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/ \ 
Summary. The transformations of measures induced by [ W +  J K s d s} with (Ks) 

\ 0 / 

possibly anticipating the Wiener process (W~) is discussed and a Girsanovtype 
theorem under rather weak assumptions on (Ks) is derived. 

1 Introduction 

Let (f2, ~ ,  P), f2 = C0(F0, 1]), be the standard Wiener space and W~(co) the canoni- 
cal process. We study transformations T: f2 ~ (2 of the form 

TCO = co + y K s (co) d s, 
0 

where the process (Ks) may anticipate the process (Ws). In the framework of 
an abstract Wiener space this problem has been considered by Ramer [9], 
and under more general conditions, but still with the assumption of the invertibi- 
lity of T and with co-wise assumptions on K,(co), by Kusuoka [4], following 
earlier work of Cameron and Martin, Gross, Shepp and Kuo. Using the general- 
ized anticipating stochastic calculus Nualart  and Zakai [8] have studied trans- 
formations T which are the limit of a sequence of invertible transformations. 

Instead of such an assumption, we impose on (Ks) some Novikov-type condi- 
tion and suppose that its Fr6chet derivative is bounded by a constant which 
is less than one. Under these conditions we show that T induces a measure 
which is absolutely continuous w.r.t. P, prove the existence of another transfor- 
mation A: f2-+ f2 with T(A co)= A (To))= co, P(dco)-a.e., and compute the density 
of P o [ A ] -  1 w.r . t .P.  This will be done on the basis of the extended stochastic 
calculus developed by Nualart, Pardoux and Zakai, [6], [7] and [8]. 

The paper is organized as follows. In Sect. 2, we give a short review on 
the notions of derivation on the Wiener space and the Skorohod integral, and 
we present some basic statements for transformations inducing absolutely con- 
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tinuous measures on (O, ~ ,  P). In Sect. 3, we appty Kusuoka's Theorem to our 
problem in the case of a smooth step process (K~), and in Sect. 4, we extend 
the results of Sect. 3 by approximation of the process (K~) by smooth step pro- 
cesses. 

2 Stochastic calculus for transformations 

Let f2= C0([0, 1]) be equipped with the supremum norm, ~- denote the Borel 
o--field, P be the standard Wiener measure and W~(co)= co(t) the coordinate pro- 
cess. For  all 1 < p <  + oe denote by Lp(f2) the space of the p-integrable random 
variables on O and by 11" 11 p its norm. 

Let 5 ~ be the dense subset of L2(f2) consisting of those random variables 
F of the form 

(2.1) F =f (W(A  a) . . . . .  W(A,)), 

where ne N ,  f e  C~ (R"), and /7  = {A1, ..., A,} is a partition of l-0, 1] into subinter- 
vals. Here W(Aj) denotes the increment of the coordinate process on Aj. 

If F has the form (2.1), we define its derivative 

(2.2) DtF= ~ ~xa (W(A,) . . . . .  W(A.))Ia,(t), O_<t_<l. 
j=t 

Then DF=(D~ F) is an element of L 2 ( [ 0  , 1] x f2). 

Proposition 2.1 D is an unbounded closable linear operator from Lz((2) into 
L2([-O , 1] • Q). We identify D with its closed extension and denote by lI)l, 2 its 
domain which we endow with the norm 

i \1/211 
ILFllx'2= IIFH2+ ID~Fl2dt) 2" [] 

Note that the derivative D obeys the chain rule: 

Proposition 2.2 Suppose the F = ( F  1 . . . . .  F") is a random vector whose components 
belong to •1,2 and assume that feC~(R"). Then, f(F)sID1, 2, and Dt[f(F)] 

= ~ , (d@j f ) (F)DtFJ ,  a.e. [] 
j=l 

We now associate to ID1, 2 the space L1,2=L2([0,  1], dr; 1D1,2) of all processes 
(K,) c D~, 2 which are such that 

s K,[ z dt ds) 2 

is finite. 
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Proposit ion2.3 For te[O, 1] we can define a linear continuous mapping from 
L1, 2 into L2((2 ) with operator norm 1 which to (Ks)~L1, 2 associates the Skorohod 
integral 

t 

~usdWs. 
0 

This linear mapping is characterized by the following property: 

/ [i ] E KsdW~.F = E  K s D s F d s  , FeSC [] 
LO A 

We now introduce the notion of an absolutely continuous and invertible trans- 
formation: 

Definition 2.4 We say that the mapping T: ~2 ~ f2 is a transformation, if it has 
the form 

T o = o +  ~ Ks(o)) ds, 
0 

(Ks)~L2([0, 1] x g2). 

Moreover, we call 

(i) the transformation T absolutely continuous, if the measure P o I T ] -  1 with 

Po [T] - I (B )=P{ co :  Te)eB}, Beo~, 

is absolutely continuous relative to P, and, 

(ii) the absolutely continuous transformation Tinvertible, if there exists an abso- 
lutely continuous transformation A with 

T(Aco)=A(Tco)=co, P(de) ) -a .e .  []  

Note that for any absolutely continuous and invertible transformation T the 
measures P, P o [T]  - ~ and P o [A] - ~ are equivalent. 

Before describing properties of absolutely continuous transformations we 
present a statement how to reduce the studies of transformations of general 
type to those transformations whose shift (Ks) is a smooth step process. 

Proposition 2.5 Let FeDI, 2. Then, for any e>0 ,  there exists a sequence of func- 
tionals (F n) ~_ 5r with I1 F - - F  n I] 1,2 ~ O(n ~ co) such that, for all n, 

FIF~II~ =< Hfl[o~ and ]D~F"I2ds) < e +  ]D~FI2ds) o~" [] 

For the proof  we refer to the Appendix. 
The statement of Proposition 2.5 is extended in Proposition 2.6 to processes 

from L1,2, where the role of the elements of ~ in Proposition 2.5 will be replaced 
by smooth step processes. 
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A process (K~) is called smooth step process, if there exists a partition /7 
of I-0, 1] into subintervals A and random variables F~ ~6 ~, A e/ / ,  such that 

(2.3) Ks(co)= ~, F~(co)I~(s), a.e. 
AEH 

Proposition 2.6 Let (Ks)~L1, 2. Then, for any e>O, there exists a sequence (K~) 
of smooth step processes with 

1 

IIK~-K~II~,2 ds -~0  ( n ~ )  
0 

such that 

(i) ( i lKn[2ds)  1/2 ~ (i IKsl2ds) 1/2 , a n d  

( i i )  ilDtK212dsdt <~+ ~olDtgsl2dsdt) , n = 1 , 2 , 3 , . . .  [] 
o 

We now give some direct consequences of the above Propositions. The first 
one is a Lipschitz-type statement: 

Proposition 2.7 Let T 1, T 2 be two transformations with shift process (K~) and 
K 2 (~) ,  respectively. Assume that either 

(i) F e 5 p, or 
(ii) FelD1,2, and T 1, T 2 are absolutely continuous. 

Then, 

(2.4) IF(T' og)- F(T2 c~) 
[ 1  \1/2[[ [ 1  

IDsFI2ds) ~ol!lK:(col--K2s(CO)12ds)l/2,a.e. < [] 

Proof. Under condition (i) the inequality (2.4) can be derived by a straightforward 
calculus starting from the special form (2.1) of F e 6  p. 

Let now (ii) be satisfied and choose an e>0.  Due to Proposition 2.5 there 
is a sequence (F n) _~ 5 ~ with [I F - F "  II 1,2 --* 0 (n ~ oo) such that 

( i lD,  F"lZds) 1/2 oo<=e+ (ilDsFl2ds)I/211oo, n = 1 , 2 , 3  . . . .  

Clearly, 

(2.5) ]F"(T I co)-- F~(T2 ~o)1 

< [DsFnl2ds) ]K~(co)--K2(co)12ds) 
0 

(S ae 
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On the other hand, the transformations T a, T 2 are supposed to be absolutely 

continuous. Then, for any ~ > 0, and with the n o t a t i o n / J =  dP~ ~ d P , we have, 

P{IF"(T')--F(Ti)I>,~}=E[I{Ir,_FI>~}I2]--*O(n--+oo), i=1 ,2 .  

Hence, (2.5) provides, for n --+ o% 

IF(Tl co)-- F(T2 co)l 

( ( i  t1 2 )( i <= e+ [Dsfl2ds [K1 (co)-- K~Z (co)J2 d ,a.e. 
GO 

Since e > 0 was arbitrary choosen we can pass to the limit e ~ 0 and get (2.4). []  

Proposition 2.8 Let FeD~,2 and T be a transformation with shift process (Ks) 
such that 

( i i lDtKs[2dsdt) l /2  o < + o 0 .  
0 

Assume that either 
(i) FeN,  or 

i \ 1/2 I[ (ii) Tis absolutely continuous, F(Tco)EL2((2) and [DsFI2ds) ~ < + oo. 

Then, F(Tco)MDI,z, and 

1 
(2.6) Dt[F(Tco)]=(DtF)(Tco)+ ~ (D~F)(Tco)DtKs(co)ds, a.e. [] 

0 

Proof. If condition (i) is satisfied, we can suppose that F has form (2.1), and 
thus, 

f(rco)=f(co(A1)+ S KAco)ds, ..., co(A,)+ ~ KAco)ds). 
A1 An 

Since 

co(Aj)+ ~ Ks(co)dselDi,2, j = l , 2  . . . .  ,n ,  
d j  

we can apply Proposition 2.2 and obtain that F(Tco) belongs to ID1, 2 and satisfies 
(2.6). Assume now condition (ii) and, additionally, suppose that F is essentially 
bounded. With regard to Proposition 2.5 we find a sequence (F " ) cS :  with 
[FF--F"I[ 1,2 ~ 0(n--+ oo) such that 

IIF"rloo ~ IlF[Ioo and 

ID~f"12ds) <1+ [Dsflids) , n =  1,2, 3 ... 
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If L denotes the density of T, we now get from the dominating convergence 
theorem 

(2.7) [[F(T)- F"(T)Ilz~ + ( i  ](DsF)(T)--(DsF")(T)I2 ds) ~/2 1 

= [f-r"la+~lDsf-DsF"12ds ~O(n--*oc). 
0 

Thus, making use of (2.6) which is already proved for all F"sSP, we can deduce 
that F(Tco) is the limit of (F"(T)) in ID1, 2. Substituting F" in (2.6) and passing 
to the limit we see that (2.6) holds also for F eID1,2 m L~o (~2) such that 

( i l D s f l Z d s )  1/2 0o<+ oo. 

Finally, we consider possibly unbounded F~D1,  2 under condition (ii). We 
choose for each natural n a function ~o,~C~(R 1) which coincides on [-n,n] 
with the identity function and has a derivative (o',(t)s[0, 1], t~R 1. Clearly, F" 
= q~,(F)~ID1, 2 such that 

IF"I<[FI, 

Moreover, 

and 

i \1/2 [ 1 )1/2 IDsf"12ds) <{~lDsFlids ,a.e. ,  
I \ 0  

n=  1,2, 3, ... 

F(T)=L2(Y2 )-  lim F"(T), 
n~oo 

(DF) (T) = L2 ([0, 1] x f2) -- lim (DF")(T). n~o9 

Since (2.6) is satisfied for all F", we can pass to the limit there and see that 
(2.6) holds also for F. [] 

The following statement is due to [2], Theorems 2 and 3, and is concerned 
with the convergence of sequences of transformations: 

Proposition 2.9 Let(T"co=o~+iK~(co)ds)beasequenceofabsolutelycontinu- 
0 

ous transformations such that 
(i) the sequence of processes (K~) is convergent in L2([0, 1] x s to some process 
(Ks), and 
(ii) the sequence of densities" " ( L  "-  dP~ d P is uniformly integrable. 

Then, the transformation 

Too=co+ ~ Kfico) ds 
0 
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is absolutely continuous, and the density L of T is the limit of (L ~) in the weak 
topology a(L 1, Lo~). [] 

Thanks  to Propos i t ion  2.9 we can state: 

Proposit ion 2.10 Let(T"co=co+iK~(co)ds)beasequenceofabsolutelycontinu - 
0 

ous transformations such that 

(i) the sequence (K2) is convergent in L2([0, 1] x s to some (Ks), and 
[ dPoET~ 

(ii) / L " -  is uniformly integrable. 
dP ] \ 

Then, with the notation 

T o = c o +  y Ks(co) ds, 
0 

the convergence of any sequence (F ~) in probability to some F implies 

F(Tco) = lim F"(T"co), in probability. [] 

Proof. Since the densities L ~ form a uniformly integrable set, there is for any 
> 0 a natural  M~ such that  

supE  [L"I {L" > Me}] < e/2. 
n 

Then, for any ,5 > 0, 

P {IF(Tn)--Fn(Tn)] >6} = E[I {IF-- F"] >,5} L n] <a/2 + M~P {IF-- F"] >,5}, 

i.e., 
P {IF(T")--  F" (T")I > ,5} = e, 

if n is sufficiently large. 
Thus,  it remains to prove 

F(T) = lim F(T"), in propabil i ty.  
n ~ o t )  

Let  (G n) c 5 P be a sequence which converges in L2(f2) to F and L the density 
of t ransformat ion  T. Then,  for any ,5, e > O, there exists a natural  k such that  

P {[F(T")--  G k (Tn)[ >= 6} + P {IF(T)--  Gk(T)] >= 6} 

= E  [I  { I F -  Gk[ ~ ~}(L ~ + L)] 

<=e+2M~n{]F-Gk[>=`5}<=2e, n = 1 , 2 , 3  . . . .  
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On the other hand, from the Lipschitz condition we can deduce that, for suffi- 
ciently large n, 

Therefore, 

P {I Gk(T) -- Gk(T")I >= (5} 

= 6  < [D~ Gk[Z ds oo" IK~-  K'~12 ds) 

<~. 

P{IF(T ) - -F (T" ) I>36}<3e ,  if n is large enough. 

This completes the proof. [] 

3 Computation of the density of transformations with smooth step shift process 

In this section we study transformations T: • -~ ~2 of the form 

(3.1) Tco =co + ~ Ks(co) ds, 
0 

where we assume that (K~) is a smooth step process with 

We will show that this condition is sufficient for the absolute continuity and 
the invertibility of the transformation, and we will compute its density. 

For this we shall exploit the extended Girsanov theorem of Kusuoka (Theo- 
rem 6.4 of [4]). 

Proposition 3.1 Let T: f2--*f2 be a transformation of the form (3.1) with 
(Ks)~L2([O , 1] • (2), and suppose that the following conditions are satisfied: 

(i) T is bijective. 
(ii) There exists a version of (Dr Ks) such that, for  each cns~2, (Dt K~(co)) is a 
Hilbert-Schmidt operator from Lz ([0, 1]) into itself with 

h d  d =o(Sh d I (1) co+ h r d r - - K ~ ( c o ) -  as 
0 \ 0 / 0 

La([0, 1]) to zero, 

(3) I + (D t K~(co)) is invertible, where I denotes the unit operator from L2([0, 1]) 
into itself. 
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Then, transformation T and its inverse transformation A are absolutely continuous, 

dPo[A]-~ { 1  1 1 2 } 
dP -[d~(--DK)lexp - ~ K ~ d W ~ - ~ g ~ d s  , 

O Z;0 

where dc(--DK) is the Carleman-Fredholm determinant of the Hilbert-Schmidt 
operator (--Dr K~). [] 

The Carleman-Fredholm determinant of a Hilbert-Schmidt operator B from 
L2([O , 1]) into itself is defined by the product expansion 

dc (B) = I ]  (1 -- 2j) exp (2j). 
J 

Here the 2j's are the nonzero eigenvalues of B counted with their multiplicities. 
In particular, if the operator B is nuclear, 

(3.3) dc (B) = det (I-- B) exp (trace B). 

We now want to apply Proposition 3.1 to transformation T with a smooth 
step process (Ks) with (3.2) as shift process. Note that for such a (K~)there 
are n~N, f l  . . . . .  f ,  EC~(R") and a partition 0 = t 0 < t  1 ... < t , = l  of [0, 1] into 
subintervals Aj = (t j_ 1, t~] of the length [At[ = t j -  t j_ 1 such that 

(3.4) 

and 

Ks(O) ) = ~, fj(O)(A 1) . . . . .  O)(A.)) IAs(s), 
j = l  

Dt Ks(o))= ~ ~xi  f/(o)(A 1)' "" '  ~ 
i,j= l 

Then transformation T and condition (3.2) take the form 

(3.5) 

with 

T o = O ) +  ~ fj(o)(A 1) . . . . .  o)(An) ) ~ IAj(S)ds 
j = l  0 

c~= sup IAil IAjl < 

Lemma 3.2 Transformation T defined in (3.5) satisfies the conditions of Proposi- 
tion 3.1. [] 

Proof. The correctness of this assertion for Proposition 3.1 (ii) follows immediate- 
ly from (3.4) and (3.5). For  the proof of Proposition 3.1 (i) put 

Ix12= I A j l - l x  2 , x = ( X x ,  . . . , x , ) ~ R " .  
J 
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Then, for f =  (1A 11 "fl, ---, I A, I "f,) e Cb (R" ~ R"), we can estimate 

If(x)--f(Y)12 <et:lx--yl2, for all x, y~R". 

Since c~ < 1, the mapping f is contractive, i.e., there exists a function ~ ~ C ~ (R" 
R") which is inverse to (p = (q)(x)= x + f(x)). Let now A:s ~ s be the transfor- 

mation 

( 3 . 6 )  A c o = c o - -  ~ fjo@(co(A1) . . . . .  O.)(A.)) ilAj(S)ds, coe~. 
j = l  0 

In order to complete the proof it suffices to show 

T(Aco)= A(Tco)=co, co6Q. 

For this denote by I the unit matrix in R n. From (3.5) we see that 

(A co(A 1), ..., A ('~ f o~9)(co(A l) . . . . .  CO(A,)) 
= r (co (A 0 , . . . ,  co (A,)). 

Hence, 

T(Aco)=Aco+ ~ fj(Aco(A O, ..., Aco(A,)) S Iaj(s)ds 
j = l  0 

=CO, CO@~. 

On the other hand, 

(TCO(A 1) . . . .  , Tco(A,)) = (p(co(A 1), .-., CO(An)) 

provides 

A(TCO)= To)-- ~ (fjotp)(Tco(A1) . . . . .  Tco(A.)) ~ Iaj(s)ds 
j = l  0 

=co, co ~ ~2. [] 

From Proposition 3.1 we now know that a transformation T:f2--+~2 of the 
form (3.1) is absolutely continuous and invertible, whenever the shift process 
(Ks) is a smooth step process which satisfies (3.2). For the presentation of the 
density of the inverse transformation A we still have to compute the Carleman- 
Fredholm determinant of ( -  Dt Ks (co)). 

Computation of dc(--DK): Remark that (--DtKs) given in (3.4) is a nuclear 
operator acting on the subspace of L2([-0, 1]) generated by the orthogonal system 
{[Aj[-1/2Iaj,j= 1, 2, ..., n}, so that (3.3) gives 

(3.7) dc(-DK(co))=det (ai,a+[Ai[1/2[Ajll/2 0@ii f~(co(A1) .. . .  , co(A,))) 

xexp -- ~, [Ajl co(Ax), ...,co(A, , coe(2. 
j = l  
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The hard problem consists in the computation of the determinant of the matrix 

@i.j+lAilX/Z[Ajll/a o@ifj(x) ). 

For 

q~ (x) = (q'l (x),. . . ,  ~o, (x)) 

=(xl +lAllfx(x) .... , x.+lA.if.(x)) 

denote by ~[~-x'] (x) the Jacobian matrix 

( IAjl- ~/20q)j \ 
~ ( I / i l -  1/2x3 (x)] 

of the transformation 

(1• 11-1 /2x l , . . . ,  I&l -  X / 2 x n )  - '  (IA1 I- 1/2 q)l (X) . . . . .  Id,I- 1/2 ~o, (x)). 

Then, obviously, 

det [~x ] (X) =det ( b,.j + lA,ll/2 lA jl~/2 ~Ox f J(x) ). 

For the computation of det [ ~ ]  (x)we need for each t~[0, 1] the mapping 

q~t(x)=(Xl +lAl~[O,t]lfl(x) .... ,x.+[Anc~UO, t]lfn(x)), x~R n. 

The mappings (pt:Rn--+ R n are invertible; the proof is analogous to that of the 
invertibility of ~o ( = (Pl). Let ~Pt : Rn ~ Rn denote the inverse to q~,. 

Lemma 3.3 With the above notations we have 

det 0~-~](x)=exp~ ~ ~ ~xj(fjo~t)(q0t(x))dt}, x~R ~. [] 
cx j  (j=l~j 

Proof. Choose for each j = 1, 2, ..., n any subpartition t j_ 1 = tJo < tJ .... < tJj = tj 
of A j, and denote by A~ the interval (t~_ 1, t~]. We put 

o~ (~) = (Xx . . . .  , ~j_~,  xj + I~ ~1 fj(~'~_ ~ (x)), xj +1 . . . . .  x,), 
k =  1,2, ..., kj, j =  1, 2, ..., n. 

Then, we have 

�9 - J J a J  ~ a j - x  ~ j - 1  ( . . (0~(01(x))  .))) .))), ~o,~ (x) - 0k (0k-  1 ( , . .  ~ 1 wk~_, ~.k~_, - ~ . . . . .  

so that the form of the determinant 

det [ ~ ]  (x )=  1 +  I~t~1 ~ x j  (f~ o ~,~_,  (x)) 
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of the Jacobian matrix of the transformation 

(]AI]- 1/2x,, ...,]A,l-1/2x,)~(lAll-1/zxl, . . , , l~a_ll-1/2xi_a, 
IAsl- ~/z(xj + lAZl f j(~, ts (x))), 
IA~+ 11- t/axs+ 1 .. . . .  IA.I- 1/2 x,,) 

implies the following relation: 

(3.8) det (x)= 1-I I+IA~I (fjo0,~_,)(~0t~_,(x)), xeR". 
k = l  

(? 
Now fix any j =  1, 2, ..., n. Since ~(fo~t)(q~t(x))  is continuous and bounded 
in [0, I] x R", we get ~ J  

lira ~_[I 1 1 +IA~I (f~o0t~_)(q0t~_, (x) 
max[A~c[ ~ 0 = 

k 

= lim exp [A~I (f~~ 0,~_ .)(q~,t-. (x)) 
m a x [ A ~ [ ~ O  k 

k 

= e x p ~  ~ 6 } 
v~s ~x-x-xs (fioOt)((pt(x))at . 

From (3.8) it now becomes clear that the statement is correct. 

If we substitute Lemma 3.3 in (3.7), then we obtain 

(3.9) dc(--DK(en))-~exp{~ ~-~j(fjo~pJq~t(og(A1) .... ,og(A,)))dt 
J= j 

" O 

In order to rewrite (3.9) in terms of (K~) we introduce for each te[0,  lJ the 
transformation 

T t 09=(9+ f Ito,tl(s) K~(co) ds 
0 

j = l  0 

Since (I[o,t](s) Ks) satisfies (3.2), T~ is absolutely continuous and invertible. From 
(3.6) we see that A t = Tt- ~ has the form 

(3.10) Atco:co-- ~ fj~ ..., co(A~))i l~s~Eo, lt(s)ds, e9~(2. 
j = l  0 
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Then,  

K~(At co)-- Z f J~  1)' " " '  co(An))l~j(t). 
j=l 

Since fjo ~teC{  (R"), j =  1, 2, . . . ,  n, the r a n d o m  var iable  Kt(At co) belongs to 5 P. 
Due  to (2.2) we can compu te  Dt[Kt(A t co)], 

D t [K~(A t co)] = (fjo Ot)(co(A 1), --., co(An)) I~j(t). 
j= 

Finally,  subst i tut ing 

T tco(A1), ..., Ttco(An))=(Pt(co(A1), "'', co(An)) ,  

we see tha t  (3.9) takes the fo rm 

de(- DK(co)) = exp D t [-Kt (At)](Tt co) d t -  i Dt K~ (co) d t . 
o 

Summar iz ing  the above  results we can state: 

Proposi t ion 3.4 Let (Ks) be a smooth step process which is such that 

(ii[DtKs[2dsdtf/2o < 1 .  

Then the transformation 

Tco = e ) +  ~ Ks(co ) d s  
0 

is absolutely continuous and invertible. Its inverse transformation A has the density 

(3.11) 

where 

d P  o [A] - i 

d P  

{ i 1i 1 } = e x p  -- K s d W s - -  2- K~ ds+ ~ [Ds[Ks(As)](Ts)--OsKs] ds , 
0 

Tzco=co+ ~ Ks(co)Iro,t](s)ds, At=Tt -1, te[O, 1]. [] 
0 

Remark 3.5 M a k i n g  use of  P ropos i t ion  2.8 we get 

Ds [K~(A, co)] = (D~ K~)(A~ co) 

- -  i (Dr Ks)(As co) D s [K t (As co)] d t, 
0 

s~[O, 1]. 
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Therefore, we can rewrite (3.11) as follows" 

(3.12) 
dPo [A] - i  

d P  

( 1 11 i s  "1 
=exp 7-- ~ K s d ~ - -  f K~ d s -  S I DtK~Ds[K~(As)](Ts)dtds?. 

( o 20 o o  

The purpose of this equation is that here the right-hand side can make sense 
also in the case, where (Ks) is not a smooth step process. [] 

4 Absolute continuity of transformations. General case 

We consider now the transformation 

(4.1) T o = c o +  ~ K~(co) ds 
0 

for processes (Ks)~L1, 2 such that 

(4.2) ( i  oi lDt Ksl2 ds dt) l/2 ~~ 

We will see that condition (4.2) is sufficient for the absolute continuity of T. 
In order to deduce the invertibility of T and to compute its density we will 
need an additional Novikov-type condition on (Ks). 

Proposition 4.1 Let T: f2---, f2 be a transformation of the form (4.1) and assume 
(4.2) to be satisfied. Then T is absolutely continuous. [] 

Proof. Due to Proposition 2.6 there exists a sequence (K~) of smooth step pro- 
cesses which converge in L1,2 to (Ks) and are such that 

c*=supn ( i  oilDtK~[2dsd01/2 < 1 .  

From Proposition 3.4 we know that the transformations 

Tnco=co+iK~(co)ds, n=  1,2, 3, ... 
0 

are absolutely continuous and invertible, the inverse transformation A n of T" 
has the density 

(4.3) 
~ 1 I i t  } 

L"=exp -- ~ K~ dl/V~-~S (Ksn) 2 ds-- ~ ~ Ds K~ Dt[Kn(A~)](Tt n) ds d t ,  
0 - - 0  0 0 
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where 

Ttn r = o2 + y leo ,tl (s) K~ (co) d s and At = (Tt n)-I 
o 

In order to apply now Proposition 2.9 and to conclude to the absolute continuity 

of T, it is sufficient to show that the sequence ~ = dP  of densities 

is uniformly integrable or to check the stronger condition 

s u p E [ ~  ~ in ~"] ]  < + oe (cf. [5]). 
n 

Since s176 = U  and E[Yn[ In ~n]]  = E [ l l n  GP"(Tn)[] = E [ l l n  U[], this condi- 
tion is equivalent to 

sup E[[ln L"]] < +oo.  
n 

Obviously, E K~" d W~ + ~- (K~) 2 d s is bounded. Thus, it remains to estimate 

1 t 
S ~ Ds Kt Dt [K~(A2)](Tt n) ds d t. 
o o 

For  this recall from (3.10) that K~(A'] c~)~5~, so that Proposition 2.8 provides 

(4.4) DrK~(~o)=Dr[(K'~oA'])(Ttn o))] 
t 

= Dr(K~ o A~)(T? ~o)+ [. Du(K'~ o A';)(~" ~o) Dr K". (o~) d u. 
o 

Consequently, 

(i i [Dr(Kns~176 

!]DrK'~(c~ 1/2 1 
< < 

1-  ]DrK~(co)12dsdr)a/2 l - c *  
< + o O .  

Setting r = t in (4.4) and using the last result we obtain 

(4.5) j i 01/2 I [Dt(K'~oA'~)(T," e))12 ds d 
o 

<=(l+~Kc~)(iilDrK:(~ 1/2<=1+- 
1 m C *  " 
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From here it is easy to see that 

(E[iiDsKtDt[K:(A~)](Tt")dsdt])o 

is bounded. [] 
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and for some q > 1, 

(4.7) c* = sup [Dt K~"I 2 ds d < 1 
n 0 

(4.6) 
q 1 

E[exp{~o K~ds}]< +oo. 

We want to prove the invertibility of the corresponding transformation T with 
shift process (Ks). For this we need an approximation of (Ks) in L1,2 by a 
sequence of smooth step processes satisfying (4.2) and (4.6) uniformly, in order 
to pass in Proposition 3.4 to the limit. This will be established in Lemmata 
4.2M.7 and the main result will be presented in Theorem 4.9. 

Lemma 4.2 For the process (Ks)~L1, 2 with (4.2) and (4.6) there exists a sequence 
of smooth step processes (K"~) approximating (Ks) in L1, 2 such that 

and 

[ t q f  } ]  
(4.8) supE exp ~ (K~)2ds < + o o .  [] 

n 

Proof. For each natural m we set 

q~m(U)=max{min{u, m}, -m},  ueR 1. 

Then, clearly, (~om(Ks)) converges in L1,2 to (Ks), 

]~om(Ks)l<lKsl, and ID,[~o,,,(Ks)]I<ID, KA, a.e. 

From Proposition 2.6 we now can deduce that the processes (q)m(Ks)) can be 
approximated in L1.2 by sequences of smooth step processes (K2'") such that 

sup ]DtK'~'"12dsdt <1 
n , m  0 

sup.  ]Ks'nl2ds) oo ~ ~~ ' m= 1 ,2 ,3  . . . .  

For our further studies let us fix any (Ks)eL1, 2 which satisfies (4.2) and assume 
that there exists a q > 1 such that 
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Hence, we can choose a diagonal sequence (K2 '"(m)) which converges in L1, 2 
to (K~) and satisfies the inequality 

E [exP{2i(K'~'"('~ q 1 _ {~!(P,,(Ks)2d@], 

m=1,2 ,3  . . . .  

Clearly, this sequence of smooth step processes has the required properties. [] 

Together with the process (K~)EL1, 2 let us fix now a sequence of smooth step 
processes (Ks ~) which approximates (K~) in the sense of Lemma 4.2. To these 
processes (KS") we associate the absolutely continuous and invertible transforma- 
tions 

T~ ~ co = co + ~ Ks" (co) 1[o, q (s) d s, 
0 

and we denote their inverse transformations by A~. Then, for each t~[-0, 1], 
A~ is absolutely continuous and has the density 

(4.9) L]=exp - KS"dWs--~ (KS")2 ds - I DrK2DsVK~(AS")](TDdrds . 
0 --0 0 0 

In order to show the invertibility of T, we want to apply Proposition 2.9 to 
the sequence of transformations (At). For this we need some auxiliary results: 

Lemma 4.3 Under the above assumptions there exists a p > 1 with 

sup IIg~ll~< + oo. 
n, t  

Then, in particular, the family Lt, t~[-0, 1], n = 1 , 2 , 3  . . . . .  is uniformly integr- 
able. [] 

Proof. Let e> 0 be such that c* < 1 - e  and ( 1 -  e)q > 1. Set 

( l - e )  q ) 
e andf ixany  pc 1, ( l _ ~ ) a q +  e p '=  1 4 (1 _~)2q 

Then, pp'c*< 1 and 

Obviously, we have 

pp'(pp'--l) 
pr ] <q. 

(4.10) 
, 1 2 ,  }]lip IIL][I~<epC1E exp --PP'S K~s dVV~-~(pp) S (Ks")2ds 

~- 0 0 

xE[exp~PP'(PP'--I) i (K~)2ds}]@ 
[ 2(p'-- 1) o 
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where 

(4.11) c 1 = sup i i IDs K~ Dt[K"~(At)](T~")] as at  
n 0 00 

1 
< 1 +  1 ~ c ~  < + ~ 

Here we have used (4.5) in the last line. F r o m  the above assumpt ion for pp' 
we see that  the t ransformation 

~" co = co + p p' y Ks ~ (co)/to,t] (s) d s 
0 

is absolutely cont inuous  and invertible. Due  to (4.9) its inverse t ransformat ion 
A7 has the density 

(4.12) 
t t 

L ] = e x p  - p p '  ~ K~ dW~-�89 2 y (K~)2ds 
t .  0 0 

,s  } 
D,. Ks D~[K,(As)](T~ ) d r d s  _(pp,)2 I Y " " -" - "  " 

0 0 

Moreover ,  (4.5) gives 

(pp,)2 1 t d s d t  o~ 1 KtDt[K~(At)](Tt)I <14  l _ p p ,  c .  < +oo. (4.13) f f IDs " " - "  - "  
0 0 

Finally, substi tuting (4.12) and (4.13) in (4.10) we get the existence of a real 
constant  C such that 

1 p' 1 

11/411f, < CE [exP { q  ! (Ks")2 d s } ]  p' . 

N o w  the correctness of the statement follows immediately from (4.6). [ ]  

L e m m a  4.4 For each t~[0,  1], the sequence (K~(A~)) is convergent in L2([0, 1] 
xO). [] 

Proof. Fix any t~[-0, 1]. Since A~ is the inverse to Tt n, it has the form 

At co = co - ~ K~(A7 co) I[o,q(s ) ds. 
0 
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Consequently,  Propos i t ion  2.7 permits to estimate 

i ]1/2 E IK~(AT)--K~(A'~)12dsJ 

(i i )1/2 [i ]1/2 
<= [D t Ksnl2ds dt  E IKg(Ar)-- K2(Ar)I2 ds 

0 

[i " ,? + E I K~ (At)  --  Ks" (A?)[ 2 d , n, m = 1, 2, 3 . . . . .  

and f rom (4.7) we obtain  

E . . . .  2ds]  < 1 [K~--gsl  dsl2t ]K~(At)--Ks (At)1 = 1 - c *  g , ,, 2 , 

n , m = l ,  2,3 . . . .  

We now can derive f rom L e m m a  4.3 and (4.8) that  the r ight -hand side of  the 
above inequali ty tends to zero, if n, m ~ ~ .  Hence, the sequence (K2(AT)) is 
convergent  in L 2 ( [ 0  , lJ x f2). [ ]  

Denote  by Tt the t ransformat ion  

Tt co=co + ~ILo,tl(s)Ks(o~)ds, t e l0 ,  1], 
0 

which is absolutely con t inuous  due to Propos i t ion  4.1. We now state: 

Proposit ion 4.5 Let t e [0 ,  1] and denote by (Ks) the limit of (K~(AT)) in L2([0, 1] 
x (2). Then the transformation 

A t co = co-- i ILo,*l(S) Ks(co) ds 
0 

is absolutely continuous and inverse to T t. [] 

Proof. Since the absolute cont inui ty  of  A t follows immediately f rom Proposi t ion  
2.9, L e m m a t a  4.3 and  4.4, it remains to prove that  At is inverse to T~. Fo r  
this note  that  by making  use of  Propos i t ion  2.7 we can estimate 

1 
P {IK s (At)-- K~ (AT)[ > e} d s 

0 

< 2c* E [Ks--K2(AT)[Zds + E  I~li(_K;l>~/2~ds.L ~ 
F, 

where L t denotes the density of A t .  As we have established in L e m m a  4.4, 
the r ight -hand side of  this est imation tends to zero, for any e > 0, i.e., 

K~(A,) lim " " - -  = K~(At ) -K~.  
n ~ c o  
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But, this relat ion implies inamediately 

TdA, co)=ATco+ ~ Ks(A~co)IEo,~l(s)ds=co, a.e. 
0 

On the other  hand,  if ~o e C~ (R 1), then the p roo f  of Propos i t ion  4.1 and s ta tement  
L e m m a  4.4 allow to apply  Propos i t ion  2.10 to the sequence (F"=~o(K~(A~))) 

( " ) of r a n d o m  variables  and to the sequence Ttn co = co + y/ to ,a  (s) K2 (co) d s of t rans-  
0formations.  This yields o 

qo (/s = L2 (f2) - lim qo (K~o A t)(T[') 
n ~ o o  

= L2 (f2) - l im (p (K~) = (? (Ks). 
n ~ o o  

Hence,  
K,= Rs(T0, 

and 

AdTtco)=Ttco--~IEo,~(s)Ks(T~co)ds=co, a.e. [ ]  
0 

I t  remains  o~nly to compu te  the density of  the t r ans fo rmat ion  A,. F o r  this we 
still need the following auxil iary s ta tements :  

L e m m a  4.6 For each te E0, 1], the process (K~(A~)) converges in L1,  2 to (Ks(At)). 

Proof Since F=K2 belongs to 5 p and the shift process (K~(ADI[o,tj(r)) of At 
is a smoo th  step process, Propos i t ion  2.8 can be appl ied to compu te  D, [K~"(A~)]. 
This yields 

(4.14) D r [K'~(A'/co)] = (Dr K'~)(A t co) 

-- i (Du K~)(A] co I Dr [K~ (A~ co)] d u, 
0 

Hence,  

(4.15) IDr[K~(AD]lidrds < 
o = l - c * "  

r~ s~ [0, 1]. 

A renewed es t imat ion  in (4.14) with subst i tut ion of (4.15) gives 

(4.16) E [D~[K'~(A~')]--D~[K2(A~)]I2drds 

--< (12-ct'- c*) 2 . E oS I(Or K:t(A2) -- (D,. K;"l(A~')12dr as] 1/2 

Thus,  by virtue of Propos i t ion  2.10 it suffices to show the uni form square  integra-  
bility of  (DK")(A~') in [0, 1] 2 • Q in order  to conclude that  D [K"(A~)] converges  
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in L2([ '0  , 1] 2 •  For  this note that due to Lemma 4.3, for some q > l  and 
some real Cq it holds 

[i i](Dr Ks)(A')II{[(Dr Ks)(A')[ > M }  dr  ds] sup g , n 2 n n 

n 0 

1 

:supE[(i!'D,.K'~12I{ID,.K'~I>M}drds)[4 ] 

<=C. supE !ID~K:I~I{ID~K:I>=M}drds) ] , M > 0 ,  

and that due to Lemma 4.2 the right-hand side of this estimation tends to zero, 
as M ~ ~ .  On the other hand, in Lemma 4.4 we have already established that 
(K'~(A2)) converges in L 2 ([-0, lJ x f2) to (Ks(A~)). Consequently, (Ks(At))~L1,2 and 
(Ks(At))=L1,2-- lim (K"~(A~)). [] 

n - +  oo 

Lemma4.7  The process (Dr[Ks(At)I) has a version for 
(t~-+Dr[Ks(Ar)]6L2(f2)) is continuous, for r,s~[-0, 1]. []  

Proof. If we pass in (4.14) to the limit, then we get 

which the function 

(4.17) 
t 

D,. [Ks(At)J =(D~ K~)(A,)-- ~ (D,, K~)(At) D,. [K,  (A,)J du, a.e. 
0 

From this equation and condition (4.2) on (Ks) it becomes clear that it suffices 
to show the mean-square continuity of t~--,(Dr Ks)(A,) in order to conclude to 
the correctness of the statement. This mean-square continuity we want to verify 
by Proposition 2.10. For  this we only have to check that 

(i) the family (Ks(At)) of the shift processes of the transformations A, is continu- 
ous in L 2 ( [ 0  , 1 ]  x ~r-~) and 

dPo[A,] 1~ 
(ii) the set of the densities L t = ~ -] is uniformly integrable. 

From Proposition 2.9, Lemmata 4.3 and 4.4 we see that 

(4.18) L,=~(L1,Loo ) -  lim L], tel-0, lJ. 
n ~ o o  

Hence, the uniform integrability of the set {L], te l0 ,  13, n =  1, 2, 3 . . . .  } (cf. Lem- 
ma 4.3) implies (ii). For  the proof  of (i) we apply Proposition 2.7 to estimate 

s<t. 

Since 

A, co=oo-- 5 I~o,,~(r) K~(A, co)dr, a.e., 
0 
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we obta in  

Thus 

r 1 ]1/2 

E loI i K,(&)-/'c,(A,)I2 d r ] 

{ [i 11/2 r '  _ 

1 ] 1 / 2  

E[f[Kr(As)__Kr(Ar),2dv, < 1 ~ ]1/2 
[o~ j 

and if we consider  (4.18) and L e m m a  4.2, then we have  for some p,p'> i with 
1 1 
P + p ,  = 1 the following es t imat ion:  

(4.19) E[i  ]Kr(A*)-Kr(A,)12dr] 1/2 

1 ( ,, )1/2 v/~ ,,,,11/2p, 

< supllEt[lp .~[(;IK, j~dr) l . 

= 1 - - C  K , n , t  ~ s  / 

But f rom condi t ion (4.6) we now can deduce tha t  the r igh t -hand  side tends 
to zero, i f [ t - s [ ~  0. This completes  the proof.  [ ]  

Remark 4.8 Due to L e m m a  4.7 we can define the process (D r [K~(Ar)]) by 

(4.20) D,. [K s (Ar)] = L2 (f2) -- lim Dr [K,  (At)]. 
t ~ r  

By passing in (4.17) to the limit t ~ r we see tha t  (D r [ K  s (At)J) and (D r [K s (A~)](Tr)) 
be long to L2([0, 1] 2 x g2). [ ]  

R e m a r k  4.8 gives sense to the r igh t -hand  side of  (3.12) also in that  case, where 
(K,)~L1, 2 is no t  a smoo th  step process. Thus,  we now can formula te  the ma in  
result:  

Theorem 4.9 Let (Ks)cL1, 2 such that 

(i) ( i  ilDtKsl2dsdt)ll2 <l, 

and 

(ii) thereisaq>lwithE exp ~ K2ds < + o o .  

Then, the transformation 
6 

T e e = c o +  j" K~(co) ds  
0 



Anticipative Girsanov transformations 233 

is absolutely continuous and invertible. Its inverse transformation A has the density 

1 1 2 IDsK,  D~[Ks(A,)](T~)dsd t , (4.21) L = e x p  -- ~ KsdWs--~ Ks d s -  
~- 0 0 0 0 

where 

T~co=co+ SI[o,q(s) Ks(CO)ds and A t = T  t 1. [] 
0 

Proof. In Proposition 4.5 we habe already shown that the absolutely continuous 
transformations Tt, t~ [0, 1], are invertible. Hence, we only have still to compute 
the density L of A. 

Let (Ks") be the sequence of smooth step processes we have associated to 
(Ks) by Lemma 4.2, and keep the notations introduced above. Since due to 
(4.18) L is the limit of the uniformly integrable sequence (L") in the weak topology 
a(L1, Lo~), it suffices to prove 

1 1 1 1 t 

t K~dl/V~+~ y K 2 d s + y  yDsK, D, FKs(At)](Tt)dsdt 
0 0 0 0 

= LI( f2) -  l i ra  K'~dVV~+I!(Ks")Zds 

t} + I f Ds K~ D t [K~(A~)](Tt") ds d . 
0 0 

Since (Ks") tends to (Ks) in L1,2, the problem reduces to the proof of 

(4.22) E ID, [Ks(A,)](T~) . . . .  2 DtFKs(At)](T~ )1 d s d  ~ 0 ,  
0 

a s  n --> ~ .  

In order to verify (4.22) we deduce from (4.17) for t-~r by substitution of 
T~ co that 

r 

(4.23) D r [Ks(Ar)](T~)= D,. K s -  S Du Ks D,. [Ku(Ar)](T~) du, a.e. 
0 

Analogously we obtain 
r 

n n n ~ n n n n (4.24t Dr[Ks(A,,)](T~ )=Dr Ks -- I Du Ks Dr[Ku(Arl](T~ ) du, 
0 

From here we see 

n = 1 , 2 , 3  . . . .  

o IOr[K~(A"~)](T~")12drds --< 1--c~'  n =  1,2, 3, ..., 
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and so we can derive from (4.23) and (4.24) 

Ei; E ID~[K~(A,)3(T~)--D~EK'~(A,~.)](T")I2drds] ~/2 
0 

[i; = (12- c*) 2c~" E o ]DrK~-D~K'~12drds] ~/2" 

Clearly, the right-hand side of this estimation tends to zero. Therefore, (4.22) 
is true. This completes the proof. [] 

Appendix 

The proof of  Proposition 2.5 will be carried out in two steps. For  the first 
step fix any partition 

H = { O = t o < t l  < . . .  < t , =  1} 

and put 

A~=(tj , , t j ] ,  IAjl=tj t j - l ,  j = l , 2 , . . . , n .  

Let .yz-~ be the a-field on O generated by W(A1) . . . . .  W(A,), and ff~ the a-field 
on [0, 1] x ~2 generated by all step processes Ia, W(Ai), i , j= 1, 2 .... n. Denote 
by # the product  measure of the Lebesgue measure and the Wiener measure 
P on [0, 1] x f2, and by E,  its expectation. 

Moreover, we need the notion of the Sobolev space W1.2(R n, A#(0, B)) of 

measurable functions ~0: R"-~ R such that I~0(x)12 + - -  ~ ~ ~ (p(x)2 is integrable 
j= 1 

w.r.t, the mean zero Gaussian distribution with covariance matrix B. 

We now state: 

Lemma A.1 Let FcllD1, 2 and put F ~ = E [ F I ~ ] _  Then, F~clD1,2, and 

(A. 1) DE ~ = g ,  [DF I .ff~]. 

Moreover, there exists a qo e WI, 2 (R", ~U (0, B)), B = (I Aj161j), such that 

(A.2) ff~=q~(W(A1) . . . . .  W(zI,)). [] 

Proof. We first assume that F ~ 5  ~, i.e., there exist a partition of [0, 1] into 
subintervals A'I, ..., A ~,, a function f ~  C~ (R") and a natural m such that 

(A.3) F=f(W(A'I ) ,  ..., W(A',,)). 

k those reals for which the function For  each k = 1, 2 . . . . .  m, denote by c~ . . . . .  c~ 

n 

k [dj (A.4) gk=I&--  ~ aj 
j=l 
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is orthogonal to I a . . . . .  , Ian in L2([-0 , 1]), and set 

(A.5) cp(xl, . . . ,  x J = E [ f ( x l  + ~ g l ( t ) d W t ,  . . . ,  Xm+jgm(t) dWt)]. 

Then obviously, ~o e C~ (R m) and 

(A.6) F'=~o @ W(Aj), ..., cdf W(Aj)  , 
j j = l  

i.e., (A.2) holds for F e 5  P. Substituting 

~gk(t) d W  t = W(Ak)--  aj 
j = l  

in (A.3) we can deduce 

DF = c~j 
k = l  j 

+Ig , ( t )dWt  . . . .  , c~]' W ( A a ) + f g m ( t ) d W  t �9 ~ I A , + g k  , 
j = l  / v . j = l  

so that (A.4) and (A.5) now yield 

(A.7) E,,I-DF[~ ~] 

~=, ~ax~ }\ j=,  j=, 

�9 o~ IA, + f gk (t) d t . 
0 

Using again (A.4) in the last line, 

ig~(t) d t =  ~ igk( t ) Ia j ( t )  dr=O, 
0 j = 1 0  

we get from (A.6) that the right-hand side of (A.7) coincides with DF. 
Now, in the second step, let FED1,  2. Then there exists a sequence (Fj) _c y 

which tends to F in DEe .  Put F T = E [ F j ] ~ ] .  Then, due to the first step, DFf  
=E,[DFj[~=] ,  and passing to the limit j ~ o o  shows that F=eID1,2 and (A.1) 
holds. Moreover, there are ~ofs of C~ (R n) such that 

FT=q) j (W(A 0 . . . . .  W(A,)), j = 1 , 2 , 3  . . . .  

Hence the convergence of (Fj =) in D 1 ,  2 is equivalent to the convergence of (q~a) 
in W1,2(R n, J ~ ' ( 0 ,  B)). This completes the proof. []  
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We can prove now Proposi t ion  2.5: Let  FEID1, 2 and fix any s > 0 .  Assume 
that (/-/, = { ~ ,  .. . ,  A~}) is an increasing sequence of  part i t ions such that  

and put 

max IdOl ~ 0 ,  as n ---+ oo~ 
m ~ m 

j =  I ,  2, . . . ,n 

F.=EEFlY~q, 

F r o m  L e m m a  A.1 we see that  

n =  1,2, 3, ... 

IIF~lloo ~ IIFIl~o 

(x) = 1, 

Then we put  

and 

IDsF,12ds <= IDsfl2ds , n = 1 , 2 , 3  . . . .  

Hence, it suffices to prove Proposi t ion  2.5 for any FelD1.  z of  the form 

(A.8) F = q0 (W(A ,) . . . . .  W(A,)), 

where H = { A  1, . . . ,A,}  is a part i t ion of [0 ,1] ,  ~oeW1,2(R",X(O,B)) and B 
=(IAjl-6ij) .  

We first assume addit ionally that  (p has a compac t  support .  Then we choose  
any nonnegat ive function ~E C;  ~ (R") with compac t  suppor t  such that  ~tp (x )dx  
= 1 and define the C~ (R")-functions 

which converge to ~o in WI,z(R", Jff(0, B)). If  we now put  

Fh=cph(W(AO, ..., W(A,)), h > 0 ,  

it is no t  hard  to see that the so defined sequence (Fh)~_Se tends to F in IDl,2 
as h ~ 0, and 

IIFhil~_-< IIFIl~, 
and 

\: /2 ]DsF]2ds) , h > 0 .  

Thus, it remains to consider F@]D1, 2 given in the form (A.8), where (p does 
not  have a compac t  support .  Let tpeC~(R") be a nonnegat ive function with 
a compac t  suppor t  and assume 

for ] x ] < l ,  and 0<~p(x)=<l, foral l  xeR". 
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and 

Fk=CPk(W(A1) ..... W(A,)), k =  1,2, 3, ... 

Obviously, [F d tends to F in D I , : ,  Fk has the form (A.8), where ~o k has a compact 
support 

IlVkll+ < Ilflloo, 
and 

( i lDs  Fk] 2d S)1/211 o~ 

< IDsFlads ~ + ~  I[fll~o. SUPx \j=E1 ~ @(X) IAjl) 

( i l  d s f / 2  = <gq- DsF[ 2 

for all k's which are large enough. 
But, for those Fk'S we already know that they can be approximated in the 

required manner. []  

The proof of Proposition 2.6 can be reduced to Proposition 2.5, if we approximate 
(Ks)EL1, 2 by the step process 

(K~=j~, ~ Krdr'las(s) 

for a part i t ion/7 = {A 1, --., A,} of [0, 1], since 

(i) (K~) tends to (Ks) in E l ,  2 if(/7) is monotonically increasing such that 1/71 
= m a x  IAjl ~ 0 ,  and 

(ii) ( i 'KYl2ds )  1/2 o~<= (iK2 ds)l/2 m 

and 

(i i lDtKrlsl2dsdt) 1/2 < (i i lDtKslidsdO 1/2 " 

In order to complete now the proof of Proposition 2.6 we only have to approxi- 
1 

mate ;wq- .[ Kr dr  in the sense of Proposition 2.5. []  
lajl xj 
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