ~0). Escobar [12], 
[13] has studied the problem of conformal deformation of metrics for compact 

Riemannian manifolds with boundary. In contrast, our Theorem 1.2 is for an 
unbounded Lipschitz domain D with compact boundary. Since 9 = 0 and q5 ~ 0, 
for the conformal deformation problem, we need to specify c~ > 0 in order for 
our Theorem 1.2 to give sufficient conditions for conformal deformability of  the 
Euclidean metric on D. As a simple example of applying Theorem 1.2 in this 
case, we have the following corollary for deforming the mean curvature on the 
boundary of the exterior of  a ball of  radius a > 0. In this case, h =_ - I / a ,  k =_ 0 

and for simplicity we take K = 0. 

Corol la ry  1.3, Let D = {x E ~a  : ix ] > a )  with a > 0 and d > 3. For any 

H E LP(OD, or) with p > d - 1, there exists a metric ~ on D which is pointwise 

conformal to the Euclidean metric and such that it has zero scalar curvature in 

D and mean curvature H on OD. 

Remark. The metric ~ found in the proof of Corollary 1.3 has a limiting value 
at infinity of  c~ times the Euclidean metric, where c~ > 0. Even if one fixes the 
value of c~, there may be more than one metric , ~  with this limiting value and 
the other properties described in Corollary 1.3. Indeed, for a = 1, d = 3 and 
H = 1, it is shown in Sect. 4 that for c~ sufficiently small there are two different 
rotationally invariant metrics ~ satisfying the aforementioned conditions. 

There is a wealth of  literature on solutions of  semilinear elliptic equations. 
However,  we have not been able to find results that entirely subsume ours. 
Most of  the existing literature employs analytic methods for solving semilinear 
equations, such as variational methods or methods of sub- and super- solutions 
(see e.g., [1], [2], ]23], [24] [26], [30], and the references therein). On the other 
hand, it is well known that one can solve certain linear elliptic equations with 
boundary conditions by running suitable diffusion processes (see e.g., [8], [10], 
[21], [25] and [27]) and there are a few works on the use of  probabilistic methods 
for solving semilinear elliptic equations (see e.g., [4], [11], [16], [17], [20], [25] 
and [32]). The methods used in these works basically fall into the following four 
categories. 
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1. Measure-valued branching processes have been used to solve equations of the 
form (1.1) with Dirichlet boundary conditions and F1 (x, u) = - w ( x ) u  p, where 
w is non-negative and bounded, and p E (1, 2] (see e.g., Dynkin [11]). 
2. A probabilistic potential theoretic refinement of the analytic method of sub- 
and super-solutions has been used where Fi(x, u) = El(U) and u Fi(u) < 0 for 
i = 1,2 (see Glover and McKenna [20] for the case D = Na, and Ma and Song 
[25] for bounded domains with boundary conditions). 
3. An implicit probabilistic representation coupled with Picard iteration or a 
contraction mapping has been used to solve parabolic and (degenerate) elliptic 
semilinear equations where the coefficients are assumed to be at least Lipschitz 
continuous (see e.g., Freidlin [16], [17]). 
4. An implicit probabilistic representation together with Schauder's fixed point 
theorem has been used to find positive solutions to equations of the form (1.1) 
with Dirichlet boundary conditions (see Zhao [32], Chen, Williams and Zhao 
[4]). 

Both methods 3 and 4 use an implicit probabilistic representation, but method 
4 uses the potentially broader mechanism of Schauder's fixed point theorem 
rather than a contraction mapping argument. In this paper, we adapt method 4 to 
the case of Neumann boundary conditions. Our approach also heavily uses the 
theory of Dirichlet spaces. Of course, Schauder's fixed point theorem has been 
used before in solving partial differential equations. It is the combination of an 
implicit probabilistic representation and Schauder's fixed point theorem which is 
new and we find appealing. In particular, it allows us to deal with a Lipschitz 
boundary and to allow semilinear terms that may be locally unbounded in x. 

Before proving Theorem 1.2, we develop some preliminaries concerning the 
class _P and probabilistic representations of solutions of linear Schr6dinger equa- 
tions with possibly singular potential terms and Neumann boundary conditions in 
unbounded Lipschitz domains. This we do in Sects. 2-3 below. The idea of our 
method of proof of Theorem 1.2 is as follows. Suppose that u is a positive con- 
tinuous solution of (1.1)-(1.3). Then u solves the linear Schr6dinger boundary 
value problem 

1 
(1.21) ~ A u + q u + g  = 0 inD,  

Ou 
(1.22) O----~+nu+O = 0 onOD, 

(1.23) lira u(x) = c~, 
I x l ~  

x E D  

where 

(1.24) 
F l ( ' ,  u) F2( ' ,  u) 

q - - - ,  t ~ =  - -  
U u 

Let q+ and t~ + denote the positive parts of q and ~ respectively. Then, provided 
that Ilaq+LL~o + �89 < 1, the solution of (1.21)-(1.23) has an (implicit) 
probabilistic representation in terms of reflecting Brownian motion on D (see 
Lemma 3.3). If we denote this representation by Tu, the idea of our method 
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is to define a suitable space A of positive bounded continuous functions on D 
such that T maps A into A and has a fixed point there. It then follows that such 
a fixed point solves the original Eqs. (1.1)-(1.3). The full proofs of 'Theorem 
1.2 and Corollary 1.3 are given in Sect. 4, as well as a uniqueness theorem for 
solutions to (1.1)-(1.3) under the condition that Fl(x, u), F2(x, u) are monotone 
decreasing in u. Some extensions of  the results in this paper are listed in Sect. 5. 

For convenience, throughout this paper, all functions are extended to be zero 
off their domains of  definition and are still denoted by the same symbols, unless 
otherwise specified. In the sequel, we use v + and v -  to denote the positive and 
negative part of  a real-valued Borel measurable function v, respectively; that is, 
v + = max(v ,  0)  and v -  = m a x ( - v ,  0}. 

Acknowledgement. We would like to thank J. F. Escobar and P, Li for helpful discussions on the 

problem of conformal deformation of metrics. 

2 T h e  c l a s s  F' 

In this section, we present several equivalent definitions for the class 1" and then 
we give a sufficient condition for functions to be in this class. Let B(x, r) denote 
the open ball in II~ d centered at x with radius r. In part (c) of the following 
proposition, A is Borel measurable. We omit the proof of this proposition, since 
it is a straight forward exercise in real analysis. 

Proposi t ion 2.1. Suppose w is a real-valued Borel measurable function defined 
on 012). Then the following four statements are equivalent." 
(a) w is in the class 1"; 
(b) w satisfies: 

Iw(y)l  r(dy); = 0; 
limrl0 (xeoD[ SUp fOOnB(x,r) IX Z-~--~-2 J 

(c) w satisfies." 

(d) w satisfies." 

lim I s u p /  Iw(Y])~_2cqdy)}=O; 
~(A)~o Ix - y acoo LxCDdA 

I~(y)[ } 
lim sup f__ ix ~ ~T~_ 2 a(dy) = o r~O ~xE-D dODYlB(x,r) 

Proposi t ion 2.2. L p (OD, ~r) C 1" for p > d - 1. 

Proof Suppose w E LP(OD, ~) with p > d - 1. Since OD is compact and D 
is Lipschitz, there exists r0 > 0 such that for each fixed x E OD, there is a 
coordinate system (y~, t) E R a - I  x N under which x has coordinate (0, 0) and 
there is a Lipschitz continuous function ~b : Nd- I  x II~ with Lipschitz constant 
M (independent of x E 019) such that 
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D N B(x, ro) = (y = (y', t) : t > ~b(y')} n B(x, ro). 

For 0 < r < ro, let Ur = {y' E Nd-1 : (y,, ~b(y')) E OD 0 B(x, r)}. Clearly, 
Ur c {y' E IIU -1 : [y'[ < r}. Then for q =p/(p  - 1), 

fo Iw(y)l DnB(x,r) I X -- Y I d-2 cr(dy) 

[w(y)lP ~r(dy))1/t, 1 ~r(dy)) 
<--(fODnB(x,r) _ (fODnB(x,r) lX--Y[ (d-2)q 

ll/q 

(/U I (l+]V~y,),2)l/2dyt) I/q <_ IIwlIz:<OD> . l(y;, ,/~(yt))l(d-2)q 

< (1 + M 2 )  1/aq IIwlI~(OD> 'l<r lY'I (d-2)q dy' 

< Q p__.~d 1 "xl/q ) wl/__q2(l+M2)l/2qllwlll:(oo)r(l_Tzr_~)/q ' ,-2 
- p -  + 1 .  

where Wd-a is the surface area of the unit ball in I~ a-l .  Thus w is in _P by 
Proposition 2.1(b) since 1 - d-2 ~_1 >0 .  D 

Let 

C ( D ) = { u E C b ( ~ ) - l i m  u ( x ) = 0 }  
I x l ~  

endowed with the topology of uniform convergence on D. For any Green-tight 
function w on D and p in class F, let 

(2.1) Aw = {v : D --~ ll~, v is Borel measurable 

and Iv(x)l G Iw(x)l for all x E D},  

(2.2) ~p = {~b : OD --~ ~, ~b is Borel measurable 

and I~b(x)l < Ip(x)l for all x E OD}. 

Proposition 2.3. For any Green-tight function w on D and p E F, the families 
offunctions GAw -~ {Gv " v E Aw} and 4lip ~ {4~b : ~b E Ap} are relatively 

^ - -  

compact in C (D ). 

Proof. It follows from (1.17) that for each y E D, 

(2.3) lira G(x,y)  = O. 
x~D 

For any v E A~, 

(2.4) lim IGv(x)l <_ lim JD G(x,y)lw(Y)ldY = 0, 
x E ' D  x E D  
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and so the limit in (2.4) is uniform for v E Aw. It is clear that GAw is uniformly 
bounded by C[[W[[D. For x , z  E D, v E A~, 

(2.5) IGv(x) - av(z)] < fD IG(x'Y) - G(z'Y)IIw(y)Idz" 

By the continuity of G ( . ,  �9 ) off the diagonal of D • D, (2.4) and the uniform 
integrability of {G(x, �9 )w(-),  x E D) ,  the right member of (2.5) can be made as 
small as we like by choosing Ix - z [ sufficiently small (but independent of x and 
z). Hence GA~, is equicontinuous on D. Thus GAw is a family of functions in 

^ - -  

C(D) that are uniformly bounded and equicontinuous on D, and have a uniform 
limit of zero at infinity. It follows that GA~ is relatively compact in C(D). 
Similarly, one can show that G-do is relatively compact in C(D). [] 

3 Reflecting Brownian motion and linear elliptic equations 

Recall that the reflecting Brownian motion (X, {Px, x E D}) on D is a symmetric 
continuous strong Markov process on D that is associated with the Dirichlet form 
(wI'Z(D), ~), (cf. (1.15)). This process X behaves like a free Brownian motion 
in the interior of D and is instantaneously reflected at the boundary of D in the 
inward normal direction n. Indeed, under each Px, x E D, we have the following 
Skorokhod decomposition for X (cf. [3]): 

(3.1) Xt = Xo + Wt + n(Xs)dLs for all t > 0, 

where W is a d-dimensional Brownian motion starting from the origin and L is 
a continuous increasing additive functional of X which increases only when X 
is on OD. The process L is called the boundary local time for X and has Revuz 

l For any non-negative Borel measurable function ~ defined on OD, measure ~ c~. 
it is known from Theorem 3.2.3 and Lemma 5.1.4 in [18] that 

1 a(x,y)~(y)cr(dy) = ~G~(x) ,  (3.2) E x ~(Xs)dLs  = ~ o 

where E x denotes expectation under Px. It is well known, especially for bounded 

domains, that one can solve certain linear elliptic equations with boundary con- 
ditions by running suitable diffusion processes (see e.g., [8], [10], [21], [25] 
and [27]). In connection with this, the following four lemmas may be known 
to experts. However, we could not find proofs for them in the literature and 
so for completeness we provide proofs here. Denote B(0, r) by B r and define 
Dr = D A Br. Let 7" r : inf{t > 0 �9 Xt ~ Br }, the first exit time of X from Br. 

Lemma 3.1. Suppose r > 0 such that OD C Br and ~ 4s a bounded Borel 
measurable function defined on OBr. Then ho(x) = E x [~b(X-rr)] is a continuous 
bounded function of x ~ -D M Br which is harmonic in Dr, ho C wl'2(Da) for any 
0 < a < r such that OD C Ba, and ho satisfies ~ = 0 on OD in the distributional 
sense. I f  ~b is continuous on OBr, then ho is continuous on Dr with h = ~ on OBr. 
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Proof It is clear that ho is a bounded function on Dr with Ilh0ll~ ~ I[r We 
extend h0 to be zero off D ~ and still denote it by ho. Then it can be readly shown 
that (Ptho)(X) = E x [ho(Xt)] converges uniformly for x �9 D~ to ho(x) as t --* 0, 
for any 0 < a < r such that Ba D OD. By Proposition 1.1, Ptho is continuous 
on D and hence h0 is continuous on D A Br. When r is continuous on OB~, that 
ho is continuous on D~ and equals r on OB~ follows from the same argument 
as that for the Brownian motion case since OBr is regular (cf. [10], p. 247). 

Since X behaves like a Brownian motion inside D, the strong Markov prop- 
erty of X reveals that ho is harmonic in Dr (see, e.g., [7], Chapter 4). In particular, 
h0 is C ~ in D r. Let 0 < a < r be such that OD C Ba. To see that ho �9 W1'2(D~), 
we proceed as follows. Let Wla'2(Da) be the closure in (WI '2(Da) ,  ~1 a) of the 
set of restrictions to Da of all C~176 d) functions having compact support in Ba, 
where ~laOc,9 ) = �89 fD. V f  �9 Vgdx  + fo f gdx. By Lernma 5 of [5], there is a 
constant c3 > 0 such that 

(3.3) Itfl12 ~ c3 IlVfll2, for f  �9 W2'2(Da). 

Thus the inner product ~ a  is equivalent to ~ on W2'2(Da) and therefore 
WaL2(Da) is a Hilbert space with respect to ~'~. Now let ho be a smooth function 
with compact support in Dr such that h0 = h0 on OB a . By the Riesz representation 
theorem there is a unique 91 E Wla'2(Do) such that 

(3.4) ~ a ( g l , r  ~ V g l ' V d p d x = ~  r VqSEW a (Da). 
a a 

Hence 91 is a function in 1,2 W~ (Da) that weakly satisfies Agl = -Afio in Da 
and ~ = 0 on OD. Therefore g2 ~ gl + ho is a function in W l'2(Da) that 

weakly satisfies Ag2 = 0 in Da and ~ = 0 on OD. Notice that gl admits a 
quasi-continuous version on (D n Ba)U {~} by Theorem 3.1.3 of [18], which we 
still denote by gl. Then by Theorem 4.3.2 of [18], we have limt--,~ gl(Xf) = 
O, Px-a.s. for quasi-every (q.e. in abbreviation) x C D A B~. Let {an}n>_1 be 
a sequence of real numbers in (0, a) that increases to a, and let Sn = "r~, A n, 
where Ta, = inf{t > 0 :X( t )  ~ B~,}. Then {Sn}n>l is an increasing sequence 
of stopping times relative to {5~}t>_o that announces %, where {:~}r is the 
filtration generated by X. Then by (3.4), Theorems 5.2.2 and 5.3.2 in [18], and 
Doob's stopping theorem, 

(3.5) 
{ 1/? } 

91(Xs,) - gl(Xo) + ~ Aho(Xs)ds, ~Xs,, n ~ 1 

is a martingale under Px for q.e. x E D N B a . Note that by (3.4) and the analogue 
of Lemma 4.4.2 of [18] (the a = 0 version) for the transient Dirichlet space 
(Wal'2(D~), ~'~), we have that 

1 1E~ Aho(X,)as 
gl(x) = 2 t. o j 
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for q.e. x E D f3 B~. Since h0 is a smooth function with compact support in D r, 

Aho is Green-tight on D. Thus by (1.17), for q.e. x c -D n Ba, 

Ig,(x)l <_ ~e IAhol(XAds < IIA~olID < oo. 

Hence 91 is bounded on D M Ba and so is g2 = 91 + ho. On the other hand, by 
Ito 's  formula, (3.1) and Doob 's  stopping theorem, 

{ } (3.6) ho(Xsn) - ,~o(X0) - ~ Zlho(X,)ds, , ~ , ,  n > 1 

is a martingale under Px for each x E D. Thus by (3.5)-(3.6), 

{g2(xs . )  = 91(xs . )  + ho(Xsn), ~sn, n >_ 1} 

is a bounded martingale under Px for q.e. x E D N B~. Therefore for q.e. x E 
D NBa, 

9z(x) = lira E x [91(Xs,)+ho(Xs,)] 
n -'-~ O0  

= E x [~o(X~o)] = E x [ho(XO] = ho(x). [] 

L e m m a  3.2. Suppose that w is a Green-tight function on D and p E F. Then the 
equation 

(3.7) 1 A h l + w  = 0 inD,  
i 

Oh1 
(3.8) On + p = 0 on OD, 

(3.9) lim hi(x) = 7, 
Ixl~oo 

x c D  

has a unique bounded continuous weak solution on -D Which is given by the for- 
mula 

(3.10) hi(x) = EX[fo~176176176 

fD 1~0 G(x'y)P(Y)a(dY)+7'  = G(x,y)w(y)dy + ~ D 

for all x E D. 

Proof We first prove the uniqueness. Suppose that u is a bounded continuous 
weak solution on D for (3.7)7(3.9) with w = p = "y = 0. Then by (4.1) and 
Theorem A2 in [19], for q.e. x E D, under Px, u(X) is a bounded local martingale. 
By the martingale convergence theorem and the transience of  reflecting Brownian 
motion X on D, we have for q.e. x E D, 

lim E X [ u ( X t ) ] = E  x [ l im u(X,)] =0 .  u ( x ) =  
t---+O0 t k ~ o o  J 
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m 

Hence u = 0 m-a.e, on D and since u is continuous, u ~- 0 on D. This proves 
the uniqueness. 

For r > 0 with aD C Br, set X[ = Xt if t < ~-r and Xt r = 6 if t > Tr, where 6 
is a cemetery point which is added to D n B r  as  a one-point compactification. Any 
function ~b defined on D NBr is extended to (D NBr)U{6} by setting ~(6) = 0. Let 
W I ' 2 ( D r )  and ~ r  be defined in the same way as Wla'2(Da) and ~ a  in the proof of 
Lemma 3.1 but with r in place of a. By Theorem 4.4.2 of [18], (W~'2(Dr), ~r )  
is the Dirichlet space associated with the process (X r, (Px, x E D N Br}). Note 
that L.^~-r can be viewed as a positive continuous additive functional of X r whose 
corresponding Revuz measure is �89 (see [15], Theorem 2.22). Define 

ff ] ( Gr  p ) ( x )  = 2E x p ( X t ) d L  t , x E -O. 

For x E D n Br, by (3.2), 

[/0 ] IGr p(x)l <_ 2E x p(Xs)ldLs <_ GIp[(x) < c[[plloo < e~. 

Thus ~ r p  is bounded and therefore L2-integrable on Dr. By the strong Markov 
property of X, 

(3.11) (Trp(x) = Grp(x)+EX [Gp(XTr)] , x E Dr.  

By Propositions 1.1 and 2.1, (~p is a bounded continuous function on D. Hence 
by Lemma 3.1, 91(x) = E x [Gp(X~-)] is a bounded continuous function on Dr 

that is harmonic in Dr, ~ = 0 on OD and gl = GP o n  OB r. In particular, this 
implies through (3.11) that ~rp  is a bounded continuous function on Dr. 

By using Lemma 1.3.4 of [18], it can be shown that ~rp E W~'2(Dr) and that 
for ~b E C2(~ a) with compact support in Br, 

(3.12) ~ V(Grp)(x) �9 V~b(x)dx = lira 1 r t~O t ( G r p ( x )  - P t G r p ( x ) ) r  
r 

= foo p(x)r 

Since (3.11)-(3.12) hold for any r > 0 such that OD C Br, Gp weakly solves 
the following equation 

(3.13) A(~p)  = 0 in D, 

o(Op) 
(3.14) 0~-- + 2p = 0 on OD, 

(3.15) lim (Gp)(x) = O. 
I x l ~  

x E D  

The last property follows from the definition of the class /7 and the estimate 
(1.17). 
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B 

Similarly, it can be shown that Gw is a continuous bounded function on D that 
weakly satisfies 

(3.16) 1 A ( G w )  = - w  in D 

O(Gw) 
(3.17) On = 0 on OD, 

(3.18) lim Gw(x)= O. 
j x j ~  

x E D  

Thus combining (3.13)-(3.15) with (3.16)-(3.18), we see that the function hi 
given by (3.10) solves Eqs. (3.7)-(3.9). [] 

L e m m a  3.3. Suppose that q and w are Green-tight functions on D, ~ and p are 
in 12 and "y is a real number. When [Iaq§ + �89 I1~+11~ < ,~ < 1, 

(3.19) 

[/0 I [/0 ] h2(x) - E x e(t)w(Xt)dt + E x e(t)p(Xt)dLt + ~/E x [e(oo)l,  x E D, 

where 

(3.20) 

(/0' /0' ) e(t) = exp q(Xs)ds + ~(Xs)dLs , t E [0, oo], 

is the unique bounded continuous solution of the following (reduced) Schr6dinger 
equation with Neumann boundary condition." 

(3.21) ~ Ah2 + q h2 + w = 0 

Oh2 
(3.22) On + ~h2 + p = 

(3.23) lim h2(x) = 
ixl~oo 

x E D  

Furthermore, for x E D, h2 satisfies 

(3.24) h2(x) = 

in D, 

0 on OD, 

7. 

hi(x) + fo  G(x,y)q(y)h2(y)dy 

+ l  fao G(x,Y)~(Y)h2(Y)cr(dY), 

and when w, p and 9' are non-negative, 

'(, ) (3.25) 0 <_ h=(x) <_ 1 - ;~ I a w l l ~ +  I [0pl l~o+7 �9 

Remark 3.1. It will be shown below under the given conditions on q and t~ that 
e(eo) = limt~oo e(t) exists Px-a.s. for each x E D. 
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Proof We first show the uniqueness. Since the equations are linear, for this it 
suffices to show that a bounded continuous weak solution ~ of (3.21)-(3.23) with 
w = p = 7 = 0 is identically zero. Such a solution fi is in W I'2(D n B) for each 
ball B in II~ a and for each ~b E C2(]~ d] 

(3.26) 

1 
+ 2 ~D a(x)~(x) , :  (xlcr(dx) 

fD l fo gt(x)r = a(x)~(x)q+(x)dx + -2 o 

Let (Y, {Qx,x E D}) be the process on D obtained by killing X according to the 
Revuz measure _q - dx + �89 ~ - cr(dx); that is, for any non-negative B orel measurable 
funct ionf  on D, 

Eax ~(Yt)]=EX [exp(- fotq-(Xs)dS- fotn-(Xs)dLs)f(Xt)]. 

Let ( denote the life-time of Y and 6 be the one-point compactification of D. 
Then Yt = 6 for t > ( and we use the convention that any function f defined 
on D is extended to D U {5} by taking f(5) = 0. The left hand side of (3.26) 
is the Dirichlet inner product for the pair (fi, ~b) with respect to the process 
(Y, {Qx, x E D}) (cf. Proposition 3 of [14] and the Appendix of [19]). Thus by 
Theorem A2 of [19], 

{~(Yt)+~tq+(Y,)~t(Ys)dS+fote;*(Ys)ft(Ys)dLs, t > O }  

is a Qx-local martingale for m-a.e, x E D, where L is the positive continuous 
1 additive functional of Y with associated Revuz measure 7a. Denote by G(x,y)  

the Green function of Y. Clearly, G <_ G on D • D. Thus 

(3.27) EQ~ [fo~ lq+(Ys)a(Y,~)lds] 

and 

(3.28) EQX [fo~ [t~+(Ys)~(Ys)ldLsl 

II~lloo fD G(x,y)q+(y)dy 

Combining the above with the fact that ~ is bounded on D, we conclude that 

{ /o' /o' f~(rt) + q+(Yslft(rslds + t~+(Y, la(r,)dL,, t > 0 
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is a uniformly integrable martingale under Qx for m-a.e, x E D. Thus for m-a.e. 
xED, 

[ /o' /o' ~(x) = lim E G ~(Yt) + q+(Ys)~(Y~)ds + ~+(gs)~(u 
t ---* O 0  

[ /7 /7 l = E Ox trim ft(Yt) + q+(Ys)a(Ys)ds + xo+(Ys)ft(Ys)dLs 

= EG[fo~176176176 

Combining this with (3.27)-(3.28) and the hypothesis of the Lemma, we have 
for m-a.e, x C D, 

Ia(x)l _< Halloo ([IGq+l]oo + ~l]ee;+{Ioo) _< Allt~]l~. 

This implies that 112 ]l~ = 0 and therefore t~ = 0. The uniqueness is thus proved. 

For the existence, by the linearity of (3.21)-(3.23) and by considering h2 for 
(w +,p+,7 + ) a n d ( w  ,t9 , 7 - ) ,  we may assume that w > 0, p > 0 ,  an d 7 >_ 0 .  
Since 

(3.29) sup E x q+(Xs)ds + ea+(Xs)dLs 
xED 

1 

_ A < I ,  
m 

e(oo) is well defined and is finite Px-a.s. for each x E D. In the course of the 
following proof of (3.25), it will become apparent that h2 is finite. Let hi be the 
function given by (3.10) and 

(J0' J0' ) e+(t) = exp q+(Xs)ds + t~+(Xs)dL, , for t > 0. 

It follows from (3.29) and Khasminskii's lemma (see [9] or [29]) that 

1 
sup EX[e+(oo)] < - -  
~ - I - A "  

Using ordinary calculus, Fubini's theorem and the Markov property of X, we 
have for x E D, 

h 2 ( x )  - h i ( x )  

< EX[jfo~176176176 ] 
+yE x [e+(oo) - 1] 

<_ EX [ fo~176 ( fot q+(Xs)e+(s)ds + fot ~+(X~)e+(s)dLs) w(Xt)dtl 

+EX l fo~176 ( fot q+(Xs)e.(s)ds + fot t~+(Xs)e+(s)dLs) p(Xt)dLt] 
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+3,E ~ [e+(oo) - 11 

= EX[f~e+(s)q+(XA(f~w(Xt)dt+f~176 

+E~ [fo~e+(s)~+(X~) (f~176 + f~p(Xt)dLt-~7) dL~] 

= EX[fo~e+(s)q+(Xs)hl(X~)ds]+EX[fo~e+(s)~+(X~)h,(X,)dL, ] 

< Ilhlll~E x [e+(c~)- 1] 

A 
<- 1 -Allht[l~" 

The equality in the third last line (especially for the second expectation) follows 
from an optional projection theorem (see [28], Theorem 28.7) and the Markov 
property of X. Thus by noting that hz >_ O, 

-A1 (1 1 (A_____) 1 ) (3.30) llh2lloo < I llh~llo~_< llGzolloo+511Opll~+7 . 

Now we are going to prove that the function h2 defined by (3.19) satisfies the 
implicit Eq. (3.24). Using ordinary calculus, Fubini's theorem, and the Markov 
property of X, we have 

h2(x) -- hi(x) 

=EX[fo~e(s)w(Xs)dS+fo~e(s)p(Xs)dLs+Te(c~)l-hl(X) 

= E ~ (e(s) - 1)w(X~) ds + (e(s) - 1)p(X~)dL, + 7 (e(c~) - 1) 

(3.31) =EX[fo~e(s)w(Xs)(foSe(t)-~(q(Xt)dt+~(Xt)dLt))dsl 

+Ex[fo~176 

+TEx[(fo~176 

(3.32) =EX[fo'e(t)-l(ft~176 

�9 (q(Xt)dt + ~(Xt)dLt) I 

[/o ] (3.33) = E x hz(Xt) (q(Xt)dt + ~(Xt)dL,) 

fo l fo G(X'Y)m(Y)h2(y)cr(dy)' = G(x,y)q(y)h2(y)dy + -~ o 

where for the equality in (3.31) we used that fact that e(t) -1 (q(Xt)dt + ~(Xt)dLt) 
is the exact differential of -e(t) -1, and for the passage from (3.32) to (3.33) we 
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used an optional projection theorem. Since qh2 is a Green-tight function on D 
and t~h2 E/1,  h2 is a continuous function on D by the above identity and Lemma 
3.2. Furthermore by Lemma 3.2, 

satisfies 

(3.34) 

(3.35) 

(3.36) 

fD 1 fO G(x,y)t~(y)h2(y)ff(dy) u(x) = G(x,y)q(y)h2(y)dy + ~ D 

1 
- A u + q h z  = 0 i n D ,  
2 

Ou 
0--n + n h2 = 0 on OD, 

lim u(x) = O. 
ixl~oo 

xED 

Note that hi is the solution of (3.7)-(3.9). Combining this with (3.24) and (3.34)- 
(3.36), we see that h2 is a weak solution of (3.21)-(3.23). [] 

The following lemma, which is used in [6], is a generalization of Lemma 3.3 
under a weaker assumption on q. 

L e m m a  3.4. Let q be a real-valued Borel measurable function on D such that 
q+ is Green-tight on D and 1Dq- C Kta ~ Assume the remaining conditions in 
Lemma 3.3 hold and ~/ = O, then the conclusion of Lemma 3.3 still holds. 

Proof Without loss of  generality, we may assume that w > 0 and p > 0. The 
same argument as in the proof  of  Lemma 3.3 up to (3.30) shows the unique- 
ness and that the function h2 defined by (3.19) with 3' = 0 satisfies (3.25). The 
identity (3.24) can be proved in the same way as that in Lemma 3.3, except that 
in the passage from (3.32) to (3.33), we first apply Fubini 's Theorem and the 
Markov property of  X to the integrand with respect to the non-negative integrators 
q+(Xt)dt + t~+(Xt)dLt and q-(Xt)dt  + n-(Xt)dLt respectively, and then take their 
difference which is permitted under the assumption that I IGq + I1~ + �89 I la ~+11 ~ < 1 
and the fact that h2 _> 0 is bounded. 

Since h2 ___ 0, it follows from (3.24) that for x C D, 

1~ 1~ + 
(3.37) G(q-h2)(x)  + -~G(~-h2)(x) < hi(x) + G(q+h2)(x) + -~G(t~ h2)(x). 

Because h2 is bounded on D, q+h2 is Green-tight on D and t~+h2 E/7.  Thus by 
Lemma 3.2, vl ~= G(q+h2) + �89 satisfies 

1 
(3.38) LAvl  +q+h2 = 0 in D 

2 
0vl 

(3.39) - -  +~+h2 = 0 on 01), 
On 

(3.40) lira vl(x) = O, 
xED 
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Put v2 - G(q-h2) + �89 By (3.37) and Lemma 3.2, v2 is a bounded 
non-negative function on D with 

(3.41) lim V2(X ) ~ lim hi(x)+ lim VI(X ) ----0. 
I x l ~  I x l ~ ,  I x l ~  

XED X ~ D  x E D  

m 

By the strong Markov property of  X, we have for any k > 0 and x E D, 

(3.42) 'u2(x ) 1~ 1 G(1Bkq-h2)(x) + ~G( Bk t~-h2)(X) 

+EX [G(lnfq-h2)(Xrk) + l o(1B~t~-h2)(X~-k )] , 

where ~'k : inf{t > 0 : Xt ~ Bk} and B[: : Nd \Bk. Since IXrk I >-- k on (rk < oo) 
and G(18~q-h2) + �89 _< v2, it follows from (3.41)-(3.42) that 9k = 

G(1Bkq-hz)+�89 converges uniformly on D to v2 as k --~ er Note that 
1B~t~- E F and 1B~q- is a Green-tight function on D for all k > 0 since q -  E 
K~ ~ Therefore by Lemma 3.2, for large k such that OD c Bt, 9k is a bounded 
continuous function on D with �89 + 1Bkq-h2 = 0 in D, ~ + ~ - h 2  = 0 on OD. 
In particular, v2, the uniform limit of  9k as k ~ oo, is continuous on D. On the 
other hand by Lemma 3.1, r/k(x) = E x [G(1B~q-ha)(X,a)+ �89 ] 
is a continuous function on D N Bk that is harmonic in D N B~ and ~ = 0 on 
OD in the distributional sense. Therefore vz = 9k + ~k (for each k >_ 1) weakly 
satisfies the following equations: 

1 
(3.43) ~Av2+q-h2 = 0 i n D ,  

Or2 
(3.44) - -  +t~-h2 = 0 on OD. 

On 

Thus combining (3.38)-(3.41), (3.43)-(3.44) and Lemma 3.2, we see that h2 = 
hi + vl - v2 is a bounded continuous function on D which is the weak solution 
of  (3.21)-(3.23) with 7 = 0. [] 

4 Semilinear elliptic equations 

Proof of Theorem 1.2. Let A C (0, 1) be as in Theorem 1.2. Let 

(4.1) Vl(X) ---- EX[fo~ 

+EX[fo~ 

where 

(4.2) el(t)=exp(-fotUl(Xs)dS-~ootU2(Xs)dLs). 
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Since the Green function G(x,y) is strictly positive on D x D, it follows from 
the conditions on D, 9, (o and & that the function 

[// ] If0 ] E x 9(Xt)dt + E ~ fb(Xt)dLt  + c~ 

fo l fo G(x,y)r = G(x,y)9(Y)dy + -~ o 

is strictly positive for all x c D. Combining this with the fact that el(t) > 0 
for all t _> 0 (since IIGU~ II~ < ~ and IIOU~ll~ < ~) ,  we see that v~ is well 
defined and strictly positive on D. Let 

l (4.3) A =  U E C b ( D ) : v l  < u < - -  

For u E A, let 

Fl(.,u) F2(.,u) 
(4.4) q , -  - -  on D, ~ , - - -  o n 0 D .  u u 

Then by (1.4)-(1.5), (1.1g) and the assumptions of Theorem 1.2, 

(4.5) 

and 

-Ut  <-q"<-(\O<y<_c;,Sup f2~)) V~=f/1 

(4.6) -U2<-ecu<-( \o<y<C.x sup f2-~ ! )  V2 ~-.~ ~r 2 

For u E A, define 

(4.7) eu(t)=exp(fotqu(Xs)ds+fot~u(Xs)dLs) 

and for x E D,  

(4.8) (Tu)(x) 

on D 

on OD. 

for all t E [0, c~], 

= EX[~oC~eu(t)9(Xt)dt]+EX[jfo~176 1 

+c~E ~ [e,(~c)] .  

Clearly, Tu > vl. Since 

(4.9) Ilaqffll~ + ~110~+11~ -< [IGf'I I1~ + ![~211oo _< ;~, 

it follows from (3.25) of Lemma 3.3 that for all x E D, 

(4.10) Tu(x)< ~-X  IlaOll~+ IIa~ll~+c~ 

Thus TA c A. By (3.24), 
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(4.11) T u ( x )  = hi (x) + fD G(x, y)qu(y)Tu(y) dy 

1 
+ 2 faD a(x, y)nu(y)Tu(y) c~(dy). 

By (4.5)-(4.6) and (4.10), we have 

(4.12) Iq,(x)Zu(x)l _< 1 - A  I[agll~+~ll r +~  (Ul§ 

x E D ,  

) (4.13) I~u(x)Zu(x)l <_ 1-A Ilagl[oo+ I1~r (g2+~2)(x), 
x COD, 

and so quTu is Green-tight on D and nuTu is in/1. It then follows from (4.11)- 
(4.13) and Proposition 2.3 that TA is a family of functions in A which is uni- 
formly bounded and equicontinuous, and all functions there have limit ct at 
infinity. Hence TA is relatively compact in Cb(D) with respect to the uniform 
norm I[' II~. Suppose that u and {Uk}kC~=l are in A such that Ilu~ - u l l ~  ~ 0 
as k ~ oe. Since Ft(x,u) and F2(x,u) are continuous in u for each fixed x, 
quk ---* q~ in D and nuk ~ n,  on OD pointwise as k ~ (x~. Since 

(i' I: ) eu (t) _< exp VI (Xs) ds + Va (Xs) dLs for all t E [0, c~], 

by (4.8), Lemma 3.3 and the Lebesgue dominated convergence theorem, as 
k ~ oo, Tuk converges to Tu pointwise on D and therefore uniformly, by the 
equicontinuity. Thus T is a compact and continuous mapping from the nonempty, 
convex, closed bounded set A C Cb(D) into itself. By Schauder's fixed point 
theorem (cf. [31]), there is a function u0 E A such that Tuo = uo. It follows from 
(4.8) and Lemma 3.3 that u0 solves (1.1)-(1.3). [] 

Proof of Corollary 1.3. We seek a positive continuous solution u of  (1.1)-(1.3) 
with F1 ~ g ~-~ r = 0 and 

d - 2  d - 2  
F2(x, u) = --Tja u + ~ H ( x ) u  d/d-2. 

If  we further require that u be such that 0 < u < /3 < 1, then (1.4)-(1.5) 
hold with U1 -~ 0, Vl ~- 0, fl = 0, f2(u) = u, U2(x) = ~-~2/~2/d-ZH-(x) and 

Vz(x) = ~ a  a + "~t32/d-2H+(x), for x E OD. Let 

hl(x)=G ( 1 ) ( x ) =  foo G(x'y)a-l~r(dY)' f o r x E D .  

Then hi is clearly a radial function, i.e. hi (X) = ~(IXl),  where by using Eqs. (3.7)- 
(3.9) we see that ~b satisfies 
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d - 1  
(4.14) ~b"(r) + ~b'(r) 

r 

2 
(4.15) ~b'(a) + - 

a 

(4.16) lim ~ ( r )  
/" ----~ oo 

= 0 

= O~ 

= O.  

f o r r  > a ,  

The solution of these equations is given by 

~ b ( r ) = ~  , r > a .  

This implies that 

d 
IIGV2]]~ ~< - - - ~  [Ihl ]]c~ +-d~2222/32/d-21lGH+lloo=l+ ~--~/32/d-2]IGH+l[cx ~. 

Since H E F(OD) (see Proposition 2.2), by choosing/3 sufficiently small, we 
can ensure that 1 + -~/32/a-21[GH+[Ioo < 2. Then there is A E (0, 1) such that 

1 + d-~-~/32/a-Zl]GH+lloo = 2A and in this case C;~ =/3  > 0. Then by Theorem 
1.2, for any positive number c~ < (1 -A)/3,  Eqs. (1.t)-(1.3) with F1,F2,9 and ~b 
as above, have a positive continuous solution u on D = {x 6 R d : Ixl _> a}  with 
values in (0,/3). [] 

In general, uniqueness may not hold for the solutions found in Theorem 1.2. 
Indeed, as we illustrate below, there may be more than one metric ~ as described 
in Corollary 1.3 with a prescribed limiting value at infinity of o~ > 0 times the 
Euclidean metric. Consider the semilinear equations for this problem with d = 3, 
a = 1 and H = 1. Then we are seeking a positive continuous solution u of 
(1.1)-(1.3) with F1 ~ 9 -= q5 ~ 0 and Fz(x ,u )  = ~ul + ~ul 3. We shall focus on 
radial solutions, i.e., u(x) = f(Ix]) ,  and so ~b > 0 should satisfy: 

(4.17) ~b"(r) + 21b'(r ) = 0 
r 

(4.18) ~'(1) + ~ ( 1 )  + ~(1) 3 = 0, 

(4.19) lim Ib(r) = c~. 
r "-~ OO 

f o r r >  1, 

The solution of Eqs.(4.17) and (4.19) is ~b(r) = cr -1 + c~. For (4.18) to hold, c 
should satisfy (c + c~) 3 - c + c~ = 0. A straightforward calculation shows that for 
each fixed c~ 6 (0, ~ ) ,  this equation has two real positive solutions c. Hence 3,/3 
there is more than one positive solution tb for (4.17)-(4.19). 

Despite the lack of uniqueness in general, we do have the following theorem. 

T h e o r e m  4.1. Suppose, in addition to the conditions in Theorem 1.2, that F1 (x , u ), 
Fz(X, U) are monotonically decreasing as functions of  u C (0,/3) for  each f ixed 
x E D and x EOD,  respectively. Then any bounded continuous weak solution o f  
equations (1.1)-(1.3) is unique. 
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Proof Suppose that ul and u 2 are two different continuous bounded positive 
weak solutions on D of (1.1)-(1.3). Without loss of  generality, we may assume 
t h a t / )  = {x E D "  ul(x) > u2(x)} is nonempty. Then /3 is a relatively open 
subset of  D and ~ = ul - u2 satisfies: 

(4.20) 2 A a ( x )  = FI(X,U2)--FI(X,Ul)>O i n D A / 3 ,  

0fi 
(4.21) On - F2(x,u2)- F2(x,ul) > O on OD f?l), 

(4.22) lira t~(x) = 0 i f /3  is unbounded. 
Ixl~oo 

xE/5 

Thus for any ~b E Cff(It~ d) such that ~b = 0 in a neighborhood of D \ D, 

12 ~ XTCt(x). V~b(x)dx = - ~ (F,(x,u2(x))- Fl(X,Ul(X)))l~(x)dx 

1 
fo  (FE(X, u2(x)) - -  F2(X, ttl (x))) ~b(x)~r(dx). (4.23) - 2  Dnb 

Let (X, {Px, x E D})  be (normally) reflecting Brownian motion on D and let 

~- = inf(t  >__ 0 : Xt ~ F)). Clearly, fi(X~-) = 0 with the convention that X ~  = 6 
and t~(6) = 0. It follows from (4.20)-(4.21), (4.23) and Theorem A2 of [19] 
that {t~(Xt^~-), t _> 0} is a bounded Px-submartingale for m-a.e, x E D. Thus for 
m-a.e, x E /3 ,  

f i (x)  < lim E x [fi(Xt^r = E x [fi(X~-)] = 0. 
t---+@O 

Thus by continuity, fi < 0 o n / )  = {x C D : t~ > 0}, which is a contradiction. 
[] 

5 E x t e n s i o n s  

It can be seen from the proof of Theorem 1.2 that if 9 and ~ are allowed to 
take negative values, by prescribing c~ > 0 to be sufficiently large, we may still 
obtain positive solutions for the Eqs. (1.1)-(1.3). The functions g and q~ can even 
be be replaced by measures (cf. [20], [25]). 

In this paper, we assumed that D is an unbounded Lipschitz domain with compact 
boundary. This assumption ensures that the Green function for �89 on D with 
zero Neumann boundary condition exists and is controlled by the Newtonian 
potential Ix - y  I 2-d. Our method would work for D, a bounded Lipschitz domain, 
whenever (1.1) can be written as 

( 2 A + H )  u+Fl( ",u)+g=O in D 

and the spectrum of �89 A + H with zero Neumann boundary condition lies strictly 
in the negative half-line, where H is a function in Kd ~~ In this case, the Green 
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function of �89 A + H exists on D and is bounded above and below by constant 
multiples of the Newtonian potential I x -  y l2-a (cf. [22]). 

Suppose that U is an unbounded Lipschitz domain with compact boundary 
and A is a closed subset of  U such that D = U \ A is a regular domain. Set 
Ii = OD \ A  and 12 = OD AA. Note that i f x  E 11, then x E OU. The method used 
in proving Theorem 1.2 can be easily modified to find positive solutions for the 
following semilinear elliptic equation with mixed boundary conditions: 

1 
(5.1) ~ A u + F , ( . , u ) + 9  = 0 i n D ,  

Ou 
(5.2) On + F 2 ( ' ' u ) + r  = 0 o n l , ,  

(5.3) u = ~b on h ,  

(5.4) lim u(x) = ct, 
Ixl~cc 

xED 

where 9, r c~, F1, F2 are the same as before, ~b is a non-negative continuous 
function on/2 .  The only difference in solving the above mixed boundary value 
problem is that we run a Brownian motion in D that is reflected on I1 and 
is absorbed on /2 .  For this, let (X, {Px, x c U }) be the (normally) reflecting 
Brownian motion on U with local time process L, and denote by G the Green 
function of X. Let ~- = inf{t > 0 : Xt c / 2 } ,  the first hitting time of h ,  and let 
X 7- = Xt for t < 7- and X~ = 8 for t > 7-, where 8 is a cemetery point. Denote by 
G* the Green function for the process (X ~, {Px,x E D \ 12}), Clearly G* _< G. 
Suppose q and 9 are Green-tight functions on D, ~ and q~ are in the class 2' 
for 11, ~ is a bounded continuous function on 12, and c~ is a constant. Then, 
whenever I la*q+]l~ + �89 < 1, the solution of the counterpart linear 
elliptic equation with boundary conditions: 

1 
(5.5) - A u + q u + 9  = 0 i n D ,  

2 
Ou 

(5.6) - - + ~ u + q ~  = 0 o n l , ,  
On 

(5.7) u = ~b on 12, 

(5.8) lira u(x) = c~, 
xED 

exists and is given by: 

(5.9) u(x) = E x [fo'-e(t)g(Xt)dt] + EX [fo~e(t)~(Xt)dLt ] 

+E x [~(X~)] + c~E ~ [e(7-)] 

m 
for x E D, where 

e(t) = exp 
tAT ) 

q(Xs)ds + ~(Xs)dLs , 
J O  

t_>O. 
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Using the right hand side of (5.9) to define the mapping T instead of using (4.8), 
the proof of Theorem 1.2 carries over to give a positive .solution of Eqs. (5.1)- 
(5.4). We leave the details to the interested reader. We only remark here that in 
solving semilinear elliptic mixed boundary value problems, D need not necessar- 
ily be unbounded with compact boundary. In fact, D can be a bounded regular 
domain provided that it can be expressed as U \ A where U is a bounded Lips- 
chitz domain and A is a closed subset of U such that 12 = OD A A has positive 
capacity. In this case, the Green function of the Brownian motion in D that is 
reflected on It and killed upon hitting 12 is bounded above by a multiple of 
Ix - y  12-d. The latter estimate can be derived by proving a Sobolev inequality in 
a similar manner to that in [5] (see especially Lemma 5 and Theorem 1 there). 

The results of this paper can be extended to second order uniformly elliptic 
operators of divergence form with conormal derivative boundary conditions in 
place of the Laplacian with normal derivative boundary condition, by using the 
corresponding reflecting diffusion process instead of reflecting Brownian motion. 

In this paper we only allowed nonlinearity in the zero order term in (1.1). 
By using a change of measure transformation (Girsanov theorem), it is possible 
to study nonlinear elliptic equations where nonlinearity also occurs in the coeffi- 
cients of first order derivative terms. We shall address this problem in a separate 
article. 

When c~ is zero, it is possible to relax the condition on the lower bound for 
F1 in (1.4). The condition that U1 in (1.4) is Green-tight on D can be replaced 
by the condition that lo U1 E KJ ~ The proof of the existence result is then a bit 
more involved. For this we refer the reader to Theorem 5.1 in [6]. 
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