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Summary. Between the operat ions  which p roduce  partial max ima  and partial  
sums of  a sequence YI, Y2, . . . ,  lies the inductive opera t ion:  X , =  
X , _  1 v (~X,_ ~ + Y,), n > 1, for 0 < e < 1. If  the I1. are independent  r a n d o m  vari- 
ables with c o m m o n  distr ibution F, we show that  the limiting behavior  of  no rmed  
sequences formed f rom {X,,  n > 1}, is, for 0 < ~ < 1, parallel to the extreme value 
case c~=0. Fo r  F6D(~y) we give a full p roo f  of  the convergence,  whereas for 
F 6 D (~ )  ~o D (A), we only succeeded in proving  tightness of  the involved sequence. 
The process X ,  is interesting for some applied probabi l i ty  models. 

1 Introduction 

Let Y1, Yz . . . . .  be a sequence of  independent  r a n d o m  variables with distr ibution 
F. We define 

(1.1) X o : = X o e l R  

X ,  . '=max {X,_  1, ~X ,_  1 + Y,}, n _-> 1, 

where a is a parameter  with range [0, 1). In  this paper  we study the existence 
of  norming  constants  a,(a) and b,(~) such that  

{X,  - b, (~)}/a, (~) 

converges in dis tr ibut ion to a non-degenera te  limit. 

Fo r  ~ = O, 

X .  = max  {Xo, II1 . . . . .  Y.}. 
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In this case the limit laws are well known and the domain of attraction problem 
has been solved by Gnedenko [3] and by de Haan  [6]. For  ~=  1, a value 
not included in this study, 

X.=xo+ ~ ~lEo,~(~), 
j = l  

in which case the limits are stable laws. A complete description of the domain 
of attraction problem for ~ = 1 can be found in Gnedenko and Kolmogorov 
[4]. 

Instead of studying the sequence X,  in (1.1) directly it is more useful to 
study a stochastic process X,(-)  which we introduce below. We denote by D(G) 
the domain of attraction of the distribution G, where G is one of the extreme 
value distributions. For  F e D (G) and a, > 0, b, d R  such that F" (a, x + b,)--+ G (x), 
for all x, we define for n > 1, 

(1.2) 

Then X,( ')~D [0, co) is defined by 

(1.3) X,(t),=a~ l (xo-b,/(1-cQ), O< t <n -1, 

X , ( t ) ' = m a x { X , ( ~ l ) , c ~ x , ( J - n l ) +  Y,j}, 

Y,,j,=(Yi-b,)/a,, j=  1, 2,. . . .  

~=<t< j + l ,  j = l ,  2 , . . . ,  
n n 

where XoelR. The process X , ( ' )  is called the ~-sun process with input sequence 
Y , i , j= I ,  2 . . . . .  and initial value x o. The algebraic relation between X,  and 
X,  (-) is obviously, 

(1.4) X,  (j/n) = a2 1 ( X  j - -  b,/(1 - c~)). 

In Sect. 2 we show that for F e D ( ~ ) ,  where ~b~(x)=exp(-x-'~)l[o,~o)(x), 7>0,  
and for all initial values x o the e-sun processes X,  (.) converge weakly on D [0, co). 
In Sect. 3 we formulate the results we obtained for FeD(~),  where ~(x)  
= exp( - ( - x) ~) 1(_ ~, oj(X) + 1(o, ~1 (x), 7 > 0, and FeD (A), where A (x) = exp(e - ~). 
Basically the only thing we are able to show in these cases is tightness. Because 
the proofs are long and technical, and the results unsatisfactory, they are omitted. 
Details of these proofs can be obtained on request through the second author. 

The interest in sequences of the type (1.1) originates from a storage problem 
for solar energy described by Haslett [7]. Additional studies are Daley and 
Haslett [1], Haslett [8], Hooghiemstra and Keane [-9], Hooghiemstra and 
Scheffer [10] and Greenwood and Hooghiemstra [5]. In these studies the energy 
contents X~ ~) of a storage tank is analyzed, where X~ ) satisfies the difference 
equation 

(1.5) X(~)-m~v ~ t~X (~) c~flX{,~ + Y,}, fie(O, 1). n - -  , o . ~ l p  n - l ~  1 

In [10] the limit behavior of X~ ~, the stationary solution of (1.5), for fl ~ 1 
and F ( x ) = l - x - ~ ( x > l )  was obtained. It turns out that the limits obtained 
in this paper for FeD(q)7) are of the same type as those in [10]. Intuitively 
this is because the order of the limit procedure has been interchanged, which 
apparently is allowed. The question whether this can be proved is not easy 
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to answer and depends on the speed of convergence of X(f ) to the stationary 
limit X~  ). This matter  will not be treated here. 

The study of iterative sequences of the form (1.1) is also of some theoretical 
interest. The behavior of X .  is somewhere between sups and sums. In fact they 
turn out to be close to suprema of i.i.d, random variables. The limit processes 
are new examples of self-similar Markov processes. In a forthcoming paper 
we study the situation where e depends on n i.e., e.  = 1 - n-  l, 1 > 0. For  0 < 1 < 1 
sequences X.  satisfying (1.1) with e replaced by e.  behave similar to the sum 
of the n~-largest order statistics. 

2 Convergence for case I 

We introduce an operator  that enables us to write the s-sun process X.( ' ) ,  
defined in (1.3) as a function of point processes. 

Definition 1 For  a countable collection r = {(x j, y j)};= 1 of pairs of real numbers 
such that 

(i) 0 < X l  < X 2 <  . . . .  
(ii) card {xj: xj<s} < o0 for each positive s; 

and for an arbitrary initial value uelR, we define the element T.(~)(')eD [0, 0o) 
by 

(2.1) T.(~)(t)=u, xo=O<t<x l ,  

T~(~)(t) = max { T. ($) (x~_ 1), e T. (~) (xj_ a) +Yj}, xj<=t<xj+l, j > l .  

The operator  T. will be called the e-sun operator. If u = 0 we write T instead 
of To; occasionally we abbreviate T.. by T.. The element X . ( ' )  defined in (1.3) 
can be expressed as 

X.(-)  = r..(~.)(.), 

y oo where u. = a21 (x ~ -b./(1 - e)) and 4. = {(fin, .j)}j= 1 with Y.j defined in (1.2). 
The following simple property of s-sun operators is used repeatedly. 

Lemma 1 Let ~1)= {(xj, ,,~1)~ and ~t2)= y)~2)))j=l~o .~ jsi=~ {x~, be two collections sat- 
isfying (i) and (ii) of Definition I and having identical x-values. Suppose that for 

�9 v t l ) - v  ~2) for all J>=Jo. I f  Ti, i= 1, 2, denotes the e-sun operator applied some J o ,  . , j  - - . , j  

to ~i) and/f TA (xjo)-  T2 (x2o) = c > 0, then for all t > Xjo, 

O <= Tl (t)-- T2(t) <=c, 

i.e., the paths only become closer but do not cross�9 

Proof. The result is obviously independent of the initial values of T~. The proof  
goes by induction�9 Suppose that for some j >Jo, 

O<= Tl(x)-- T2(xj)<=c. 
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�9 ( i )  > 1 If yj+~ ( - ~ ) T l ( x i )  then Y~2+)l-.~j+l-"(1) >(l_~)Tz(x j )  ' both T1 and T 2 jump at 
xj+ 1 and paths move closer by a factor ~. If 

( 1 -  ~) Tl(xi)>-- Yj+"~ 1 = ~j+"(~ > ( 1 - ~ )  T~(xj), 
then 

T 2 (x j) + Y}~I < c~ T 1 (Xi) + 2}1+) 1 s T 1 (X j), 

so T 2 moves closer but does not cross. Finally if,yj+,tu i = y}2+) 1 < (1 - ~) T 2 (x j), then 
neither T 1 nor T 2 has a jump at x j+ ~. [] 

Theorem 1 For FeD(q~) the a-sun process X , ( ' )  with arbitrary initial value 
xoeN., converges weakly in D[0, oo) to a proper limit which will be denoted by 
Z(-). 

Proof. Assume Xo =0,  the case Xo 4=0 will be treated at the end. Put b. = 0  and 
a. = inf {y: 1 - F (y) < n - 1}, then X.  (') is defined without ambiguity and X.  (0) = 0. 
By hypothesis 

(2.2) n(1 -F(a .x ) ) -~#(x ,  ~) ,  x > 0 ,  

where #(x, o~),=x-L Fix s > 0  and denote by ~. the collection (j/n, Y /a . ) , j=  
1, 2, ..., Ins], and by 4.(6), 3>0 ,  the collection of points (j/n, Y/a . )e4.  with Yj 
>a.3. Further we denote by 4(3) the points (or better the support) of a Poisson 
random measure, with intensity dt x d#, restricted to the set [0, s ] x  [3, oe). Since 
#(3, o �9  oc the number of points in 4(6) is a.s. finite. The point process 
(random measure) which gives unit measure to each of the points 
(j/n, Yj(co)/a.)e~.(6) will also be notated by 4.(3). According to Proposition 3.1 
of Resnick [12] the convergence (2.2) implies that ~.(3) converges vaguely to 
4(6) on the space of point measures defined on [0, s] x [3, oc). Since the map 
(x, y) --* x v (~ x + y) from IR 2 ~ IR is continuous we conclude that for fixed 3 > 0, 

(2.3) T(4,(3))(') _~d T(~(3))(.) on D [0, s]. 

We will show that 

(a) T(4(3))(') has an almost sure limit Z(-)  as 3 ~ 0, which is proper; 
(b) sup IX . ( t ) -  T(4.(3))(t)[-<25/(1-e). 

O<_t<_s 

From (b), (a) and (2.3) it follows that X.(.)--~d Z ( ' )  on D[0, s], for each positive 
S. 

Proof of (b). We have X. ( t )=  T(4.)(t)>= T(4.(6))(t) for all t e l0 ,  s], since 4. con- 
tains more points than 4.(6). The points (j/n, Y /a . )e4 . \4 . (6)  are discarded as 
soon as X.(t)>3/(1-cO. Hence we may assume that X . ( ' )  and T(4.(b))(') see 
the same input for t > z (co)..=min {t: X.  (t) > 3/(1 -- c0}. 

For  t<z,  O<X.( t ) - -T(4.(b))( t )<3/(1-a) .  For  t=z,  X . ( z ) = ~ X . ( z - - ) +  ynj, 
where j/n=~(co). Either Y.j>3 in which case X.(z)--T.(4(3))(z)<=c~3/(1--~), or 
Y.j < 3 in which case X.  (~)-  T(4. (6))(~) < 3/(1 - ~) + 3 < 2 3/(1 - e). Now we apply 
Lemma 1 to obtain (b). 
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Proof of  (a). If 0 <  8 '<  8, then T(~(8'))(.) sees more input than T(~(8))(-), namely 
points of ~ with second coordinates in [8', 8); hence T(~(8'))(t)> T(~(8))(t) for 
all t e l0 ,  s]. Because of monotonici ty 

Z = lim T(~ (8)), 
6 5 0  

exists almost sure. We know that T(~ (6))(t) is proper, because T(~(b))(t) operates 
on only finitely many points. For  6 '<  6 we have by the argument in the proof  
of (b) 

0 < T(~ (s -- T(~ (8))(t) < 2 8/(1 -- e), 
so that 

sup T(~(8'))(t) =< T(~(8))(t) + 28/(1 -- e); 

Finally we turn to the case where Xo4=0. Then X , ( - ) =  T,.(~,)(.), and u,=xo/a ,  
0. X, ( . )  and T(~,)(.) have the same input so that according to Lemma 1, 

0 < sup I T,, (4,) (t)-- T(~,)(t)l ~ u,. 
t < s  

Hence Tu,(~,)(') will also converge to Z( . )  on D[0, s]. []  

It is seen from the proof  of Theorem 1 that the process Z(s), s > t, given Z( t )=z  
> 0, can be defined as an a-sun process with input the Poisson process ~ restricted 
to It, oo) x [ ( 1 - e ) z ,  oo). Moreover, as Z(t) is the weak limit of Xr, tl/aE,tl and 
lim aE,tl/a,=tl/L it follows that Z( . )  is self-similar with index H = 7  -1. Self- 

n ~ o o  

similar Markov processes have been extensively studied by Lamperti  [-11]. We 
focus on the distribution of Z(1). 

Theorem 2 For F e D ( ~ ) ,  7 > O, the distribution of  the limit random variable Z(1) 
has a density h~ concentrated on (0, oo). This density is the unique density solution 
of  the equation 

x 

(2.4) h~(x)=Tx -1 ~ (x-eu)-~h~(u)du,  x > 0 .  
O 

In order to prove Theorem 2 we use the self-similarity together with the following 
relation between the law of Z( . )  and the measure #(x, oo)= x-~, x > 0. 

Lemma 2 The law of Z( . )  satisfies for t > 0  and x > 0 ,  

t x 

(2.5) P { Z ( t ) > x }  = ~ ~ ( x - e u ) - ' P { Z ( s ) e d u }  ds. 
0 0 

Proof From Definition (1.3) with Xo = 0 we have for x > 0, 
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and iteration of this formula yields 

= -  y" ~ {1 -F(a . ( x -~u) ) }P  X .  edu . 
m = l  0 

Fix t > 0 and put k = j  = [n t], then for x > 0, 

(2.6) 

= y~ {l-f(a.(x-~u))}P X.  [nt m ed 
m = l O  

[ n t ]  - 1 
s ~ 

= f ~n{1--F(a.(x--eu))} P{X~(s)edu}. 
s = O  0 

The final equality in (2.6) follows since X,(s) is a stepfunction. 

Now fix xsCont(Z(t)),  the set of continuity points of the distribution of 
Z(t). The left-hand side of (2.6) converges to P{Z(t)>x}, so we focus on the 
right-hand side. Note that for u~ [0, x], 

lim n{1-F(a , (x-o~u))}=(x-eu)- ' ,  
n ~ o o  

and by Karamata's theory this convergence is uniform for ue[0, x] (cf. [2], 
Theorem 1.3). Hence for each e > 0 and n sufficiently large 

(2.7) 

[ m ] -  1 
n 

f 
0 

In{1 - F(a.(x-c~u))} - ( x - ~ u ) - ' ]  P {X.(s)edu} ds 
0 

[ n t ] -  1 

n x 

<=e ~ I P{X.(s)edu}ds<et .  
0 0 

For so(0, t) we define 
x 

f ,  (s).'= ~ (x-~u)-~'P{X,(s)edu}, 
0 

x 

f (s)-'= ~ (x--~u)-TP{Z(s)edu}. 
0 
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For  x~Cont(Z(s)) we have f~(s )~f ( s )  (this is standard weak convergence theory 
and follows since (x-au)-~lEo,xl(u) is bounded and is only discontinuous at 
u = x). Furthermore 

and so 

x 

[f.(s)[ = ~ (x--ccu)-~P{X,(s)~du} < x - ' ( 1  - cr 
0 

t 

If~(s)lds= ix-~(1-~)- ' lds=tx v ( 1 - c 0 - ' < ~ .  
0 0 

By Lebesgues dominated convergence theorem ~ fn(s)ds~ f(s)ds if we can 
0 0 

prove that f,(s) ~f(s) Lebesgue - almost everywhere in (0, t). The latter statement 
is true because by self-similarity, the set, 

{s~(0, t): the distribution function of Z(s) is discontinuous at x} 

has the same cardinality as the set of all discontinuities of the distribution 
function of Z(1), which set evidently is countable. We conclude that 

i X t X 
(2.8) lim ~ (x-c~u)-~P{X,(s)~du}ds= S ~ (x-c~u)-~P{Z(s)~du}ds. 

n--*oe 0 0 0 0 

Finally 

(2.9) i 
[ n t ] -  1 

n 

x 

(x-eu)-~ P {X,(s)Edu} ds __< 2x-~(1 -a)- ' /n ~ O. 
0 

Combining (2.7), (2.8) and (2.9) it follows that the right-hand side of (2.6) con- 
verges to 

t t x 

I f(s)ds=~ f. (x-~u)-'P{Z(s)edu}ds. [] 
0 0 0 

Proof of Theorem 2. By self-similarity we have for each t > O, 

(2.1o) P {Z(t) > x} = P {Z(1) > x t -  i/s}. 

Using (2.10) we can write the integral equation (2.5) entirely in terms of the 
distribution of Z(1), 

t x 

P{Z(1) >xt-1/~} = S ~ (x--~u)-~P{Z(1) ~s-1/~du} ds. 
0 0 
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Next differentiate with respect to t and set t = 1 afterwards to obtain (2.4). Finally, 
Hooghiemstra and Scheffer [10] showed that the integral equation 

x 

g~(x) = x  - i  ~ (x-eu)-~g~(u)du, 
o 

has a unique density solution. From this we obtain the remaining conclusion 
of Theorem 2, since if X denotes an absolutely continuous random variable 
with density g~, then Y,=y~/~X is absolutely continuous with density h~, satisfy- 
ing (2.4). [] 

3 Further results 

As mentioned in the introduction the results for FeD(%) and FeD(A) are incom- 
plete. In this section we formulate tightness results for the two indicated domains 
of attraction and convergence results for some special distributions F. We close 
the section with an elegant and short proof of thightness when F is the uniform 
distribution on [ - 1 , 0 ] .  We denote by r the right end point of F, i.e., 
r=sup{x :  F(x)<  1}. 

Theorem 3 Let F E D ( ~), i.e., r< ov and 1 - F  ( r - x  i )=x-~L(x)  for some positive 
y and some slowly varying function L. Then there exist sequences a . > 0  and b.elR 
such that for all initial values xo<r / (1 -e )  the sequence a ~ l ( X . - b . / ( 1 - e ) )  is 
tight on ( -  o% 0). A possible choice of {a.) and {b.} is 

a . = r - i n f { x :  1 - F ( x ) < n - 1 ) ,  b.-=r. [] 

Theorem 4 I f  FeD(A), then there exist sequences {a.} and {b.} such that for 
all initial values Xo < r / (1-  e) the sequence a~ i (X.  - b . / (1 -  e)) is tight on IR. A 
possible choice of {a,} and {b,} is 

a~= U*(ne)-  U*(n), b,= U*(n), 

where for x > 1, 
U*(x)=inf{y: (1--F(y)) - l>x} .  [] 

Theorem5 Let Yi, Y2, ..., be independent with common distribution F ( x ) = l  
- Ix ]  ~, - l < x _ < 0 ,  F(x)=0,  x < - i  and F ( x ) = l ,  x > 0 .  Let a~=n-1/% b~=0. 
For each x o ~ [ - 1 ,  0) the a-sun processes X~(.), with initial value Xo nl/~ converge 
weakly in D(O, oe) to a proper limit Z(.). [] 

Theorem 6 Let Y~, I"2,..., be independent with common distribution F, given by 
F(x)=  1 - e  -~ on [0, oc), and let a , =  1, b,,=logn. For each xo>O the a-sun pro- 
cesses X , ( . )  with initial value x o - l o g n / ( 1 - e )  converge weakly in D(O, oc) to 
a proper limit Z(').  [] 

Theorem 7 Suppose Z( ' )  is one of the limit processes of Theorem 5 or 6. (i) For 
F(x) = 1 -  Ixl% o n  [ -1 ,  0], the process Z( ' )  is a self-similar Markov process with 
index H =  -- ~-1. The law of Z(t) satisfies 

(3.1) P{Z(t)> x}= i S I x -eu l 'P{Z(s )~du}ds ,  
0 x/c~ 
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for t > 0  and x < 0 .  In particular we obtain from (3.1) that the law of Z is indepen- 
dent of x o ~ [ - 1 ,  0) and that the marginal distribution of Z(1) admits a density 
on ( -  o% 0), denoted by h~, where h a is the unique density solution of 

(3.2) h~(x)=71x[ -1 S Ix-c~ulYh~,(u)du, x<O. 
x[~: 

(ii) For F (x) = 1 -- e -  ~, x > O, the process exp {Z (t)}, t > 0, is a self-similar Markov 
process with index H = ( 1 -  c~)-1. The law of Z (t) satisfies 

(3.3) P{Z(t)>x}= i ~ e-(X ~")P{Z(s)~du}ds, 
0 - - o 0  

for t > 0  and xelR. In particular we obtain from (3.3) that the law of Z is indepen- 
dent of x o ~ [-0, m) and that the marginal distribution of Z(1) has density, 

(3.4) h=(x )=(1 -cO(F( (1 -e ) - l ) ) - l e xp{ - x - e -X (1 -~ ) } ,  xEIR, 

a) 
where r(t)..= j x t - l e - X d x ,  t>O. []  

0 

The following 1emma is the basis for the proof  of Theorem 3 and 4. It 
shows tightness for the special case where Y, is uniformly distributed on [ -  1, 0]. 
The proof  of the lemma originates from T o m  Liggett (private communication). 

L e m m a 3  I f  X l = x l e [ - 1 ,  O), X , + l = m a x { X , , 7 X , + Y , + l }  , n > l ,  where 
Y,, I12, ... is an i.i.d, sequence with Y1 uniformly distributed on [ -  1, 0], then 

inf E n X , >  --2(1 --c~) -2. 
n>l 

Proof .EEX.  lXn_13=X~ 1+�89 ~ 2 -c~) X ,_  1, hence taking double expectations 

(3.5) e x .  = ~ X . _ x  + �89 (1 - ~)2 e x ~ _ l  > E X . _ I  + �89 (1 - ~)2 (EX._  1) 2. 

Put g (u ) . '=u+l (1  --~)2U2, g e l - - -  1, 0].  Then g ' (u)= 1 +(1 --0{)2U>0 on  [ - -  1, 0] 
- 2 ( 1  _ ~ ) - 2  

and hence g is increasing on [ - 1, 0]. Set u, = E X ,  and v, - 
n 

We shall prove by induction that u, > v, for all n > 1. The statement is trivially 
true for n =  1, so assume u,_ 1 >V,_ l .  Then from (3.5) and the monotonici ty 
of g, 

Un>=g(un-1)>=g(v,-1). 

A simple calculation yields g(v,_ 1) > v,, and this completes the proof. []  
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