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Summary. Subgenomic mRNA from a virulent isolate of porcine transmissible 
gastroenteritis virus (TGEV) was used to produce cDNA clones covering the 
genome region from the 3' end of the peplomer gene to the start of the integral 
membrane protein gene. The nucleotide sequence of this area was determined 
using clone pTG11 and a previously reported cDNA clone pTG22. Three open 
reading frames (ORFs) were identified encoding putative polypeptides of relative 
molecular masses (Mr) 6,600, 27,600, and 9,200. The sequence encoding the Mr 
9,200 polypeptide was found to be present on the "unique" 5' region of the 
3.0 kb mRNA species whereas the other two ORFs mapped on the 3.9 kb mRNA 
species. Differences between the ORFs from this strain of TGEV and those 
from a previously reported avirulent strain of TGEV were compared. 

Introduction 

TGEV belongs to the family Coronaviridae, a large group of pleomorphic 
enveloped viruses with a positive-stranded RNA genome, and causes gastro- 
enteritis in pigs resulting in a high mortality in neonates. Coronavirus proteins 
are expressed from a 'nested' set of subgenomic mRNAs with common 3' termini 
but different 5" extensions which are translated to produce viral proteins whose 
genes are absent on the smaller mRNA species. Mouse hepatitis virus (MHV) 
and infectious bronchitis virus (IBV) mRNA species contain short non-coding 
sequences at their 5' ends which appear to be joined to the regions encoding 
the viral genes by discontinuous transcription. A consensus sequence identified 
upstream of each gene/ORF may act as a binding site for the RNA polymerase- 
leader complex [11, 12, 25, 36, 40]. It has been previously postulated that a 
heptameric sequence ACTAAAC [9, 10] or a hexameric sequence CTAAAC 
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[20, 33, 34] may be involved in the binding of the TGEV RNA polymerase- 
leader. 

The TGEV virion contains three major structural polypeptides; a surface 
glycoprotein (spike or peplomer protein) with a monomeric M r 200,000, a 
glycosylated integral membrane protein observed as a series of polypeptides of 
Mr 28,000-31,000 and a basic phosphorylated protein (the nucteoprotein) of 
Mr 47,000 associated with the viral genomic RNA [16]. TGEV infected cells, 
in addition to the genomic RNA, have six species of subgenomic viral mRNA 
[7, 18]. Expression and sequencing studies have shown that the 1.7 kb mRNA 
species encodes the nucleoprotein gene [7-9, 20, 34] and the 2.6 kb mRNA 
species encodes the integral membrane protein gene [ 10, 2 t, 26, 34]. Sequencing 
studies have shown that the 8.4 kb mRNA species encodes the peplomer gene 
[32]. The largest RNA species of about 25 kb must encode the RNA dependant- 
RNA polymerase as shown for IBV [5]. The 0.Tkb mRNA species [7, 9] 
contains a single ORF encoding a polypeptide (ORF-4) of Mr 9,000 [9, 20, 
34]. Antisera raised against synthetic oligopeptides derived from ORF-4 reacted 
to a polypeptide of Mr 14,000 in TGEV infected cells (unpublished result). The 
other mRNA species of 3.0 kb and 3.9 kb [7, 18] have had no product assigned 
to them from either infected cells or virions. A polypeptide product of Mr 24,000 
has been identified by in vitro translation of the 3.9 kb mRNA species (Purdue 
strain) in rabbit reticulocyte lysate [ 18] which was not detected in TGEV infected 
cells nor in purified virions and was not immuneprecipitated with anti-virion 
protein antibodies. Sequencing studies [34], on the avirulent Purdue strain of 
TGEV (Purdue-115 [2]), have shown that the 3.9 kb mRNA species has two 
possible ORFs, X2a and X2b, encoding putative polypeptides of Mr 7,700 
and 18,800 and an ORF, X 1, encoding a polypeptide of Mr 9,200 on the 3.0kb 
species. 

The observation that more than one ORF can be found on the 5' 'unique' 
region of a particular mRNA has also been described in two other coronaviruses 
MHV and IBV. Sequencing studies have shown that mRNA B species from 
the Beaudette strain of IBV has an ORF with the translation potential for a 
polypeptide of Mr 7,500 [3] and that mRNA D has three ORFs encoding 
potential polypeptides of Mr 6,700, 7,400, and 12,400 [4]. Similarly mRNA 4 
from the JHM strain of MHV has an ORF encoding a potential polypeptide 
of Mr 15,200 [37] and mRNA 5 has two ORFs encoding potential polypeptides 
of Mr 12,400 and 10,200 [38]. It appears then that some of the coronavirus 
mRNA species may carry and express more than one gene product, however, 
their in vivo detection has proven to be difficult [3, 27, 38]. 

Previous sequencing studies of the genome encoding the TGEV integral 
membrane protein and nucleoprotein genes, have shown a very high degree of 
homology between the virulent FS 772/70 strain [9, 10] and the avirulent Purdue 
strain [20, 21, 26, 34] with minor changes in their amino acid sequences, the 
majority of which are conservative substitutions. Thus studies were undertaken 
to address the question of how different are the genome regions potentially 
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coding for non-structural gene products from a virulent field isolate of TGEV 
as compared with an avirulent laboratory strain. We report in this paper the 
cloning and sequencing of the genome area corresponding to the 5' coding 
regions of the 3.9 and 3.0 kb mRNA species from the FS772/70 strain of TGEV. 

MateriaLs and methods 

Preparation of  viral RNA 

TGEV poly(A)-containing mRNA was prepared from LLC-PK1 cells infected with TGEV 
strain FS772/70 and purified from other RNA species on poly(U) Sepharose as described 
previously [8, 9]. 

Digestion and analysis" of  plasmid DNA 

Standard recombinant DNA methods were used [29] with enzymes purchased from New 
England Biolabs (CP Laboratories, Bishop's Stortford) unless otherwise stated in the text. 
DNA fragments were isolated from agarose gels using Geneclean TM (Stratech Scientific 
Ltd, London). Ligation reactions were carried out as described before [6]. E. co# strain 
DH1 was used for isolation of TGEV cDNA clones. E. coli transformants were selected 
on LB plates containing ampicillin (100#gml-J). 

eDNA synthesis 

cDNA synthesis was carried out as described before [10] using a synthetic oligonucleotide 
to prime first strand synthesis. Transformants containing TGEV cDNA were identified by 
colony hybridisation, as described before [9], using two [32P l-labelled TGEV cDNA 
fragments. 

DNA sequencing 

Specific restriction fragments were subcloned into M 13 mp 18 and mp 19 vectors and were 
sequenced using either the universal primer from the M 13 site or five synthetic oligonu- 
cteotides from within the TGEV cDNA sequences as primers. The synthetic oligonucleotide 
sequences were 5'-TTCTAGCTTTGTACCGC-3'(H1A), 5'-GTCATCTATGACAGTCA- 
3'(H1B), 5'-TGAAAAAGTGCACATCC-3' (TG2B), 5'-TATAGCACTAACAACCT- 
GAT-3'(Oligo 8) and 5'-CTAAGTAGGCGAATCTTAAA-3'(Otigo 15) whose positions 
and directions are shown on Fig. 2. All the oligonucleotides were synthesised by the 
phosphoramidite method using an Applied Biosystem model 381 A synthesizer. DNA se- 
quencing was carried out using [c~-35S]-dATP by the di-deoxy method [35] from single 
stranded DNA templates or directly from plasmid DNA [30] but using the Sequenase rM 
protocol. 

Northern blot analysis 

Specific restriction fragments from TGEV cDNA clones were separated by agarose gel 
etectrophoresis, purified from the agarose gel using a Geneclean TM kit and labelled as 
described before [9]. TGEV sub-genomic mRNA species were isolated from TGEV infected 
LLC-PKt cells 8 h post-infection, purified, denatured with 6 M glyoxal, electrophoresed 
into either 0.7% or 1% agarose gels, northern blotted onto Biodyne membranes and 
hybridised to the labelled cDNA fragments as described before [9]. The probes were 
hybridised in the presence of 50 % formamide at 42 °C for 16 h. The membranes were washed 
three times in X2 SSC containing 0.1% SDS at room temperature, twice in X 1 SSC 
containing 0.1% SDS at 68°C and once in X0.2 SSC containing 0.1% SDS at 68 °C. (X 1 
SSC = 0.15 M NaC1, 0.015 M trisodium citrate pH 7.0). 



168 P. Britton et al. : Sequence of TGEV 3.0 kb and 3.9 kb mRNA 

Results 

Cloning from TGEV mRNA species 

TGEV poly(A)-containing mRNA species were isolated from virus infected 
LLC-PK 1 cells and used for the synthesis of cDNA. Production of plasmid 
pTG 22 was as described before [ 10]. Plasmid pTG 11 was produced as described 
for pTG 22. Plasmids pTG 22 and pTG 11 were identified by their ability to 
hybridise to two TGEV cDNA fragments. One of the fragments, H 11 (1.5 kbp), 
originated from within the peplomer gene and the other, H 26 (0.6 kbp), orig- 
inated from within the 5' coding region of the 3.9 kb mRNA species (unpublished 
result), pTG 22 only hybridised with H 26 whereas pTG 1 t hybridised with both 
H 26 and H 11 indicating that pTG 11 extended further into the peplomer gene 
than did pTG 22. The cDNA in plasmid pTG 11 is 2.98 kbp long and from its 
restriction map was shown to overlap pTG 22 (Fig. 1) and extend 5.3 kb from 
the 3' end into the TGEV genome. From the size and position along the TGEV 
genome it was deduced that the cDNA from plasmids pTG 11 and pTG22 
contained sequences from the 5' ends of the 3.0 kb and 3.9 kb mRNA species 
and part of the 3' end of the peplomer gene (Fig. 1). 

Sequencing of TGEV cDNA 

The strategy for sequencing the TGEV genome area from the 3' end of the 
peplomer gene to the 5' end of the integral membrane protein gene is summarised 
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Fig. 1. Schematic diagram of the TGEV genome from the 3' end to 5.3 kb into the genome. 
Relevant restriction sites, location of viral structural protein genes (PEP, IMP, NUC), and 
predicted ORFs (1-4) are marked. The broken lines show the areas represented in the 3.0 
and 3.9 kb mRNAs. The unbroken lines show the positions of the cDNA inserts from 
plasmids pTG 11 and pTG 22 along the viral genome. The extent and direction of sequencing 
is shown by means of the arrows, where the restriction enzymes refer to the fragment 

subcloned and the other names the synthetic oligonucleotides used for priming 
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Fig. 2. The nucleotide and deduced amino acid sequences of TGEV ORFs 1-3 from the 
cDNA inserts in pTG 11 and pTG 22. The ACTAAAC and CTAAAC sequences postulated 
to be the RNA polymerase-leader complex recognition sites are underlined. The sequences 
preceeding the ORF-2 gene similar to the ACTAAAC or CTAAAC sequences are indicated 
by broken lines. Amino acids below the major sequences are substitutions found in the 
Purdue strain [34], The bracketed amino acids in ORF-1 and the boxed amino acid in 
ORF-3 indicate amino acid insertions found in the Purdue strain. • Potential N-glyco- 
sylation sites at asparagine residues. The vertical arrow indicates the start of the X 2b ORF 
[-34] on the genome of the Purdue strain of TGEV. The line above the sequence indicates 
the position of the insertion and V the position of the deletions found in FS 772/70 when 
compared to the Purdue strain. The arrows show the positions and direction of the synthetic 
oligonucleotides. The end of the peplomer gene (nucleotides 1-37) and the start of the 
integral membrane protein gene (nucleotides 1406-1438) are shown. * These sequence data 
will appear in the EMBL/GenBank/DDBJ nucleotide sequence Database under the ac- 

cession number X14551 
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in Fig. 1, in which the arrows show the regions and direction of sequencing 
from the M 13 clones. Thus the relevant part of the cDNA was sequenced in 
both directions. Several independent subctones from pTG 11, and corresponding 
ones from pTG 22, were sequenced with no differences between their cDNA 
sequences. 

The resulting nucleotide sequence was translated in all six reading frames 
and the virus sense strand revealed three ORFs of 186bp, 732bp and 243bp. 
The corresponding DNA sequence 148 bp from the 5' end of the first ORF to 
the start of the TGEV integral membrane protein gene, present in pTG 22 [10] 
and pTG 1 t, is illustrated in Fig. 2. The three ORFs are designated ORF-i,  of 
62 amino acids between nucleotides 149-334; ORF-2, of 244 amino acids be- 
tween nucleotides 429-1160 and ORF-3, of 81 amino acids between nucleotides 
1150-1392. One ORF was identified, in the complementary strand, of 52 amino 
acids (Mr 5,802) between nucleotides 1,125-1,280 which was not preceeded by 
the potential RNA polymerase-leader complex binding site (ACTAAAC), 
though it does have the sequence CTAAAT 11 bases upstream of the ATG. 

ORF- 1, 186 bp, initiating from the ATG at position 149, has coding capacity 
for a putative polypeptide with a M~ 6,670. ORF-2, 732 bp, initiating from the 
ATG at position 429, has coding capacity for a putative polypeptide with a M r 
27,624. ORF-3, 243 bp, initiating from the ATG at position 1,150, has coding 
capacity for a putative polypeptide with a Mc 9,211. ORF-3 was found to 
overlap the 3'-end of ORF-2 by 12 nucleotides representing 4 amino acids. 
From their lengths and positions, from the start of the poly(A)-tail, ORFs-1 
and -2 mapped within the 5' coding region of the 3.9 kb mRNA species. The 
5' end of ORF-3 mapped within the 5' coding region of the 3.0 kb rnRNA 
species (see Fig. 1). 

The nucleotide sequence (Fig. 2) revealed the presence, 23 bp from the ATG 
of ORF-1, of the heptameric sequence ACTAAAC, also found 5' of the ATG 
sequences of other TGEV genes, see Table 1. Although no ACTAAAC sequence 
was found 5' to the ATG of ORF-2 there are similar sequences AGTAAAC, 
ACAAAAC and CTAAAT (82 bp, 49 bp, and 11 bp upstream of the ATG 

Table 1. Comparison of the potential RNA-polymerase binding sites, sequence contexts of 
initiator ATGs, and termination sequences of the genes from TGEV strain FS 772/70 

Gene Potential Sequence con tex t  Termination 
binding sites 

ORF- 1 ACTAAAC (CC)TGTA TGG TAA 
ORF-2 see text (CG)AAAATGA TAG 
ORF-3 TCTAAAC (TA)CCTA TGA TGA 
NUC ACTAAAC (TC)TAAA TGG TAA 
IMP ACTAAAC (AC)AAAA TGA TAA 
ORF-4 ACTAAAC (AC)GAGA TGC TAA 
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respectively) indicating possible RNA polymerase-leader complex binding sites. 
ORF-3 is preceded by the hexameric sequence CTAAAC, 37 bp 5' to its ATG. 

The sequence context, (CC)TGTATGG (Table 1), about the ATG of 
the ORF-1 is not favourable for initiation by eukaryotic ribosomes, 
(CC)ACCA TGG [23, 24-1, due to the thymidine residue at position - 3, though 
the presence of the guanosine residue at + 4 may improve its efficiency. The 
sequence context, (CG)AAAATGA (Table 1), for ORF-2 is favourable for 
initiation. The sequence context, (TA)CCTATGA (Table 1), for ORF-3 is also 
not very favourable due to the presence of cytosine at position - 3 though the 
efficiency may be improved by the presence of adenosine at position + 4. The 
sequence context of the nucleoprotein gene, (TC)TAAA TGG (Table 1) [9], also 
appears not to be very favourable but is expressed efficiently in virus infected 
cells and this is also confirmed by expression studies in yeast [9] and vaccinia 
virus (unpubl. observation). 

There is very little difference in the codon usage between ORFs 1--3 and the 
nucleoprotein, integral membrane protein and ORF-4 genes. The codons GCG 
for alanine, TCG for serine, CGA for arginine, CTG for leucine and ATC for 
isoleucine are very rarely used for any of the genes suggesting that ORFs 1-3 
encode genetic information and have not evolved by random incorporation of 
nucleotides. 

Mapping of the ORFs to the TGEV subgenomic mRNA species 

TGEV mRNA species were northern blotted onto Biodyne membranes as de- 
scribed in Materials and methods. Strips of Biodyne membrane containing the 
separated TGEV mRNA species were probed with various purified cDNA 
fragments. As can be seen from Fig. 3 the fragment from ORF-t hybridised 
with the 3.9kb mRNA species, indicating that the origin of ORF-1 is within 
the 5' coding region of the 3.9 kb species. The fragment corresponding to ORF- 
2 hybridised with the 3.9 kb mRNA indicating that ORF-2 is also contained 
within the 5' coding region of the 3.9 kb mRNA species. No mRNA species of 
3.7 kb was detected, corresponding to the theoretical size of a mRNA species 
for ORF-2, in the infected cells under the conditions used. The fragment cor- 
responding to ORF-3 hybridised with the 3.0 kb mRNA species indicating that 
the origin of ORF-3 was from within the 5' coding region of this mRNA species. 
As can be seen from Fig. 3, sequences from other TGEV genes are found within 
the 5' coding regions of their associated mRNA species. None of the sequences 
corresponding to ORF-4 or nucleoprotein (Fig. 3, track 4) and integral mem- 
brane protein genes (Fig. 3, track 5) detected a mRNA species of 3.7 kb that 
would correspond to a 'unique' mRNA species for ORF-2. 

Discussion 

The m R N A  from a virulent British field isolate of  TGEV was used to produce 
c D N A  clones representing the 5' coding regions from the 3.0kb and 3.9 kb 
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Fig. 3. Northern blot analysis of TGEV mRNA species separated A on a t % agarose gel 
and B on a 0.7% agarose gel and hybridised to [35 S]-labelled cDNA probes derived from 
different ORFs. 1, 0.17 kbp Ava II-Hind III fragment from ORF-1 (amino acids 1-56); 2, 
0.445 kbp NdeI-Sty I fragment from ORF-2 (amino acids 96-244); 3, 0.265 kbp Rsa I- 
Hind III fragment from ORF-3 (amino acids 1-81); 4, BamHI cassette of nucleoprotein 
gene and ORF-4 [9]; 5, BamHI cassette of integral membrane protein gene [10]; and 6, 
BamHI cassette of peplomer gene (Britton, unpublished data). The apparent band above 

the 3.9 kb mRNA in B results from the 28 S ribosomal RNA. 

subgenomic m R N A  species. Two independently isolated cDNA clones were 
sequenced allowing the identification of three ORFs, ORF-1 (186 bp), ORF-2 
(732bp) and ORF-3 (243 bp) in the viral sense strand (Figs. 1 and 2). The 
initiation codon of ORF-1 was preceded by the heptameric sequence, 
ACTAAAC,  previously described as preceding the TGEV nucleoprotein, in- 
tegral membrane protein and ORF-4 genes. ORF-2 is not preceded by the 
ACTAAAC sequence, though it has similar sequences present, and does not 
appear to be expressed on a separate m R N A  species isolated from infected 
tissue culture cells. This may indicate that both ORFs may be expressed from 
the same message or that only one of them is translated; whether this occurs 
at the same or different times in the virus life-cycle is not known. The possibility 
that a new message be synthesized at a precise time in the virus life-cycle or 
that the message is only expressed in infected animals and not in tissue culture 
cells cannot be ruled out. ORF-3 is preceded by the hexameric sequence 
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CTAAAC indicating that this hexameric sequence is all that is required for 
recognition by the TGEV RNA polymerase-leader complex. 

None of the three ORFs have any predicted N-terminal signal sequence 
using the weight-matrix method [41], indicating that the polypeptides, if syn- 
thesised, may reside in the cell cytoplasm and not be associated with the viral 
envelope or infected cell membranes. The lack of an N-terminal signal sequence 
does not rule out the possibility of an internal signal sequence as found in the 
integral membrane proteins of IBV and MHV. The predicted ORF-1 product 
has an overall charge of- 1 and contains about 46 % hydrophobic residues. The 
N-terminal end of the polypeptide appears to be acidic due to the presence of 
four aspartic and one glutamic acid residues between amino acids 12-19. The 
carboxyl terminus is slightly basic due to the presence of one arginine and two 
lysine residues between amino acids 50-56. There is one potential N-linked 
glycosylation site at residue 8 (Fig. 2) possibly increasing the molecular weight 
of the gene product to Mr 9,000 assuming that the presence a single N-linked 
glycan site can add 2,000 to the molecular weight of a polypeptide [22]. ORF- 
2 product has an overall charge of + 4 and contains 46% hydrophobic residues. 
The N-terminus appears to be hydrophobic though the carboxyl terminus ap- 
pears to be hydrophilic and acidic with four glutamic acid (three consecutive), 
three aspartic acid and two basic residues between amino acids 22%244. There 
are three potential N-linked glycosylation sites at residues 17, 22 and 132 (Fig. 
2) possibly increasing the molecular weight of the gene product to Mr 33,600. 
ORF-3 product has an overall charge of + 4 and contains 57% hydrophobic 
residues. The polypeptide appears to be very hydrophobic with 14.8% of the 
amino acid residues being leucine and 16% isoleucine. This large percentage 
of leucine and isoleucine residues is similar to ORF-4 which has 34.6% of the 
amino acid residues as leucine and 5.1% isoleucine [9]. The product does not 
contain any potential N-linked glycosylation sites (Fig. 2). 

mRNA with coding capacity for more than one ORF have been found in 
other coronaviruses. IBV mRNA D contains three potential ORFs, D 1 en- 
coding a polypeptide Mr 6,700, D 2 encoding a polypeptide Mr 7,400, and D 3 
encoding a polypeptide of M r 12,400. Chimaeric proteins have been produced 
[39], consisting of the ORFs fused to the E. coli lacZ gene, and antisera raised 
against them were used to immunoprecipitate proteins from virus infected cells. 
A polypeptide corresponding to the size of D 3 was immuneprecipitated from 
IBV infected cells with antisera to the D 3 chimaera and there was some evidence 
that the D 2 product may also be synthesised. DNA containing either D 3 or 
D 2 with D 3 was cloned into pSP 64 and SP 6 polymerase was used to generate 
RNA, which was then translated in vitro. The D 2 and D 3 products were 
produced from the DNA containing both genes in the wheatgerm translation 
system but expression of D 2 in the rabbit reticulocyte lysate system was very 
poor. The DNA containing D 3 alone was expressed in both systems. The D 2 
ORF, like ORF-1 in TGEV, has a pyrimidine at position -3 from the initiation 
codon whereas D 3 and TGEV ORF-2 have a purine at -3, making expression 
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more favourable from the second ORF for TGEV and the third ORF for IBV. 
D 1 also has a pyrimidine at position -3 and there was no evidence that D 1 
was produced in vivo. 

MHV mRNA 5 contains two potential ORFs coding for polypeptides of 
Mr 13,000 and Mr 9,600 though the sizes of the products vary between the two 
strains of MHV that have been sequenced. The two ORFs from the A 59 strain 
of MHV have been cloned into the pGEM vectors and the resulting RNA 
translated in the wheatgerm system [13]. Potypeptides of the correct size were 
synthesised but no products from in vitro translation of isolated viral poly(A)- 
containing mRNA were detected. The second ORF, encoding the polypeptide 
Mr 9,600, was fused to the 5' end of the lacZ gene and the resulting chimaeric 
protein used to raise antibodies [27]. The antibodies raised against the chimaeric 
protein immune precipitated a polypeptide of Mr 9,600 in MHV infected cells. 
The first ORF, polypeptide Mrl3,000, on mRNA 5 has a pyrimidine at the -3 
position from the initiation codon and the second ORF, polypeptide Mr 9,600, 
has a purine at the -3 position. Thus it appears that in IBV and MHV, where 
a mRNA species contains more than one ORF, expression appears to occur 
from the ORF with the more favourable initiation codon. I fTGEV is analogous, 
it appears that the ORF-2 gene is the more likely to be expressed, though the 
possibility that the other ORFs may be expressed but in much lower amounts, 
cannot be ruled out. 

The mRNA 4 species of MHV contains a single ORF, encoding a polypeptide 
Mr 15,200, which has been fused to the lacZ gene and the resultant chimaeric 
protein used to raised antibodies [14, 15]. The antibodies raised against the 
chimaeric protein immune precipitated a polypeptide of Mr 15,000 in MHV 
infected cells and appeared to react with a protein in the cell cytoplasm by 
indirect immunofluorescence. The sequence context is favourable though the 
putative polymerase-leader complex binding site is 53 nucleotides upstream of 
the ATG, about six times the distance when compared to other MHV genes. 
The sequence context of TGEV ORF-3 is not favourabte (see Table 1) though 
the distance between the polymerase-teader complex binding site is not unusually 
long, possibly indicating some control over expression. 

Comparison of the sequences between the end of the peplomer and the start 
of the integral membrane protein genes derived from the FS 772/70 strain of 
TGEV reported in this paper to those of the Purdue strain [34] shows that 
there are several deletions and insertions within the cDNA sequences. Nucle- 
otides 45-53 (Fig. 2) in the FS 772/70 strain are absent from the Purdue strain. 
At positions 71, 90, 343, and 1312 (Fig. 2) in the FS772/70 strain there are 3 
base, 16 base, 29 base, and 3 base insertions respectively in the Purdue strain 
when compared to the FS772/70 strain. The differences at positions 45, 71, 
and 90 are in a non-coding region of the virus genome. However the insertions 
in the Purdue strain, at positions 342 and 1312 of the FS 772/70 sequence, are 
within ORF-1 and ORF-3. A base substitution at nucleotide 335 (Fig. 2) from 
G in the Purdue strain to a T in the FS 772/70 strain leads to earlier termination 
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of the ORF in the FS 772/70 strain. An insertion at position 342 and the base 
substitution at nucleotide 335 in the Purdue strain leads to an increase in the 
size of ORF-1 (X 2a Purdue strain) by 9 amino acids (Fig. 2). The insertion at 
position 1312 of three bases leads to the insertion of an extra isoleucine residue 
at amino acid position 55 in ORF-3 (X 1 for the Purdue strain), see Fig. 2. A 
change from a T residue in the Purdue strain to a G residue in FS 772/70 at 
nucleotide position 431 results in the formation of an ATG initiation codon 
for ORF-2. This results in a polypeptide of 244 amino acids for ORF-2 compared 
to X 2b of the Purdue strain which has 165 amino acids and initiates from 
nucleotide 666 on Fig. 2. Both the independently isolated clones, pTG11 and 
pTG22, from the FS 772/70 strain showed the same sequence and neither had 
the 13 base deletion described in some of the Purdue cDNA clones [34] which 
led to the truncation of the X2b product. The homology between the amino 
acid sequences for the rest of the gene products between the two strains of 
TGEV is very high. There are only 3, 4, and 5 amino acid substitutions in 
ORFs 1-3, respectively, a similar result found for the nucleoprotein, integral 
membrane protein and ORF-4 gene products of these TGEV strains indicating 
that there has been very little change between the two viral genomes. 

There is very little, if any, sequence homology between the TGEV ORFs 1- 
3 and the ORFs from mRNAs B and D from IBV and from mRNAs 4 and 5 
from MHV using the SEQHPE program from the Los Alamos package [19]. 
However, IBV D 3, the ORF from MHV mRNA 4 and TGEV ORF-3 all have 
hydrophobic N-termini and hydrophilic C-termini and are of similar amino 
acid length indicating that they may have similar, but as yet unknown, function. 
ORF-B from MHV mRNA 5 and TGEV ORF-1 have very similar overall 
charges and have hydrophobic N-termini suggesting some similarity in function. 
Neither MHV or IBV have a protein of similar size to TGEV ORF-2 indicating 
that this gene product may be unique to TGEV. It will be interesting to compare 
the sequences of the other coronaviruses belonging to the TGEV sub-group 
when they become available for the presence of ORF-2. Comparison of TGEV 
ORFs 1-3 with the PIR protein database showed that there was no significant 
homology with any of the proteins in the databank using the FASTA program 
[31] or by using the SWEEP program against the Leeds University protein 
database. No homology was found by comparing the nucleotide sequences of 
ORFs 1-3 against the EMBL [17] or GENBANK [17 nucleic acid database 
using the FASTN program [28]. No homologies were found by screening the 
amino acid sequences of ORFs 1-3 against the derived amino acids from all 
the nucleic acid sequences in GENBANK using the TFASTA program [31]. 

It is constructive to compare the sequences between avirulent and virulent 
viruses in order to identify regions that may be involved in pathogenicity and 
immunogenicity. Evidence presented in this paper indicates that there is very 
little homology between potential non-structural genes from the different co- 
ronaviruses. There appears to be a significant difference between the sequence 
of the ORF-2 gene from virulent strain, described in this paper, and the avirulent 
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Purdue strain of TGEV previously published [34]. However, a polypeptide of 
Mr 24,000 has been detected by in vitro translation of the 3.4 kb TGEV m R N A  
species, from the Purdue strain, using the rabbit reticulocyte lysate system [18]. 
Since the nucleotide sequence of this region has not been published, for the 
isolate of the Purdue strain that was used for in vitro translation, no conclusions 
can be reached with respect to variation within isolates of the Purdue strain. 
Experiments are under way to identify the products of ORFs 1-3 in virus infected 
cells. 
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