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Summary. For a function f ( . )  from Strassen's class, we investigate the lim inf 
behaviour of its distance from the normalized trajectories of a Wiener process. The 
lim inf rate is expressed in terms of a certain functional of f ( .  ). In addition, we give 
a result on the lira inf behaviour of the distance of the normed trajectories from 
Strassen's class as a whole. 

1. Introduction 

Let (W(t), t > O) be a standard Wiener process defined on the probability space 
(s ~-, P). Furthermore, let 

S t =  t ) =  g(u)du:te[O, 1],S(g)(u))Zdu<=l . 
0 0 

Strassen's (1964) law of the iterated logarithm can be considered to consist of two 
parts: if we let 

W( rt) 
qr( t )  = ~ /2Tloglog  T '  t~ [0, 1] 

then 

and 

lim inf l[ f -  ~T II oo = 0 (1) 
T ~ v o  f e f f '  

for all fESC:l iminf  [ I f -  qrl[oo = 0 .  (2) 
T-* oo 

It seems natural to ask for rates of convergence in (1) and (2). Regarding (1) we may 
refer to the papers by Bolthausen (1980), Grill (1987), and Goodman and Kuelbs 
(1991a, b), where some results on the lim sup behaviour are proved. The question of 
rates of convergence in (2) has been studied by Csgtki (1980, 1989) and de Acosta 
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(1983). In his first paper, Cs/tki obtains the 
following cases: 

(i) 

and 

1 

(ii) S ( f '  (u)) 2 du = 1 and f is piecewise linear. 
0 

right rate of convergence for the 

1 

(f ' (u))  2 du < 1 and f '  is of bounded variation 
0 

In his second paper, the case 

1 

S ( f '  (u)) 2 du = 1 and f (x )  = ax 2 + bx 
0 

is considered. 
De Acosta (1983), Theorem 6.1, shows that in (i) the assumption that f '  be of 

bounded variation can be dropped. 
In both cases studied where $1 o ( f '  ( U ) )  2 du = 1, we have 

liminf(loglog T) 2/3 II f -  t/r II co = ? ( f ) ,  
T--+ oo 

where y( f )  can be expressed by the total variation of f '  if f is piecewise linear, and 
in terms of the smallest positive eigenvalue of a certain second order differential 
operator if f is quadratic. 

In general, a result from Goodman and Kuelbs (1991) implies that for any f e  5 P, 
lim inf(log log T) 2/3 U f -  ~r U ~o is finite. On the other hand, by Theorem 1 in Csfiki 
(1980), lim inf(log log T)II f -  ~r It = is bounded away from zero. 

In the sequel, we shall give the right lira inf rate (up to a factor 2) for any 
function f e  5 p. In addition, we shall give a simple lira inf result for (1). Turning now 
to the first question, let us define: 

Definition 1. Let f ( . ) eC[0 ,  1] with f(0) = 0. Let 

I ( f )  = I(f,  O) = 
' (x)) 2 dx if f is absolutely continuous 

otherwise, 

and 

U(f, ~ ) =  {g:g(O)= O, I l f - g l l ~  ~ ~} 

I ( f  5) = inf I (g) .  
g e U ( f , ~ )  

Let us gather some facts about I(f ,  6): 

Lemma 1. I f  I ( f )  < oe then for I ( f  6), the following statements are true: For 
xU-fo) 

O-<_I(f, 6 ) < I ( f , O ) - - 6 / ~ , 0 ) .  (3) 

There is a unique hf,~e U(f, 6) such that I(f ,  5) = I(hi,~). (4) 
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For all g ~ U (f, 6) that are absolutely continuous 
1 

S g'(x)h'r o(x) dx > I ( f  6). (5) 
0 

For p ~ [0, 1] 

I ( f  O) - I ( f  5) > I ( f  O) - I ( f  p6) ~ p ( I ( f  O) - I ( f  6)) (6) 

I ( f  6) is continuous in 6. (7) 

Proof. For (3), the lower estimate is trivial. The upper estimate follows from the 
fact that 

HfH~ =< ~ 0),  

SO 

and 

g = 1 f~ U( f  6) 

I ( f  5) <= l(g) < l ( f  O) -- 6 x / ~ ,  0). 

For (4), let g, E u(Z 6) satisfy 

We clearly have 

and so 

and 

1 
I(gn) < I ( f  5) + - .  

n 

g. + g,. 
- - ~  U(f, 5) 

2 

I (  g"+gm)2 = > I ( f 6 )  

Thus, (g,) is a Cauchy sequence with respect to the norm 

II g ( . ) I I z  - -  ( I ( g ) )  1/~ �9 

This implies that there is a h such that g, ~ h with respect to the norm []. 11 z- As 
][.][oo < I[. ]Is, we have he U( f  5) and []hH 2 = lim J[ 9.J[ z = I ( f  6). 

In order to prove uniqueness, assume that h, too, satisfies / ~  U(f  5) and 
1]/~[[2 2 = I ( f  6). Similar to the above, we obtain 

IIh-hl l~---211/~l l ,2+211htl~-4 - - ~  < 0 ,  

so f i=h. 
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Now, in order to prove (5), let g~ U(f, 3) and 2e  [0, 1]. Clearly, the function 
2g + (1 - 2)h:, ~, is in U(f, 3), so 

I(2g + (1 - 2) h) > I(f ,  ~) ,  

and some elementary calculus shows that this is only possible if (5) is true. In (6), the 
left side is clearly trivial. For  the right side, observe that 

ph:, ~ + (1 - p) fe  U(f, p3) . 
Thus 

I(f ,  p3) <_ I(ph:,~ + (1 - p) f )  <= pl(hy,~) + (1 - p) I ( f )  , 

which implies the desired upper inequality. 
Regarding (7), first observe that continuity at 3 > 0 already follows from (6), so 

it remains to prove continuity at 3 = 0. To this end, observe that I(f ,  3) increases to 
a limit if 3-~ 0 monotonically. A similar argument as above then shows that 
h:, ~ converges with respect to the norm I[. [12 to a limiting function g and 
II g [12 = lira ]l h:, ~ I] 2. Since I[. I] o~ < [I. II 2, g is also the limit of h:. ~ with respect to 
II. 11 ~,  so 0 = f a n d  (7) is p rove d .  

Remark. It is easy to see that (4), (5), and (7) also hold if I ( f )  = oo. In general, the 
evaluation of I(f ,  6 ) is a nontrivial task. In the sequel, we shall give some results for 
some important special cases. 

Lemma 2. I f  f '  is of bounded variation, then 

I(f ,  3) = I(f,  0) - 23( Vo~(f ') + ]if(D[) + 0(3) 

where V b denotes total variation in the interval [a, b], and f '  is chosen to be left 
continuous. 

Proof. As f '  is of bounded variation, there is a signed measure # on [0, 1] such that 
#([O,x)) = i f (x ) .  Let g be an absolutely continuous function on [0, 1] with 
II 0 II oo _-__ 3. We have 

1 

I ( f  -- g) = I ( f )  + I(g) - 2 Sf ' (x)g ' (x)dx > 
0 

1 1 

I ( f )  - 2 S f ' ( x ) g ' ( x ) d x  = I ( f )  - 2 g ( 1 ) f ' ( 1 )  + 2 ~ g ( x ) d f ' ( x )  > 
0 0 

I ( f )  - 2 3 ( V & ( f ' )  + If '(1)t)  �9 

On the other hand, let (A, B) be a Hahn decomposition of [0, 1] with respect to #, 
where A is a positive set and B is negative. For  any e > 0 we can find open sets 
A, ~ A and B, ~ B with 

# ( A ~ - - A ) >  - - e  
and 

~(B~- B) <= e.  

Both As and B, are unions of disjoint open intervals. As the union of these intervals 
covers [0, 1], we can find a finite subcovering. Let A0 and Bo be the unions of those 
intervals in our subcovering that belong to A, and B~, respectively. Finally, there is 
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a 0 < 1 such that  V ~ ( f ' )  < e. Let  [0, 0) n Ao n Bo = U~=I  Jk, where Jk = (ak, bk), 
k = 1 , . . . ,  n are disjoint open intervals. Let  now 

+ (5 i f  x s A o  - Bo  a n d  x < 0 

- 6 i f  x e B o  - Ao and x < 0 

g(X) = g(ak)(bk -- X) + O(bk)(X -- ak) if X6Jk  
bk -- ak 

g(O -- 0)(1 -- X) + ( s sgn( f ' (1 ) ) (x  -- O) if 0 < x -< 1. 
1 - - 0  

With  this g, we get, again by integrat ion by parts  

1 

I ( f  - g) = I ( f )  + I (g)  - 2 S f ' ( x ) g ' ( x ) d x  
0 

1 1 

= I ( f )  - 2 g ( 1 ) f '  (1) + 2 S g ( x ) d f ' ( x )  + ~ (g ' (x))  2 dx 
0 0 

< I ( f )  - 2(5(Vg( f ' )  + I f ' ( 1 ) l -  6e) + C(e)O z , 

where C(e) < oo only depends on e. Let t ing first (5 and then e tend to zero, we 
finally obta in  the assert ion of our  lemma.  

L e m m a  3. I f  IIf/12 < oo and f is convex from above (i.e., f '  is nonincreasing), then 
/ f f ' ( 1 )  => 0 

xt 

I ( f  O) - l ( f  5) ,,~ ~ ( f ' ( u ) )  2 du - x6( f ' ( xo ) )  z , 
0 

a n d / f f ' ( 1 )  < 0 then 

x~ 

I ( f  O) -- I ( f  (5) ~ ~ ( f ' (u ) )  2 du - xa( f ' (xo) )  2 
0 

1 

+ I ( f ' (u ) )  2 du - (1 - y~) ( f , ( yo ) )a ,  
Yt 

where x~ and y~ are the solutions o f  the equations 

and 

f ( x )  - x f ' ( x )  = (5 

f ( y )  + (1 - y ) f ' ( y )  = f ( 1 )  + 2(5, 

respectively. 

Proof. A little thought  shows that  hi, ~ consists of an arc of  f -  (5 and tangent  
segments  to this arc ending in (0, 0) and  in (1,f(1) + z), with Izl < (5. Using this and 
minimizing for z, we obta in  the assert ion of our  lemma.  
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Corollary 1. I f  f (x) = Cx p with C > 0 and 1/2 < fl < 1 then 

I ( f O ) - l ( f ( 5 ) ~ C 2 2 ( 1 - f l ) ~ 2 ( 6 )  2 f l - 1 2 f l  T p C(1 - fl) 

K. Grfll 

2. Theorems 

We are now able to state 

Theorem 1. Let r e5  ~ and ~/r( t )= W(tT)(21oglogT) -1/2. Furthermore, let d( T) 
be the unique solution of the equation 

7~ 2 

d2(1 - I ( f ,  d)) = 16(loglog T) 2 ' 

Then 

1 < lim inf ]l f -  t/r 11 oo < 2 .  
r-.oo d (T )  - 

I f  in addition, 1 - I ( f  (5) is slowly varyin9 at zero (in particular, if I ( f  0) < 1), then 

lira inf ]1 f -  t/r [[ co = 1.  
T- oo d (T)  

Remarks. 1. Functions that satisfy the last condition along with I(f, 0) = 1 can be 
easily given. Take, for example, f(t)  = C(fl)tl/2/log(fl/t) with some 3 > exp(8m). 
Then Lemma 3 is applicable and after some calculation we have that 
I(f, 6) ,.~ C( 3)2/(8 log0/6)).  

2. Csfki's (1980) result on piecewise linear functions shows that in that case the 
above liminf equals one, too, although 1 - I ( f ,  8) is not slowly varying. On the 
other hand, from his 1989 result on quadratic functions it follows that this is not 
true in general. 

Proof, We concentrate on giving estimates on the probability 

P(llqT --fllo~ < 8).  

From there, the rest of the proof proceeds literally as in Cs~ki's (1980) paper, so this 
need not be repeated here. 

Lemma 4. For all ~e[0 ,  1] 

e x p ( - I ( f ,  ~6)loglog T)K((1 - ~)8.,/21oglog T) < P(][ ~/r - f ] [ ~  < 6) 

< e x p ( -  I(f, 6)log log T)K(8~/2 log log T ) .  

Here 

K(z) = P([t WI[~ =< z) = ~ = 2k + 1 8z 2 " 

For a proof of this lemma, we use Lemma 2 of CsAki (1980) which states as follows: 
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Lemma 5. I f  I( f ,  O) < oo then 

e x p ( - I ( f  O)/2)K(z) <= P(I] W - f l l o ~  ~ z) ~ K(z) . 

The lower half of our lemma follows directly by setting r = (2 log log T )  1/2 hi, ,~ 
and z = (21oglog T)1/2(1 - ~)5. For the upper half, we use the Cameron-Martin 
translation formula: 

P(I W(x) - r ~ y(x)) - 

0 

We let r = (21oglog T)l/2hf,,~, z = (21oglog T)1 /2~ ,  and y = (21oglog T )  1/2 

x ( f -  h s g. It is an easy consequence of (5) that on the set { [I W - y II oo _-< z} the 
integral ~r dW is positive. Thus we get the estimate 

P(II W - f x / 2  loglog Tllo~ < z) < e x p ( -  I ( f  6)loglog T)P(II W -  V I[,o < z), 

and an application of the upper half of lemma 5 completes the proof of our lemma. 
From this lemma, we get the following: 

Lemma 6. I f  f ~  6P and 0 < ~ < 1 then 

7~ 2 

e x p ( - I ( f ,  0~6)loglog T 16(1 - ~)2 621oglog 7;( 1 + o(1))) < P([[ r/r - f  I[ co < 3) 

7~ 2 

< e x p ( - I ( f  fi)loglog T -  16621oglog T(1 + o(1)))as T ~  co . 

From this point, the proof of theorem 1 is completed by a standard Borel-Cantelli 
argument that proceeds exactly along the lines of Csfiki (1980), so we feel free to 
omit the details. 

We now list some special cases: 

Corollary 2 I f  f '  is of bounded variation and I[fl12 = 1 

< - -  
1 __< liminfl[qr - f l ] ~  3 2 ( g ~ ( f ' )  +f ' (1)) ( loglog T) e -- 22/3. 

On the other hand, if f '  is not of bounded variation, then 

lim inf II ~r  - f II ~ (log log T) 2/3 = 0 .  

Corollary 3. I f  II Nil z < 1 then 

7~ 

T) 4 = 1. liminfl[~/T - - f l l~( loglog x/1 -- I(f,  0) 

Remark. This is a special case of Theorem 6.1 from de Acosta (1983). 

Corollary 4. I f  f (x) = (2fl - -  1)l/2fl-lxfl with 1/2 < fl < 1 then 
2 2 f l - 1  

1 < l iminfl l r / r -f l loo(d(T))  -1 < \2 f l  + 1]  \2 f l  + 1]  
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where d(T) = C(fl) ( log log T) -  2/(2a + 1) and 

C(fl) = -~(1 - fl)z(1-#)fl(z#-i)(2fl - 1) -(2#-i)/2 i/(2#+i). 

Remark�9 This shows in particular that any rate (loglog T) -c with 2/3 < c < 1 can 
be attained. 

Finally, let us give a simple uniform result: 

Theorem 2. There are positive constants C1 and C 2 such that 

P(inf( [[r/r - f  [l~o:fe~T} _-< C1/loglog T i.o.) = 1 
and 

P(inf{ [[ ~/r - f  [[o~:f~ :T} _-< C2/loglog T i.o.) = O. 

Proof. The first half of this theorem is a trivial consequence of Chung's law of the 
iterated logarithm. For the second half, let us leave 7 > 0 to be chosen later and let 

6 = 7(loglog T) -1 

and n = 1/3. We have 

I(~T, 6) = inf { i (f(X))2: llOT -- gllo~ <= 6} 
0 

0 

{ ~  ( ( : )  ( ~ k - i  )2 } 
= i n f  n "T -- " r  ~ T l l  -- ~k -~ 6k-1 : ['k' ~ ' �9 

k = l  

k - 1  
Now, let Xk = (2nloglog T)l/2 ( ~lr( ! ) --11r(---~ ) ) .  ( Xk) is a sequence of i.i.d 

N(0, 1) random variables, and using Cauchy's inequality, we obtain the estimate 

i(tlr, 6) > ~ X~ 4n6 ~ 21ogTogTJ = k=l 21og logT k=l " 

Using this and a little calculation, we get 

P(inf{ l,~Ir-fno~:f~6r < 6)= P(l(qr, 6) < l) < P(k=~ ~ X2 < 5 0 1 o g l o g T ) .  

n 2" Now, ~k=0 Xk lS Z,2-distributed, and we may use the following estimate: For x < n 

(~=0 )~-~(2)  n/2 ( 2 )  -1 4~(X~en) n/2e-x/2 P X 2 < X F e -x/2 
k 

Thus 

P(inf{ II ~T - - f  II oo :f~ 5" ) < 6) < (50ye)log log T/2~ exp(--25 log log T) .  
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Let t ing  now 7 = 1/50e and  using ano the r  Bore l -Cante l l i  a rgument ,  the p r o o f  of  
Theo rem 2 is comple ted .  
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