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Summary. Based on the conjugate kernel studied in Iscoe et al. (1985) we derive 
saddlepoint expansions for either the density or distribution function of a sum 
f(XO+...+f(X,), where the Xi's constitute a Markov chain. The chain is 
assumed to satisfy a strong recurrence condition which makes the results here 
very similar to the classical results for i.i.d, variables. In particular we establish 
also conditions under which the expansions hold uniformly over the range of 
the saddlepoint. Expansions are also derived for sums of the form f(X1, Xo) 
"kf(X2, X1)+ ...+f(X,, X,_ 0 although the uniformity result just mentioned 
does not generalize. 

1 Introduction 

In this paper we will generalize some of the results in H6glund (1974) to continu- 
ous state Markov chains by combining structure results in Iscoe et al. (1985) 
with expansion results from Jensen (1987, 1988). We consider a Markov chain 
Xo, X1, X2,... on the state space �9 and the sum 

n 

(1.1) S, =fo (Xo) + ~f(Xi) 
1 

for funct ionsfo,f :  E--* ~ .  We then derive saddlepoint expansions for the density 
or tail probabilities of S, at points of the form nz. The results may be illustrated 
by the following example. 

Example I.i. This example is an elaboration on an example from Cox and Miller 
(1965, Sect. 3.12). It has been chosen because it is of some practical interest 
and because the calculations can be done fairly easily. 

We consider a Markov chain X,  =(Y,, W,) on E =  {1 . . . .  , d} x ~ with transi- 
tion density p~jf~j(w) with respect to the product  of counting measure and 
Lebesgue measure. Here Pij are the transition probabilities for the discrete chain 
Y,. We assume that p~j> 0 for all i, j and that there exists a density g and 
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constants 0 < a < b < o o  such that ag(w)~ j (w)<bg(w)  for all i, j. Let qhj(s) 
=~exp(sw)f j (w)dw be the Laplace transform off / j .  Define Q(s) as the d x d 
matrix with (i,j)'th element p/j~oij(s ) and let 2(s) be the maximal eigenvalue 
with corresponding right eigenvector (r~(s) . . . . .  rd(S)) and left eigenvector 
(cl (s) . . . . .  Cd(S)). Finally define lj(w)= 2(s)-1 exp(sw) ~ el(s)pljfij(w) and norma- 
lize such that max/{ri(s)} = 1 and ~ ri(s) ci(s)= 1. i 

n i 
Considering the sum S, = ~ Wi we derive in this paper the following approxima- 
tions 

d~mP) (nA' (s)) = exp {n (A (s) - A' (s))} (1 .2)  {2zcnA,,(s)}l/z {7o(s)+O(n-1)}, 

where m is Lebesgue measure on ~ ,  and for s > 0 

exp {n (A (s) - A' (s))} 
(1.3) P(S,>nA'(s))= s{nA,,(s)}l/2 [7o(s) Bo{s(nA"(s)) ~/2} 

-t- O ( t ' / -  1) 

with Bo(u) = u exp (�89 - ~(u)), �9 being the standard normal distribution func- 
tion. Here A (s) = log 2(s) and 7o (s) = (Y' ci(s))(~, ri(s) P(Yo = i)). In general the 

i i 
approximations (1.2) and (1.3) hold uniformly for s in a compact subset of 
{s~lR][.exp(sw) g(w)dw<oo} and under restriction on the tail behaviour of 
g the approximations hold uniformly in s. 

We remark here that as compared to the classical formulas for the i.i.d. 
case, see e.g. Jensen (1988), the only difference is the appearance of the tern'l 
?o(S) in (1.2) and (1.3). This term is due both to the markov dependency and 
due to the influence of the initial distribution of X o. 

It is tempting to think that (1.3) should always follow from (1.2). However, 
it is important  to note, as stated in Theorem 4.1 below, that (1.3) in general 
can be established under weaker conditions than (1,2). []  

We have termed the expansions 'saddlepoint expansions' in analogy with 
H6glund (1974) and with reference to the classical saddlepoint expansions for 
sums of i.i.d, variables (Daniels 1954). 

However, in the present author's view it would be better to use a name 
like conjugate expansions. This is because the basic ingredient in establishing 
the approximations is to shift the approximation problem by the use of a conju- 
gate distribution in the i.i.d, case, or a conjugate transition kernel in the Markov 
chain case. The conjugate kernel is established from the maximal eigenvalue 
of a modified transition kernel and the associated eigenfunction, see formula 
(2.6) below. This conjugate kernel has been studied for a much more general 
setting than here in Iscoe et al. (1985) and by Ney and Nummelin (1987). Having 
shifted the problem by the use of the conjugate kernel we need to establish 
an Edgeworth type expansion under the conjugate measure. It turns out that 
the method in Jensen (1987) is particularly suited for this. When using the results 
in Jensen (1987) the main problem left is a study of a characteristic function 
for large values of the argument, i.e. we must establish either a Cram6r condition 
or integrability of the characteristic function. 
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Let us also briefly mention the differences that appear when establishing 
local limit results like (1.2) and (1.3) as compared to the large deviation principles 
established in Iscoe et al. (1985). For  the large deviation principle one obtains 

the limit of -1 log P(S,/n~A) through a rate function. For  the set up here the 
n 

rate function is found via the maximal eigenvalue 2 (s) mentioned above. Taking 
the logarithmic limit of the probability means that any factor of order one 
is discarded. However, to establish asymptotic relations like (1.2), (1.3) or the 
general version (4.3), one needs to take account of not only the maximal eigen- 
value, but also the projection onto the corresponding eigenspace. This means 
that one has to study the properties of the eigenvector as well. 

In Sect. 2 we give the results we need for the conjugate kernel. In Sect. 3 
we then apply the results from Jensen (1987), and make the above mentioned 
study of the characteristic function. This leads us to the results in Sect. 4. As 
appears from Example 1.1 in certain cases the expansions hold uniformly in 
the parameter defining the conjugate kernel. Uniformity results are given in 
Theorem 4.2 and these are easily derived from the results in Jensen (1988, 1991). 

n 

Finally, we consider in Sect. 5 an extension to sums of the form ~f(Xi,  
1 

Xi-1). For  these latter sums the results are not as complete as for the previous 
sums (1.1). 

2 The conjugate idea 

Let Xo, X1, X 2  . . . .  be a homogeneous Markov chain on a state space (N, 
d )  with initial distribution P(XoEA)=#(A ) and transition probabilities 
P(X 1 ~A IX o =x)=P(A Ix). Our fundamental assumption in this and the follow- 
ing two sections will be the existence of a probability measure v on (IE, d )  
and constants 0 < a < b < ~ such that 

(2.1) av(A)<_P(Alx)<=bv(A), xeE, Aed .  

Defining p (y lx)= &dr Ix)p(" (y) we thus have a < p (y lx)< b. Let f ( . )  be a measurable 

function from ]E to N~ and define 

(2.2) N={sENlO(s)= S exp{sf(x)}v(dx)< oo}. 
E 

Precisely for s~@ we may define a finite measure P(AIx; s) by 

(2.33 P(AIx; s) = S exp {sf(y)} P(dylx). 
A 

From Iscoe et al. (1985) we collect the following results about  the eigenvalue 
structure of P( ' I"  ; s). 
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Lemma 2.1. For each s ~ ,  P ( ' l ' ;  s) has a maximal simple real eigenvalue )o(s) 
with associated eigenfunction r ( . ;  s) and eigenmeasure L(.;  s), i.e. ~ r(y; s) P(dy lx ;  
s) = 2 ( s) r ( x ; s) and ~P(Alx;  s) L(dx;  s) = )~ ( s) L( A ; s), such that 

(i) r(-; s) and l( ' ;  s) e x p { - s f ( . ) }  are uniformly positive and bounded, where 
dL(.  ; s) 

l(x; s)= d~(X)" 
(ii) A(s)=log 2(s) is analytic and strictly convex on int N. 

(iii) r(x; s) is analytic on int ~ for each xe lE  
(iv) A'(int @)~_int 5 ~, where 5e is the convex hull o f  the support o f f ( v ) ,  

and equality holds i f  ~ is open. In the latter case we also have that , t(s)+ oe 
as s ~ aN. [] 

We will always normalize r ( . ;  s) and L(-; s) such that 

(2.4) ~s(A) = ~ r(x; s) L(dx;  s) 
A 

becomes a probability measure, and 

(2.5) sup r(x; s)= 1. 
x 

Corollary 2.2. We have the bounds 

and 

a 
aO(s)<=2(s)<=bO(s), ~<=r(x; s)< 1 

) [] ^ ~ b 2 

b-- a ' 

Proof. We have 

~(s)--2(s) sup r(x; s) 
X 

= sup Sr(y; s) P (dy lx ;  s)<= b~r(y; s) exp {sf(y)} v(dy)-< bg(s) 
X 

and 
2 (s) inf r (x; s) = inf ~ r (y; s) P (d y [ x; s) 

X X 

a (inf r (x; s)) ,) (s) 

> aSr(y; s) exp {sf(y)} v(dy)> a)~(s)/b 
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which give the first two statements. For  the third statement 
= inf l(x;s) exp { -  sf(x)} and let l 2 be the supremum. Then 

x 

we let 

2(s) 12 =sup  ~p(ylx) l(x; s)v(dx) <=b ~ l(x; s)v(dx) 
x 

2 (s) l 2 
2(s) l x= in f~p(y[x ) l ( x ; s ) v (dx )>a  b ' 

x 

which together with (2.4) gives 

12 1~ (S) = ~ l 1 ~ (S) ~ I r (X, S) I(X ; S) exp { -- s f  (x)} exp {sf (x)} v (d x) = 1 <__ Iz ~ (s). 

(~) 2 a a 
Thus 12 < f (s)-  1 and 11 >-~ 12 > ~ f(s)- 1 which gives the statement. [] 

From the eigenfunction r(-, s) we define a new "conjugate" transition kernel, 

r(y;s) n , ,  
(2.6) P~ (a[x) = ~ exp { -- A (s) + s f  (y)} ~ r ~a y[x). 

A 

The invariant probability measure for this kernel is n~(') from (2.4), and the 
kernel shifts the mean off(X~) in the following sense (see Iscoe et al. 1985) 

(2.7) ~f (x) n~ (d x) = A' (s). 

Thus from Lemma 2.1 we see, that if N is open we can for every ~e5 p find 
an s e n  such that the invariant mean o f f ( X )  under the conjugate kernel is 
4. 
Let us define 

v~(A) = f ~(s)-' exp {sf(x)} v(dx) 
A 

and 

dP~('lx) 
(2.8) P~ (Y [ x) = 

dvs 

Lemma 2.3. We have 

~(s) r(y; s) 
(y) = - -  - -  p (y [ x). 

,t(s) r (x; s) 

a <  < b  
- ~ = p , ( y l x ) = ~ ,  

the conditional density w.r.t, v s of  X 1 given (Xo, X2) under the kernel P~ is bounded 
as follows 

(b~ 6< p s ( x z l x O p s ( x l l x o )  < ( b ~  6, 

] = fps(xa Ix) ps(XlXo) v~(dx) = \a]  

and 
b3_a 3 

sup [P~(A[x)-P~(AJy)[< b3 = p < l .  
x ,yeE,  A~.r4 

[] 
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Proof The first statement follows from (2.1), Corollary 2.2 and (2.8). The second 
statement follows from the first. Finally the last statement follows from 

. . . . . . . .  f(b/a 2-a/b  2) v~(A) for vs(A)<=a2/b 
]P~(AIx)--~tAlY)I~--) for v~(A)> a2/b" [] 

We want to establish asymptotic relations for the large deviation probabilities 
of 

n 

(2.9) S, =fo (Xo) + ~ f  (Xi) 
1 

wherefo: IE ~ IR is a measurable function. We want the large deviation properties 
to be determined by the kernel and not by the initial measure #, and we therefore 
assume throughout that 

(2.1o) int ~ _~ {s I/~ (s) = j exp {sfo (x)} # (d x) < oo }. 

In particular we have two cases in mind, namely f o - 0  and f o = f  with d#/dv 
bounded between a t and bt, 0 < at < bl < o% the latter condition being fulfilled 
for the invariant measure no according to Corollary 2.2. 
In accordance with the previous notation we introduce a conjugate initial mea- 
sure #~ by 

(2.11) #~ (A) -=/~ (s)-I j exp {sfo (x)} # (d x). 
A 

We then define a probability measure P,,s o n  E n + l  by 

r(xo; s) [I P~(dxilxi- 1) #s(dxo). (2.12) P~,~(A)= y 1 ((x 0 . . . .  , x,)eA) q0,(s) -1 r(x,; s) 1 

" ~<~o,(s)< -b is a norming constant. We have introduced q~,(s) here in where 
b a 

order to express the formulae in terms of probability measures, but in the approx- 
imations below q0,(s) drops out. The next lemma gives the basic relations between 
probabilities in the original measure and in the conjugate measure. 

Lemma 2.4. Let B be a Borel set, then 

P (S, ~ B) = exp { nA (s)}/~ (s) q~, (s) ~ 1 (S, ~ B) exp { -- sS,} d P~,s. 

In particular, 

P (S, > z) = exp {nA (s)}/~ (s) q~, (s) ; exp { -- s (u-- z)} S, (P,,s)(d u), 
z 
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and 
dS, (P) ~o. (s) ~ (z), d ~  (z) = exp { nA (s) - z } • (s) 

where m is Lebesgue measure. [] 

Proof 

n 

P(S.eB) = S 1 (S.eB) I~ P(dxi lx i -  O#(dxo) 
1 

n 

= exp {nA (s)}/) (s)~ 1 (S. e B) r (x o; s) exp { -- sS.} 1-] {exp [ - A (s) + s f  (xi)] 
r(x.; s) 1 

�9 r(xi;s) P(dxilx,  _O}/~(s)_ 1 exp{sfo(Xo)}#(dxo) 
r ( x i -  1 ; S) 

=exp{nA(s)}~(s)fl(SheB)exp{_sS.} r(Xo ;s) i~i Ps(dxi[x~-1)#,(dxo) 
r(x.;s) 1 

=exp{nA(s)} ~(s) (p,(s)[ l(S,  eB) exp{-sS,}dP,,~. [] 

From Lemma 2.4 we see that the next step is to make expansions for the distribu- 
tion of S, under P,,~. Expansions for sums of dependent variables have recently 
been studied in for example G6tze and Hipp (1983) and Jensen (1989). In the 
set up here it is natural to use the ideas in Nagaev (1957), which are explained 
in Jensen (1987), where the characteristic function of the sum is studied via 
operators. This is essentially an extension of the above eigenvalue structure 
to complex values of s. We describe this in the next section. 

3 Expansions under the conjugate measure 

Let us first introduce a conjugate position and scale by 

0 #~=~f(x) v~(dx), #~ = ~fo (x) #~(dx) 
and 

(3.1) 2 m  as - ~ {f(x)--ps} 2 v~(dx), 

where #s(d x) is defined in (2.11). The centering #~ is used instead of A'(s) because 
of its natural connection to the assumptions in Theorems 4.1 and 4.2 that deal 
with the density o f f ( X )  under the measure v. We then let ~(t) and /~(t) be 
an operator and a functional, respectively, with kernels 

(3.2) exp[it{f(y)-ps}/a~]Ps(dyl .  ) and r(x;s) exp[it{fo(x)-p~ 

Furthermore, let M~, Mso be upper bounds such that 

(3.3) yf(Y)--#~ kp~(dy[x)<=M~ for x~]E and l<_k<_d 
ffs 
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and 

fo (x) - ~o 
(3.4) ~ #~(dx)<Mso for 1 < k < 3 .  

The characteristic function of S, under the measure P,,s in (2.12) may be expressed 
through ~(t) and/2s(t), and we collect a number  of results about  PAt) in Lem- 
ma 3.1. When writing c~(') below we mean a constant dependent only on the 
quantities specified in the argument.  We recall that p is defined in Lemma 2.3. 

Lemma 3.1. There exist constants c~(.) such that, 

(i) For [tl<c1(M~,p) the operator ~(t) has a maximal eigenvalue 2s(t), with 
[1-As(t)[ < ( l - p ) / 3  and with a one-dimensional eigenspace, and the remaining 
eigenvalues are bounded by (1 +2p)/3.  Letting P~,~(t) be the projection onto the 
eigenspace corresponding to 2s(t) and P~,2(t) the projection onto the eigenspace 
for the remaining eigenvalues we have 

exp { i t ( S. - n #~ - #~ dP.,~ 
~- q~n(S)-1 {~s(t)n ~( t )  Ps,1 (t) -Jr ~-Ls(t ) P~(t)" P~,2 (t)} {r(" ;s)- 1} 

(ii) For [t[ <c2(M *. p ) < c  1 

d l .  , s ) - l}  < b c  "M ~ , / 1 + 2 p \ "  kt~(t) ~(t)" P~'2(t){r(" " = a  at ~ , P ) ~ - - )  
dr '  

(iii) For Itl < c4(Ms 5, P)<Cl, 

l o g 2 ~ ( t ) = i t ( l ( s ) - - l t  2 ~2(s)--6 t3 (3(s)-t-~4 t4 ~4(s)d-cocs(MSs,p)[t, 5 

where Icol < 1 and also I(;(s)l <=cs(M~, p) 
(iv) For I~<c6(Mso, M 5, p )<c l ,  

^ 1 , 1 272(s)+~176 ~s(t) P~,~ (t){r(. ; s ) -  } = ~o ( s ) + i t  ~ ( s ) - ~  t 

h 
where Icol _-__ 1 and also lyj(s)l--<a c7(M~~ MS' p) 

> a  (v) ( 2 ( s ) = ~ ,  where (2(s) is given in (iii). [] 

Proof. The properties (i)-(iv) are simple generalization of results in Jensen (1987). 
Writing h~(x)=(f(x)--#~)/as and E~s for the mean when the initial distribu- 

tion is n s and the transition kernel is P~, we have (1 (s)= n~(h~) and 

oo 

(3.5) ~2 (s) = ns(h~)-- {ns(hs)} 2 + 2 ~, E~s {hs ( X , ) -  ns (hs)} {h~ (So)-- n~ (hs)} 
I 

1 r n - 1 ]2 :lim; 2o . 
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Since dP~(.lx)/dvs>a/b2=o: we may write Xi=ei~i+(1-ei)Vi i ,  where P (e i= l )  
= 1-P(e i=O)= c~, qZ i has the distribution vs, ~i and q/i are independent of Xi-1 ,  
and conditionally on Xi-1 the variable V~ has the distribution (1 
_ e ) - i  {P~('lXl-1)-~vs(')}. Then we also have hs(Xi)=e i h,(q/i)+(1-el)  hs(Vi) 
and 

n - 1  n - 1  n - 1  

(3.6) Z h(Xi)=h(Xo)+ Y', eihs(qg~)+ ~ (1-ei)h~(V~). 
0 1 1 

Conditionally on (el . . . . .  e._ 1, V1 . . . . .  V._ 1) the variance of (3.6) is greater than 
el + . . .  + e._ 1 according to (3.1). Thus the variance of (3.6) is greater than e ( n - 1 )  
and (3.5) is greater than e. []  

The relation of 2s(t ) to the previous eigenvalue 2(s) is 2s(t ) = 2(s +it/~s)exp( 
- it#s/as)/2(s) and therefore 

(3.7) (l(s)={A'(s)-#s}/o-s and (j(s)=A~i)(s)/a~, j > 2  

where A (s)= log 2(s). The eigenvector corresponding to 2s(t) is given by 

rs(y; t)=r(y; s+ it/as)/r(y; s), 

where r(y; s+iu) is the analytic continuation of r(y;s). The projection P~,l(t) 
can be expressed through r(" ;s) a n d / ( - ; s +  it/rrs), where the normalization (2.4) 
is used also for complex arguments, as 

(3.8) (P~,I (t) g) (x) = {~ g (y) r (y; s) l(y; s + i t/as) v (d y)} rs (x; t). 

The formula (3.8) follows from the fact that if h is an eigenfunction with eigen- 
value 2h + 2s(t) then 

2h~ h(x) r(x; s) l(x; s+ it/as) v(dx) 

exp[it f ( y ) -#S l r ( y ; s )  ex rsf" ,7 r ( x ; s ) l ( x ; s+~)v (dx )  =l{Ih(Y) [ ~- ] ~  PL JtY)JP(dylx)} it 

= 2~(t) l h(y)r(y; s) l(y, s+ it/a~)v(d y), 

which shows that ~ h (y) r (y; s) l (y; s + i t/cry) v (d y) = 0. From (3.8) we have in partic- 
ular that i f f o -  0 then 

(3.9) 7o(S)=~s(t)P~,l(t){r(.;s)-l}l~=o={II(x;s)v(dx)}{Ir(x;s)#o(dx)}. 

The proof of an Edgeworth expansion usually involves two steps (see Bhattachar- 
ya and Rao 1976): a suitable expansion of the characteristic function for small 
values of the argument and suitable bounds on the characteristic function for 
large values of the argument. For the distribution of S. under P.,~ the first 
step is achieved with the results in Lemma 3.1. We now turn to the second 
step. 
We first consider socalled Cram6r conditions. Define 

(3.10) ~s(t)=~ exp[it{f(x)-#s}/a~]vs(dx) and 6~(x)= sup ]hs(t)]. 
ltl>_-c 
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Lemma 3.2. We have 

sup S exp{it(S.-nu.-#~ dP.,s a 6 ~o~ ~1(~) ~c)+{1 (~)6}] ~ [] 

Proof The conditional density w.r.t. Vs of X 1 given (X0, X2) under ~ can, accord- 
ing to Lemma 2.3, be written as 

(b)6 + q(xl) 

where q( . )>  0. Therefore, with E~ denoting mean values under P~, 

~ ~, ~oxp ~,~ ~ - ~ . ~ ,  ~o ~,  ~(~)~ {~ (~)~} 

When conditioning on X,, X,-2 .... under P,,s the variables X ,_ I ,  X,_3, . . .  
become independent with the same conditional density as under P~. Thus we 
may use (3.11) In/2] times to get 

and the result of the lemma follows from (3.10). [] 

We next turn to integrability properties of the characteristic function. Let 
1 < ~ <2  be a fixed number such that z = ~/(~ - 1) is an integer. Let m be Lebesgue 
measure and define, 

/ ~ ;  
(3.12) hs(z)- dm (z) and ]]h~][r162 1/r 

where we implicity have assumed that the density h~(') exists. 

Lemma 3.3. We have 

]~ exp{it(S.-n#~-#~ dt 
It>c 

a 6 /a\63 qt,,/21-~F El 1~/b\6 I1~]. [] 

Proof From the Hausdorff-Young inequality we have 

(3.13) (IlE~[exp{it(f(X1)--tz~)/as } IXo, x2]V dt) 1/~ 

1 ~ D 1"~1a\6 --<(2rc)(7--r d{f(XL~--#s-}(P~('lx~ r ,[hs[,r 



Saddlepoint expansions for sums of Markov dependent variables 191 

where in the last step we have transformed the result of Lemma 2.3 to the 
density of (f(Xx)-#~)/a~. Using the same conditional argument as in the proof 
of Lemma 3.2 we get from (3.11) with ~= {(a/b)66~(c)+ {1-(a/b)6}} t'/zl-', 

I~ exp{it(S.--n#~-#~ dP.,~ldt 
Itl>c 

r 

<=~ ~ E l-IlEs[exp{it(f(X2~)-#~)/~r~}[Xe~-~,x2~+ l]ldt 
Itl>c 1 

<=~E H(jlEs[exp{it(f(X20-#~)/a~}lx2i.1, x2i+ 1]l~d t) 1/~ 
1 

= < e  27z ~ - ~  Ilhsllr , 

where we used (3.13) in the last step. [] 

4 Results 

In this section we first write down the main approximation formulae in this 
paper and then give theorems stating their validity. Let 

(4.1) zs = nA' (s) + #o 

with #o given in (3.1). Using the coefficients in Lemma 3.1 the third order Edge- 
worth expansion for the distribution of S, under P~,s is 

(4.2) 

_t1{ 1cz3x_k~_~4(_ x l  3+3x)_b~2~Zs(_X5 +10x3 15x)}q)(x) 
+ Error}, 

where 

~0 =T0(S) o~l=71(s)O's/A"(s) 1/2 o~2='lo(s)A(3)(s)/A"(s) 3/2 

~3 = 72 (s) aZ~/A '' (s) ~5 = 70 (s)(A(3) (s)/A" (S)3/2) 2 

~z4 = 7o (s) A(4) (s)/A" (s) 2 + 4 71 (s) (asiA" (s) 1/2) A(3)(s)/A" (s) 3/2. 

The corresponding expansion for the density is obtained by differentiation. 
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Combining the expansion (4.2) with the formulae in Lemma 2.4 we get, 
for s>O, 

(4.3) P (S, > z,) = exp {nA (s) - zs} i ~ (s){ I s I ~ }  -1 

" {~ Bo(fl~) + ~ n  { ~  Bt (fis) + l~2  B3 (fls)} 

+l{1a3B2(fls)+~--~a4B4(fls)+~--~5 B6(fls)} + Error} 

where fl~=lsl(nA"(s)) 1/2 and the functions Bo(') . . . .  , B6(" ) are given in Jensen 
(1991). For  s < 0  (4.3) is an approximation to P(S,<z~). For  the density we 
get, 

(4.4) 
dSn(P) 

d ~  (z~) = exp {nA (s)-- zs} ft (s){2 n nA" (s)} -1/2 

[ 1 (  1 1 5 as}+Error]. 

Theorem 4.1. Assume that the distribution f(v) has a continuous component w.r.t. 
Lebesgue measure, then the error term in (4.3) is O(n -3/2) uniformly for s in 
a compact subset of int @. 

Assume that the density ho(" ) exists and IIhollr ~ ,  see (3.12), then the error 
term in (4.4) is O(n  -2 )  uniformly for s in a compact subset of int ~. [] 

Proof. We first note that for M d in (3.3) we can, according to Lemma 2.3, take 

(4.5) Md_ b max ( f(x)--la~ k v~(dx). 
s- j l_<k_<~_l as I 

It is well known from the theory of Laplace transforms that this quantity is 
bounded for s in a compact subset of int ~.  Similarly, we have that Mso is 
bounded for s in a compact subset of int ~ on using (2.10). 

Using Lemma 3.1 and Lemma 3.2 we see that to establish that the error 
term in the Edgeworth expansion (4.2) is 0(n-3/2), we must show that 6s(c) 
is bounded away from 1, where 6~(c) is given in (3.10). To show this we prove 
that the opposite is wrong. Assume that 6s~(C) ~ 1 for j ~ 0% where sj belongs 
to a compact subset of int ~.  This means that [~(sj+i0/as)/~(sj)[ ~ 1 for some 
I tjI > e. We can assume that s j--* s t i n t  ~ .  Sincef(vs) has a continuous component  
we must have that I t~l--* 0% but this implies that lim sup If(s+ i t/a~)/9(s)l is not 

[t[~ cc 

strictly less than 1, which is in conflict with Riemann-Lebesgue Theorem. 
To get from the Edgeworth expansion (4.2) to the approximation (4.3) we 

write the integral in the formula in Lemma 2.4 as 

oo 

s ~  ~ e x p { - s ~ u } { H . ( u ) - - H . ( O ) } d u ,  
0 
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where H,(- )  is the distribution function of ( S , - z s ) / ~  under P,,s. To get 
(4.3) we then substitute (4.2) for H,( .) .  This will however give an error term 
which is O(n -1) and not O(n -3/2) as stated in the theorem. To get the better 
error estimate we have to include one more term in the Edgeworth expansion 
(4.2) so that the error term there becomes O (n-2). 

For  the second statement in the theorem we use Lemma 3.1 and Lemma 
3.3, so that we must show that [Jhs[]r is bounded for s in a compact subset 
of int N. This can be shown by using the argument in the proof  of Lemma 
7 in  Jensen (1991). [ ]  

The results in Theorem 4.1 is a generalization of the classical saddlepoint approx- 
imation for sums of i.i.d, variables to the setting of Markov dependent variables. 
We now turn to uniformity results for the case where s ~ g = s u p { s [ s e @ } .  In 
the classical setting this has been studied recently in Jensen (1988, 1991). As 
appears from the proof  of Theorem 4.1 above, under the fundamental assumption 
(2.1) on the Markov chain, validity of the expansion has been reduced to proper- 
ties of the distribution of f under v. Intuitively then uniformity of the expansions 
will hold if the classical saddlepoint approximation holds uniformly forf(v).  

We say, that a density q(x) on IR has regular right tail, if it is defined for 
x < x*, say, and for some Xo < x* satisfies one of the following three conditions 
for all Xo < x < x*, 
(i) q (x) = c (x) exp ( -  h (x)) 
where h(x) is convex and there exists 0 < Cl < ez < oe such that cl < e(x) < c2 ; 
(ii) x* = oo and q (x) = A x "-  11 (x) exp ( - ~ x) 
where ~, z > 0 and l(x) is a slowly varying function at infinity; 
(iii) x * <  az and q(x )=a(x* -x )~ - l l ( x* -x )  
where c~ > 0 and l(x) is a slowly varying function at zero. 

Theorem 4.2. Under the assumptions 

(i) f o - 0 ,  orfo =fand al < dd-~-vP < bl ,  

(ii) the density ho(') of (f(X)-I~o)/a o under v exsists and [Xho[rr for some 
1 < 4 < 2 ,  
(iii) ho (') has regular right tail, 

we have that the error terms in (4.3) and (4.4) are uniformly of order O(n -z) 
as s--> ~J. [ ]  

Proof. We must show that M~, M~o and [Ihs[le are bounded as s--*g and that 
6Ac) is bounded away from 1. The conditions on M~, tlh~llr and 6~(c) have 
been proved in Jensen (1988) for the right tail behaviour (ii) and (iii) above 
and in Jensen (1991) for the log-concave density. The condition on M~o follows 
either trivially iffo - 0 or from the bound on M~ iffo =f. []  

We note here that the condition on fo is needed because cry2, which is the 
variance w.r.t, v~, appears in the Definition (3.4) of M~o. 

Example 4.3. Let us return to example 1.1 and see how the general set up gives 
1 

the results stated in (1.2) and (1.3). We let the measure v have density ~ g(w) 
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with respect to the product of counting measure and Lebesgue measure, where 
we assumed ag(w)<f~j(w)<bg(w). Since we are considering the sum ZW  i where 
Xi=(Yi, Wi) we have f (y ,  w)=w. The condition on ho in Theorem 4.1 therefore 
simply becomes ~g(w)r for some 4 > i ,  and similarly assumption (iii) 
of Theorem 4.2 says that g(.) has a regular right tail. The form of 7o(S) follows 
from (3.9). [] 

I t  

5 Sums of the form ~ f  (xi, xi- l) 
1 

In this section we will change the point of view from that of Sect. 2-4 and 
consider instead sums of the form 

(5.1) S, =)Co (Xo) + ~ f  (X,, X i -  1) 
1 

where f ( . , - )  is a measurable function from E 2 ~IR.  Instead of the Definition 
(2.3) of P(Alx; s) we use now 

P(Alx; s)= ~ exp{sf (y,x)} P(d ylx), 
A 

and the eigenfunction and eigenmeasure are defined as in Lemma 2.1. We start 
by an example to illustrate that the general results of the previous sections 
do not hold here. 

Example 5.1. Let ~ = ( 0 ,  1), P(dylx)=m(dy) and 

f(y,x)={2yy for O<x=<�89 
for � 8 9  

Then the eigenvector r(x; s) can for s > 0 be written as 

r(x;s)={1 O < x < � 8 9  
rs l < x < l  

where 

l[ z + + 

"- '21 /2Z - 3 / 4  a s  s ---~ oo  

with z = exp (s). Also 

s2(s)=�89189 5/4 as s - ~ .  
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This in turn implies that the conjugate kernel asymptotically behaves as 

, ,  [~exp { 2 s ( y -  1)} 
P~'lx-~tY)~[;exp{s(y_l)} 

0 < y <  ! = 2 ,  x ~ � 8 9  
� 8 9  xN�89 

0<Y <!=2, x> �89  
� 8 9  x> �89  

for s ~  oo. Thus for x__<�89 P~('lx) becomes concentrated close to �89 and for x> �89  
P~(" [x) becomes concentrated close to 1. Therefore 

sup rP~(A r x ) -  P~(A l y)I --+ 1 
x,y,A 

a s  S - + O O  

in contrast with the previous result in Lemma 2.3. 
Also we find that 2'(s)/2(s)~ 5/4 as s ~ o% whereas the support o f f (X1 ,  Xo) 

is (0, 2) in contrast to the result of Lemma 2.1 (iv). []  ! 

Because of the dependency on x inf (y ,  x) we shall have to assume bounded- 
ness of f and only prove an analogous version of Theorem 4.1. We assume 
the existence of a constant M < oo such that 

(5.2) ] f (y ,x) l<M forall x, yelE and ]fo(X)[~M forall x~lE. 

Having made this assumption we can relax the fundamental assumption (2.1) 
and assume that for some integer m > 1 there exist constants 0 < a < b < oo and 
a probability measure v such that 

(5.3) a v (A) __< P~ (A I x) __< b v (A). 

We also assume that P( ' lx )  is absolutely continuous w.r.t, v and write p(ylx) 

= a_rr~]x)'n" (Y). This is the set up in Kim and David (1979)where large deviation 

results are considered. 
The results of Lemma 2.1 still hold except that in (i) the statement is for 

l ( ' ; s )  and in (iv) only the statement A'0R)_~int 50 is true, where Y is the 
convex hull of the support of f (v |  I')). The conjugate kernel is defined by 

r(y; s) . . . . .  
(5.4) P~ (A [x) = i exp { -- A (s) + s f  (y, x)} ~ r ta Y l xj 

A 

and the Eq. (2.7) becomes 

(5.5) A'(s) = ~j'f (y, x) P~ (d y lx) zrs (d x). 

From (5.2) and the proof of Lemma 2.3 we easily establish the following bounds. 

Lemma 5.2. Let r s>0  be a continuous function such that rs<r(x; s)< l for all 
x~lE. Then 

(i) exp { - I sl M -  A (s)} r~ p (Yl x) < p~ (Yl x) < exp {IsJ M -  A (s)} r~- 1 p (y Ix) 
(ii) [exp { -- [sl M - A (s)} rs] " a v (A) < P~" (A Ix) < [exp {Is[ M -- A (s)} r~- 1],, b v (A) 
(iii) {exp(-IsIM)rs}4po(Xa JXo, xz)<p~(x 1 rXo, xz) 
< {exp([sl M)r71}4po (xl I Xo, x2) 
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where ps(xl lxo, x2) = ps(X2 [xl)Ps(Xl {XO) 
~ Ps(X2 ] x) ps(X l Xo)v(d x) 

(iv) sup IP~"(AIx)-P~(Aly)l<=[b3-a3{exp(-[slM)rs}6"]/b3=ps. [] 

The formulae in Lemma 2.4 are still valid, and because of (iv) in Lemma 5.2 
we can study the characteristic function of S, under P,,s in the same way as 
in Sect. 3. In this section we let/~o be as in (3.1) and define 

2 = A ' ( s ) .  #s=A'(s) and o- S 

In (3.3)f(y) is replaced by f (y ,  x) and M e, Mso are bounded for s in a compact 
set because of (5.2) and because of the analycity of A(s). The results of Lemma 
3.1 (i)-(iv) are unchanged except that p is replaced by Ps and b/a is replaced 
by r j  1 . In particular in order to prove Theorem 4.1 in the set up here we 
must establish results similar to Lemma 3.2 and Lemma 3.3. 

Lemma 5.3. Assume the existence of constants el, ~2 > O, z l < z z and sets A, B e d  
such that 

pi(B]x)v(dx)>=el 
A 

and such that f (x 2, X 1 ) + f ( X , ,  Xo) has a continuous component under P(.lXo, X2) 
with density 

d {f(x2, ' )  + f ( ' ,  Xo)} {P(" I Xo, x2)} (z) > e2 
h(zlxo, Xa)- dm 

for zl < z < z  2 and for (Xo, x2)eA  • B. We then have that there exist continuous 
functions 51 (s), 52 (s), c(s)> 0 such that 

[~ exp {i t( S , -  n i t s -  #~ 

< [-{ez (s)g( ~ ]  + (1 - zz (s))} c (s)51 (s) + (1 - c(s) 51 (s))] w(2" + 3)j 
\%J 

where g(t) = (Zz- z l ) - I  [{exp(itz2)- exp(itzl)}/(it)l. [] 

Proof Let g (tlx 0 , x2) = ]E [exp {i t ( f  (x2, X1) + f  (X 1, Xo))} I xo, Xz]l. Then from the 
assumptions 

g(tlXo,Xz)<={~2g(t)+(1-e2) for otherwise(X~ 

and 

a2 ( a 2 )  
(5.6) E{g(tlXm, Xm+z)lXo, Xz,,+2} < {e2 g(t)+(1 - @ }  b~ ~1 + 1 -b~- 51 , 

where we have used that the conditional density of (X,,, Xm + 2) given (Xo, X 2  m + 2) 
is greater than (aZ/bZ)p 2 (X m + 2]Xm), which follows from (5.3). Now let gs(tlXo, x2) 
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be the corresponding characteristic function for the kernel P~. Then in (5.6) 
the coefficients will depend on s, 

el(S)=el[exp{-ls lM-A(s)}rs]  2, ez(S)=e2[exp{-ls]M--A(s)}rJ 4 

and 
a(s)=a[exp{--ls[M--A(s)}r~] ~, b(s)=b[exp{jslM--A(s)}r[~] ~ 

where we have used the bounds in Lemma 5.2. 
To get from (5.6) to the result of the lemma we first condition, in the evalua- 

tion of the mean value under P,,s, on X~=(X , ,X ,_~ ,  . . . ,X ,_  m, X , -m-2 ,  ..., 
Xn-2m-2), X2=(Xn-2m-3 ..... Xn-3m-3, X , - 3 ~ - s  . . . .  , X, -4~-5) ,  and so on. 
We then get the bound 

(5.7) Et["/(z~.fl=i)l-lgs(t s Xn_m_j(2m+3),Xn_m_2_j(2m+3)) 1 
F [ n / ( 2 m + 3 ) ] - I  ( [ t I 

where J~J is the first and last variable in the vector X j. The result of the lemma 
now follows on combining (5.6) and (5.7) and putting c(s)= a(s)Z/b(s) 2. [] 
Define 

6 (c )=sup  g(t) and 6s(c)={e2(s)6(~-]+ 1-e2(s)}c(s)et(s)+ 1-c(s),a(s) 
Itl>c \Us/ 

with the notation from Lemma 5.2. 

Lemma 5.4. Assume that f(x2,Xl)+f(Xi,xo) has a density under P(.[Xo,X2) 
and that the assumptions in Lemma 5.3 hold. Also assume that for some 1 < ~ < 2 
with z = ~ / (~-  1) an integer we have 

{ ~ h(zlXo, x2)r [Xo)V(dxo)=Cl < co. 
F.2 JR 

Then 
1~ exp{it(S.-n#~-#~ ~[dt 

[1 i ~  " 

r'l>~=b,(e)t"/(2m+3)l-~(2n)t2--~l as{c I c(s)}l []  

Proof Using (5.7) we have, with i l ( ] ) = n - m - j ( 2 m + 3  ) and i 2 ( ] )=n-m-2  
- j (2m + 3), the bound 

]~ exp{it(S.-n#s-#~ 
Itl>c 

It l>c 

{1  1"~ r F~: - i 

=< ~s(c) E"/(=" + 3~J-'(2 ~)t~ - ~  (~s E:[[I ~: {(j'h(z I X,,<j~, X,=(j~)r dz) I/~- I g J+'}] 
_ i_!~ tj= 

<as(c)["/(2=+3)] '(2re) (2 r as{c a c(~)} ~, 
J 

where in the last step c(s) is the constant from the proof  of Lemma 5.3. []  
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With the bounds established above and in Lemma 5.3 and Lemma  5.4 the 
proof  of Theorem 5.5 below is similar to the proof  of Theorem 4.1. 

Theorem 5.5. Assume that the conditions in Lemma 5.3 hold. Then the error term 
in (4.3) is O(n -3/2) uniformly for s in a compact set. 

Assume that the conditions in Lemma 5.4 hold. Then the error term in (4.4) 
is 0 (n- 2) uniformly for s in a compact set. [] 

Example 5.6. Let us again return to example 1.1 and relax the conditions on 
the densities fij(w). We simply let all the fij's be the uniform density on the 

interval (0, 1), and consider instead the sum S,,= IZ[ gY,,Y,-~ (W~), where glj(w) 
i = 1  

is a real function on (0, 1) for i , j= 1 . . . .  , d. The situation in Example 1.1 is 
then obtained by taking gij(w)=F~l(w),  where F'ij=f,.;. The formulas from 

1 

Example 1.1 still hold on setting qoij(s)= S exp {sgij(w)} dw. 
0 

We now consider the assumptions of Lemma 5.3. The function f ( x 2 , x l )  
=f((Y2, w2), (Yl, wl)) becomes here gy,,y2(w2), and we take the measure v to 
be v(k, dw)=d-1 .  We make two assumptions. 

Namely  first that there exists (k, l), such that if W is uniformly distributed 
on (0, 1), then Z = gk~(W) has a continuous component  with density h(z) greater 
than e for z ~ < z < z 2 .  Secondly we assume that for some re(0,  1) and ~ > 0  
we have Iglk(W)--glk(V)l<(Z2--Zl)/4 for ]w--v]<6.  Then, with the notat ion of 
Lemma 5.3, we take A =  {k} x (0, 1) and B =  {k} x ( v - ~ ,  v +  ~). Simple calcula- 
tions show that 

p2 (B [x)v(dx)= ~, Pik 2(S pki d -  ' 
A i 

and sincef((k, Wz), (I, 14/))+f((I, 14/), (k, Wo))= gik(W2)+ gki(W) we find 

h(z I(k, Wo), (k, w2)) > h ( z -  gzk(Wa)) Pkz P,k {Y', Pk~ Pik} - i 
i 

>= ePklPlk { 2  PkiPik} -1 
i 

for z l + g z k ( v ) + ( z 2 - z l ) / 4 < z < z 2 + g l k ( v ) - ( z 2 - z l ) / 4  and Iw2-vl<~. [] 
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