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Summary. Consensus primers for the polymerase chain reaction were designed
based on conserved motifs within the serine protease and RNA helicase domains
encoded by the NS 3 genes of dengue and other flaviviruses. Target fragments
of 470 bp were amplified on cDNA templates synthesized from RNAs of dengue
types 1, 2, 3, and 4, Japanese encephalitis, Kunjin, and yellow fever viruses
using random or specific downstream primers. PCR of oligo(dT)-primed cDNAs
from Japanese encephalitis and Kunjin viral RNAs did not yield target bands.
As few as 10° copies of dengue viral RNA could be detected. Direct DNA
sequencing of PCR products of reference strains of dengue 2 (NGC), Kunjin
(MRM 61C) and yellow fever (17 D) viruses demonstrated complete concurrence
with published data. However, 2 nucleotide differences were observed between
our data for dengue 3 H87 strain and the published sequence, resulting in a
single amino acid disparity. Differences at 21, 16, and 11 nucleotide positions
were noted between dengue 1 Hawaii and S 275/90; dengue 4 H 241 and 814669;
Japanese encephalitis Nakayama and JaOArS 982 viral strains, culminating in
only 4, 1 and 1 amino acid residue differences, respectively. These amino acid
disparities occurred outside putative active sites of the enzymatic domains,
emphasizing the important role of the NS3 protein in flaviviral replication.
This RNA-PCR consensus primer strategy coupled with DNA sequencing rep-
resents a valuable tool for the molecular diagnosis and epidemiology of dengue
and other flaviviral infections.

Introduction

Outbreaks of dengue virus infection and the associated syndromes of dengue
fever, dengue haemorrhagic fever and the potentially fatal dengue shock syn-
drome constitute major public health problems in tropical and sub-tropical
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regions all over the world, including the Asia-Pacific where the Aedes mosquito
vector is prevalent. In Singapore alone, a record number of 2179 confirmed
cases of dengue were reported in 1991.

Dengue viruses comprise four serologic types (types 1, 2, 3, and 4) and
belong to the family Flaviviridae whose other related members include Japanese
encephalitis, Kunjin, Murray Valley encephalitis, St. Louis encephalitis, tick-
borne encephalitis, West Nile, yellow fever, and hepatitis C viruses. The dengue
virus consists of a single positive-stranded RNA genome of approximately 11 kb
encoding the capsid, membrane and envelope proteins, as well as non-structural
proteins including three major proteins known as NS 1, NS 3, and NS5 whose
functions are not yet fully elucidated. The NS 3 gene is one of the most conserved
genes among the four dengue virus serotypes, and indeed even among other
members of the flavivirus family [5, 34]. A putative serine protease domain
spans the N-terminal region of the NS 3 protein [2, 6]. Lying C-terminal to
the protease is a nucleotide triphosphatase/RNA helicase domain consisting of
7 conserved segments numbered I, Ta, II-VI thought to be the nucleotide
triphosphate binding sites [5, 18]. These two domains are involved in processing
of the viral polyprotein which is a critical event in viral expression and repli-
cation. Furthermore, monoclonal antibodies produced against NS 3 proteins
have been shown to confer partial protection in laboratory mice against lethal
challenge with dengue viruses [42].

Cell culture and immunological assays such as neutralization and haemag-
glutination inhibition tests are established and widely employed for the diagnosis
and typing of dengue viruses. However, these tests are relatively time-consuming
and considerably less sensitive than newer molecular biologic methods such as
nucleic acid hybridization [21] and the polymerase chain reaction (PCR) [16].
Since rapid diagnosis of dengue virus infection is critical in patient management
and disease surveillance, we adopted the technique of cDNA amplification by
PCR for the sensitive identification of dengue viruses. We report here the use
of a single pair of NS 3-specific consensus primers for PCR which can detect
all four dengue virus types, as well as other related flaviviruses. In addition,
sequence data of the PCR products from the various viral templates are com-
pared and analyzed.

Materials and methods
Virus strains

Reference strains of dengue type 1 (Hawaii), type 2 (New Guinea C), type 3 (H87), and
type 4 (H 241), yellow fever (17 D vaccine), Japanese encephalitis (Nakayama), and Kunjin
(MRM 61C) viruses tested in this study were propagated in C6/36 Aedes albopictus cells
[25]. Dengue virus serotype was confirmed by immunofluorescent staining of viral antigen
by type-specific monoclonal antibodies.

Isolation of wviral and cytoplasmic RNA

Dengue virions were purified by precipitation in 7% polyethylene glycol (PEG) and 2.3%
NaCl, and centrifugation through a 30% sucrose cushion. Dengue viral RNAs were isolated
by phenol/chloroform extraction and ethanol precipitation [39].
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Cytoplasmic RNAs were isolated from virus-infected and non-infected cells by a rapid
method described by Gough [19]. Briefly, cells were harvested, pelleted and resuspended
in 10mM Tris-HCI (pH 7.5), 0.15M Nad(l, 1.5mM MgCl, and 0.65% Nonidet P-40. After
centrifugation, the cytoplasmic lysate was transferred to an equal volume of 7M urea, 1%
SDS, 0.35M NaCl, 10mM EDTA, 10mM Tris-HCI (pH 7.5). The mixture was extracted
with phenol/chloroform and precipitated with ethanol.

The RNAs were quantitated with a UV spectrophotometer at 260 nm, where an optical
density of 1 corresponds to approximately 40 pg/ml.

Amplification primers

Two 17-base oligonucleotide consensus amplimers, DV 1 (upstream) and DV 3 (down-
stream) as shown in Table 1, were designed based on highly conserved motifs within the
NS 3 gene from the published nucleotide sequences of dengue virus types 2 [13, 20, 261, 3
[36], and 4 [31]. DV | was designed on the basis of the conserved Gly-Thr-Ser-Gly-Ser-

Table 1. Nucleotide and deduced amino acid sequences of consensus PCR. primers:
homology with published dengue and other flaviviral strains

Primer/
strain

Nucleotide sequence
{and position)

Amino acid sequence Reference
(and location)

DV1 (+) primer 5’GGRACKTCAGGWTCTCC3’ GXSGX

D18275 (4899) **CHRAKFTHxxdkx%k% (4915) (1607) *%*x%* (1611) [181]
D2NGC (4918) ****Chxkxnk*k%Gh* (4934) (1608) *%*%% (1612) [27]
D2JAM (4918) *kkkkkkhkhkhhirdsr (4934) (1608) **k*%x (1612) [14]
D2PR159  (4918) #hxskkkkkkkkrskds (4034) (1608) #%k*% (1612) [211]
D2PDK (4918) #*%kkkkikrdkthkkrick (4934) (1608) *%*%¥ (1612) [3]

D3H87 (4910) *k*wkddkdrskrkksd (40926) (1606) ***%* (1610) [371
DA814669 (4917) kkkkhkkdkkkkkkkhks (4933) (1606) ***%+ (1610) [321]
JES982 (5004) **k**AXRCHXCh*A** (5020) (1637) **%*% (1641) [42]
KNMRM61C (4987) hkkkkA%k*kkCk*Cx% (5003) (1638) *k¥x*x (1642) [12]
YF17D (4976) **Chkkkkikbkrkrsk (4992) (1620) **x*x* (1624) [38]
MVE (5003) *ddkkkkkkkkkdxxChkx (5019) (1636) **x*%%x (1640) [13]
TBEWEST  (4985) *%%*¥Ax****CAGC** (5001) (1625) **¥k% (1629) [33]
WNV (4951) *kxkdkdkkikhk®®0kk (4967) (1634) *%k*% (1638) (41

HCV1 (3487) #**CT*C**C*x*CGC*** (3503) (1163) *%*%* (1167) 19}

HCVBK (3819) **CTH**XGx**GGx** (3835) (1163) *%**%% (1167) {437
DV3 (-) primer 5’AARTGIGCYTCRTCCAT3’

DV3 (+) seq. 5/ATGCAYGARGCICAYTT3’ MDEAH

D1S275 (5352) *%kkkkrkkknhkhhks (5368) (1758) *#*** (1762) [18]
D2NGC (5368) *kkkkkkkkkhhkhdkkk (5384) (1758) *¥kk% (1762) [27]
D2JAM (5368) khhkhkkhkhkhkhhkkikhd (5384) (]_758) kkkkk (1762) [14]
D2PR159  (5368) %kkkkkkkkkkkkkkk® (5384) (1758) ****% (1762) [21]
D2PDK (5368) *dkwkkkkkkkkhhkirk (5384) (1758) *x*xx (1762) [3]

D3H87 (5363) *ukkkkikkkkkkkkkk (5379) (1757) *+*%% (1761) [37]
D4814669 (5367) Hkdkkikkwkikkirr (5383) (1756) **%kx (1760) [32]
JES982 (5458) *xxkxkxkkxkknkrkx (5474) (1788) *¥x+% (1792) [42]
KNMRMELC (5440) **%kkskksdkkddksss (5456) (1789) #***+x* (1793) 1121
YF17D (5432) **wkxxkkrdknrxdxnx (5448) (1772) %*%kkx (1776) [38]
MVE (5456) *hkkdkdkkkthdkdrrk (5472) (1787) **%x% (1791) [30]
TBEWEST  (5444) *¥hxxxkxkkxkkx*%G (5460) (1778) *%%x% (1782) 133]
WNV (5404) hkkdkkkkkhhhhdhhhd (5420) (1785) *hkkk (1789) [4]

HCV1 (3943) TQTH*****TGhk*x**x*C (3959) (1315) C**C* (1319) [9]

HCVBK (4275) TGTH***x*xTGh**4*C (4291) (1315) C**C* (1319) [43]

(+) Sense orientation; (—) anti-sense orientation
I Inosine; K G/T; R A/G; W A/T; Y C/T

X Any amino acid

Asterisk indicates match
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Pro sequence (amino acids 1608-1613 of dengue virus type 2) which lies in the serine
protease domain [2, 5, 6]. DV 3 was synthesized based on the Met-Asp-Glu-Ala-His-Phe
motif (amino acids 1758-1763) corresponding to conserved segment II of the nucleotide
triphosphatase/RNA helicase domain [5, 18]. The DV 1/DV 3 primer pair flanks a 470 bp
target region.

cDNA synthesis

Synthesis of viral cDNA templates was performed using a GeneAmp RNA PCR kit (Perkin-
Elmer Cetus) in a 10 pl reverse transcription reaction mixture consisting of 1ng dengue
viral RNA or 1 pg cytoplasmic RNA from virus-infected cells; 1 X buffer containing 10 mM
Tris-HCl (pH 8.3), S0mM KCl, 5mM MgCl,; 0.5 or 1 mM each of the four deoxyribo-
nucleoside triphosphates; 1 U/ul RNase inhibitor; 0.5 or 0.75 uM DV 3 downstream primer
or 2.5uM random hexamers or 2.5 uM oligo(dT) primers and 2.5 U/ul Moloney murine
leukaemia virus reverse transcriptase; incubated at room temperature for 10 min [random
hexamers or oligo(dT) primers only], 42 °C for 15 min, 99 °C for Smin, and 4 °C for 5min.

Polymerase chain reaction

To the 10 ul synthesized cDNA volume was then added 40yl of a PCR mix giving final
concentrations of 1 x PCR buffer containing 10 mM Tris-HCI (pH 8.3), 50 mM KCI, 2mM
MgCl,; 0.1 or 0.15uM DV 1 upstream primer [or both DV 1 and DV 2 primers for cDNAs
primed with random hexamers or oligo(dT) primers]; and 2.5 U/100 ul Taq polymerase.
This mixture was subjected to an initial 95°C for I min, followed by 30 cycles of 95°C
denaturation for 0.5min, 50 °C annealing for 1 min, 72 °C extension for 1 min, with a ! min
ramp between each step of every cycle, and a final extension of 72°C for 10 min. 20% of
each PCR product was resolved by electrophoresis on an ethidium bromide-stained 2%
agarose gel. Serial ten-fold dilutions of purified dengue viral RNA ranging from 1ng to
0.01fg in 10 ug/ml of carrier yeast tRNA were subjected to cDNA synthesis and PCR as
described to ascertain detection sensitivity. 1 pg of purified viral RNA was estimated to be
approximately 10° copies, derived from the calculation of 1 mole (or 11000 x 330g) of
dengue viral RNA being equivalent to 6 X 10* molecules. Stringent precautions were taken
to avoid cross contamination of specimens from “carryover” DNA [27].

Isolation and amplification of PCR products from agarose gels

To obtain specific templates for direct sequencing, PCR products of size 470 bp were excised
from agarose gels, DNA eluted and reamplified. Briefly, the cut bands were left in Ultrafree-
MC tubes with 0.45 pm filters (Millipore) at — 80°C for 10 min, thawed and centrifuged
at 14000 rpm for Smin, 100 ul of TE buffer (10 mM Tris-HCI pH 8.0, 1 mM EDTA) were
added to the centrifugate, then incubated at 37°C for 15 min and centrifuged at 14 000 rpm
for 5min. The DNA in this mixture was extracted thrice with butanol and twice with ether,
ethanol precipitated, washed and resuspended in TE. Appropriate dilutions of the eluted
DNA were reamplified by PCR (without ramping) and electrophoresed as described above.

Purification and direct sequencing of PCR products

The reamplified products were extracted with chloroform and ether, precipitated with PEG,
NaCl and washed with 80% ethanol. About 0.5 to 1 pmol of each PCR product template
was sequenced at least twice and in both directions with *?P 5" end-labelled DV 1 and DV 3
primers using a dsDNA cycle dideoxy sequencing system (Bethesda Research Laboratories)
according to the manufacturer’s instructions with modifications. Tag polymerase was em-
ployed to catalyse 20 linear amplification cycles each at 95°C for 0.5min, 50 °C for 1 min
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and 72°C for 1 min without ramping. The sequencing reactions were electrophoresed in
8% polyacrylamide gels which were dried and autoradiographed.
Computer analysis

Nucleotide and amino acid sequences were aligned and compared using the DNASIS (eighth
version) and PROSIS (fourth version) software programmes (Hitachi).

Results
PCR amplification of NS 3 fragments of dengue and other flaviviruses

Using primers DV 1 and DV 3, target fragments of expected size 470 bp could
be successfully amplified on cDNA templates synthesized from purified RNAs
of dengue virus types 1, 2, 3, and 4 as well as from cytoplasmic RNAs of cells
infected with each of the four dengue, Japanese encephalitis, Kunjin and yellow
fever viruses using specific downstream primers (Fig. 1 A) or random primers

12345678M 1234567M

12345678M 12345678M
. o

Fig. 1. Gel electrophoresis of PCR products of 470 bp amplified from cDNAs synthesized

using A specific downstream, C random, or D oligo(dT) primers from cytoplasmic RNAs

of C6/36 cells infected with dengue types 1 (1), 2 (2), 3 (3), 4 (4), Kunjin (5), Japanese

encephalitis (6), yellow fever (7) viruses; and of non-infected cells (8). M 123 bp marker.

B Reamplification of excised 470 bp bands from A yields sharp target bands suitable for
direct sequencing
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(Fig. 1 C). In contrast, using cDNA templates derived from oligo(dT) primers,
PCR yielded clearly discernible bands for all the viruses tested except Japanese
encephalitis and Kunjin viruses (Fig. 1 D).

The presence of extraneous bands in PCR products using specific down-
stream primers for viral cDNA synthesis (Fig. 1 A) may be attributed to non-
specific priming of the downstream primer during reverse transcription at a
lower temperature of 42 °C compared with 50 °C for PCR annealing. However,
reamplification of excised 470bp bands (in Fig.1 A) produced sharp target
fragments (Fig. 1 B) which subsequently yielded authentic viral sequence data.

PCR products generated from random-primed and oligo(dT)-primed
cDNAs as well as those obtained from PCR of viral cDNAs spiked with human
genomic DNA vyielded target bands without significant non-specific bands
(Fig. 1 C and D). PCR of human genomic DNA or of cDNA from non-infected
C6/36 cells produced no target nor background bands (Fig. 1 A, C, and D, lane
8).

Sensitivity assays indicated that at least 1, 0.1, 0.01, and 1 pg equivalent to
10°, 104, 10°, and 10° copies of dengue types 1, 2, 3, and 4 viral RNAs, re-
spectively, could be detected by gel electrophoresis of PCR products (Fig. 2).

Sequence analysis of NS 3 of dengue and other flaviviruses

Clearly readable stretches of ~ 420 nucleotides (encoding 140 amino acid res-
idues) within the NS 3 target fragment of dengue 2 (New Guinea C), Kunjin
(MRM 61C) and yellow fever (17 D vaccine) virus strains were identical with
the corresponding published sequences [11, 26, 37].

However, 2 nucleotide differences were noted within this fragment between
our sequence for dengue 3 (H 87 strain) and the previously published sequence
for the same strain [ 36], culminating in a single conservative hydrophobic amino
acid difference at residue 1709 (Figs. 3 and 4).

Twenty-one nucleotide differences were observed between the NS 3 frag-
ments of the Hawaii strain and the published Singapore S275/90 strain [17]
of dengue 1 virus (Fig.3). These lead to 4 disparities at amino acid residues
1688, 1690, 1691, and 1729, located between the conserved segments I, Ia and
II which are nucleotide binding sites within the putative nucleotide triphos-
phatase and RNA helicase domain (Fig. 4).

Differences at 16 nucleotide positions were seen between the H 241 strain
and the published 814669 strain [31] of dengue 4 virus, with only one resultant
polar versus hydrophobic amino acid replacement at residue 1644 within the
serine protease domain.

The Nakayama strain and the published JaOArS 982 strain [40] of Japanese
encephalitis virus differed at 11 nucleotide positions, resulting in only one amino
acid difference emerging within the serine protease domain at residue 1662.
Comparison of the Nakayama strain with the attenuated vaccine SAA strain
[17] revealed an additional disparity at amino acid residue 1739 located between
segments Ia and II of the RNA helicase domain (Figs. 3 and 4).
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123456789M 123456789M
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Fig. 2. PCR products amplified from ten-fold serial dilutions of purified viral RNAs of

dengue virus A type 1, B type 2, C type 3, D type 4. cDNA templates for PCR were

synthesized from starting RNAs of 1ng, 0.1ng, 0.01 ng, 1pg, 0.1pg, 0.01pg, 1fg, 0.1fg,
0.01 fg (/-9) using random primers. M 123 bp marker

Discussion

Using a single pair of NS 3 consensus amplimers, we are able to detect all four
dengue virus types, as well as Japanese encephalitis, Kunjin and yellow fever
viruses by reverse transcription of viral RNA and/or cytoplasmic RNA of virus-
infected cells, followed by PCR, achievable within hours. cDNAs synthesized
from random and specific downstream primers served as reliable templates for
PCR. Amplification of oligo(dT)-primed cDNAs yielded target products for
all the viruses tested except for Japanese encephalitis and Kunjin viruses. Suc-
cessful PCR from oligo(dT)-primed cDNAs from viral templates implies the
presence of polyadenylated stretches within their genomes. The high detection
sensitivity of the PCR protocol using these consensus primers is evident, as
little as 0.01 pg or 10° copies of viral RNA being detectable on an agarose gel
alone.

Even though these NS 3 amplimers were not tested against other related
flaviviruses, computer search for primer homology with hepatitis C [9, 417,
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D1HAW GATAGTTGAC CTTATGTGCC ATGCCACTTT CACCATGCGT CTCCTGTCTC

D18275 hkdkkhdkkk RkChhkhkdTd *ChFhdkhihhk hhkkkhhkhhdd khkddhikhhk
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Fig. 3. Comparison of our nucleotide sequences within the NS 3 genes of dengue 1 Hawaii
(DIHAW), dengue 3 H87 (D3H87V), dengue 4 H241 (D4H241) and Japanese encephalitis
Nakayama (JENAK) strains with the published sequences of correspondingly-related den-
gue 1 8275/90 (D1S275), dengue 3 H87 (D3 HS87), dengue 4 814669 (D4814669) and Japanese
encephalitis S982 (JES982) strains. Numbers within parentheses correspond with published
positions. Asterisks denote base matching with dengue | Hawaii strain, while dashes arc
introduced for alignment. (Clearly readable ladders were obtained for only 338 upstream
bases of the Nakayama strain)

tick-borne encephalitis [32], Murray Valley encephalitis [12, 29], and West
Nile [4] viruses indicated matching of high percentage with the latter two
suggesting potential amplification (Table 1).

Other workers have reported PCR amplification of dengue viruses and other
flaviviruses using type-specific primers [14, 15, 24, 35] and consensus primers
[22, 28] for regions outside of NS 3, often accompanied by sequence-specific
probe hybridization. PCR of these RNA viruses using our technique and the
assays of other groups is comparable in terms of sensitivity, specificity, and
simplicity to PCR assays for DNA viruses such as human papillomaviruses
[10, 43].

The complete concurrence of our NS3 fragment sequence data with the
published sequences for the corresponding strains of dengue 2, Kunjin, and
yellow fever viruses confirms the authenticity and reproducibility of this RNA-
PCR consensus amplimer technique coupled with DNA sequencing.

Stringent analyses by multiple sequencing in both directions of amplified
cDNA templates derived from random, specific and oligo(dT) primers were
consistently compatible. This thus validates the fidelity of Tag polymerase for
target fragments of less than 500 bp, its previously-verified low error rate being
comparable to enzymes with proof-reading ability such as Vent DNA poly-
merase [23].

Interestingly, the majority of the base substitutions found between different
strains of the same virus were transitions which are known to be the commonest
class of point mutations, which occur at relatively high frequency among RNA
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Fig. 4. Comparative analysis of deduced amino acid residues corresponding to nucleotide
sequences in Fig. 4. Known sequences of dengue 2 NGC (D2NGC), JAM (D2J4AM), PR159
(D2PR159), and PDK (D2PDK), Japanese encephalitis SAA (JESAA), Kunjin MRM61C
(KNMRM61C)y and yellow fever 17D (YF17D) strains are also included. Numbers within
parentheses refer to published locations. Asterisks represent residues identical to dengue 1
Hawaii strain and dashes permit optimal alignment. S Conserved serine protease motif; /,
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viruses, partially attributable to random polymerase-mediated base misincor-
porations [30].

We found 2 nucleotide differences between our NS 3 sequence and the pub-
lished one for dengue 3 (strain H 87). This discrepancy may be partly explained
by differences in passage history of this viral strain. Our H 87 strain was passaged
114 times in suckling mouse brain followed by 5 times in C6/36 cells.

Whilst comparative sequence analysis of strains of dengue 1, dengue 4, and
Japanese encephalitis viruses revealed numerous nucleotide differences (21, 16,
and 11 respectively), these were not commensurate with the amino acid residue
differences (only 4, 1, and 1 respectively). All these differences occur outside
of the tightly conserved putative active motifs of the enzymatic domains within
NS 3, and many mutations are silent or result predominantly in conservative
amino acid substitutions. Moreover, the ability of our consensus primers to
amplify this NS 3 fragment of dengue and other flaviviruses further demon-
strates the highly conserved nature of these motifs. Furthermore, the apparent
absence of differences at conserved motifs of the serine protease and RNA
helicase domains is consistently observed even for geographically distinct and
temporally unrelated strains (Fig.4). These phenomena reiterate the slow rate
of evolution of NS 3 genes in flaviviruses, especially the catalytic sites, reinforcing
the notion of their indispensibility in flaviviral processing and replication. In
contrast, higher molecular evolutionary rates have been estimated for the en-
velope/NS 1 gene junctions of dengue virus types 1 and 2 [38], the pre-M gene
of Japanese encephalitis virus [8], the VP 1 and 2 A genes of poliovirus type 1
[39], the NP and M genes of paramyxoviruses [33], and for the regulatory
sequences of human papillomavirus type 16 DNA [7, 23].

Our data offer some insight into the structure-function analysis of NS 3 and
also demonstrate the feasibility of the strategy of coupling this RNA-PCR
consensus amplimer technique with direct DNA sequencing of PCR products
in the molecular diagnosis, epidemiology and vector surveillance for infections
with dengue and other flaviviral strains. In order to type dengue viruses, internal
type-specific primers for all 4 dengue virus types in a nested PCR format are
currently being investigated.
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