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Summary. Let ~I denote the extended Weyl algebra, 9.Io c 9.1, the Weyl algebra. It 
is well known that every element of 9.I of the form A = ~ B *  Bk is positive. We prove 
that the converse implication also holds: Every positive element A in 9.I has 
a quadratic sum factorization for some finite set of elements (Bk) in 9.I. The 
corresponding result is not true for the subalgebra 92[0. We identify states on 
9.Io which do not extend to states on ~I. It follows from a result of Powers (and 
Arveson) that such states on 960 cannot be completely positive. Our theorem is 
based on a certain regularity property for the representations which are generated 
by states on 9.1, and this property is not in general shared by representations 
generated by states defined only on the subalgebra 92[ o. 

O. Introduction 

For the moment problem in several variables, we consider linear functionals co on 
the polynomials N such that co(/Sp) > 0 for all p ~ N. It is known, from general 
theory (see [Fu] for references), that this condition on co is strictly weaker than the 
condition, co(q) > 0 for all q s N such that q > 0 pointwise in IR". For  n = 1 they are 
equivalent. Note that for n > 2, not every q > 0 can be written as a finite (poly- 
nomial) sum, q = Epp. (See [Fu]  and [Scl].) In this paper, we shall be concerned 
with positivity in non-abelian algebras which are analogous to N. These algebras 
are generated by variables xl . . . .  , x,,, now subject to certain relations to be 
specified. In case of the canonical commutation relations, we have the associated 
quantum problem of moments, reconstructing a positive functional on the so called 
Weyl algebra [Di] as a non-commutative integral against an operator valued 
measure (whenever possible). An element in the Weyl algebra is said to be positive if 
it defines a positive semidefinite quadratic form in the Schr6dinger representation. 
While positive elements in the Weyl algebra cannot generally be expressed as finite 
sums ~H*H for elements H in the algebra, we show that such a representation 
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does hold for all positive elements in a certain extension of the Weyl algebra. The 
individual elements H from the sum will then again be in the extended algebra. This 
problem arose from our desire to expand the spectral resolution of quantum 
mechanical operators in terms of algebraic conditions, in a manner which is 
analogous to the usual eigenfunction expansion of the number-operator for 
Bosons. 

1. The extended Weyl algebra 

The algebra W with unit l, generators x, p, and relation 

xp - px = ~ ' - -  11 (1.1) 

is called the Weyl algebra. Let i = ~ / -  1, and let 1~ be the algebra over the same 
commutation relation, but now with generators, x, p and (ax + i 1)- 1 for a s IR. We 
shall call lg" the extended Weyl algebra. 

For the extended Weyl algebra W, we have the further pair of relations on the 
generators, 

[p,(ax + il) -1] = ia(ax + il) -2 for all aelR, 

where [ ' , . ]  denotes the commutator bracket. These must be added to the 
Heisenberg commutation relation (1.1) above defining W. Of course, we have the 
relations 

(x • i l ) - l (x  • il) = 1 = (x • il)(x • i l)-* 

which are implicit in the notation, and will be used without mention. Both algebras, 
W and W, may be realized on L2(IR) = (all square-integrable functions on the real 
line) in the Schr6dinger representation ~. In this representation, the operator a(x) 
becomes multiplication by the variable x, i.e., the quantum mechanical position 

d 
operator, and ~-(p) becomes the corresponding momentum operator, viz., - i dxx" 

For elements h in 1~, the corresponding operator will be denoted with capitals, e.g., 
H = ~(h). We shall further use the notation, 9.1o = G(W), and ~ = ~(I/V). Note that 
9.1 is an algebra of operators on L2(IR). The elements in 9.[ are (generally) un- 
bounded operators. For A in 9.I, A* denotes the adjoint operator where the adjoint 
star is defined relative to the L2(IR)-inner product, i.e., 

(Af , ,g)  = ( f , A * g ) ,  AegA, f, g e so  

where 5 ~ denotes the Schwartz space of functions on IR, and where 

( f  g)  = ~ f (x)g(x)dx.  
- - o 0  

Note that A* eN, so 9.I acquires the structure of a Hermitian algebra where the 
.-involution is the above mentioned operator adjoint. 
Let 

A = 2--~(X + iP), and N = A*A. (1.2) 
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These are the quantum mechanical annihilation operator, respectively number 
operator; and it is well known that the spectrum of N is {0, 1, 2 . . . .  }. It follows that 
the operator 

T = (N - I ) (U - 2I) (1.3) 

satisfies ( f  T f )  > O. However, T is not a finite sum of operators of the form H* H 
for H ~ ~lo. This was noted in [Wo], but can also be verified by direct inspection. 
We prove, in Sect. 6 below, that T may be factored as T = C* C for C in the 
extended algebra 9.I. 

2. Spectrum from algebra 

The present paper arose from a desire to determine the spectrum of elements in 
from a suitable set of algebraic conditions, similar to the conditions which 

dictate the spectrum of the harmonic oscillator Hamiltonian N, i.e., the well known 
algebraic realization of the Hermite functions in LZ(IR) as eigenfunctions of N. In 
standard quantum mechanics books, e.g., [PW], the eigenfunctions are obtained 
by normalization of the vector sequence A*"fo where fo(x) = e -~2. Recall the 
familiar commutator formula 

IN, A*" l  = nA*" (2.1) 

which is based on the canonical commutation relation, written in the form 

[-A,A*] = AA* - A * A  = I .  (2.2) 

A linear functional co on ~o is called a state if 

co(I)=1,  and co(H*H)>O,  H~92 o . (2.3) 

It is well known (see e.g., [Po] in the present context) that the GNS-representation 
applies to states co on 91o; and each co generates a Hermitian representation n = no, 
of 9.Io on a Hilbert space ovtr with cyclic vector ~ = ~2~, such that 

co(A) = (~,  zc(A)~), A~9~o (2.4) 

where ( . ,  .) refers to the inner product in ,,utah,. Note also that the normalization, 
co(/) = 1, corresponds to, J[ (2 [1 = 1. The Hermitian property of ~ is given by the 
identity, ( n ( H ) ~ l ,  ~/2) = ( I / / 1 ,  ~c(H*)~2), n e 2 I o ,  ~ ,  ~/2 E ~ .  

The element T, given by (1.3), was used by Woronowicz [Wol]  to illustrate 
"singularities" for the "quantum problem of moments": Specifically, to give an 
example of a non-normal state on the Weyl algebra. There are familiar, and 
analogous singularities for the classical moment problem in two (commuting) 
variables arising from the known positive two-variable polynomials which cannot 
be written as (finite) sum of "squares", see e.g., [Fu], [Scl], [Po] and [Wol-2] .  

In this note, we show that the analogous singularities do not arise in the 
extended Weyl-Schr6dinger algebra 9.I, i.e., for the involutive *-algebra on L2(IR) 
which is generated by X,  P, and (aX + i I ) -  ~ for a e ]R, again subject to the relation 
(1.1). Specifically, 

Theorem 2.1. Let A ~ 9.I be 9iven, and suppose A has positive spectrum, i.e. that 
( f  A f )  >>_ O, for all f e S e ;  then A is a finite sum of  quadratic terms, H ' H  for some 
finite subset o f  elements H in 9~. 
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Remark 2.2. The example (1.3) shows that the elements H in the expression 
A = 2H* H cannot in general be chosen from 920, even if A is initially given in 920. 
The proof of Theorem 2.1 is relatively long, and it consists of three separate ideas 
each of which may perhaps be of independent interest. For the convenience of the 
reader, we have therefore broken down the proof in three separate sections to 
follow. 

3. States on 92 and their representations 

States on 92 induce representations, and we shall establish extension properties for 
the representations. 

Proof of  Theorem 2.1. (Step one.) Suppose that some element A in 92 is not a finite 
sum of the specified type of elements H ' H ,  for He92. Let the cone ~f  ~ 92 be 
spanned (algebraically) by the elements I, and H* H for H ~ 92. Then c f  is a convex 
cone in 9.1, and, by assumption, A r ~Y'. We may then find a linear functional co on 
92 which separates the two, i.e., such that 

c0(A) < 0, but co(H'H) > 0 for all HE92.  (3.1) 

We appeal to (one of the formulations of) the Hahn-Banach theorem for this. 
Hence we need to know that the (algebraically defined) cone c f  is closed in 
92 relative to the topology a(92, 92*) on 92. Recall, 92* denotes the algebraic dual of 
92, i.e. all linear functionals on 92. We may conclude that o~ is closed, as specified, 
from the result of Schmfidgen [Scl-2].  (This theorem is for the Weyl algebra, but 
can easily be adapted to the present context.) 

Now, let n denote the GNS-representation generated by co, and let O be the 
corresponding cyclic vector in the representation space W = 24~o~, cf., formula (2.4) 
above. 

We have the 

Lemma 3.1. The operator re(x) with dense domain z~(92)0 in 2,~ is essentially 
selfadjoint. 

Proof. Note that zr(x) is symmetric since the identity x* = x holds in the Weyl 
algebra. Then we have the following "quadratic form" - identity valid on the 
specified dense set of vectors, i.e., 

@(a)O, ~(x)~(b)O) = o)(a*(xb)) = co((xa)* b) 

= (n(x)n(a)O, ~(b)O). 

This shows that ~(x) is symmetric on its domain. To show that n(x) is further 
essentially selfadjoint, we need to verify that each of the two spaces, 
(re(x) ++ iI)~(92)0 is dense in ~f. We verify this for re(x) + iI. The other case is the 
same, mutatis mutandis. If 0 e J4 ~ is given to be in the orthogonal complement, then 

(0,  (re(x) + iI)Tc(b)O) = 0 (3.2) 

for all b ~ 92. Since (x + i)- 1 e 92, this holds, in particular, for (x + i)- 1 a whenever 
a~92. But (Tc(x)+iI)Tz((x+ i ) - ta)=n(a) ,  so we conclude from (3.2), with 
b = (x + i)- la,  that (0,  n ( a ) O ) = 0 .  Since O is cyclic, it follows that t ) = 0  as 
asserted. This concludes the proof of the lemma. 
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4. Dilations of representations 

Let n be the representation introduced in Sect. 3 above. In this section, we shall 
study the operator re(p). Naturally this operator n(p) cannot be expected to be 
essentially selfadjoint, although it is symmetric. (The element from (1.3) above 
illustrates this point.) 

The following theorem allows us to get around this difficulty. It is a result about 
selfadjoint dilations of Hermitian representations of the Weyl algebra (not the 
extended algebra), and it was first proved, in a special case, in [Jo-Mu], and then, in 
full generality in [We]. For further details, see also [Jol-2].  While it is stated in 
a different form, in the above references, we shall use it in the following equivalent 
formulation. 

Lemma 4.1. ([We]). Let n be a Hermitian representation of the Weyl algebra 
W with dense invariant domain ~ in a given HiIbert space 9if, and suppose zc(x) is 
essentially selfadjoint on ~.  Then there is a Hermitian representation "i, acting on 
some HiIbert space ~ containing ~ ,  and extending n. Specifically, the domain ~ of  
n is contained in that of'i, and 

' i (a) f= rc(a)f (4.1) 

holds for all a t  W, and all f ~ .  Moreover 'i(x) 2 + 'i(p)2 is essentially selfadjoint on 
the domain of 'i. The subspace ~ff is reducing for the unitary one-parameter group lY t 
on ~ which is generated by "i(x), and we have the commutation relation, 

tY,'i(p) U* = 'i(p) - t I  (4.2) 

for all t ~ IR, where 1" denotes the identity operator on :~. 

Proof(Sketch). Let Ut be the unitary one-parameter group on #g which is gener- 
ated by the selfadjoint closure of re(x). It is well known [Ak-G1] that the set of 
selfadjoint dilations 'i(p) of the given symmetric operator zc(p) is non-empty. Let 
('i(p), 3r176 be such a dilation, see [Ak-G1] and [Jo-Mu] for details; and let E(d2) be 
the corresponding orthogonal projection valued measure; i.e., E(. ) takes values in 
the orthogonal projections of ~ o ,  and 

'i(p) = ~ 2E(d2), (4.3) 
- - o O  

while 'i(p) extends re(p) on the dense domain ~ in ~ ~ ~ o .  Let Qo be the 
orthogonal projection of ~ o  onto the subspace ~ ,  and let F(.)  = QoE(')Qo. 
Then we seek F( ' )  of this form such that 

UtV(d2) U* = F(d2 + t) (4.4) 

(which is the compression to W of a relation which is equivalent to (4.2) above.) Let 
at denote the automorphic action of ]R by translation on the set of all "quasi" 
spectral resolutions F(') associated to re(p). Then (4.4) may be written in the form 

Uta_t(F) U* = F ;  (4.5) 

and a resolution F, of the desired form, may be found by reference to the fixed point 
theorem of Markoff-Kakutani [D-S], or by use of the amenability of ]R. Once 
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a solution F to (4.4) is found, then the action of Ut on the corresponding dilation 
space ;r is dictated by the commutation relation. We may take ~ to be generated 
by the space rig, and the associated representation of the extended Weyl algebra 
W on ~ .  For more details, see [Jo-Mu] and [-We]. The properties of the chosen 
compression F = QEQ are described below: 

We have the unitary one-parameter group Ut, t~lR, acting on Jr .  Once 
a positive operator valued measure F( ')  has been found satisfying the commutation 
relation (4.4), then an applicationof the dilation theorem [-Jo2, Chapter 4] provides 
us with an operator system U ,  E('), acting in a bigger Hilbert space and satisfying 
relation 

Ut/~(d2) U* =/~(d2 + t), t ~ JR. (4.4) 

The original Hilbert space Yt ~ reduces the unitary group U~, and the restriction to 
coincides with U~. If Q denotes the projection onto Yg, then F(.) = Qff~(.)Q, and 

/~(.) is an orthogonal projection valued measure. 
If V~, s s IR, denotes the unitary one-parameter group on J f  which is generated 

by ~(p), then we have the Weyl form of the commutation relation, i.e., 

UtV~ = e-i~tV~lJt, s, tElR . (4.6) 

In fact, (4.6) follows directly from (4.2) above by use of general commutation theory, 
see e.g., [Jo-Mo, Chapter 61. 

Formula (4.6), and Nelson's theorem [Ne"1, now imply that the quadratic 
operator, g(x) 2 + ~(p)2 is essentially selfadjoint as in the statement of the lemma. 
This concludes the proof. 

5. The Stone-yon Neumann theorem 

Having the exponentiated commutation relation (4.6), we may now appeal to 
the Stone-von Neumann uniqueness theorem. (For a version of this theorem 
which does not assume separability of ~ ,  the reader is referred to [Or] and [Jo2, 
Chapter 4].) Up to unitary equivalence, the system (U, V) on ~ must necessarily 
be the direct sum of identical copies of the Schr6dinger representation a, from 
Sect. 1 above, but now in integrated form. To state the Stone-yon Neumann 
theorem, let Jr be a Hilbert space, and let LZ(IR, J/l/) be the corresponding 
LZ-space of J/l-valued functions defined on the real line. The uniqueness theorem 
then yields the existence of some J/l, and a unitary operator, W: ~r ~ L2(IR, ~ ) ,  
such that 

(WU, W*)f (x)  = f ( x  + t), (5.1) 

(WV~ W*)f(x)  = ei~f(x)  (5.2) 

where f ~  L2(~,  J#), and t, s, xelR.  
We now return to the proof of Theorem 2.1. Recall that a state co was chosen 

such that co(A) < 0, and yet co > 0 on a certain cone. 
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For the state co (which was used to separate the given element A from the 
"quadratic" cone ~ff) we have, cf., (2.4) above, 

co(A) = <f2, x(A)~2> 

= <Q, ~(A)Y2> 

= ( Wg2, W~(A) W* WO> 

= < wo ,  ,r~(A) WO> (5.3) 

where a,a(') denotes the Schr6dinger representation acting on sg-vector valued 
functions. The vacuum vectorfo := Wf2 ~ L2(IR, Jg) is a C~-vector for this repres- 
entation. By a result in [Pou, Sect. 5], this means that, each function 

x ~-~ (m, fo(x)>~ on IR, (5.4) 

for fixed m ~ ~r162 is in the (scalar valued) Schwartz space of JR. The action of the 
operator a~(A) onfo is just the given operator action of A in the x-variable. With 
this convention, and notation, formula (5.3) may therefore be rewritten in the form 

co(A) = S <fo(x), (Afo)(X)>~ dx (5.5) 
- - C O  

where the integral is convergent due to the stated Schwartz-type property offo, and 
where ( ' , .  >~ denotes the Hilbert space-inner product in ~r162 If an orthonormal 
basis is introduced in ~/,  we may break down the right hand side as a sum (over the 
index set of the chosen basis) of terms of the same form (5.5), but now with scalar 
valued functions, i.e., a family of scalar valued functions (5.4) where the constant 
vector m runs over the chosen orthonormal basis in sg. But each term in the 
resulting sum, on the right hand side of (5.5), satisfies S ( ' ,  "> dx > 0 ifA is assumed 
to be of positive spectral type. It follows that co(A) > 0 which contradicts the initial 
estimate, stated in (3.1) above. This concludes the proof of Theorem 2.1. 

6. Concluding remarks 

It follows from the Theorem (2.1) that the element T = (N - I ) (N  - 21) from 
Sect. 1 may be expressed in the form T = ~ i l l*Hi  for somefinite set of elements in 
the extended Weyl  algebra 9.1. We note that a direct computation reveals that it is 
possible to do this with just a single term in the sum. In fact, if 

or equivalently 

then we get 

) c = ~ \~x~ + ~(x)~ + B(x) 

C = � 8 9  2 + a(x) iP+ fl(x)) 

(6.1) 

T = C* C (6.2) 
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with the following choice for the two rat ional  functions e(x) and/~(x)  in (6.1): 

4x 3 - 2x 2x 4 - x 2 + 5 
e ( x ) -  2x 2 + 1  and f l ( x ) =  2x 2 + 1  

If  conversely 
T =  ~'H*H~ (finite sum with H~e9,I) ,  (6.3) 

i 

then it follows f rom elementary  facts on second order  differential opera tors  that  the 
elements H~ mus t  be of the form, Hi =f~(x)C, where again the ope ra to r  C is given 
by (6.1), and  where f~(x) is viewed as a mult ipl icat ion operator .  By compar ing  
highest order  terms in (6.3), we conclude that  ~e If~(x)l 2 = 1. But then 

T = ~ H * H ,  = ~ C*fc(x)f~(x)C 
i i 

This displays the possible non-uniqueness  for the representat ion (6.3). The  a m o u n t  
of ambigui ty  is labeled by part i t ions of unity as specified. 

We finally note  that  the explicit formulae for the two coefficient functions 0~(x) 
and  fl(x) of the second order  differential opera to r  C m a y  be found by using the 
following two facts: First  we have, r(A*~fo) = (n - 1)(n - 2)A*~fo holding for all 
n = 0, 1, 2 , . . .  where A* denotes the creat ion operator .  I t  follows that  each te rm H~ 
in (6.3) mus t  satisfy, H~(A*nfo) = 0, n = 1, 2. Each H~ mus t  therefore be of second 
order,  and have a representat ion as specified. 
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