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Summary. Subject to a mild restriction on A, generator of the one-particle motion, 
we show the A-Fleming-Viot superprocess can be obtained from the A-Dawson- 
Watanabe superprocess by conditioning the latter to have constant total mass. 

There are two main examples of measure-valued diffusion: the Dawson-Watanabe 
and the Fleming-Viot superprocesses. Although a greater degree of generality in 
their definition and construction can be achieved [1] [2], we content ourselves with 
a characterization via martingales. Thus, let E be a locally compact separable 
metric space; let J/IF (E) and J//1 (E) be the spaces of finite measures and probability 
measures respectively, with the topology of weak convergence; and let 
O = C([0, oo), JgF(E)) be the space of continuous, measure valued paths with the 
filtration ~-t, t > 0 of o--algebras generated by the cannonical process 
it: 12 ~ Jgv(E), ~t(~o, dx) = oo(t)(dx). Finally let (A, ~(A)), ~ (A)  c Cb(E), be the 
generator of a conservative, Feller process on E. This is our restriction on A. It is in 
force so we may be assured that both 

a) 1 ~ ( A )  and A1 = 0; and 
b) if e e l ( A )  then Ar  e Cb(E), the space of bounded, continuous functions 

on E. 
With this notation in hand, recall [5] that for each # e Jgv, there is a unique 

probability Pu on f2 such that 

(DW) a) P~,(~o =/.t) = l; 

b) Vr e~(A) ,  Mt(r - ~t(r - ~o ~(Ar  is a P~,-martingale 

such that ( M ( r  = ~o ~(r Similarly, for each # e J//1, there exists a unique 
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probability Q~ on O such that 

(FV) a) Qu(r g)= l; 

b) Vq~ e ~(A), Mt(c~) - r - ~o ~(A~b)ds is a Q,-martingale 

such that (M(r  = ~o {~(~b:) - CAqS)Z}ds. We say that P. and Q. are the laws of 
the A-Dawson-Watanabe and the A-Fleming-Viot superprocesses respectively. 

These two diffusions are closely connected. It was observed by Konno and 
Shiga [4] that the normalized and time-changed process 

th(r = r -~ r 

where z is defined by 

has the property that 

~(t) 
t = ~ ~(1) - l d s  0 

t 
N,(q~) - t/t(~b) - J t/~(~,(,)(1). A$)ds 0 

is a P~-martingale (relative to the time-changed fields ~,,*(0) such that (N(~b))t= 
So {t/~(q ~2) - ~/,(~b)2} ds- Recently, R. Tribe [7] used this frustratingly close" con- 
nection to describe the behavior of the A-Dawson-Watanabe superprocess at its 
time extinction. 

The purpose of this note is to display another connection; namely that the 
Fleming-Viot process can be obtained from the Dawson-Watanabe process by 
conditioning the latter to have constant total mass. More precisely, let 

(1) z(e) = inf{t > O:[r 1[ __> e} 

and for each e > O, T > 0 and # e ~ 'v  such that [#(1) - 1[ < e, define a probability 
on (~2, ~-r) by the condition 

(2) P~'~(') = Pu(" [z(0 > T). 

We prove the following 

Theorem. Let p T . . . .  n > 1 be any sequence of conditional laws of the A- 
Dawson-Watanabe superprocess such that l ime .  = 0 and lim inf T~ > T. I f # .  con- 

n . .~  oo n - +  co  

verges to a probability # then pT,,,~, converges weakly on (f2, ~ T )  to Qu, the law of # n  

the A-Fleming-Viot process up to time T. 

Let's begin with a proposition characterizing PT'~ in terms of martingales and 
then turn to a proof of the theorem. We require an auxilliary function u~(x, t), 
solution of the initial-boundary value problem 

( 9 9 2 
~tu . ( x , t )= lX~x2U. (X , t ) ;  I x - l l < e ,  t > O  

(3) u,(x,O) = 1; I x -  11 < 

u~(1 +__ e,t) = 0; t > 0. 
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Let us also introduce the notation, 

v.(x, t) = u~(x, t ) -  1 u~(x, t), G = ~ u~ and u; = ~x u,. 

Proposition. The conditional law P ru '" is the unique probability on (s ~ r )  satisfying 
a) Pu r'"(r = #) = 1; and 

b) VqS~N(A), Nt(c~) - ~tAT(4) - -  s r + v~(r T -  s)r is a 

pr,,_martingale such that ( N ( r  )t = So ̂ T ~(r 

Proof. First, for B ~ t ,  t<__T, we may write Pru '" (B)=u, (#(1) ,T) - I  
x P.(1BU~(~t(I), T -- t)). This is a s tandard application of It6's formula: 

(4) u,(r T -  t A z(e)) -- u~(~o(1), T) 

t A t ( . )  

= S -a~(G(1) ,  T -  s) + �89 r -  s)ds 
0 

t A ~(e) 

+ ~ u',(~(1), T - -  s)d~(1). 
0 

By (3), u.(G^~(~)(1), T -  t A ~(e)) is a P.-martingale; in particular 

(5) u.(#(1), T) = Pu(u.(~r^~c.)(1), T -  T A ~(e))) 

= Pu(~(e) > T). 

Clearly this yields Pg(z(8) > T) > O. Now 

(6) Pu(B, z(8) > T) = PuPu(B, t + z(e)o Ot > T I ~ , )  

= P.(lnP~,(z(8) > T - -  t)) 

hence 

(7) 

If we set 

(8) 

Pr~ '~(B) = u,(#(1), r)-1P~(1Bu.(G(1), T -  t )). 

R / ' "  = u~(~o(1), T)-lu~(~t(1), T - -  t) 

then by the discussion above, R r, ~ is a mean 1, Pu-martingale up to time T. In fact, 
by (4), 

(9) dR ['~ = R T' %G(1) ,  T -  t)d~t(1). 

Note that  lim v . ( x , t ) = - T o e  but that  sup sup Iv~(x,t)l<oo. So if 
x ~ l  +e O<t,<T lx- ll<~<~ 

0 < 6 < e then 

A "~(~) 
{lO) T,~ _ Z~^~{~) - j" v~(G(1), T -  s)dG(1) 

0 

is a p r .  ~-martingale and by solving Eq. (9) we find 

(11) T,~ Rt^~{~) = exp{ZtT:~(a) 1 T.~ - ~ ( z  ),^~{a}}. 
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But since p r,,(lim Z(6) = Z(e) > T) = 1, as a moment's thought reveals, we may 

dispense with the localizing stopping times and write 

(12) R r '"  = exp{Z r ' "  - �89 for all 0 < t < T. 

We find that p r , . ( B )  = P~,(1BRt r'"), according to Eqs. (7)-(8). 
By the transformation-of-drift formula (Cameron-Martin-Maruyama-Motoo- 

Girsanov) the process 

t ^ T  

(13) Mr^ T(gb) = Ct^ T(q 5) -- f r 
0 

which is a martingale under P . ,  has the property that 

(14) Nt((~) - M,^7( (~)  - <M(4) ) ,ZT '">, , ,T  

tAT 

= r  - -  
0 

is a p r ,  ~-martingale and we have 

~(A~b) + v~(r T -  s)~s(q~)ds 

t A T  

(15) ( N ( q b ) ) t =  ( M ( O ) ) t ^ T  = ~ r 
0 

To show that this condition characterizes pr ,  ~. let W. be any law on (s ~ r )  such 
that W.(~o =/~) = 1 and equations (14)-(15) hold. Then under W.. 

(16) 
tAT 

f(~t^T(1)) = martingale + ~ I-r T -  s)f'(r + �89 
o 

for any smooth function f, compactly supported in (0, c~). In other words, ~.(1) is 
d2 ~X 

the inhomogeneous diffusion with generator �89 ~x  2 + xv~(x, T - t)  which we 

d 2 
recognize as the motion with generator �89 ~ conditioned on the event [z(0 > T]. 

So we have W.(~(0 > T) = 1 and this implies u.(~t(1), T - t)- 1, 0 _< t _< T, is a well 
defined process under W., indeed a semi martingale. For by It6's formula, and 
dropping the arguments of u. for conciseness' sake, we find using (3): 

(17) 
1 - 4 e  2 r du~(~t(1), T -  t) -1 = u?2C~odt - u22u;d~ t ( t )  + ~u.  t - u ,  u. + 2 u , ( u ' ) 2 ) d ( ~ ( 1 ) ) t  

= - ~r  - u2~v.dN~(1)  

= - u , ( r  T -  t ) - l v , (~ , (1 ) ,  T -  t)dN,(1). 

Repeating the discussion concerning lines (10)-(12) we find that 

t A T  

(18) z T'~ = ~ -v,(~(1),  T -  s)dN,(1) 
0 

is a martingale and we may solve (17) as 

(19) u,(~(1), T- -  t) -~ = u,(r T)- ~exp {zrt "~ - �89  
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Another application of the transformation-of-drift formula shows that under the 
probability W. defined by 

(20) ~'u(B) = Wu(l~z r' ~), B ~ ~ ,  t < T 

= u~(#(1), T)Wu(1BUs r -  t)) 

we have 

t ^ ~(0 ^ r 

(21) M t  ^,(~)^ r(~b) = ~,^ r(~)^ r(~b) - 
0 

is a l~.-martingale with 

(22) (M(~b))t ^ r ^ ~(~) = 

~(AqS)ds 

tA TAT(~) 

I ~s(~2) ds. 
0 

It follows from Theorem 6.1.2 of [6] t h ~  Mt(~) is a martingale with ( M ( ~ ) ) t =  
i;~s(~b2)ds under the probability Wu| so by the charac- 
terization (DW) this measure must be Pu itself. Thus Wu = Pu on (f2, ~-r^.(.))- In 
particular, Wu(z(e ) > T) = ud#(1), T), and we may write, for B e ~ t ,  t ~ T, 

(23) W.(B) = u,-a(#(1), T)ffZ.(l~u~(~,(1), T -  t)) 

= u2'(~(1), T) ~',,(I~P~(~(O > T -  t)) 

= u/~(#(1), T)Pu(1BPr ) > T -  t)) 

= pT,"(B) 

and this finishes the proof. [] 

Coming now to a proof of the theorem, we note that by the trite estimations 

(24a) PT'"( sup 1~,(1) - 11 < 0 = 1; 
O<--t<T 

and 

(24b) pr,.(..o_<t__<rSUp ]~t(d~)-~t(1)-l~t((b)] =< ' _ ~ e llq~]]~176 = 1  

we need only consider convergence of the normalized process th - ~t(1)-t~t. 
T, Under P .  , th(q5 ) is a semi martingale and by It6's formula 

(25) dqt(qS) = ~t(1)-ad~t(~b)- ~t(1)-g~t(~b)d~t(1) 

+ ~t(1)- a~,(qS)d 4~(1) >t - ~,(1)- 2d 4~(1), ~(~b) >t 

which, after some simple arithmetic, becomes 

(26) d~,(q~) = ~(Aq))dt + ~ , ( 1 ) - ~ d M , ( r  - ~ , (X)-2~, (q~)dM,0) .  

Pleasantly enough, the terms involving the conditional drift have cancelled and (26) 
reveals that 

t A T  

(27) 6,(4') -- qt^ r(~b) - f qs(A~b)ds 
0 
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is a p r ,  ~-martingale with 

t A T  
(28) (G(r = ~ G(1)-~[r/s(r 2) - r/~(~b)2-1ds. 

0 

The rest is plain sailing. According to our  proposit ion,  equations (23a, b) and 
Theorem 2.1 of [5], tightness of the laws P T . . . .  n > 1 follows from tightness of the 
image laws of the real valued process t/.(q~) for ~b ~ ~(A).  For  this we may apply the 
Aldous-Rebolledo criterion ([5], Theorem 2.3; [3], w which is easily verified by 
the simple inequalities 

(29a) 

and 

I/Tn + C~ A T ) 

P ~ : ' ~ " (  ~ Ir/s(AO)lds <c~llA,;bll~o, 
\ ~ , ~ ^ T  

/~.+~^r ) 6 $2 
(29b) P f2 ' " {  j' IG(1)- lD/ , (~b2)- r / , (q02] lds  < - - I I  I]oo 

\ "on ̂  T = 1 - 8n 

where ~, is any sequence of stopping times. 
Now let Qu be any limit point  of P ~ ' %  n > 1; relabelling the subsequence if 

necessary let us assume in fact Qu = lim Pu.r . . . .  . Fo r  f ~  C~ (IR) let 
n--~ oo 

t A T  
t 69 (30) C:'~(co) =f(rh(co, ~b)) - ~ f (r/,( , ~b))r/8(co, Aqb)ds 

0 

t A T  
i F i t (  ((~ -- ~ ~ j  tr/,t , ~b))Er/~(co, ~b 2) - ~/~(co, ~b)2lds. 

0 

Let 0 < s < t < T, and let �9 e ~ s  be a bounded  cont inuous function, say I ~1 < K, 
and let D = q~[Ct:'* - C/'*l. Since co ~ D(co) is a bounded  cont inuous function 
on O, we have 

(31) Qu(D) = lim pr~. .... ,(D~, 
n-+ oo 

) = lim p r  . . . .  ~ "(q~(~b)) [~s(q52) - q~(~b) 2] [G(1) -~ - l i d s  
# n  

n--* G(? 

e, - 0. __< lim gTIIf"ll~l14211~ l - e .  

Thus Ct:' 4 is a Q. martingale for all q~ e ~ ( A )  and smooth  compact ly  suppor ted  test 
func t ions f  This readily implies that  under  Qu the conditions (FV) are verified, up to 
time T and this identifies Q. on (f2, ~ r )  as the law of the A-Fleming-Viot process. 
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