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Summary.  Let Xl, �9 � 9  xn be independent random variables with uniform distri- 
bution over [0, 1] d, and X (") be the centered and normalized empirical process 
associated to x l ,  . . . ,  xn. Given a Vapnik-Chervonenkis class 5 p of bounded 
functions from [0, 1] d into IR of bounded variation, we apply the one-dimensional 
dyadic scheme of Komlds, Major and Tusnfidy to get the best possible rate in 
Dudley's uniform central limit theorem for the empirical process {X(n~(h):h E 5 ~ }. 
When 5 p fulfills some extra condition, we prove there exists some sequence B,, of 
Brownian bridges indexed by ~ such that 

sup iX(")(h) - B.(h)[ = O ( n - 1 / Z l o g n  v n 1/(2d~x/K(SP)logn)a.s. 
h~5 o 

where K (5 P) denotes the maximal variation of the elements of 5 P. This result is then 
applied to maximal deviations distributions for kernel density estimators under 
minimal assumptions on the sequence of bandwith parameters. We also derive 
some results concerning strong approximations for empirical processes indexed by 
classes of sets with uniformly small perimeter. For  example, it follows from Beck's 
paper that the above result is optimal, up to a possible factor l x / ~ n ,  when 5 P is the 
class of Euclidean balls with radius less than r. 

Mathematics Subject Classifications (1991)." 60 F17, 62 G 05 

1 Introduction and results 

Throughout  the paper, the probability space Q is assumed to be rich enough in the 
following sense: there exists an atomless random variable independent of the 
observations. 

Definitions and notations. Let I = [0, 1] and 2 be the Lebesgue measure on U. 
Unless we give more specifications, d > 2. Let Xl, x2 . . . .  be a sequence of lid 
random variables with probability law/~ = f .  2, wheref is  a continuous and strictly 
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positive function from the closed unit cube I d into IR +*. We call the empirical 
process the centered and normalized measure X ("~ defined by 

X(n)(g)= n-1/2 i=1 ~' (g(x i ) -  ~df gdt~) (1.0) 

for any integrable funtion g. 
Let 5O be a class of functions from I d into [ - 1, 1]. Throughout,  we assume 

that 5O is a Vapnik-Chervonenkis class of functions. Let us recall the definition of 
this notion. Let N( I  d) denote the set of probability laws on I ~. Let P be in ~ ( I  ~) 
and let a be in ]0, 1[. Let N(e, 50, P)  denote the maximal cardinality of a subset 
5O~ of 5O such that, for any distinct elements g, h of 5O~, de(g, h) = f l  g - hi dP > a. 
Now, let d U  d) denote the set of laws on I ~ with finite support. We set 

N(a, 5 ~ ) =  sup N(e, 50, P ) .  
P e d U  d) 

log N(e, 50) is called the universal f l -en t ropy  of 5 ~ (see Kolchinsky 1981). When 

N(e, 5O) < C(SO)e d(~) (1.1) 

for any 0 < e < 1, for some constants C(SO) and d(so), 5 ~ is called a Vap- 
nik-Chervonenkis class of functions (VC class). Now, unless we give other speci- 
fications, 50 is given the metric d u. A Brownian bridge indexed by 50 is a centered 
Gaussian process indexed by 5O with covariance function (g, h) ~ IE (g(xt)h(xl)) 
- -  IE ( g ( x  I ) ) l E ( h  (xl)). Now, let (5~ > o be a sequence of classes of functions. We 

say that the strong invariance principle holds for (50,),>o with rate (v,) if there 
exists some sequence (B,),> o of Brownian bridges indexed by 50, that are almost 
surely continuous on (5O,, du) such that 

sup IX(")(g) - B,(g)j = O(v,)a.s. 
g ~5~ 

where (v,)n>o is some sequence converging to 0. When 5O, = 50 is a VC class of 
functions, according to a result of Dudley (1973), there exists a Brownian bridge 
indexed by 5O with almost surely continuous trajectories on (50, d,). However, in 
order to get an invariance principle, some measurability condition is needed (see 
Dudley 1982 for some counterexample). So, from now on, we assume the following 
measurability condition (M/Z): there exists some Suslin space Y and some mapping 
T from Y onto 50 such that (x, y) ~ T(y)(x) is measurable on IR a x Y. Let us 
review the main attempts of getting the best possible rate in the strong invariance 
principle. 

When d = 1 and 5 ~ is the class of intervals, Komlds et al. (1975) proved that v, 
may be taken as n-1/2 log n. This result is optimal (see Cs6rg6 and R6v6sz's book 
1981) and, up to now, it is the only result having important applications. 

When 5O is a VC class of Borel sets of I d satisfying a uniform perimetric 
condition, Massart (1989) proved that Vn may be taken as n-1/(2d)(logn) 3/2, via 
a multivariate extension of the construction of Koml6s et al. (1975). The rate of 
convergence appearing here is nearly optimal when 5 ~ is the class of Euclidean 
balls. Kolchinsky (1991) applied Massart's exponential bounds for the multinomial 
embedding of Komlds et al. (1975) to the strong approximation of function indexed 
empirical processes. In a recent paper, he characterizes the accuracy of the empiri- 
cal process indexed by bounded functions by their accuracy to some Haar  expan- 
sion and he further improves Massart's exponential bounds of a factor ~ (see 
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Kolchinsky 1992). However, these global rates do not provide optimal applications 
for kernel density estimators (see Konakov and Piterbarg 1984). In order to obtain 
the limiting behavior of kernel density estimators under minimal assumptions on 
the bandwith parameters, we shall give an invariance principle with an explicit 
dependance in the maximal variation of the elements of 50 (note that the variation 
of the characteristic function of a set is equal to the perimeter of this set). Applying 
this invariance principle to a sequence of classes of functions whose maximal 
variation decrease to 0 then leads to optimal results, concerning the sequence of 
bandwith parameters, for the maximal deviation of kernel density estimators. 

So, we study VC classes 50 of functions with uniformly bounded variation. 
Refining Massart's method as in Rio (1993), we prove invariance principles with 
an error term depending explicitly on the maximal variation of the elements of 
50 in Sect. 3. These invariance principles are applied to kernel density estimators 
in Sect. 4. 

Statement of results. Throughout,  we assume the dements of 50 to be of bounded 
variation. Recall this means that the partial derivatives of any element of 50 are 
Radon measures. Let @e(I e) denote the space of C ~ functions with values in IR d 
and with compact support included in U. IR e being given the usual Euclidean 
norm, we set [[ g rf ~ = supx c ~  rl g(x)t[. For any function h of 50, we set: 

K(h, Id)= sup ( f  h(x)divg(x)dx/,,9[[~). 
9 ~ ~d(In)  

A classical result of distribution theory (see Schwartz 1957) ensures that K (h, I ~) is 
finite if and only if h is of bounded variation. 

Definition, We shall say that the class 50 is uniformly of bounded variation (condition 
UBV) if K(50) = suph e :K(h ,  I d) < + oo. 

When 50 is a class of characteristic functions of Borel sets S, K( ls ,  I ~) is the De 
Giorgi perimeter of S related to I e. So, the classes of Borel sets of I ~ satisfying 
condition UBV are exactly the classes of sets with uniformly bounded perimeter. 
Let us give some examples of such classes. If 50 satisfies condition UM, then 
50 satisfies condition UBV. Hence the class of convex sets and the classes of Borel 
sets with uniformly Lipschitz boundaries in the sense of Dudley (1974) fulfill 
condition UBV. However, in order to get optimal invariance principles for classes 
with uniformly small variation, we need to impose an extra condition: we will 
assume that 5 ~ fufills the condition below, called condition LUBV~ 

Definition. We shall say that the class 50 is locally uniformly of bounded variation if 
for any a ~ ]0, 1[, any cube cg ~ I d with edges of length a parallel to coordinate 
axes and any h in 50, K(h, cg) < Kloc(50)a d 1 for some constant Kloc(50) > 1 
depending only on 50, where K(h, cg) is defined from cg and h exactly as K(h, I ~) is 
defined from I e and h. 

Let us now state the main result, providing an invariance principle with an 
explicit error term depending only on K(50) and on the entropy of the class Y. 

Theorem 1.1 Let d >__ 2 and 50 be a Vapnik-Chervonenkis class of functions from I ~ 
into [ - 1, 1] satisfyin9 1.1, the condition UBV for some constant K(50), and the 
measurability condition (Jr Then, there exists a Brownian bridge B, indexed by 
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5 a with almost surely continuous trajectories on (50, d.) such that, for any positive 
t __> Clogn, 

1P(.~/-s suph~: [ X ( " ) ( h ) - B . ( h ) , >  Cx/n(d ~)/dK(50)t+ C c ( n ) t ) < e  -t 

where c (n) = x ~ g  n in the general case, c (n) = ~ 5 0 )  under condition LUBV and 
C is a positive constant depending only on d, d(5 f) and C(50). 

We now give an application of Theorem 1.1 to invariance principles for empirical 
processes indexed by VC classes of Borel sets of I e. We need to recall some nice 
properties of these classes. When 50 is a VC class of sets, 

D(50) = sup{D ~ N :Ca rd (A  c~ 50) = 2 ~ for some set A with CardA = D} < oo, 

where Card A denotes from now on the cardinality of the finite set A and 
A c~ 50 = {A ~ S' S ~ 5~ We call D(SQ the entire density of 50. This result 
provides many examples of VC classes. For  example, the class of closed half spaces 
or the class of closed Euclidean balls are VC classes. Moreover, a lemma of Dudley 
(1978) ensures that the universal entropy N(e, 50) satisfies: for any 0 < e < 1/2, 

N(e, Y )  <-_ C(D)(e -1110g~[) D(:). (1.2) 

Theorem 1.1 and (1.2) yield the corollary below. 

Corollary 1,1 Let d > 2. Let D be a positive integer and let (50,),>o be a sequence of 
Vapnik-Chervonenkis classes of Borel sets of IR d with entire densities each bounded 
by D, satisfying the condition LUBV for some constant Kloc and the measurability 
condition ( Jl).  Then, the strong invariance principle holds for (50,),>o with rate 

- , / g 2  - 1/(2d) N/ logn a.s. v. = n K(50.) logn + n -1/2 

Remarks. Note that K (~ s, I d) is the De Giorgi perimeter of S related to U. Hence, 
the classes of Borel sets o f I  a satisfying the condition UBV are exactly the classes of 
sets with uniformly bounded perimeter. 

When 5P. is the class of closed Euclidean balls with radius less than h., for some 
sequence (h.). > o converging to 0 and satisfying nha. > (log n) ~/(a- 1), the error term 

is of the order of (nha.) (~ a)/(za) l x / i ~ .  By Theorem 1 of Beck's paper (1985), this 

result is optimal, up to an eventual factor l x ~ n .  On the other hand, when 
nhd < (logn)a/(a 1), the error term is of the order of logn. From multivariate 
Erd6s-R6nyi laws for balls-indexed empirical processes, it follows that this rate 
cannot be improved when lim._~+~nhe./logn = + oo (see Louani 1992). More- 
over, when (h.).> o satisfies lira inf.~ + ~ t log h. I/log n = 6 > 0 and the usual condi- 
tion limn~+~nha./logn = + 0% Corollary 1.1 ensures that 

sup [X(")(S) - B.(S)[ = o((h~llogh.l)~/Z)a.s. 
S e Y .  

Let ~za denote the volume of the Euclidean unit ball in IR a. According to the above 
result, we can obtain 

P 
(2dzah~[logh.[) 1/2 sup ]X(")(S)I--* 1 

SeS~. 
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from the corresponding result for the Brownian bridge. Hence, Corollary 1.1 works 
as soon as the Erd6s-R6nyi law for the empirical process fails. 

In Sect. 4, we give an application of the results of Sect. 3 to the maximal 
deviation of kernel density estimators. Assume that the strictly positive density 
f satisfies the additional smoothness condition below: 

the dens i tyf i s  fi-H61derian on the closed cube I d, for some fi ~]0, 1]. (1.3) 

Let 7' be a two-times continuously differentiable kernel function with compact 
support. Define the Parzen-Rosenblatt estimator of the density f by: 

f ,(x) = (nha,) -I  ~ 7J(h21(x - x~)). 
i = 1  

Let ~,(x) be the normalized deviation field off , ,  i.e. 

~.(x) = ~ f . ( x )  lE(f,(x)) 
a ~ f ( x )  ' (1.4) 

where o-}, = f~u 2 (y)dy. We obtain from Theorem 3.2 of Konakov and Piterbarg 
(1984) and from an invariance principle for ~(x)  which will be stated in Sect. 4 the 
following result. 

Theorem 1.2 Let d > 2 and let xl  ,x2 . . . .  be a sequence of lid random variables with 
law #fulfilling 1.3. Let ~ be a C 2 kernel function from IR e into [ - 1, 1] with compact 
support, satisfying f T'(y)dy = 1. Let T be any closed Jordan set included in ]0, 1[ a 
with positive Lebesgue measure and let (h,), > o be a sequence of bandwith parameters 
converging to 0 and satisfying the condition 

0 < lim inf(logh21/logn) < lira sup(logh21/logn) < 1/d. (1.5) 

Let ~. be the deviation field defined by (1.4). Then there exists some positive ~ such 
that: 

IP( l ' supl~"(x)] -12<\  x e T  t )  

= e x p  - 2 e x p  - t -  ~ e,n122m 1+ +O(n  "e) 
0 __< ~ ~ (d - 1)/2 ~ J 

uniformly in t, where In is the maximal root of the equation 

2(T)(2rc) (a+l ) /2h fe , , /A le - l exp ( -  lZ/2)= 1. 

2 is the Lebesgue measure in IR~, A = det (a u), a u = ~r~ 2 f (v i  7 ~) (x)(Vj 7")(x)dx and 
e m =  ( - -  1)"(d - 1)!/(m[2m(d - 2m - 1)!) is mth Hermite polynomial coefficient of 
order d - 1. 

Remarks. Assume that f belongs to the class J ( I  d, cz) of ~-differentiable functions 
on I d, as defined in Dudley (1982). Theorem 1.2 works when h, ~ n-1/~+2~)is the 
optimal bandwith size as soon as c~ > 0. Recall Konakov and Piterbarg (1984) had to 
assume the regularity condition e > dZ/2 in their Theorem 1.2. 
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Note that In ~ ~/2dlloghn ] as n ~ + ~ .  See Konakov and Piterbarg (1984) for 
an asymptotic expansion of ln. Our Theorem 1.2 and their Theorem 3.2 ensure also 
that 

P 

supl.-l[~n(x)[--* 1 (1.6) 
x ~ l  d 

if the sequence (h~), > o satisfies limn-~ + oo nh~/log n = + oQ. This result is optimal. 
However, in order to obtain the limiting distribution of In sup~I~ I ~,(X) I -- 12, we 
need the stronger condition lim,~ + oonh~/(logn) TM = + o~ (cf. Theorem 4.1). 

The proof of Theorem 1.1 is mainly based on some Bernstein type inequality for 
the multinomial embedding of Komlds et al. (1975), which is proved in Sect. 2. Next 
we derive the strong invariance principles for multivariate empirical processes 
using a multivariate Haar  expansion of the functions. 

2 Strong approximation 

Throughout  this section, we will take d = 1. Let (xl,  x2 , .  �9 �9 xn) be an n-sample of 
the uniform distribution over [0, 1]. Let N be a positive integer and d~ be the class 
of functions f from ]0, 1] into IR such that 

2 N 

f =  ~ f '~](i-  1)2% i2 -N] 
i = 1  

for some e ( f )  = ( f t  ,f2 . . . .  ,f2N) with values in IR 2~. Now, let Bn(t)  be a standard 
Brownian bridge defined from (Xl, x2 . . . .  , xn) via Koml~s et al.'s method (in fact 
only the increments of the empirical d.f. and of B,(.) between time (i - 1)2 s and 
i2 -u  are defined in a common probability space; a lemma of Skorohod (1976) 
ensures then that the construction of these two processes may be performed on 
a rich enough probability space f2). Now, for each f in gu,  we set: 

1 

Z ( n ) ( f )  = f f ( u ) d B n ( u ) .  
o 

The main aim of this section is to generalize the probabilistic bounds of Koml6s 
et al. (1975) to bounds with an error term depending mainly on the coefficients of 
the orthogonal expansion of f i n  the Haar  basis on the unit interval. 

Notations. Throughout  the sequel, the intervals ]l, m] are to be interpreted as 
subsets of 7/+. f2(7/+) is given the canonical inner product, denoted by 
(. 1.) ~ 2 (] l, m]) denotes the subspace of E 2 (7/+ ) of functions with support included 
in If, m]. Let Ij, k = ]k2 J, (k + 1)2J], and let ej, k be the characteristic function of 
I~,k. For  any positive integers j and k, we set (j,k = 2 e j - l , 2 k - - e j ,  k. Let 

= {~j, ,:  1 < j  < N, 0 < k < 2N-J}. Clearly, N '  = N w {es, o} is an orthogonal 
basis of f2(]0,  2~]) with (ej, klgj, k) = 2J and (eN, oleu, o) = 2 ~. For  a n y f ~  gN, we 
define the coefficients 7j, k(f)  and iN(f)  by yy, v ( f ) = 2 - J ( e ( f ) [ g j , ~ )  and 
~-fN(f) = 2 - N ( e ( f ) ] e u ,  o) �9 Define the Hilbertian pseudonorm [If]l ~ by 

N 

[[fl[~ = 4 Z Z ~/~,k(f). 
j = l  0 - < k < 2  s i 

Let us now state the basic inequality. 
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Theorem 2.1 For any vector p = (Px, �9 �9 �9 , PN) with positive components such that 
2~:lPi < 1, let qi = (2ipi) -1 and let 

M(p , f )  = 4sup qj I ~ /z,,~(f) . 
( j , k )  l m:l l ,  m ~ Ij,  k 

Then, for any f in gN and any positive x, 

lP ( , fn lX(" ) ( f )  - Z(")(f)l > ( ~  + Cs)x 

+ + C 1  ILfl[~ =<Re x 
i= 

where Cf = (supo<~<lf(x) - info<x<lf(x))/4 and C1 = 1 + ,f~/32. 
Remarks. Theorem 2.1 can be used to obtain numerical constants in the refine- 
ment of Komlds et al.'s exponential inequality proved in the paper of Mason 
and Van Zwet (1987). Let x t , X z , . . ,  be iid random variables with uniform 
distribution over [0, 1] and let F,(t) = n - l Z ~  ~(~, __< L) be the associated distri- 
bution function. Refining Komlds et al.'s exponential inequality, Mason and 
Van Zwet (1987) proved that there exists a standard Brownian bridge Bn with 
almost surely uniformly continuous trajectories such that, for all real d in [8, n], 
for all positive x, 

1P(0<~<dsup , n (F~( t ) -  t ) - x f s  > ax + blogd + clog2) < e x p ( -  x), 

where a, b, and c are positive universal constants. Using the results stated in this 
section, we prove in a preprint (see Rio 1991) that this inequality holds with 
a = 3.26, b = 4.86, and c = 9.26. These results further improve the previous numer- 
ical results of Bretagnolle and Massart (1989). 

Proofo f  Theorem 2.1 Let us recall some results stated in Tusn/tdy's thesis and 
proved in the paper by Bretagnolle and Massart (1989) concerning the quantile 
transformation of a random variable with Binomial law. For  any d.f. F, let 
F - l ( t )  = inf{x:F(x) > t}. 

Lemma. Let �9 denote the d.f of a random variable with standard normal law and let 
Y be a random variable with d f  qo. Denoting by ~b, the d f  of the binomial law 
B(n, 1/2), set B, = (b21o ~b( Y) - n/2. Then, the two following inequalities hold: 

(i) lB.] < 1 + (x/-n/2)] YI. 

(ii) lB, - (x/~/2) Y] < 1 + ( y 2 / 8 )  . 

Let us give an outline of the construction of Koml6s et al. (1975). Denote the 
increments between time (i - 1)2- N and i2- u of the empirical process Z,  and of B, 
by X~ and Z~, i.e. 

X i  ~ ~ "~(i- 1 < 2NXk ~ i) - -  n 2 - N  and Zi = ~ ( B n ( i 2  -N) _ Bn((i - 1)2 - N ) ) .  (2 .0)  
k = 1 
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Let the empirical measures X and Z be defined by: 
2 ~ 2 N 

X ( . )  =- 2 X i ~ j ( i - i )  2 u, i 2 - N 3 / ~ ( ' )  and Z ( . ) =  ~ Zi~](i 1)2-~ '~ , i2 - s3 /~( . )  �9 
i = 1  i = 1  

Then, with the above notations, for all f in gu,  X ( f ) =  x/-nX(")(f) and 
Z ( f )  = x/nZ(")(f) .  For any positive integer j, for any 0 < k < 2 u-J, we set: 

Ui, k = X(ei, k), and Uj, k = C a r d { / <  n:2Nxi ~ Ij, k} = X(ei, k) + n2 i-N �9 

We also set: 

~'jk, = Z(~i,k), l~,k = Z(ej, k), ~.j,k ~" = 171,kx/n -12N-j- 

Since ~ is a basis of f2(]0 ,  2NJ), it is necessary to define the random variables 
L7i, k only from the corresponding Gaussian increments Vj, k. So, we will define the 
random variables by induction on j. Assume that the random variables 
(U~,m)t >j,o __< m< 2 N-' have been already associated to the corresponding random 

variables ~,m- Then, the random variables (Ul, m)0__<m<2N-, are determined 
since the system (ei, k)0__<k<2N ~ belongs to the linear span of {et, m : / > j ,  
0 =< k < 2 u-m} u (eN, o}. 

Now, we claim that the random variables ((Uj, k + Uj, k)/2)0 _< p < 2~-J are inde- 
pendent and B(Ui, k,1/2)-distributed, conditional on the random variables 
(Ui, k)0 =< k < 2 ~-j. Moreover, since ~ is an orthogonal basis, the random variables 
(~1, k)0 _< k < 2 ~-j are independent and N(0, 1):distributed, conditional on 
(Ui, k)O_< k< 2 N ~. Hence, for all k e [0, 2N-~[, if we define Uj, k by: 

U j, k -~- U j, k 2 4) crl o ~" = , ~ ( ~ j , k ) ,  

the random variables (Ui, k)0 =< k < 2 ~-j will have the prescribed conditional distribu- 
tion (see Bretagnolle and Massart 1989). By Tusn/tdy's lemma, it follows that, for 
all j and k, 

~2 1~i, k err S l / 2 ~ , k ] < 2 + ~ j , k / 4  
- -  I,~..~ j , k  ] = . 

Now, we use the dyadic decomposition of Z ( f )  and X( f ) :  
N N 

X ( f )  = ~ 2 '&k(f)  Ui, k and Z ( f )  = ~, 2 7j, k( f )  ~'i,k" 
j = l  0 - < k < 2  N-J j = l  0 < k < 2  u - j  

In order to apply Tusnhdy's lemma, we define an auxiliary empirical measure Yby: 

N 

Y ( f )  ~ 2 ?;,k(f)(Ui" ,1/2Z = k) %j, k �9 
j = l  0 < k < 2  N-~ 

Let A ( f )  = X ( f ) - -  Z ( f ) ,  and let A~(f)  = ( X -  Y)( f) ,  A2(f)  = ( Y -  Z)( f ) .  
Clearly, A ( f )  = A l ( f )  + A2(f). Now, we state a lemma which proves that, in 
order to control A (f) ,  it will be sufficient to control each of the moment-generating 
functions of A l ( f )  and of Az(f).  

Let A be a random variable with mean zero and with finite moment-generating 
function in a neighborhood of zero. We set 7a (t) = log IE (exp (tA)). Then, the Chernoff 
function hA of A is the Legendre transform of 7A (ha(e)= supt>o ( ( t z -  ?A(t)) 
for all positive ~ and ha(e)= supt<o(te-?A(t))  otherwise). Clearly, ha takes 
its values in IR + w { + oe } and is a nondecreasing convex function from IR + 
into lR+w { + o~}. Define the function h~ t for any nonnegative x by: 
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hA a(x) = inf{t: hA(t ) >= x}. From Chernoff's result, it follows that, for any positive 
X, tP(A > hAl(x)) ~ exp( - x). 

Hence, the result below, which will be proved in Appendix A, yields an 
exponential bound for the sum of two random variables with finite moment- 
generating function. 
Lemma 2.1 Let A and B be two centered random variables with finite moment- 
generating function in a neighborhood of O. Assume that IP(A = O)< 1 and 
IP(B = 0) < 1. Let ha, hB, and hA+8 denote respectively the Cramer Chernofffunc- 
tions of A, B, and A + B. Then, for all positive x, h~+B(x) < hAl(X) + h~l(x). 

For the sake of brevity, we set A~ ( f )  = A~. Using Lemma 2.1, it will be sufficient to 
control each of the Laplace transforms of the random variables A~. We control 
the Laplace transform of A ~ via the following lemma, which will be proved in 
Appendix B. 

Lemma 2.2 For any f in CN and for any real t such that Cyjt t < 1, 

128C2rloglE(exp(t/1~)) <= - 83 Llfll~log(1 - (Cyr)2) �9 

On the other hand, the control of A 2 is ensured by the two lemmas below, which 
will be proved in Appendix C and Appendix D. 

Control of/12. Throughout,  we will use the following notations. Let 

S = { ( j , k ) : l < j < N , O < k < 2 N - J } a n d 2 = ~ u { ( N , O ) } .  (2.1) 

Also, let the order relation _< be defined on 2 as follows: if 1 and m are two 
elements of 2 ,  1 ==_ m iff I~ c Ira. We also define -< by 1 M m iff 1 -< m and I # m. Let 
l = (j, k) be any element of ~ :  we set j = ] l]. We set also I m [ - [ II = [ m - 1] for any 
l ~  m. So, with the above notations, we have: 

/12 = 2 Y,(f)(x/-~z-- ~ ) ~ .  

We control the moment-generating function of A2 by the moment-generating 
function of a random variable A3 depending only on the Gaussian increments 
(~)le ~.  This is the purpose of the lemma below. 

Lemma 2.3 For any real t, lE(exp(tA2) ) =< lE(exp(tA3)) where: 

/13= Ic~LPE ~l(f)~(~-t- m:l-<mE 2 ]'n-l[/2[~m]) " 

It remains to control the Laplace transform of/13- Let A4 = ~ , l  ~ ~ 71(f)~ and 
A5 = A3 - A~. Using Lemma 2.1 again, it is sufficient to control each of the 
moment-generating functions of A4 and As. Since A 4 is a Gaussian random 
variable with zero-mean and variance [I f ]1 ~/2, the control of A4 will be ensured via 
standard arguments of Cramer-Chernoff calculation on the normal random vari- 
ables. Let us now state an upper bound on the Laplace transform of A5 which 
depends mainly on the number M ( p , f )  previously defined in Theorem 2.1, and on 
the variance term ]i f I1~. 
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Lemma 2.4 Let p = (Pl . . . .  , PN) be a vector with positive components such that 
~v_ l Pl < 1. Let  qi = (21pi) t. For all m in c2, we set: 

M , , = 4  2 q [m- t lT~( f ) .  
l:l~,rn 

Let  M = supme2M,, .  Then, for any real t such that M t  2 < 1, 

loglE(exp(tA5)) < [Ifll~ ~, qilog((X + .,fi- - Mt2)/2). 
= 2M 1:1 

Using Lemma 2.1, Lemma 2.3 and the results already proved in this section, we get: 

IP(A ( f )  > h ; l (x) + h~ l (x) + I l f l l~ ,~)  < e x (2.2) 

for any positive x, where hi and hs denote the Cramer-Chernoff functions of the 
random variables A l ( f )  and A s (f).  Using Lemma 2.2 and Lemma 2.4, we prove 
then that, for all positive t such that C i t  < 1, 

83 Ilf l l~t  2 
log IE (exp (tA ~ )) < 128 (1 - Cf t) (2.3a) 

and that, for all positive t such that t x / M  < 1, 

loglE(exp(tA 5)) < (2.3b) 
- q' 8({  2 i = l  

Proof  o f  (2.3) Taking into account Lemma 2.2, Lemma 2.4, and standard argu- 
ments of homogeneity, note that, for all t in [0, 1[, 

- 4log((1 + ,,/1 - t2)/2) < -- log(1 - t a) < t2/(1 - t ) .  (2.4) 

The proof of (2.4) will be omitted, since it only uses elementary calculations. So, 
(2.3) holds. 

Let h 1 denote the Legendre transform of the function 7(t) = t2/(1 - t). For 

any positive x, h-  ~ (x) = x + 2x/-x. Both (2.2), (2.3) and the above inequality then 
imply Theorem 2.1. [] 

3 A local invariance principle for empirical processes 

Throughout  the section, d > 2. Using the upper bounds for the embedding of 
Koml6s et al. proved in Sect. 2, we study the rates existing in the strong invariance 
principle for multivariate empirical processes. 

Proof  o f  Theorem t. 1 First, we use the so called multivariate quantile transforma- 
tion to transform the r.v's x~ into r.v's with uniform distribution over I ~. Second we 
use the multivariate adaptation of construction method proposed in our previous 
paper (see Rio 1993) to construct the homogeneous empirical bridge and the 
corresponding Brownian bridge in a common probability space. Next, using the 
results of Sect. 2 and the conditions UBV and LUBV, we give uniform exponential 
bounds in h on the error term [X(n~(h) - B,(h)l ,  and we derive Theorem 1.1 from 
these bounds via Massart's oscillation controls (1986) for VC classes. 
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Transformation of the r.v.'s. Let F denote the multivariate quantile transformation 
from the closed unit cube onto itself, which turns a r.v. with density f into 
a uniformly distributed r.v. This transformation will be called Rosenblatt trans- 
formation; (see Rosenblatt  1952). Under the assumptions of Theorem 1.1, F is 
a diffeomorphism from I ~ onto I d. 

Assume now that Theorem 1.1 holds for r.v.'s Yi with uniform distribution over 
t d and let B ~ denote the corresponding approximating homogeneous Brownian 
bridges with almost surely continuous trajectories on (5 p, d~). Define xi = F -  1 (y~) 
and let 

: f  = { g o F - 1 -  g ~ s ~ } .  (3.1) 

Since F is a diffeomorphism, 3C is a VC class of functions satisfying the measurabil- 
ity condition (J#), with the same entropy function as 5 a. Moreover, Y satisfies 
either the condition LUBV for some constant K~or depending only on f or the 
condition UBV. Hence, Theorem 1.1 in the general case follows from Theorem 1.1 
in the special case of the Lebesgue measure and from the fact that the gaussian 
process B, defined by B,(g) = B2 (g o F - 1 ) is a Brownian bridge with the prescribed 
covariance function (to prove this fact, notice that j JacF(x)  I = f (x ) ) .  Let us now 
prove Theorem 1.1 for uniformly distributed r.v.'s. 

Construction in a common probability space. Let r denote the class of character- 
istic functions of closed boxes and let 5 ~ = 5 P w Nd. Clearly, the so completed class 
5 ~ is a Vapnik-Chervonenkis class of functions. Here, it will be convenient to define 
the processes X ("~ and B, on this completed class 5 ~. Let N be the integer such that 
2 Nd =< n < 2 (N+ 1)d. Divide each coordinate segment into 2 N intervals of the length 
2-N. This division generates the partition of [0, 1] a on cubes volumes of which are 
equal to 2 TM. For  each p = (Pl . . . . .  Pc) in ga+, let C0,p denote the open cube of 
volume 2-Na with lower-left vertice 2-Np = (2-Npl . . . . .  2-Npd). We define the 
increments of Bn and X (n) on the cubes C0,p via the multinomial embedding of 
Komlds et al. Let o- denote the one to one function from ga+ onto ;g+ already 
defined in Rio (1993): a maps the cubes ]0, 2N] d onto the intervals ]0, 2Na]. Hence, 
by a lemma of Skorohod (1976), there exists a sequence (xl,  �9 �9 �9 x,)  of indepen- 
dent random variables uniformly distributed in [0, 1] a_and a standard Brownian 
bridge with almost surely continuous trajectories on (5 ~, d~) such that 

B~(Co, p) = Z~p) and X(n~(Co,p) = X~p~ , (3.2) 

where the random variables (X~)0 < i__< 2 ~'~ and (Zz)0 < i__< 2 TM are defined in Sect. 2 by 
Eqs. (2.0). We now need to recall the definition and the properties of a. 

gd is provided with the usual sum and product. Let 

J =  {(Jl,J2 . . . . .  ja) e N  dsuch tha t j l  =<J2 --< . . -  <J~t < J l  + 1}. 

It  is obvious that (Jl . . . . .  jd) ~ (Jl + j z  + " " " +Je)  is a one to one mapping 
from J onto N. For  each integer j, we call ( j l  ,j2 . . . .  ,je) the unique element of 
J such that j = J l  +J2 + " ' "  +Je .  Let Rj be the lattice of multiples of 
(2J~,2 j~, . . . .  2J~): we define the box C},p for any p of R i by (here 

= (1, 1 . . . . .  11) e 1R") :  

C),p={XsTZd, p + ~  _ < x < p + ( 2  j~, . . . .  2J")}. 

The following lemma holds (see Rio 1993). 
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Lemma 3.1 There exists a one to one map ~ from ;gd+ to ;g+ mappin9 the boxes 
C},o onto the intervals ]0,2N], and the boxes (C),p)p~Rj onto the intervals 
Ij, q = ]q2 j, (q + 1)2i]. 

We now give exponential bounds on the error term IX(~(h) - B.(h)] for the so 
constructed processes. 

Lemma 3.2 For any positive x and any h in 5 ~, 

IP(~IX(" I (h )  - B,(h)l ~ C6 n(d 1)/(2d)~..]_ c(g)x) ~ 8 e x p ( -  x) 

where C6 is some constant dependin9 only on d, C(N) = 3 + x/8dN in the general 
case, and C(N) = (3 + 4d3/2)Klo~(O a) under the condition LUBV. 

Proof Let H 0 h be the orthogonal projection of h on the space of functions 
generated by the characteristic functions of the cubes Co, p. 

FIoh(x) = ~ hp{co,,, (3.3) 
Co, p c [ 0 , 1 ]  d 

where h; = 2 Nd fCo, p h(x)dx. Let cr*h be the element of gnu defined by 

a* h(2- Nd rr(p)) = h v. (3.4) 

Let Dl(h) -- [(X - Z)(a*h)l, D2(h) -- x/nlX(")(h - / / 0 h ) l ,  and D3(h) = 
x/~[B~(h - Hoh)[. Clearly 

x/~[X(")(h) - B,(h)[ < D~(h) + D2(h) + D3(h). (3.5) 

First, we control D~ (h). By Theorem 2.1, the exponential bounds on D~ (h) depend 
mainly on II G*h I1~. Now, we claim that for any function h of bounded variation on 
the unit cube [0, 13 a, 

II o-*h II~ _-< 16.2N(a- a)g(  h, Ia) �9 (3.6) 

Proof of  (3.6) By definition of a*, 

7j, k(~*h) = 2Na-J( ~, hp-- ~ h ; ) .  
\ G(p) �9 Ij-1,2~ ~(p) �9 Ij-~,2k+i 

For  any p e R j, let Cj, p = Up, ~ c'j,p Co, p. Assume that j = rd - l for some positive 
r and some I in ]0, d]. By Lemma 3.1, there exists some p in Rj such that 

~j,~(a*h) = 2 N~-j f (h(x) - h(x + ( 0 , . . . ,  O, 2 ~'-N, 0 . . . .  , O)))dx. (3.7) 
Cj--l,p 

Since h takes its values in [ - 1, 1], the coefficients [~/j, k(r~* h)] are each bounded by 
1. Hence, taking into account the above equality, we get 

7i, k(a h) < O(h,j), (3.8) 
0 =<_ k < 2 '~d -'~ 
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where 

O(h,j) = 2 'vd-j f lh(x) - h(x + (0 , . . . ,  0, 2 j'-N, 0 , . . . ,  0))ldx. 
I t-~ x [ 0 ,  t - 2 J ' - N ]  x I d-~ 

Concluding the p roo f  needs regularizat ion arguments .  Let q~ be a positive function 
be longing to the set C~ ~ of C ~ real-valued functions with a compac t  suppor t  
conta ined in ] - 1, 1[ d and satisfying f4)(x)dx = 1. Let 0~ be defined from 0 by 
qS~ = e-d(O(e-*x) and let he = h*0~.  Let I~ = [e, 1 - ~]. It  is s t ra ightforward to 
prove  that,  for any e > 0, 

K ( h , I  a) > f HVh~(x)l[dx. 

Since h takes its values in [ - 1, 1], it is obvious  that  

(3.9) 

O(h,j) = lim 2 m j f [he(x) 
~ 0  

II~ I X [8 ,1  e - - 2 J ~ - ' V ] x l ~  -I 

- h~(x + (0, . . . ,0, 2 j* -u ,0  . . . . .  0))[dx.  

Therefore,  we have: 

O(h,j) < 2 Nd-J+J~-s lim sup f lVzh~(x ) [dx .  
~--,o I~ 

Then,  using (3.9) and summing  on j the above  inequality, we get (3.6). '~ 

In order  to apply  Theorem 2.1, it remains  to give an upper  bound  on 
M(p ,  a ' h ) .  Unde r  the assumpt ions  of Theorem 1.1, we set: 

1(1 1) 
Pi ~-- 2 -N-d + i(i + 1) 

With the above  choice of(p1 . . . .  , PNa), ~ =< udq~ < 16. Recall o-* h takes its values 
in [ - 1, 1] and N is an o r thogona l  system of t '2(:g+). Hence  

~ 21-Jy~,m(o-*h) < i. 
l < j  {m:I~,~ c ILk } 

Since 1/pi < 2Nd, it follows that  

m q~ 
M ( p , f )  <= 8Nd and E ~ < 8 .  

i = 1  

(3.t0) 

On  the other  hand, under  the condi t ion LUBV, using the same arguments  as in the 
p roof  of (3.6), we obtain: 

2 z J ~ 7~m(a*h) < 4.2~l-J)/dKloo(5 p) 
{m:h+m ~ l~,k} 



34 E. Rio 

1 
for any l < j and any h in 50. Now, let p~ - i(i + 1~)" Summing on I the above 
inequality, we have: 

Nd qi 
M ( p , f )  < 16d3Kloc(50) and ~ ~- < 4 .  (3.11) 

i = 1  

From (3.6), (3.10), (3.1 1) and Theorem 2.1, it follows that, for any positive x and any 
h i n  5 ~ 

P(DI(h)  > 2 4 . 2 N ( d - 1 ) / 2 ~  + C(d, N ) x )  < 2exp( - x) (3.12) 

where C(d ,N)  = 1 + 8x/~N in the general case, and C(d ,N)  = 
(1 + 4d3/2)Kloo(50) under the condition LUBV. 

Now, we make the control of Dz(h) and of D3(h). By definition of X ("), 

D2(h) = ~=1 ~' h ( x i ) -  Hoh(xi)  . 

So, D 2 (h) is the absolute value of a sum of iid zero-mean random variables each 
bounded by 1. To apply Bernstein's inequality, we need to control the variance of 
each random variable h(xi) - Ho h(xi). Since h - Ho h takes its values in [ - 1, 1], 

lE ( (h (xO-  Iloh(xO) 2) < lim V~ 
e.~O 

where 

V~ = Z f Ih~(x)-  h~,pldx. 
p__<2N(1,. . . ,1) Co, pnia  

From Remark 1.3 of Miranda's paper (1964) it follows that 

d 

g~ <= r(e) + 2 -N ~ f lV~h~(x)ldx 
1-1 I~ 

for some r(e) converging to 0 as e ~ 0. Therefore, by (3.9), we get: 

Var(h(x,) - Hoh(x,)) < d2-NK(h,  I~) .  (3.13) 

Hence, by (3.13) and by Bernstein's inequality, for any positive x, for each h in 50, 

]P(D2(h) > n ~ 1)/(z~)x/2d2dK(50)x + 2x) < 2exp( - x) .  (3.14) 

Some calculation and (3.13) also show that, for any positive x, 

IP(D3(h) > n(d-1)/(za)x/2d2~K(50)x) <= 2 e x p ( -  x) .  (3.15) 

Both inequalities (3.12), (3.14) and (3.15) then yield Lemma 3.2. [] 

Uniform control. Using Lemma 3.2 and Massart's oscillation control, we will prove 
Theorem 1.1. Let e = 1In. Since 50 is a Vapnik-Chervonenkis class of functions, 
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there exists an e-net Y~ with cardinality no more than C(5O)n d(s~). Let q[~ be the 
class of functions defined by: ql~ = {h - g: (h, g) s 5 ~ x 5O, dz(h, 9) < c.}. Let 

D~ = sup x/nlX(")(h) - B,(h)l, D2 = sup x/nlX(")(g)[, D3 = sup x/nlB,(g) l .  

Clearly 

sup ,fnlX(")(h) - B,(h)i < D~ + D2 + D3. 
h e 5  p 

We now control D2 and D3. YG is a Vapnik-Chervonenkis class of functions 
fulfilling condition (rid). Moreover, N(3, qG) < (N(6/2, 5O))2, for any positive b. 
Hence, by Proposition 3.7 of Massart's paper (1986), with U = 1, a 2 = 1/n, we get: 

IP (D2  => x/2(1 + 1 o g 2 n ) X  + 2x) = O(n4~ -- x) (3.16) 

where log2 n = loglogn (since the functions of 5 ~ take their values in [ - 1 ,  1], the 
dimension d(2)(5 p) of universal (2)-entropy used by Massart satisfies 
d(2)(5 e) <_ 2d(SP)). From Theorem 4.1 of Massart's paper (1986), it follows that 
inequality (3.16) still holds for the random variable D3 related to the Brownian 
bridge B,. Hence, combining the above inequalities and Lemma 3.2 with the upper 
bound on Card 5O~, we get: 

1P( sup x/nlX~n)(h) - B~(h)l > C6n(d-1)/(2d) ~ x  
\ he5 ~ 

+ 4 x , , / f ~ z n  + (4 + C ( N ) ) x )  

= O(n4~ -- x ) .  (3.17) 

A straightforward application of (3.17) then yields Theorem 1.1. [] 

4 Deviation fields of kernel density estimators 

In this section, we give an application of the results of Sect. 3 to the investigation of 
maximal deviation of kernel density estimators. We prove an invariance principle 
for the deviation field associated withf, .  So, let T be a Lipschitzian kernel function 
from IR e into [ - 1, 1] with compact support, satisfying f T ( y ) d y  = 1. For any 
positive real h, let ~ ,  be the mapping defined by 7Jh(y) = 7S(h-ly). Now, for any 
reals a and b fulfilling 0 < a < b < 1, let 2(a, b be the class of functions 

~f-a.b = { T h ( . -  X): xelRd,  h~[a ,b]} .  

Theorem 1.2 follows from the invariance principle below and from Theorem 3.2 of 
Konakov and Piterbarg (1984). 

Theorem 4.1 Let d >= 2 and let x l ,x2,  �9 . . be a sequence of independent random 
variables with common taw # fulfilling 1.3 and 7 j be a Lipsehitzian kernel function 
from IR a into [ - 1, 1] with compact support and satisfying f T (y)dy = 1. Let (h,),>o 
be a sequence of bandwith parameters converging to 0, satisfying 
lim,~ + ~ nh~/logn = + o~ . Let in be the deviation field defined by (1.4). Then, there 
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exists a sequence (W.) .  > o of standard Wiener processes indexed by JU. = dg{'hn/2, 2hn 
with almost surely continuous trajectories on ( • . ,  d~) such that: 

sup [~w~. (x ) -  h# a/2 Wn(~h.(X --.))] 
xEN. d 

= O(h~ l x /~  + (nhd)- l / (2d)x~gn + (nhd)-l/21ogn)a.s. 

Proof The proof uses Theorem 1.1 and the properties of the classes YFh/~,h: as 
Pollard (1982) does, we prove that 3r h is a VC class. 

Lemma 4.1 Let 7 j be a kernel function fulfilling the above assumptions. Then, for any 
h ~ [0, 1], ~rh/4, h is a Vapnik-Chervonenkis class offunctions satisfying the condition 
LUBV,  for some c o n s t a n t  Klo c depending only on the kernel function ~, and the mild 
measurability condition ( Jg). Moreover, there exists some constant C depending only 
on 7 j such that, for any positive e and any h ~ [0, 1], 

N(e, J~'rh/4, h) ~ r e  - 2 - d  

Proof o f  Lemma 4.1 Clearly, S o ,  1 = Ua>o dr"a, 1 satisfies the mild measurability 
condition (rid). Now, using the Lipschitz condition on 7 j, we prove that ~ o ,  1 satis- 
fies the condition LUBV. Let cg be any cube ofiR d with edges of length e. Since 7 j is 
a Lipschitzian function, ~ has, almost everywhere, partial derivatives uniformly 
bounded on IRe. Hence, 

K ( t t t h ( . -  X),C6 ~) ~ f ] lVTth(y -x ) l [dy  <= C~,h- l in f (J ,  hd). (4.1) 
~f 

It follows that oUo, ~ satisfies condition LUBV for some constant Klo c depending 
only on ~. It remains to control the universal entropy. 

Let p be the greatest integer such that ph < 1. Divide each coordinate segment 
into p intervals of length 1/p. This division generates the partition of I n on cubes 
((6~k)k < (p . . . . .  p), of volume equal to p-d ,,~ h d. Let P denote any probability on I e 
and let e be any positive real less than 1. Let d = {k __< (p . . . .  , p) such that 
P(Cgk) >e } .  Clearly, C a r d d  < e -1. Now, define a pseudometric d o on 
[h/4, h] x IRd by: 

d~ , ( (ho ,xo ) , (h l , x l ) )=  1lgJho(.--xo) - ~hl( . - -  Xl)[]o~ �9 (4.2) 

Since 7 ~ is a function with compact support, the e-capacity of the set 2F of reals x such 
that the support of 7Jh , (. -- X) intersects the cube ~k for some h' with h/4 < h' < h 
and for some k ~ sJ, with respect to the usual metric on IR e is bounded by C2e - lhd. 
When x does not belong to 5F, f l  ~ h ' ( . -  x)ldP <= C3e. Moreover, the Lipschitz 
norm of the elements of JCh/4,h is uniformly bounded by M/h for some positive M. 
Using the above bound on the e-capacity of Y', we obtain: 

N(C3e, [h/4, hi x Y', do) <= C4e 2-d. (4.3) 

Since P is a probability law, by (4.2) and (4.3), N(C3e, oVg'h/4, h, P) < C4e -a-e,  
therefore completing the proof of Lemma 4.1. [] 

Proof o f  Theorem 4.1 Since # has a continuous and strictly positive density on the 
closed unit cube I d, it follows from Corollary 1.1 that 

sup ]X(~)(g ) -- B~(g)I = O(n-a/(2d)~/h~-llog n + logn)a.s. (4.4) 
g ~ 5". 
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for some sequence (B,) ,  > 0 of Brownian  bridges with a.s. cont inuous  trajectories on 
(v'ff,, d,). Since f2 is rich enough,  there exists a sequence (W,) ,>0 of Gauss ian  
processes on f2 with covar iance function (g, h) ~ fg (x )h(x) f (x )dx  such that  

B,,(g) = W,(g) - W,(le) f g(x)f(x)dx (4.5) 

for any posit ive n. Now,  for all g in 5P, , fg (x ) f ( x )dx  = O(h~) as n - .  + oo. Hence,  
by (4,4) and (4.5), 

sup Ix(")(g)- W.(g)l = O(ha, lx/i~gn + n-~/(2'~)w/ha,-llogn + logn)a.s.  (4.6) 
g c JU n 

For  any  class 5 P of functions, let x/-f5 p be the class defined by ,j/)'5 P 

= {xffg:g e 5~} �9 By the above  equality, there exists a sequence (G,) ,>o of h o m o -  

geneous Wiener  fields on I a with a.s. cont inuous  trajectories on (x/)'Y,, w ,X/',, d;~) 
such that  G,(,,/)g) = W,(g) for any g e 2de,. So, recalling t h a t f  -~/2 is uniformly 
bounded  on I d, it is easy to see that  Theo rem 4.1 follows fi'om (4.6) and l emma  
below: 

Lemma 4.2 Under the assumptions of Theorem 4.1, 

sup ] G , , (X/ f i ' )L / ' h ( . -  X)) -- f , ~ G , ( ~ ' h ( . -  X))[ = O(h~+d/21x/logn)a.s. 
x c R  e 

h,,/2 <= h <_ 2h. 

Proof Let (~/(g))gc~, be the Gauss ian  process defined f rom G~ by 

r/(~vh(. -- x)) = G , ( x / f ( . )  tp,,(. _ x)) - f x / ~ G , ( ~ U h ( .  -- x ) ) .  (4.7) 

Let  p be the usual metric  on ~,~, related to t /(p (go, g i ) = [ E ((~/(go ) - t/(g 1 )) 2 )] 1/2). 

Since ~ ,  is a VC class, for any positive e, 

N(e, ~{',, p) <= C6 e-D (4.8) 

for some posit ive D. So, in order  to control  the maximal  deviat ion of r / i t  will be 
sufficient to control  the maximal  s tandard  error  o-(~/)= supgcx,  p(g,g). Now,  
using the H61der condi t ion on f it is s t ra ightforward to see that  

s u p  - x )  -  'h(y - :,)1 =< CTh  
y e l R  e 

for some cons tant  C?. Hence, integrat ing on x, we get: a2(q) =< C8 h2'+e.o, for some 
positive cons tant  C8. Both the above inequali ty and (4.8) together  with L e m m a  2.4 
of K o n a k o v  and Pi te rbarg  (1984) imply L e m m a  4.2, therefore complet ing the p roof  
of T h e o r e m  4.2. [] 

Appendix: Proof of the lemmas of Sect. 2 

A. Proof of  Lemma 2.1 

Let ~4 denote  the class of  r a n d o m  variables with ze ro-mean  and finite m o m e n t -  
generat ing function over  ] to ,  + ~ [- for some negative to, such that  
7A(t) = logE(exp(tA)) satisfies: there exists an ~ > 0 such that  y~(t)  > a, for all 
t > 0 .  
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First, we prove that Lemma 2.1 holds for any ( A , B )  in d x d .  Let 
7p(t) = f iVA( t / f i )+ ( 1 -  f l ) T B ( t / ( 1 -  fi)). By H61der's inequality, for each fi and 
each positive, t, 7A+B(t) <= ~B(t). 

Now, let hp (e) = supt> 0 (re - 7~ (t)) denote the Legendre transform of ?p. From 
the above inequality, it follows that hAl+B(U) < h i 1 (u) for any positive u. Hence, it 
is sufficient to prove that, for any positive u, there exists some fi in ]0, 1[ such that 

h i ~ ( u )  < hA ' (U)  + h ~ l ( u )  . (A.1) 

Now, let x = 7'A(t/fi) and let y = 7~(t/(1 - fi)). The usual Cramer-Chernoff  calcu- 
lation yields: 

h~(x + y)  = fihA(X) + (1 -- f i )hB(y)  . (A.2) 

Clearly, it is sufficient to prove that, for any positive u, there exists (t, fl) such that 
x = 7'A(t/fi) and y = 7~(t/(1 -- fi)) fulfill the equations 

hA(X) = u and hB(y)  = u. (A.3) 

Because (A.3) and (A.2) imply h F 1 (u) N hA 1 (U) + h~ 1 (u). Now, (A.3) holds iffthere 
exists t > 0 and fl E ]0, 1[ such that: 

u = hAoT'A(t/fl ) = hB~ -- f i ) ) .  

Since A belongs to sd, 7A is an analytic convex function on IR +. Recalling that 
7~(t) >_- e for some positive e, it is easy to see that gA = hA~ is a continuous 
increasing function from IR + onto IR + with g]  (x) __> xe. Hence, for any positive t, 
the function fi ~ g(t, fi)= g B ( t / ( 1 -  f l ) ) -  gA(t/fi) is a one to one continuous 
increasing function from ]0, 1 [ onto IR. Moreover, g (t, .) fulfills the assumptions of 
the implicit function theorem. Hence, there exists a unique continuous function 
t --. f i(t) such that g(t, fl(t)) = O. 

Let u(t) = hA ~ 7'(t / f i  (t) ). Clearly t ~ u(t)  is a continuous function such that u(t)  
satisfies the Eqs. (A.3). Clearly, 

min(gA(2t), gB(2t)) _--< u(t) <= max(gA(2t ) ,  gB(2 t ) ) .  

Hence, l imou( t )=  0, l i m + ~ u ( t ) =  + oo and (A.3) follows. Hence, Lemma 2.1 
holds for any (A, B) in sO' x ~r We prove now Lemma 2.1 in the general case. 

The general case. Let IA, IB and IA + B denote the respective domains of the moment 
generating functions of A, B, and A + B. Let Y be a real random variable with 
standard normal law, independent of (A, B). For any positive e, let 

A~ = A ~ A  < 1 -- IE(A~eA < 1 )  -}- eY 

and let B, denote the corresponding random variable associated with B. Clearly, A~ 
and B~ belong to sur Now, by the Beppo-Levi lemma, for any nonnegative t, 

lim IE (exp ( tA ~ ~A < 1 )) = IE (exp ( tA))  
e--*O + 

and 
lim IE(exp(tAfl~A < 1 + t B ~ B  < 1 )) = lE(exp ( tA + t B ) ) .  

~ 0  + 

It follows that the functions 7A and 7A~ + Be converge pointwise to the respective 
functions 7A and 7A+B on Ill +, with the convention 7A(t) = + oo if 
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lE(exp(tA)) = + oo. Then, using some arguments of convexity, it is straightfor- 
ward to prove that, for any compact subset Yf of IA c~ IR +, ?A~ converges uniformly 
to 7A over X as e --~ 0 § Let DA and DA+B be the respective domains of hA and 
hA+B. From the above results, it follows that, for any positive 
xr  C~DA,lim~-.o+ hA~(X) = hA(x), with the convention hA(X) = + ~ if x r  DA, 
and using exactly the same arguments, for any positive x4 0DA+,, 
l im~o+ hAo + B~(X) = hA+,(x). Since the above functions are convex, it follows that, 
for any positive u, h]~ 1 (u) converges to hA a(u), hB~ ~(u) converges to h ~ ( u ) ,  and 

- 1  hA~+Bo(U) converges to h ~ B ( u ) .  Hence, recalling that (A~, B~) satisfies the pre- 
scribed inequality, we obtain Lemma 2.1. ,~ 

B. Proo f  o f  Lemma 2.2 

We may w.!.o.g, assume tha t f t akes  its values in [0, 1]. Define the nonincreasing 
family of fields (~'~2)0 < j __< N by ~ u  = {0, f2}. For a n y j  < N, let 

~ j - 1  = g 2  v ~{~2,k:k e [0, 2N-q  -} . 

Clearly, the random variables (U2, k)o <_ k < 2 N-j are ~2-measurabte. So, the random 
variables (02, k -- (U2, ~) 1/2 (2, k)0 __< k < 2"-2 are independent and symmetric, condi- 
tional on ff2- For convenience, we set 7j, k = Yj, k(f). Define: 

Dj, 1 = ~ 72, k(Uj, k -- (Uj, k)l /2(j , , , ) .  
0 <= ]4 < 2 ;v-j 

By definition, A1 1 ,1. = ~N= Dj Now, from the above remark and from ( i i )of  
Tusnady's lemma, it follows that, for any positive integer j, 

( ~.  k/4)), ~ j )  lE(exp(tD2, 1)1@2) < 1E I ]  cosh(tTj, k(2 + 
0 < k < 2 v - j  

Hence, recalling that the random variables (j,k are independent and N(0, 1)- 
distributed, we get, by induction on j: 

N 

lE(exp(tA1)) < I ]  I~ lE(cosh(tTj, k(2 + ~2,k/4))). (B.1) 
j = 1 0 = < k < 2  N J 

Moreover, the random variables ~, k have distribution function ~. Let us define the 
convex function 0 by 0(x) = + oo if I x i > 1 and 

e 4x e-4~ ~ 
O( x ) =  12(x/l  _ x + l x / i ~  / 

otherwise. A few calculation proves that, for all random variable { with distribution 
function q~, lE(cosh((2 + ~2/4)x)) = O(x/2). It follows that 

N 

loglE(exp(tA1)) < ~ ~, logO(Tj, k t /2) .  (B.2) 
j = 1  0 < k < 2  ~'-j 

Now, we claim that, for any x ~ ] - 1, 1[, 

logo(x) < - ~3~log(1 - x2).  (B.3) 
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Proof of (B.3) By definition of O, 

~/1 - x 20(x) = cosh(4x)((1 + tanh(4x))x /1  + x + (1 - t a n h ( 4 x ) ) . , f i - -  x)/2.  

Define l(x) = (~/1 - x + x/1 + x)/2. First  we claim that,  for any - 1 < x < 1, 

l(x) < 1 - x2/8 and t anh (4x ) (x /1  + x - ~ -  x) < 4x 2 . (B.4) 

The  p roof  of the left-hand inequali ty will be omitted.  We prove  only the r ight -hand 
inequality. Clearly, it is sufficient to prove  that,  for any 0 <  x <  1, 
tanh(4x)  =< 4xl(x), where l(.) is the a l ready defined mapping.  Since y -+ t a n h y  is 
a cont inuous  decreasing mapping ,  (B.4) follows f rom 4x < argtanh(4xl(x)), with 
the convent ion  a rg tanh  y = + oo if y > 1. Now,  it is obvious  that,  for any 
0 < y < 1, a r g t a n h y  > y(1 + y2/3). Moreover ,  (l(x)) 2 ~ 1/2. Therefore,  (B.4) fol- 
lows f rom 

1 < l(x)(1 + 8 x 2 / 3 )  . (B.5) 

Let  ~ = 1 + (8x2/3). Since l(x) > 1/,,f2, (B.5) holds if __> When cr < ~ ,  

(B.5) holds if 2 <  ~ 2 ( 1 + ~ / 1 - x 2 ) ,  e.g. if 4 ( 1 - c d ) <  - c~4x  2. Since 
x 2 = 3(c~ - 1)/8, the above inequali ty is equivalent  to 

4(1 + ~) > 30~4/8 . 

When  1 < ~ < .,/2, the te rm on right hand  in the is less than 3/2, which concludes 
the p roof  of (B.4). 

Then, not ing that  cosh y < exp (y2/2), we infer that  ~/1 - x 2 O(x) 
=< exp(79x2/8).  Now,  for any real x, x 2 < - log(1 - x2), and (B.3) follows. 

Now,  recall tha t  the mapp ing  f t a k e s  its values on [0, 1]. Hence,  for all j, for all 
P, 17j.pl < 1/2. Fur thermore ,  x --+ - log(1 - x z) is a convex function of x 2. We 
infer that, for all real t such that  I tl < 1, 

83 
logIE(exp(4tA1))  < - - - I l f l l ~ l o g ( l  - t 2) 

8 

and L e m m a  2.2 follows clearly f rom this inequali ty [] 

C. Proof of Lemma 2.3 

Using (i) of Tusnfidy's  lemma,  we will prove  that: 

I ~ x / ~ l - - < ~ +  E 2 Im-~l/21~m[. (C.1) 
m:l<m 

Proof of (C.1) For  all m in ~ ,  let m + 1 denote  the element of ~ such that  
rn~rn + 1 and Im + 11 = Iml + 1. Let  s(I) be the element of Lr defined by: 

s(1) = inf{m ~ Lr such that  l~=m and Um+l + O} . 

Clearly, 

s(1)'<m-<(N, O) 
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Now, recall that  Urn+ 1 -- 2U~ is, up to the sign, equa l t o  LT~+ I. Moreover ,  there is 
no loss of generality in proving (C.1) to assume that  Um+l = Um+l -- 2Urn, which 
we shall do th roughout  the proof  of (C.1). By (i) of Tusnfidy's lemma, 

b" 
] gm+ 1 [ ~ [ ~rn + 1 [ ~ 1 + 2. Thus ,  we have: 

1 2 x / ~  -- U,,/~m+~ I < I~'~+~ I4- (x/2Um 4- Ux/U~+~+~)-I inf(2, l O,~+l l ) ,  (C.3) 

from which it follows that, for any 1 in s 

I x / ~ -  E ~ t ) l < s u p ( H ' , g ' )  § Z 2-1m-'l/2lgmI, (C.4) 
m:lMm 

where the r andom variables Hz and K~ are defined by: 

H, = Z 2-{1+1m-'1'12{(0~+~ > 0)inf(2, Ore+l)( 2x/2U~ + x / ~ m + , )  -1 
m:s(l) "< m -< (N, O) 

and 

~ ~ ~ I ~, 2 <*+l~-ll)/2{(O~.~<o)inf(2 , -- Um+!)(~/2Um4-x/Um+l) 

and 

L13,j = Z Y I ( f ) ~ ( N ~ - } -  2 2-1m-Zl/21~m] ) . 
/:1II < J m:l~<m 

K l = 
m:s(I)<=m-<(N, O) 

First, we determine an upper  bound  for Kz. For  convenience, we set u = U,,+ i and 
x = - 0m+ 1- Then, with the above notations,  

inf(2, - 0 , , + ~ ) ( x / 2 U  m + ~ ) - 1  = inf(2, x)/(x~uu + V/u + x) .  

Now, recall that  (U,,)m__>t is a nondecreasing sequence of integers. Hence u and 

x are positive integers with 0 < x =< u, and we easily get: inf(2, x)/(x/u + , S T  x) 
__< 2 - ,,/2. Hence, we have: 

K~ < (2 - x /2)  2 2-~/2 < , , /~ .  (C.5) 
i>0  

It remains to prove that  Hz < w/2. Let  Jr '  denote the set of nondecreasing 
sequences of natural  numbers.  For  all a = (a~)~ >__ 0 in ,3f, let 

H(a) = E ~ . . . . .  2a,2-('+i)/2(Vai+l + v2/~iai)-linf(Z, ai+t - 2al) 
i>=o 

and set Hmax = SUpa e ~ H (a). Clear ly ,  H t ~ Hma • . Clearly, the  func t ion  H (.) t akes  
its supremum on the subset Jg0 of Jg  of sequences a = (az)i > o such that, for all 
natural  i, either a~+ 1 = 2az + 1 or az+ 1 = 2a~ + 2. Then 

H(a)= ~, x / 2 - 1 - i a i + l - ~ .  
~>0 

An elementary calculation proves that, for all a in J/Yo, H(a) < 
x / 2  + ao - x / a  < x ~ ,  therefore completing the proof  of (C.1). Now, let us finish 
off the proof  of Lemma  2.3. For  all natural  j < N, define Az, j and A~,; by: 

I:11[ < j  
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Let R2,j(t ) = IE(exp(tAz,j)lo~j) and R3,j(t ) = lE(exp(tAa,j)lo~j). It remains to 
prove that, for all j < N, for all real t, 

R2,j(t) < R3,j(t).  (C.6) 

Let fr be the a-field generated by the family of random variables 
{I ~ l : / e  if', Ill > j}. For all l in 22 ~ let 5z be the sign of ~.  Now, we prove, by 
induction on j, that, for all j  < N, for all real t, R3,j(t) is a if j-measurable function 
and Rz.j(t) < R3,j(t). Clearly, the above assumption holds true i f j  = 1. Now, 
assume that the assumption holds true for any i < j. Let D2,  j = A2 ,  j - A2,j- a and 
D3,~= A 3 , j - A 3 , j - ~ .  Clearly, D2.j is an ~-j_l-measurable random variable. 
Hence, we have: 

IE(exp(tAz,j)lo~j_l) <= R3.j_l(t)exp(tDz,j). 

By definition of D2, j, 

I:[I[ = j  

Then, noting that the random variables {[ ~ [ (x /~ t  - x / ~ 0 ) :  1 e s [l[ = j} are 
( ~ j  v ff~_ t )-measurable and that the random variables (e~)l ~ w:lll = j are indepen- 
dent and symmetric, given (Yj  v ffj_~), and recalling that R 3 , j _ l ( t  ) is ~ j - 1 -  
measurable, we get: 

lE(exp(tA2,~)]~j v ~y_a) __< R3,~_~(t) [ I  c~  - x / ~ 7 ~ ) )  - 
/:Ill =J 

Hence, using (C.1) we obtain: 

lE(exp(tA2,j)l~-~j v ~ j _ , )  < R3,j ,(t)IE(exp(tO3,;)lff;-a) 

< IE(exp(tA3,j)[~j v ffa_,). 

Then, taking the expectation conditionally on ~,~ in the above inequality, we get 
(C.6) and Lemma 2.3. [] 

D. Proof of Lemma 2.4 

Clearly, in order to prove Lemma 2.4, we may w.l.o.g, assume that t = 1. Now, 
recall the definition of A 5 : 

A s = A 3 - A 4 =  Z 7z( / )~  Z 2-1m-tl/Zl~ml. 
1~ ~ m:l-<m 

By Cauchy-Schwarz inequality, 

Z 2-1m-Zl/21~ml ----< ~ '  where th = ql~_zl~r~ . 
m:l-<m m: m 

We infer that, for any real t, IE (exp (A s ) I fro) _-< IE (exp (A 6, o)l No), where the ran- 
dom variables A6,j are defined by A6,j = ~l:ltl >jTl(f)~ql for any nonnegative 
integer j. Hence, we have: 

1E(exp(As)) < lE(exp(A6,0)). 
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It remains to control the moment-generating function of A 6, o. Clearly, 

] E ( e x p ( A 6 , o ) I ~ t ) - = I E ( e x p ( ~  ~ 7 ~ ( f ) t l 2 ) ) e x p ( t A 6 ,  e ) .  
I:ll[ = 1 

Notations. Let { Y~,m:(l, m) e c2 x ~ ,  I~=m} be a family of independent N(0, 1)- 
distributed random variables, independent of the family { ~t: 1 ~ S } and define the 
random variables {~,,,:/-<m} by ~z,~ = '/~(f) q~/m<~t Y~,~' For any m in L~ with 
lml > 2, we set: (z = ~,l<m~t,,,. When Iml = 1, we set ~,~ = 0. We also set 
loglE(expK) = L(K) for any real-valued random variable K. 

With the above notations, we get: 
/ / 

= + �9 

I -< m / 

Define the function ~o by q)(M) = (2/(1 + x/1 - M)) t/2. Lemma 2.4 follows from 
the inequality below: for a n y j  in [1, N],  

[ / "/ / 

= , + A6,~ . (D.1) 
k]l[_-<j Iml > j  I l l<j  

Proof of (D.1) Clearly, the random variables { ~t,,l:[l] = 1, [rn I > 1 } are indepen- 
dent o f f f ~ .  Since cp(M) > 1, we infer that (D.1) holds ifj  = 1. Now, by definition 
of (~, for a n y j  > 1, 

I m l > j l l l < j  [ml>j+l  [l[<j 
I -< rn I -< m 

Hence ,  

Ira[ > j  Ill _<j Ill = J +  1 
l-< m 

I t l=j+l  

(~(M)~ + ~( f )~  )~ 

I,nl > j +  1 1l[ Nj 
I ~ m  

Since the r.v's {~, ~:l l l  = j + 1} are independent with respective Gaussian distri- 
butions N(0, 1) and N(O, Mz/4) conditionally to ~- j+l  v a{~l,,,:I-<m, [/[ __<j, 
Lrn[ > j  + 1}, integrating the variables { ~ ,  ~,:l/I = j  + 1}, and using the above 
equality, we get: 

/ [ 

L'qo(M) 
Ill <=j 

, ~ l ,m~m + A6,  j 
Iml > j  I11 ~<J 

I~(m 
I I 

I I [ < j + l  Ira] > j + l  I i i<j  
'~ l ~ rn 

[ml + [ltl = j + l  - -  l V L l t l 1 2 k ~ v z ) / .  



44 E. Rio 

Then,  no t ing  tha t  (p(M) = (1 - M~p2(M)/4) - 1/2 and  recal l ing that,  for any  t in A~, 
M1 < M, we easily infer from the above  inequal i ty  that:  

/ [ l[=j  Im[ >j  [l[<j 
l . ~  m / 

I l l < j + l  Iml > j + l  Ill < j + l  

Hence  (D.1) holds  for a n y j  > 1. Now,  app ly ing  (D.1) w i t h j  = N, we obtain:  

L(As(g)) < L(~p(M) ~_ ~Y~,~) 
l ~  Ae 

for any  g in gN. Now,  recall  tha t  the r a n d o m  var iables  {~l, Yz, z : l e~}  are 
independen t  with respect ive G a u s s i a n  laws N(0,  Mz/4) and N(0, 1). Hence,  
using the above  inequal i ty  and  no t ing  tha t  (1 - M~cp2(M)/4) - a/2 < ((p (M))U,/M, 
we get: 

1 x/1  L(As(g)) <= 2Ml~  2 Mzlog((1 + - M) /2)  

for all M in ]0, 1], and  L e m m a  2.4 easily follows. [] 
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