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Summary. Let x;, ..., x, be independent random variables with uniform distri-
bution over [0, 1]%, and X™ be the centered and normalized empirical process
associated to x;,...,x,. Given a Vapnik-Chervonenkis class % of bounded

functions from [0, 1]¢ into R of bounded variation, we apply the one-dimensional
dyadic scheme of Komlés, Major and Tusnady to get the best possible rate in
Dudley’s uniform central limit theorem for the empirical process {X ™ (h):h e &}.
When & fulfills some extra condition, we prove there exists some sequence B, of
Brownian bridges indexed by & such that

sup [ X™(h) — B,(h)| = O(n~*?logn v n~ Y20 _/K(F)logn)as.

he¥

where K (&) denotes the maximal variation of the elements of &. This result is then
applied to maximal deviations distributions for kernel density estimators under
minimal assumptions on the sequence of bandwith parameters. We also derive
some results concerning strong approximations for empirical processes indexed by
classes of sets with uniformly small perimeter. For example, it follows from Beck’s
paper that the above result is optimal, up to a possible factor | /logn, when & is the
class of Euclidean balls with radius less than r.

Mathematics Subject Classifications (1991): 60 F17, 62 G 05

1 Introduction and results

Throughout the paper, the probability space @ is assumed to be rich enough in the
following sense: there exists an atomless random variable independent of the
observations.

Definitions and notations. Let I = [0, 1] and 7 be the Lebesgue measure on 19
Unless we give more specifications, d = 2. Let x, x,, ... be a sequence of iid
random variables with probability law u = f. A, where fis a continuous and strictly
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positive function from the closed unit cube I? into R **. We call the empirical
process the centered and normalized measure X ™ defined by

<g(xi) -/ gdu> (1.0)
Id

X®(g)=n"12 Y
i=1
for any integrable funtion g.

Let & be a class of functions from I¢ into [ — 1, 1]. Throughout, we assume
that & is a Vapnik—Chervonenkis class of functions. Let us recall the definition of
this notion. Let 2(I¢) denote the set of probability laws on I¢. Let P be in 2(I%)
and let ¢ be in ]0, 1[. Let N (e, &, P) denote the maximal cardinality of a subset
&, of & such that, for any distinct elements g, h of &,, dp(g, h) = [|g — h|dP > e.
Now, let o7 (I?) denote the set of laws on I with finite support. We set

N(, &)= sup N(g &, P).

Ped(l%)
log N (¢, &) is called the universal £!-entropy of & (see Kolchinsky 1981). When
N(g, &) £ C(F)e 4 (1.1)

for any 0 <e < 1, for some constants C(&) and d(¥), & is called a Vap-
nik—Chervonenkis class of functions (VC class). Now, unless we give other speci-
fications, & is given the metric d,. A Brownian bridge indexed by & is a centered
Gaussian process indexed by & with covariance function (g, h) — E(g(x)h(x1))
— IE(g(x1))E(h{x,)). Now, let (&, ).>0 be a sequence of classes of functions. We
say that the strong invariance principle holds for (#,),~o with rate (v,) if there
exists some sequence (B,),» o of Brownian bridges indexed by &, that are almost
surely continuous on (%, d,) such that

sup | X®(g) — B,(g)| = O(v,)as.

ge&y
where (v,),>0 1S some sequence converging to 0. When &, = & is a VC class of
functions, according to a result of Dudley (1973), there exists a Brownian bridge
indexed by & with almost surely continuous trajectories on (&, d,). However, in
order to get an invariance principle, some measurability condition is needed (see
Dudley 1982 for some counterexample). So, from now on, we assume the following
measurability condition (.#): there exists some Suslin space ¥ and some mapping
T from Y onto & such that (x, y) » T{(y)(x) is measurable on R%x Y. Let us
review the main attempts of getting the best possible rate in the strong invariance
principle.

When d = 1 and & is the class of intervals, Komlos et al. (1975) proved that v,
may be taken as n~ '/21log n. This result is optimal (see Csdérgo and Révész’s book
1981) and, up to now, it is the only result having important applications.

When & is a VC class of Borel sets of I satisfying a uniform perimetric
condition, Massart (1989) proved that v, may be taken as n~ Y?%(logn)3?, via
a multivariate extension of the construction of Komlds et al. (1975). The rate of
convergence appearing here is nearly optimal when & is the class of Euclidean
balls. Kolchinsky (1991) applied Massart’s exponential bounds for the multinomial
embedding of Komlos et al. (1975) to the strong approximation of function indexed
empirical processes. In a recent paper, he characterizes the accuracy of the empiri-
cal process indexed by bounded functions by their accuracy to some Haar expan-

sion and he further improves Massart’s exponential bounds of a factor ., /logn (see
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Kolchinsky 1992). However, these global rates do not provide optimal applications
for kernel density estimators (see Konakov and Piterbarg 1984). In order to obtain
the limiting behavior of kernel density estimators under minimal assumptions on
the bandwith parameters, we shall give an invariance principle with an explicit
dependance in the maximal variation of the elements of & (note that the variation
of the characteristic function of a set is equal to the perimeter of this set). Applying
this invariance principle to a sequence of classes of functions whose maximal
variation decrease to O then leads to optimal results, concerning the sequence of
bandwith parameters, for the maximal deviation of kernel deusity estimators.

So, we study VC classes & of functions with uniformly bounded variation.
Refining Massart’s method as in Rio (1993), we prove invariance principles with
an error term depending explicitly on the maximal variation of the elements of
& in Sect. 3. These invariance principles are applied to kernel density estimators
in Sect. 4.

Statement of results. Throughout, we assume the elements of & to be of bounded
variation. Recall this means that the partial derivatives of any element of & are
Radon measures. Let 2,(1%) denote the space of C* functions with values in IR #
and with compact support included in 7% R? being given the usual Euclidean
norm, we set [ g, = supyer«lg(x}||. For any function % of &, we set:

K(hI1%) = sup (f h(X)dng(x)dX/IgHm).

g€ 2,(1°) \ R¢

A classical result of distribution theory (see Schwartz 1957) ensures that K (h, %) is
finite if and only if & is of bounded variation.

Definition. We shall say that the class & is uniformly of bounded variation (condition
UBV) if K(&) = suppes K(h,I1?) < + .

When & is a class of characteristic functions of Borel sets S, K (1, %) is the De
Giorgi perimeter of S related to I So, the classes of Borel sets of I satisfying
condition UBV are exactly the classes of sets with uniformly bounded perimeter.
Let us give some examples of such classes. If & satisfies condition UM, then
& satisfies condition UBV. Hence the class of convex sets and the classes of Borel
sets with uniformly Lipschitz boundaries in the sense of Dudley (1974) fulfill
condition UBV. However, in order to get optimal invariance principles for classes
with uniformly small variation, we need to impose an extra condition: we will
assume that & fufills the condition below, called condition LUBV.

Definition. We shall say that the class & is locally uniformly of bounded variation if
for any a € J0, 1[, any cube ¥ = I with edges of length a parallel to coordinate
axes and any h in &, K(h,€) £ Kj,.(¥)a’ ! for some constant K, ,.(¥) = 1
depending only on &, where K (h, €) is defined from % and h exactly as K (h, 1) is
defined from I¢ and h.

Let us now state the main result, providing an invariance principle with an
explicit error term depending only on K (%) and on the entropy of the class .

Theorem 1.1 Let d = 2 and & be a Vapnik-Chervonenkis class of functions from ¢
into [ — 1, 1] satisfying 1.1, the condition UBV for some constant K (%), and the
measurability condition (M ). Then, there exists a Brownian bridge B, indexed by
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& with almost surely continuous trajectories on (&, d,) such that, for any positive
t = Clogn,

m(ﬁ sup | X®(h) — B,(h)| = C/n® DK (F)t + Cc(n)t) <et

he&

where c(n) = \/logn in the general case, c(n) = \/ K(&) under condition LUBV and
C is a positive constant depending only on d, d(¥) and C(¥).

We now give an application of Theorem 1.1 to invariance principles for empirical
processes indexed by VC classes of Borel sets of 1%. We need to recall some nice
properties of these classes. When & is a VC class of sets,

D(¥) = sup{D e N:Card(4 n &) = 2 for some set A with Card 4 = D} < o0,

where Card A denotes from now on the cardinality of the finite set A and
AnF ={AnS: Se&}. We call D(&) the entire density of &. This result
provides many examples of VC classes. For example, the class of closed half spaces
or the class of closed Euclidean balls are VC classes. Moreover, a lemma of Dudley
(1978) ensures that the universal entropy N (s, &) satisfies: for any 0 < ¢ < 1/2,

N(e, &) < C(D)(e™ | logs )P, (1.2)
Theorem 1.1 and (1.2) yield the corollary below.

Corollary 1.1 Let d = 2. Let D be a positive integer and let (£ ,,),» o be a sequence of
Vapnik—Chervonenkis classes of Borel sets of R? with entire densities each bounded
by D, satisfying the condition LUBYV for some constant Ko, and the measurability
condition (M ). Then, the strong invariance principle holds for (¥ ,),>o with rate

v, =n YD JK(F)ogn +n" 2 /K. logn as.

Remarks. Note that K(1g, I?)is the De Giorgi perimeter of S related to 1%, Hence,
the classes of Borel sets of I¢ satisfying the condition UBYV are exactly the classes of
sets with uniformly bounded perimeter.

When &, is the class of closed Euclidean balls with radius less than A, for some
sequence (/,),> o converging to 0 and satisfying nh? > (logn)*“~Y, the error term
is of the order of (nh)“¥~1D/2D_ /logn. By Theorem 1 of Beck’s paper (1985), this
result is optimal, up to an eventual factor ,/logn. On the other hand, when
nhi < (logn)?“~ Y, the error term is of the order of logn. From multivariate
Erdés-Rényi laws for balls-indexed empirical processes, it follows that this rate
cannot be improved when lim, ; , nhi/logn = + oo (see Louani 1992). More-
over, when (h,),> o satisfies liminf, _, , ., {logh,|/logn = § > 0 and the usual condi-
tion lim,, ; , nhi/logn = + oo, Corollary 1.1 ensures that

sup | X (S) — B,(S)| = o((hi|logh,|)"?)as.
SeP,

Let 7, denote the volume of the Euclidean unit ball in IR?. According to the above
result, we can obtain

i
(2dnghy|logh,]) 12 sup | X®(S)] — 1
Se?,
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from the corresponding result for the Brownian bridge. Hence, Corollary 1.1 works
as soon as the Erd6s—Rényi law for the empirical process fails.

In Sect. 4, we give an application of the results of Sect. 3 to the maximal
deviation of kernel density estimators. Assume that the strictly positive density
S satisfies the additional smoothness condition below:

the density f is B-Holderian on the closed cube I for some f €10, 1]. (1.3)

Let ¥ be a two-times continuously differentiable kernel function with compact
support. Define the Parzen—-Rosenblatt estimator of the density f by:

fo) = (i)™ Y W (hy Hx = x0)

i=1

Let &,(x) be the normalized deviation field of £, i.c.

Jn(¥) — E(fu(x))
4 4
Cu(x) = \/nh, v JF0) (1.4)

where o3 = [¥?(y)dy. We obtain from Theorem 3.2 of Konakov and Piterbarg
(1984) and from an invariance principle for £, (x) which will be stated in Sect. 4 the
following result.

Theorem 1.2 Let d = 2 and let x, ,x,, . . . be a sequence of iid random variables with
law p fulfilling 1.3. Let ¥ be a C* kernel function from R “ into [ — 1, 1] with compact
support, satisfying [W(y)dy = 1. Let T be any closed Jordan set included in 10, 1[*
with positive Lebesgue measure and let (h,),- o be a sequence of bandwith parameters
converging to O and satisfying the condition

0 < lim inf (logh, */logn) < lim sup (logh, !/logn) < 1/d. (1.5)

n—>+w n—>+w

Let &, be the deviation field defined by (1.4). Then there exists some positive y such
that:

IP(Z,,SUP!&,,(X)' - lr% < t)

xeT

t2 ¢ d—2m— 1
=exp{—Zexp<—t~ﬁ> Y eml;2m<1+ﬁ> }+0(n"’)
n/ 0=msd-1)/2 n

uniformly in t, where 1, is the maximal root of the equation

MTY2m) D2 pod JAa-texp(—12/2) = 1.

/.is the Lebesgue measure in R4, A = det(au) ai; =0y [(Vi¥)x)(V; P)(x)dx and
ey =(—1)"(d — 1)l/(m!2"(d — 2m — 1)!) is mth Hermite polynomial coefficient of
order d — 1.

Remarks. Assume that f belongs to the class J (1Y, a) of a-differentiable functions
on I, as defined in Dudley (1982). Theorem 1.2 works when &, ~ n~ }@*29 i5 the
optimal bandwith size as soon as a > 0. Recall Konakov and Piterbarg (1984) had to
assume the regularity condition « > d?/2 in their Theorem 1.2,
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Note that [, ~ ./2d|logh,|asn — + oo . See Konakov and Piterbarg (1984) for
an asymptotic expansion of I,. Our Theorem 1.2 and their Theorem 3.2 ensure also
that

P
supl, H&(x)] = 1 (1.6)
xel?
if the sequence (h,),> o satisfies lim,_, ., nh¢/logn = + oo. This result is optimal.
However, in order to obtain the limiting distribution of I, sup,cza| &, (x)| — 12, we
need the stronger condition lim,, ; ., nh? /(logn)** = + oo (cf. Theorem 4.1).

The proof of Theorem 1.1 is mainly based on some Bernstein type inequality for
the multinomial embedding of Komlos et al. (1975), which is proved in Sect. 2. Next
we derive the strong invariance principles for multivariate empirical processes
using a multivariate Haar expansion of the functions.

2 Strong approximation

Throughout this section, we will take d = 1. Let (x;, x5, . . ., X,,) be an n-sample of
the uniform distribution over [0, 1]. Let N be a positive integer and &y be the class
of functions f from 10, 1] into IR such that

2N
f=2 fily- 1275, 127¥]
i=1

for some e(f) = (f1,f>, . - - »fov) with values in R%". Now, let B,(t) be a standard
Brownian bridge defined from (x4, x,, . . ., x,) via Komlos et al.’s method (in fact
only the increments of the empirical d.f. and of B,(.) between time (i — 1)2~~ and
i2™N are defined in a common probability space; a lemma of Skorohod (1976)
ensures then that the construction of these two processes may be performed on
a rich enough probability space Q). Now, for each fin &y, we set:

1
Z"(f)= [ fw)dB,(u) .
0

The main aim of this section is to generalize the probabilistic bounds of Komlés
et al. (1975) to bounds with an error term depending mainly on the coefficients of
the orthogonal expansion of fin the Haar basis on the unit interval.

Notations. Throughout the sequel, the intervals ]I, m] are to be interpreted as
subsets of Z,. ¢/*(Z.) is given the canonical inner product, denoted by
(.1.) #2(]1, m]) denotes the subspace of #2(Z , ) of functions with support included
in ]I, m]. Let I; , = 1k27, (k + 1)27], and let ¢, , be the characteristic function of
I; . For any positive integers j and k, we set &, =2e;_; 5 —¢;. Let
#B=1{8,1<j<N,0=k<2V7} Clearly, # = # v {eN o} is an orthogonal
basis of £2 {Jo, 2N]) with (€;x1€,x) =27 and (ey,0len,0) = 2N, For any fe &y, we
define the coefficients y;.(f) and yx(f) by v;,(f)=2"7(e(f)I& ) and
o (f)=2"N(e(f)|éy, o) Define the Hilbertian pseudonorm | f|l 4 by

Ifle=4X X i)

j=1 0L k< 2V

Let us now state the basic inequality.
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Theorem 2.1 For any vector p = (py, . . ., py) with positive components such that
X pi =1 let g;=(2'p;) ™" and let

Mp.f) = 4sup{zq,l 5 :»%,mm}.

G.ky Li<j mily, < I

Then, for any fin &y and any positive x,

P(/n X () = Z9() 2 /M (p.f) + Cp)x
+ (( ) %)/ ¥ c1>nfn@ﬁ> <2
i=1

where Cp = (SUPo <<t f(X) — Infy< ey f(X))/4 and C; =1 + /83/32.

Remarks. Theorem 2.1 can be used to obtain numerical constants in the refine-
ment of Komlods et al’s exponential inequality proved in the paper of Mason
and Van Zwet (1987). Let x{,x,,...be iid random variables with uniform
distribution over [0, 1] and let F,(t) = n~'X]-, 1y, < 1) be the associated distri-
bution function. Refining Komlés et al’s exponential inequality, Mason and
Van Zwet (1987) proved that there exists a standard Brownian bridge B, with
almost surely uniformly continuous trajectories such that, for all real d in [8, n],
for all positive x,

IP< sup |n(F,{t)—1t)— ﬁB,,(t)| = ax + blogd + clog2> < exp(— x),

O<nt<d

where a, b, and ¢ are positive universal constants. Using the results stated in this
section, we prove in a preprint (see Rio 1991) that this inequality holds with
a = 3.26,b = 4.86, and ¢ = 9.26. These results further improve the previous numer-
ical results of Bretagnolle and Massart (1989).

Proof of Theorem 2.1 Let us recall some results stated in Tusnddy’s thesis and
proved in the paper by Bretagnolle and Massart (1989) concerning the quantile
transformation of a random variable with Binomial law. For any d.f F, let
F71(t) = inf{x:F(x) = t}.

Lemma. Let @ denote the d.f. of a random variable with standard normal law and let
Y be a random variable with df. ®. Denoting by ®, the d.f. of the binomial law
B(n, 1/2), set B, = @, ' ®(Y) — n/2. Then, the two following inequalities hold:

(i) B, < 1+ (/n/2)| Y1,
(if) 1B, — (/D) Y] £ 1+ (Y2/8).

Let us give an outline of the construction of Komlos et al. (1975). Denote the
increments between time (i — 1)2 " and i2 ~¥ of the empirical process Z, and of B,
by X, and Z;, ie.

Xi= Y Yor<rnzy—n2 ¥ and Z, = /n(B,27) — B, — 1)2M)) . (20)
k=1
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Let the empirical measures X and Z be defined by:

2N zN
X0 =Y Xyl maremAi()and Z() = Y Zilyg- 125 0-vA>L)
i=1 i=1

Then, with the above notations, for all f in &y, X(f)= ﬁX “(f) and
Z(f)= \/;lZ(")(f). For any positive integer j, for any 0 < k < 2V7J, we set:

ﬁj,k = X(éj,k)s and Uj,k = Cal‘d{l é n:szi € Ij,k} = X(ej,k) + n2j¥N .
We also set:
Vj,k =ZE; ), V= Z(ej) Ej,k = Vj,k n 12N

Since Z is a basis of £ 2(70, 27, it is necessary to define the random variables
U, , only from the corresponding Gaussian increments V; ;. So, we will define the
random variables by induction on j. Assume that the random variables

(ﬁ,,m)l >0 < m<2%-1 have been already associated to the corresponding random
variables I7,,m. Then, the random variables (U, ,)o<m<2v- are determined
since the system (e )o<i<2'— belongs to the linear span of {& ,:I1>j,
0<k<2"""} U {ey o}

Now, we claim that the random variables (U; , + U; «)/2)o < p < 2v-/ are inde-
pendent and B(U;,, 1/2)-distributed, conditional on the random variables
(Uj ko < k < 2v-5- Moreover, since 4 is an orthogonal basis, the random variables
(Six)o<k<2v~ are independent and N(O, 1)-distributed, conditional on
(Uje)o< k< 2v-i. Hence, for all k [0, 2¥ [, if we define Uj ;. by:

ljj,k +Uje= 2‘pffj‘1,‘°‘p(5j,k) )

the random variables (U}, )o < k < 2v-i will have the prescribed conditional distribu-
tion (see Bretagnolle and Massart 1989). By Tusnady’s lemma, it follows that, for
all j and k,

1Use— (U302 Gl 2+ &4
Now, we use the dyadic decomposition of Z(f) and X (f):

N

X(f)=% Y 1)U and Z(f) = Y > Vi) Pk

j=1 0 k<28 j=1 0L k<2Vi

In order to apply Tusnady’s lemma, we define an auxiliary empirical measure Y by:

N
Y(f)= Z Z »yj,k(f)(Uj,k)l/z‘fj,k~
j=10sk< 2N
Let A(f)=X(f)—Z(f), and let 4,(f) =X = Y)(/), 4:(f) = (Y — Z)(f).
Clearly, A(f) = 4.(f) + 4,(f). Now, we state a lemma which proves that, in
order to control 4( f), it will be sufficient to control each of the moment-generating
functions of A,(f) and of 4,(f).

Let 4 be a random variable with mean zero and with finite moment-generating
function in a neighborhood of zero. We set y 4(1) = logE(exp(tA)). Then, the Chernoff
function h, of A is the Legendre transform of y, (h,(c) = sup,>o ((t& — v4(8))
for all positive & and h,(e) = sup,<o{te — y4(¢)) otherwise). Clearly, h, takes
its values in R* U { + oo} and is a nondecreasing convex function from R™
into R* U {+ oo}. Define the function h;' for any nonnegative x by:
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hi'(x) = inf{r:h(t) = x}. From Chernoff’s result, it follows that, for any positive
X, P(A > hil(x)) < exp(— x).

Hence, the result below, which will be proved in Appendix A, yields an

exponential bound for the sum of two random variables with finite moment-
generating function.
Lemma 2.1 Let A and B be two centered random variables with finite moment-
generating function in a neighborhood of 0. Assume that P(A=0)<1 and
IP(B=0) < 1. Let hy, hg, and h, g denote respectively the Cramer—Chernoff func-
tions of A, B, and A + B. Then, for all positive x, h{1p(x) < hs'(x) + hg 1 (x).

For the sake of brevity, we set 4;( f) = A4;. Using Lemma 2.1, it will be sufficient to
control each of the Laplace transforms of the random variables A;. We control
the Laplace transform of 4, via the following lemma, which will be proved in
Appendix B.

Lemma 2.2 For any fin &y and for any real t such that C,|t] < 1,
128C7logE(exp(4,) = — 83| f | Zlog(1 — (C,1)?) .

On the other hand, the control of 4, is ensured by the two lemmas below, which
will be proved in Appendix C and Appendix D.

Control of A,. Throughout, we will use the following notations. Let
L ={(j,k)1<j<NOZk<2¥}land =2 U{(N,0)}. (2.1

Also, let the order relation < be defined on & as follows: if | and m are two
elements of Z, I<miff I, < I,. We also define < by [<miff ISmand! + m. Let
[ = (j, k) be any element of Z: we setj = |1]|. We set also |m| — |I| = |m — [| for any
I <m. So, with the above notations, we have:

Ay=Y () (JUi - JEU)E.

le¥

We control the moment-generating function of 4, by the moment-generating
function of a random variable A5 depending only on the Gaussian increments
(&)« 7. This is the purpose of the lemma below.

Lemma 2.3 For any real t, IE(exp(t4,)) < IE(exp(t43)) where:

Ay =Y yz<f)5,<ﬁ+ y 2'"*”/2|5m|>.
le ¥

mil<m

It remains to control the Laplace transform of 4;. Let 4, = ﬁz e i(f )Zfl and
ds =43 — 44. Using Lemma 2.1 again, it is sufficient to control each of the
moment-generating functions of A, and 45. Since 4, is a Gaussian random
variable with zero-mean and variance | f||4/2, the control of 4, will be ensured via
standard arguments of Cramer-Chernoff calculation on the normal random vari-
ables. Let us now state an upper bound on the Laplace transform of A5 which
depends mainly on the number M (p, ) previously defined in Theorem 2.1, and on
the variance term | f||%.
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Lemma 24 Let p=(py,...,py) be a vector with positive components such that
Y pis 1 Let q;=(2'p)" " For all min &, we set:

M,=4Y qu_ii(f).

ll<m
Let M = sup,, $M,,. Then, for any real t such that Mt* < 1,

1/
log E(exp(145)) 5 — L ¥ gog((t + T 37)/2).
Using Lemma 2.1, Lemma 2.3 and the results already proved in this section, we get:

P(A(f)Z hi* () + hs ' () + | flay/x) S e (2.2)

for any positive x, where h; and hs; denote the Cramer-Chernoff functions of the
random variables 4, (f) and A5(f). Using Lemma 2.2 and Lemma 2.4, we prove
then that, for all positive ¢ such that C,t < 1,

831 /154

logIE 2.3
O E(exp(t41)) = e 6y (233)
and that, for all positive ¢ such that t./M < 1,
logEE(exp(tds)) = ( i > |f1a* (2.3b)
’ 8(1 — /M)’

Proof of (2.3) Taking into account Lemma 2.2, Lemma 2.4, and standard argu-
ments of homogeneity, note that, for all ¢ in [0, 1],

—4log((1 + /1 —£2)/2) £ —log(1 —t?) < */(1 — 1) . (2.4
The proof of (2.4) will be omitted, since it only uses elementary calculations. So,

(2.3) holds.

Let h~! denote the Legendre transform of the function y(t) = t2/(1 — t). For
any positive x, h 71 (x) = x + 2\/;. Both (2.2), (2.3) and the above inequality then
imply Theorem 2.1. O

3 A local invariance principle for empirical processes

Throughout the section, d = 2. Using the upper bounds for the embedding of
Komlos et al. proved in Sect. 2, we study the rates existing in the strong invariance
principle for multivariate empirical processes.

Proof of Theorem 1.1 First, we use the so called multivariate quantile transforma-
tion to transform the r.v’s x; into r.v’s with uniform distribution over I4 Second we
use the multivariate adaptation of construction method proposed in our previous
paper (see Rio 1993) to construct the homogeneous empirical bridge and the
corresponding Brownian bridge in a common probability space. Next, using the
results of Sect. 2 and the conditions UBV and LUBYV, we give uniform exponential
bounds in k4 on the error term | X ® (h) — B,(h)|, and we derive Theorem 1.1 from
these bounds via Massart’s oscillation controls (1986) for VC classes.
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Transformation of the t.v.’s. Let F denote the multivariate quantile transformation
from the closed unit cube onto itself, which turns a r.v. with density f into
a uniformly distributed r.v. This transformation will be called Rosenblatt trans-
formation; (see Rosenblatt 1952). Under the assumptions of Theorem 1.1, F is
a diffeomorphism from I¢ onto I

Assume now that Theorem 1.1 holds for r.v.’s y; with uniform distribution over
I* and let By denote the corresponding approximating homogeneous Brownian
bridges with almost surely continuous trajectories on (%, d,). Define x; = F 1 (y;)
and let

H ={geF ' geF}. (3.1)

Since F is a diffeomorphism, £ is a VC class of functions satisfying the measurabil-
ity condition (.#), with the same entropy function as . Moreover, 4 satisfies
either the condition LUBYV for some constant K,,. depending only on f or the
condition UBV. Hence, Theorem 1.1 in the general case follows from Theorem 1.1
in the special case of the Lebesgue measure and from the fact that the gaussian
process B, defined by B,(g) = By(g°F ~')is a Brownian bridge with the prescribed
covariance function {to prove this fact, notice that [Jac F(x)| = f(x)). Let us now
prove Theorem 1.1 for uniformly distributed r.v.’s.

Construction in a common probability space. Let &, denote the class of character-
istic functions of closed boxes and let P =% U Ry. Clearly, the so completed class
& is a Vapnik-Chervonenkis class of functions. Here, it will be convenient to define
the processes X ™ and B, on this completed class &. Let N be the integer such that
2% < p < 2714 Divide each coordinate segment into 2V intervals of the length
27N, This division generates the partition of [0, 1]¢ on cubes volumes of which are
equal to 27% For each p = (py, ..., p,) in Z%, let C, , denote the open cube of
volume 2~ with lower-left vertice 2 ¥p = (2 Vp;, ..., 27 %p,). We define the
increments of B, and X ™ on the cubes C, , via the multinomial embedding of
Komlos et al. Let ¢ denote the one to one function from Z% onto Z, already
defined in Rio (1993): ¢ maps the cubes 0, 2V onto the intervals 10, 2V¢7]. Hence,
by a lemma of Skorohod (1976), there exists a sequence (x4, . . ., x,) of indepen-
dent random variables uniformly distributed in [0, 1]¢ and a standard Brownian
bridge with almost surely continuous trajectories on (%, d;) such that

Bn(co,p) = Za(p) and X(n)(CO’p) == Xo'(p) y (32)

where the random variables (X;)y < ; < 2w and (Z; )y < ; <o are defined in Sect. 2 by
Egs. (2.0). We now need to recall the definition and the properties of .
Z‘ is provided with the usual sum and product. Let

J={U1.j2>---,ja)eN%suchthatj, <j, < ... <j, <j, +1}.

It is obvious that (j;,...,j;) = (ji +j, + ** +j,) is a one to one mapping
from J onto IN. For each integer j, we call (jy,Jj,,. . .,Jj;) the unique element of
J such that j=j, +j,+ -+ +j;. Let R; be the lattice of multiples of
(271,252, ... ,29) we define the box Cjp for any p of R; by (here
T=11,....,DeRY:

Cip={xeZp+1<x<p+ (27, ... 204}
The following lemma holds (see Rio 1993).
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Lemma 3.1 There exists a one to one map o from Z% to Z. mapping the boxes
Cy.o onto the intervals 10,2%7], and the boxes (C} ,)pe r, onto the intervals

I;,=192,(q + 1)27].

We now give exponential bounds on the error term | X ™ (h) — B, (h)| for the so
constructed processes.

Lemma 3.2 For any positive x and any h in &,

P( /7| X®(h) = B,(h)| Z Cen DI JK(F)x + C(N)x) < 8exp(— x)

where C is some constant depending only on d, C(N) = 3 + /8dN in the general
case, and C(N) = (3 + 4d**)K,,. () under the condition LUBV.

Proof. Let Ilyh be the orthogonal projection of h on the space of functions
generated by the characteristic functions of the cubes C, ,.

Ooh()= Y e, (3.3)
COVPC[O,I]"

where h, = 2™ [ h(x)dx. Let ¢*h be the element of &y, defined by
c*h(2 Yo (p)) = h,. (3.4

Let  Dy(h) = |(X — Z)(c*h)l, Do (h) = \/n| X (h — Ioh)|, and  Ds(h)=
/n|B,(h — Myh)|. Clearly

S X® (k) = B,(h)| < Dy(h) + Dy(h) + Ds(h) . (3.5)

First, we control D, (k). By Theorem 2.1, the exponential bounds on D, (k) depend
mainly on | ¢*h 5. Now, we claim that for any function h of bounded variation on
the unit cube [0, 179,

lo*h|% < 162V¢"DK (b, 1%). (3.6)

Proof of (3.6) By definition of ¢*,

yi(o*h) = 2N"‘j< > h, — Y hp> .

o(p)elj_y o a(p)eli—1 a+s
Forany peR;,let C; ,= ) ,_. Co,, Assume that j=rd — I for some positive
r and some [ in J0O, d]. By Lemma 3.1, there exists some p in R; such that

pie(0*h) =2¥70 [ (h(x) = h(x + 0,...,0,277Y,0,...,0)))dx. (3.7)
cJ‘l;P

Since h takes its valuesin [ — 1, 1], the coefficients | y; »(c* k)| are each bounded by
1. Hence, taking into account the above equality, we get

S yiklo*h) < 0(h)) . (3.8)

0 k< 2N
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where

B(h,j)=2N"J f [h(x) — h(x +(0,...,0,2777 0,..., 0)dx.
Frix[0,1 — 2" x4t

Concluding the proof needs regularization argumients. Let ¢ be a positive function
be longing to the set C§ of C* real-valued functions with a compact support
contained in ] — 1, 1[¢ and satisfying [¢(x)dx = 1. Let ¢, be defined from ¢ by
¢, =& "¢p(e"*x) and let h, = h=¢,. Let I, = [¢, 1 — ¢]. It is straightforward to
prove that, for any ¢ > 0,

K1)z [ [|Vh(x)|ldx . (3.9)
I

Since h takes its values in [ — 1, 1], it is obvious that

8(h,j) = lim 2N4~/ / | he(x)

-0 .
£ I xfel —g— 20" V}x 1t}

—~h(x+©,...,0,27770,...,0))|dx.
Therefore, we have:

8(h,j) < 2NN im sup [V, h.(x)]dx .

e=0 I¢

B

Then, using (3.9} and summing on j the above inequality, we get (3.6). [

In order to apply Theorem 2.1, it remains to give an upper bound on
M (p, o*h). Under the assumptions of Theorem 1.1, we set:

EEYOLE.
P=o\Na " iir 0 )

With the above choice of (py, . . ., pya)s Zi < naq; < 16. Recall 6%k takes its values
in [ — 1, 1] and £ is an orthogonal system of #2(Z , ). Hence

Y Y 2170yt (¥ h) £ 1.

I<j{mI, < I}
Since 1/p; < 2Nd, it follows that

Nd
M(p.f) < 8Ndand ¥ % <3, (3.10)

i=1

On the other hand, under the condition LUBYV, using the same arguments as in the
proof of (3.6), we obtain:

207 w2 (oth) £ 420°DMK (&)

{mly . < 1)
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for any I < j and any h in &. Now, let p; =
inequality, we have:

1
m Summing on [ the above

Nd
M(p.f) < 164°K;oo(#) and 3 %f< 4. G.11)
i=1

From (3.6), (3.10), (3.11) and Theorem 2.1, it follows that, for any positive x and any
hin &,

P(D, (h) = 24276002 /K(F)x + C(d, N)x) < 2exp(—x)  (3.12)

where C(d,N)=1+./8IN in the general case, and C(d,N)=
(1 + 4d°?)K,o. (&) under the condition LUBYV.
Now, we make the control of D, (h) and of D3(h). By definition of X®,

Dyt =Y hix) — Hoh()|.

So, D, (h) is the absolute value of a sum of iid zero-mean random variables each
bounded by 1. To apply Bernstein’s inequality, we need to control the variance of
each random variable h{x;) — I1, h(x;). Since h — Iy h takes its valuesin [ — 1, 1],

E((h(x;) — Hoh(x;))?) < lim ¥,

e 0

where
Vsz Z f |hs(x)_h£,p|dx'

P2V, .,

From Remark 1.3 of Miranda’s paper (1964) it follows that

d
Ve<r@e)+ 27V Y [IVih(x)|dx

1=1 4
for some r(g) converging to 0 as ¢ — 0. Therefore, by (3.9}, we get:
Var(h(x;) — Hoh(x;) < d2 VK (h, 1) . (3.13)
Hence, by (3.13) and by Bernstein’s inequality, for any positive x, for each hin &,
P(D,(h) = nt V@D 242K (F)x + 2x) < 2exp(— x) . (3.14)
Some calculation and (3.13) also show that, for any positive x,
P(D3(h) = n¥~D/CD /242K (F)x) < 2exp(— X) . (3.15)
Both inequalities (3.12), (3.14) and (3.15) then yield Lemma 3.2. O

Uniform control. Using Lemma 3.2 and Massart’s oscillation control, we will prove
Theorem 1.1. Let ¢ = 1/n. Since & is a Vapnik—Chervonenkis class of functions,
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there exists an e-net &, with cardinality no more than C(&)n®?). Let %, be the
class of functions defined by: #, = {h— g: (h,g) e ¥ x Z, d;(h, g) < ¢}. Let

Dy = sup /n| X" (h) — B,(h)], D, = sup /n|X"(g)], D3 = sup /n|B,(g)

he &, geX, gewU,

Clearly

sup \/n|X®™(h) — B,(h)| < D, + D, + D3.

he&
We now control D, and D,. %, is a Vapnik—Chervonenkis class of functions
fulfilling condition (.#). Moreover, N (3, %,) < (N(8/2, &))?, for any positive §.
Hence, by Proposition 3.7 of Massart’s paper (1986), with U = 1, 6% = 1/n, we get:

P(D, = /2(1 +logm)x + 2x) = 0 (n* Ny exp( — x) (3.16)

where log, n = loglogn (since the functions of & take their values in [ — 1, 17, the
dimension d@® (%) of universal (2)-entropy used by Massart satisfies
d®(#) £ 2d(¥)). From Theorem 4.1 of Massart’s paper (1986), it follows that
inequality (3.16) still bolds for the random variable D; related to the Brownian
bridge B,. Hence, combining the above inequalities and Lemma 3.2 with the upper
bound on Card &,, we get:

<sup X () — B,(h)| 2 Cen~ V1D /K (F)x

he¥
+ 4. /xlog,n+ (4 + C(N))x>

= 0(n*¥¥ N exp( — x) . (3.17)

A straightforward application of (3.17) then yields Theorem 1.1. [

4 Deviation fields of kernel density estimators

In this section, we give an application of the results of Sect. 3 to the investigation of
maximal deviation of kernel density estimators. We prove an invariance principle
for the deviation field associated with f,,. So, let ¥ be a Lipschitzian kernel function
from R into [ — 1, 1] with compact support, satisfying [¥(y)dy = 1. For any
positive real ki, let ¥, be the mapping defined by ¥,(y) = (k™ 'y). Now, for any
reals a and b fulfilling 0 < a < b £ 1, let A", , be the class of functions

Hap={¥u(.—x)xeR, hela b]}

Theorem 1.2 follows from the invariance principle below and from Theorem 3.2 of
Konakov and Piterbarg (1984).

Theorem 4.1 Let d = 2 and let x;,x,, ... be a sequence of independent random
variables with common law u fulfilling 1.3 and ¥ be a Lipschitzian kernel function
from R?into [ — 1, 1] with compact support and satisfying S¥(y)dy = 1. Let (h, )50
be a sequence of bandwith parameters converging to O, satisfying
lim,_ , ,nhi/logn = + oo . Let &, be the deviation field defined by (1.4). Then, there
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exists a sequence (W,),> o of standard Wiener processes indexed by A", = H 'y, ;2, 21,
with almost surely continuous trajectories on (A, d,) such that:

sup [ow&u(x) = hy 2 W, (W, (x — )]

xeR?
= 0(ht. Jlogn + (nh?)” Y2 /logn + (nhi) Y%logn)a.s.

Proof. The proof uses Theorem 1.1 and the properties of the classes 'y ,: as
Pollard (1982) does, we prove that X"y, , is a VC class.

Lemma 4.1 Let V¥ be a kernel function fulfilling the above assumptions. Then, for any
h € [0, 1], # 14,4 is a Vapnik—Chervonenkis class of functions satisfying the condition
LUBYV, for some constant K,,. depending only on the kernel function ¥, and the mild
measurability condition (M ). Moreover, there exists some constant C depending only
on ¥ such that, for any positive ¢ and any h € [0, 1],

N(e, A wan) < Ce™?77,

Proof of Lemma 4.1 Clearly, £ o, = UPO% o1 satisfies the mild measurability
condition (.#). Now, using the Lipschitz condition on ¥, we prove that ", ; satis-
fies the condition LUBYV. Let & be any cube of R? with edges of length . Since ¥ is
a Lipschitzian function, ¥ has, almost everywhere, partial derivatives uniformly
bounded on R* Hence,

K(Pu(.—x),%) < [IV¥(y—x)dy < Cyh™tinf(e", h?) . (4.1)
3

It follows that %", satisfies condition LUBYV for some constant K,,. depending
only on ¥. It remains to control the universal entropy.

Let p be the greatest integer such that ph < 1. Divide each coordinate segment
into p intervals of length 1/p. This division generates the partition of I on cubes
(%) < p. ... p)» Of volume equal to p~¢ ~ k. Let P denote any probability on I
and let ¢ be any positive real less than 1. Let o/ = {k <(p, ..., p) such that
P(%,) >¢}. Clearly, Cardo/ < ¢~ '. Now, define a pseudometric d, on
[h/4, h] x R“ by:

dy((ho, x0), (hy, x1)) = | Who(- = X0) — Ph, (. — X1) [l - (4.2)

Since ¥ is a function with compact support, the e-capacity of the set Z of reals x such
that the support of ¥, (. — x) intersects the cube ¥ for some #’' with h/4 S ' S h
and for some k € .o, with respect to the usual metric on R“is bounded by C,&~'h?
When x does not belong to &, f|¥y(.— x)|dP < Cse Moreover, the Lipschitz
norm of the elements of "4, ;, is uniformly bounded by M/h for some positive M.
Using the above bound on the s-capacity of Z, we obtain:

N(Cse, [h/4, W] x %, d,) < Cae 2" (4.3)

Since P is a probability law, by (4.2) and (4.3), N(Cze, A pa,n, P) £ Cpe 274
therefore completing the proof of Lemma 4.1. [

Proof of Theorem 4.1 Since u has a continuous and strictly positive density on the
closed unit cube I¢, it follows from Corollary 1.1 that

sup | X®(g) — B,(g)| = O(n~ @D /K~ 'logn + logn)as. (4.4

ges,
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for some sequence (B,),- ¢ of Brownian bridges with a.s. continuous trajectories on
(A, d,). Since Q is rich enough, there exists a sequence (#,),-o of Gaussian
processes on £2 with covariance function (g, h) — Jf g(x)h{x) f (x}dx such that

B,(g) = Wa(g) — W,(I") [ (x) f (x) dx (4.5)

for any positive n. Now, for all g in yn,fg(x)f(x) dx = O(h8)asn— -+ co. Hence,
by (4.4) and (4.5),

sup | X™(g) — Walg)l = O(hj/logn + n~HCD /hi~logn + logn)as. (4.6)
get,

~

For any class & of functions, let \ﬂ" & be the class defined by ./f&
= {\ﬁ g:g € & }. By the above equality, there exists a sequence (G, ),» o of homo-
geneous Wiener fields on I with a.s. continuous trajectories on (\/j} Ao A, d;)

such that Gn(\/]g) = W,(g) for any g € A ,. So, recalling that /'~ /2 is uniformly
bounded on I¢ it is easy to see that Theorem 4.1 follows from (4.6) and lemma
below:

Lemma 4.2 Under the assumptions of Theorem 4.1,

sup | Gu(W TPl =) = VTGl = )| = O(hE 2 flogm)as
hf2 S h £ 2h,

Proof. Let (7(g)), ., be the Gaussian process defined from G, by

1P —x)) = Gu(f ()i — X)) =/ (x) G (. — x)) . “.7)

Let p be the usual metric on £, related to 7 (p(go, 91) = | E((n(g0) — (g1 )*)|*/*).
Since A, is a VC class, for any positive &,

N(‘ga%n’p}g C68‘D (48)

for some positive D. So, in order to control the maximal deviation of # it will be
sufficient to control the maximal standard error ¢{n) = sup,c », p(g, g). Now,
using the Holder condition on f; it is straightforward to see that

sup [/f) ¥y = %) = /100 ¥aly = x)| < C

yeR?
for some constant C,. Hence, integrating on x, we get: 62(n) < Cgh?# 14 for some
positive constant Cg. Both the above inequality and (4.8) together with Lemma 2.4
of Konakov and Piterbarg (1984) imply Lemma 4.2, therefore completing the proof
of Theorem 4.2. [

Appendix: Proof of the lemmas of Sect. 2
A. Proof of Lemma 2.1

Let o denote the class of random variables with zero-mean and finite moment-
generating function over Jty, + oo[ for some negative f,, such that
valt) = log E(exp(tA)) satisfies: there exists an ¢ > 0 such that y’(f) = ¢ for all
t>0.
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First, we prove that Lemma 2.1 holds for any (4, B) in o/ x.o/. Let
ve(t) = Bya(t/B) + (1 — B)ys(t/(1 — B)). By Holder’s inequality, for each f and
each positive, ¢, 44 g(t) < yp(t).

Now, let hig(e) = sup,»q(te — y4(t)) denote the Legendre transform of y,. From
the above inequality, it follows that h 31 (u) < hg *(u) for any positive u. Hence, it
is sufficient to prove that, for any positive u, there exists some f in ]0, 1] such that

hg'(u) < hg'(u) + hg ' (u) . (A.1)

Now, let x =y (t/f) and let y = y5(t/(1 — B)). The usual Cramer—Chernoff calcu-
lation yields:

hg(x + y) = Bha(x) + (1 — B)hs(y) . (A2)

Clearly, it is sufficient to prove that, for any positive u, there exists (z, ) such that
x = y4(t/B) and y = y5(¢t/(1 — B)) fulfill the equations

hy(x) =u and hz(y) = u. (A.3)

Because (A.3) and (A.2) imply Az *(u) < by ' (u) + hg ' (u). Now, (A.3) holds iff there
exists ¢ > 0 and f € 10, 1] such that:

u = hyoya(t/B) = hpoyp(t/(1 — f)) .

Since 4 belongs to 7, y4 is an analytic convex function on R *. Recalling that
y4(t) = & for some positive &, it is easy to see that g, = h, oy’ is a continuous
increasing function from R * onto R ™ with g/, (x) > xs. Hence, for any positive ,
the function § — g(t, f) = ge(t/(1 — b)) — g4(t/B) 1s a one to one continuous
increasing function from 0, 1] onto R. Moreover, g(t, .) fulfills the assumptions of
the implicit function theorem. Hence, there exists a unique continuous function
t — (1) such that g(z, f(t)) = 0.

Let u(t) = hyoy'(t/f(¢)). Clearly t — u(t) is a continuous function such that u ()
satisfies the Egs. (A.3). Clearly,

min(g,4(2t), gs(21)) = u(t) = max(g,(2), gp(2t)) .

Hence, limou(t) =0, lim; ,u(t) = + oo and (A.3) follows. Hence, Lemma 2.1
holds for any (4, B) in &/ X .&/. We prove now Lemma 2.1 in the general case.

The general case. Let I, Igzand I 4, 5 denote the respective domains of the moment
generating functions of 4, B, and A + B. Let Y be a real random variable with
standard normal law, independent of (4, B). For any positive &, let

A, =Al4<1 —EB(Al4<1) + Y

and let B, denote the corresponding random variable associated with B. Clearly, 4,
and B, belong to .«7. Now, by the Beppo-Levi lemma, for any nonnegative ¢,

lim E(exp (¢4 T.4<1)) = E(exp(t4))
e—0"
and
lim E(exp(tAfl, <, + tBl,5<1)) = [E(exp(t4 + ¢B)) .

e—> 07"

It follows that the functions y,4, and y,4, 4 5 converge pointwise to the respective
functions y, and y,.p on TR"' with the convention y,(t)= + oo if
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E(exp(t4)) = + co. Then, using some arguments of convex1ty, it is straightfor-
ward to prove that, for any compact subset #~ of I 4 N Ry, converges uniformly
to y, over A as ¢ — 0", Let D, and D, 5 be the respective domains of h, and
hyrp. From the above results, it follows that, for any positive
x¢ 0Dy, lim, .o+ hy (x) = hy(x), with the convention h,(x)= + oo if x¢ Dy,
and using exactly the same arguments, for any positive xé¢ dD,.p,
lim, .o+ hyg 4 p(x)=h A z(x). Since the above functions are conves, it follows that,
for any positive u, hz ' (u) converges to hy'(u), hp'(u) converges to hy ' (u), and
hy' p (u) converges to hylp(u). Hence, recalling ‘that (4., B,) satisfies the pre-
scribed inequality, we obtain Lemma 2.1. ]

B. Proof of Lemma 2.2

We may w.l.o.g. assume that ftakes its values in [0, 1]. Define the nonincreasing
family of fields (# ;) < j< v by Fy = {0, 2}. For any j < N, let

Fin=F;valf . kel0, 2V},

Clearly, the random Vanables (Uj ko < k < 2¢-1 are & ;-measurable. So, the random
variables ( ik — U )M E )0 < k< -0 are mdependent and symmetric, condi-
tional on % ;. For convenience, we set 7; , = ;. (f). Define:
D, = Z Vi, k(UJk (Uj,k)llzgj,k) .
0 k< 2V
By definition, 4, =) -, D; ;. Now, from the above remark and from (ii) of
Tusnady’s lemma, it follows that, for any positive integer j,

lE(GXP(tDj,l)Ig";)élE< IT Cosh(tyj,k(2+5ik/4))lfj>-
0< k< 2V

Hence, recalling that the random variables &;, are independent and N(0, 1)-
distributed, we get, by induction on j:

Blexp(d) = TT [T | EBleosh(tz;,2 + & /4). (B.1)

Moreover, the random variables EJ « have distribution function @. Let us define the
convex function ¢ by o(x) = + oo if |x]| = 1 and

Q( ) 1 < e4x . e*4—x )
x) = —
2 1—x J1+x
otherwise. A few calculation proves that, for all random variable ¢ with distribution
function @, E(cosh((2 + £2/4)x)) = o(x/2). It follows that

N

logIE(exp(t4,)) £ ) 2. logo(kt/2). (B-2)

=1 0k <oy

Now, we claim that, for any xe ] — 1, 1],

logo(x) £ — %%log(l - x2). (B.3)
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Proof of (B.3) By definition of g,

1 —x?g(x) = cosh{dx)((1 + tanh(4x))./1 + x + (1 — tanh(4x)}/1 — x)/2 .
Define I(x) = (\/1 — x + /1 + x)/2. First we claim that, for any — 1 < x < 1,
I(x) £ 1—x?/8 and tanh(4x)(/1 + x — /1 — x) < 4x* . (B.4)

The proof of the left-hand inequality will be omitted. We prove only the right-hand
inequality. Clearly, it is sufficient to prove that, for any O0<x <1,
tanh(4x) < 4xl(x), where I(.) is the already defined mapping. Since y — tanhy is
a continuous decreasing mapping, (B.4) follows from 4x < argtanh(4xI(x)), with
the convention argtanhy = + oo if y = 1. Now, it is obvious that, for any
0 < y < 1,argtanhy = y(1 + y*/3). Moreover, (I(x))* = 1/2. Therefore, (B.4) fol-
lows from

1 < 1(x)(1 + 8x%/3) . (B.5)

Let oo = 1 + (8x%/3). Since I(x) 2 1/4/2, (B.5) holds if « = /2. When a < /2,
(B.5) holds if 2 a?(1+./1—x%), eg if 41 —o*)< —o*x% Since
x2 = 3(a — 1)/8, the above inequality is equivalent to

4(1 + o) = 30*/8 .

When 1 < o < /2, the term on right hand in the is less than 3/2, which concludes
the proof of (B.4).

Then, noting that coshy < exp(y?/2), we infer that /1 —x?0o(x)
< exp(79x?%/8). Now, for any real x, x> £ — log(1 — x?), and (B.3) follows.

Now, recall that the mapping ftakes its values on [0, 1]. Hence, for all j, for all
P, 17, 5| < 1/2. Furthermore, x » — log(l1 — x*) is a convex function of x2 We
infer that, for all real ¢ such that |f| < 1,

83
logIE(cxp(414,)) = — —S*HfH%lOg(l — %),

and Lemma 2.2 follows clearly from this inequality O

C. Proof of Lemma 2.3

Using (i) of Tusnady’s lemma, we will prove that:
VU= JEU) €2+ Y 27 12E ). (e)
m:l<m

Proof of (C.1) For all m in %, let m + 1 denote the element of # such that
m=<m+ 1and |m+ 1| = |m| + 1. Let s(I) be the element of .# defined by:

s(l) = inf{m e & such that I<mand U,,+; + 0} .
Clearly,

JU-VEU)= Y 2 armmhi( Hu, — fUpey) . (C2)

s(H=m<(N,0)
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Now, recall that U, — 2U,, is, up to the sign, equal to (7,,”1 Moreover, there is
no loss of generality in proving (C.1) to assume that U, = U, 4+ — 2U,,, which
we shall do throughout the proof of (C.1). By (i) of Tusnady’s lemma,

|U~m+1l é lgm+1|\/ Um+1 + 2. ThuS, we have:

1\/ 2Um_ / Um+11 g I€m+1’ +(\/ 2Um + vV Um+1)_1inf(2’lU~m+ll) s (C3)

from which it follows that, for any ! in .2,
VU = VEU)| < sup(Hy, K+ Y, 27Im 1218 (C4)
m:l<m

where the random variables H, and K, are defined by:

H = z 2_(Hlm~l|)/2ﬂ(ﬁm“>0)inf(2, ﬁm+1)(\/2Um+\/ Um+1y1

m:s(l)<m<(N,0)
and
K= Z 27(1+]mwl|)/2ﬂ(ﬁmﬂ<0)iﬂf(2: - Um+1)(\/2Um+\/Um+l)71
m:s{l)=m=<(N, )

First, we determine an upper bound for K;. For convenience, we set u = U,,..; and
x = — U, .. Then, with the above notations,

inf(2, — Ui 1)(3/2Unp + /Ups 1) ™" = inf(2, x)/(/tt + /4 + x) .

Now, recall that (U,,),»; is a nondecreasing sequence of integers. Hence u and

x are positive integers with 0 < x < u, and we easily get: inf(2, x)/( ﬁ + /u+ x)
£2-— \f Hence, we have:

Kis2-y2Y 272, (C.5)

It remains to prove that H, < V/i. Let # denote the set of nondecreasing
sequences of natural numbers. For all a = (g;); > ¢ in A, let

H@ = Y Tars2a2 V2 (Ja0q + J2a;) 7 inf(2, a4, — 2a;)

iz0

and set H,,, = sup, ¢ H(a). Clearly, H; < H_,,. Clearly, the function H{(.) takes
its supremum on the subset 3#, of # of sequences a = (a;); > ¢ such that, for all
natural i, either ;. = 2a; + 1 or a;,{ = 2a; + 2. Then

H(a):'zo\/2 N

An elementary calculation proves that, for all a in #,, H(a) <

V2+a,— \/E =< ﬁ therefore completing the proof of (C.1). Now, let us finish
off the proof of Lemma 2.3. For all natural j < N, define 4, ; and 45 ; by:

4y 5= Y (N Ui— JEU)E

Lii<j

d3,;= “/z(f)é(ﬁ‘*‘ Z 2_|m_l|/2]§ml>-

Ll =) ml <m

v

and
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Let R, ;(t) = E(exp(td,,;)|F;) and R; ;(t) = E(exp(tds, ;)| ;). It remains to
prove that, for all j < N, for all real ¢,

R, j(t) = R5 (1) . (C.6)

Let ; be the o-field generated by the family Qf random variables
{1&): lecs,” [l] >j}. For all [ in ., let g be the sign of &. Now, we prove, by
induction on j, that, for all j < N, for all real ¢, R; ;{t)is a g-—measurable function
and R, ;(t}) £ R, ;(t). Clearly, the above assumption hoIds true if j = 1. Now,
assume that the assumption holds true for any i < j. Let D, ;= 4, ; — 4, ;_; and
Dy ;j=A; ;— 45 ;_;. Clearly, D, ; is an % ;_;-measurable random variable.
Hence, we have:

E(exp(t4z, )| Fj-1) = Ry, j-1(t)exp(tDs,;) .
By definition of D, ;,
P PNal&l(JUi— VEU)) .
Mr=j

Then, noting that the random variables {|g’~l|(\/a - VEWU):le Z, |l|=j}are
(#; v %;-1)-measurable and that the random variables (&), #.)| - ; are indepen-
dent and symmetric, given (&; v %;_), and recalling that R; ;_(t) is ¥;_;-
measurable, we get:

E(exp(d, )| F;v Fi-1) S Rs j-1(1) H COSh(Vz(f)fl(\/ U, - JVE(U))) .
Ll =j
Hence, using (C.1) we obtain:
E(exp(td, ;)| F ;v %;-1) = Ry, ;1 () E(exp(tDs3, ;)| %;-1)
é ]E(eXp(tA3,j)lg"~j v gj~1)~

Then, taking the expectation conditionally on & ; in the above inequality, we get
(C.6) and Lemma 2.3.

D. Proof of Lemma 2.4

Clearly, in order to prove Lemma 2.4, we may w.lo.g. assume that ¢ = 1. Now,
recall the definition of As:

As=A3—A,= Y p(NE Y 27112 E .

le& mil<m

By Cauchy-Schwarz inequality,

- 1/2
) 2"'”""2|€m|ém,wherem=< ) q.,,._z,éfn) :

mil<m ml<m

We infer that, for any real ¢, IE(exp(4s)|%o) = E(exp(4s, 0} %,), where the ran-
dom variables 4, ; are defined by 4e ;=) 1 >]yl(f)élm for any nonnegative
integer j. Hence, we have:

E(exp(ds)) = E(exp(de,0)) -
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It remains to control the moment-generating function of A4 4. Clearly,

E(exp(46,0)|# 1) = E(exp(zlmz ye(f)nt) )EXP(M@Q .
Notations. Let {Y;,:(Lm)e & x £, 1=<m} be a family of independent N(0, 1)-
distributed random variables, independent of the famﬂy {E, le £} and define the
random variables {{; ,.: l<m} by Lom= () qf 4 Y, m. For any m in £ with
im| = 2, we set: (=Y <mlim When |m|=1, we set {,, =0. We also set
log]E(exp K) = L(K) for any real-valued random variable K.

With the above notations, we get'

A61+ Z ZC!m

lm]>1 [1]=1
[<m /

Define the function ¢ by ¢ (M) = 2/(1 + /1 — M))¥2. Lemma 2.4 follows from
the inequality below: for any jin [1, N,

\
L(46,0) =

{ | \

j
@ (M)

| \
~ |
L(ds,0) = L Z LY+ Z Z Cl,mém}_i_ P D.1)
\”féj jm} > j lg“§j ]
<m ! !

Proof of (D.1) Clearly, the random variables {{; ,:|/| = 1, |m| > 1} are indepen-
dent of #,. Since ¢(M) = 1, we infer that (D.1) holds if j = 1. Now, by definition
of {,,, for anyj = 1,

Z Z Cl,mgm: Z 2 Cz,mgm—i' Z G

[mj>j|l] j fml>j+1 [l £ [fl=j+1
[<m [<m
Hence,
(M) Y Y Ul + de, = Y (oMY + v Hm)é
fm| > j !l”§j Hl=j+1
<m

+ (M) Z Z Cl,mgm+A6,j+l-

Im| >j+ 1l 5]
I[<m

Since the r.v’s {fl, §:|l] = j + 1} are independent with respective Gaussian distri-
butions N(0, 1) and N(0, M;/4) conditionally to & fjﬂ va{ll<m, {l} £,

im| > j+ 1}, integrating the variables {&,, {;:|l| =j + 1}, and using the above
equality, we get:

/ { \ \

L(CP(M)( Z LY+ Z Z Cz,mgm + 4g, ;

HI ) Iml >j |l 4 /

I<m i /
! / \

=LloM)| Y Y+ Y Y Gmim
s+ Iml >j+1 <)
\ - I<m i

. \
Clmém
+ Y = + A 1]
|m|>j+lu|§+1\/l—Ml¢2(M)/4 6'j+lJ

1<m
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Then, noting that ¢ (M) = (1 — M2 (M )/4)~*? and recalling that, for any /in &,
M, £ M, we easily infer from the above inequality that:

L(p(M) Z lel,l'i' Z Z Clmgm +A6,j

\Uféj [ml >j Il =j
I<m / /
< Lio(M) Z Y+ Z 2 Coomln |+ A6 1 |-
[M=j+1 [m| >j+1 [l =j+1
I<m

Hence (D.1) holds for any j = 1. Now, applying (D.1) with j = N, we obtain:

L{ds(g) £ L<€9(M) Z & Yz,z)

le g

for any g in &y. Now, recall that the random variables {{;, ¥, ,:le &} are
independent with respective Gaussian laws N{(0, M,;/4) and N(O,1). Hence,
using the above inequality and noting that (1 — M;@*(M)/4) 12 < (o (M))M'™,
we get:

L(4s(@) £ — 512 3. Milog((1 + /1 M)/

2 le &
for all M in ]0, 1], and Lemma 2.4 easily follows. [
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