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Summary. In an investigation of the evolution of feline immunodeficiency virus
(F1V) in vivo, sequential isolates from a persistently infected cat were examined
by direct sequencing following amplification of selected subgenomic regions by
polymerase chain reaction (PCR). Three isolates, T 90, T91, and T 92, obtained
over a three-year period revealed no changes to regions known to be conserved
within gag and pol genes. Additionally, no change occurred within gag and pol
in an isolate recovered from a second cat which was experimentally infected
with T 90. Changes were detected within an N-terminal region of the envelope
glycoprotein gp 120 (env). These consisted of point mutations, some of which
would result in amino acid substitutions and the predicted amino acid changes
tended to cluster within variable domains. Inoculation of T90 into a second
cat resulted in a different pattern of mutations than that observed for the three
isolates from the first cat. In all cases, virus isolates derived from the same cat
were much more highly related to each other (extent of env variation was 0.5—
1.5%) than to isolates from other cats (10-12% enw variation). The rate of
change of FIV was estimated to be 3.4 x 10~ ? nucleotide substitutions per site
per year for the env gene and less than 10~ # nucleotide substitutions per site
per year for the gag and pol genes, values concordant with that found for human
immunodeficiency virus 1. Both nucleotide and amino acid changes in the gp 120
region were found to be directional, suggesting that selective pressures influence
FIV envelope gene sequences.

Introduction

Feline immunodeficiency virus (FIV) is a T-lymphotropic lentivirus with world-
wide prevalence [35]. Because of its similar genetic structure and disease path-
ogenesis, FIV infection is now well accepted as a valuable small animal model
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for human immunodeficiency virus (HIV) infection [8, 13, 19, 35], particularly
in the areas of drug testing and vaccine development.

One major difficulty in the development of lentiviral vaccines is their extreme
genomic plasticity. Nucleic acid sequencing of HIV-1 has revealed extensive
genomic variability, both between patients and within individual patients at
any one point in time [1, 5, 7, 18]. Furthermore, rapid sequence evolution of
HIV-1 and generation of sequence diversity of viruses isolated from individual
patients over time has been well documented [3, 11, 12, 17, 24, 33, 39, 47].
Genomic variation during the course of persistent infection has also been re-
ported for simian immunodeficiency virus (SIV) [2, 14] and the non-primate
lentiviruses equine infectious anaemia virus (EIAV) [34, 40] and visna virus
[4, 417. The variation was unevenly distributed across the genome with little
change occurring in genes such as gag or pol which code for the major capsid
protein (p 24) and reverse transcriptase enzyme. This is in marked contrast to
the highly mutable variable regions of the surface glycoprotein encoded by the
env gene.

Although there has been a rapid increase in FIV sequence data particularly
for the env region [20, 26, 28, 30, 31, 36, 38, 42, 46], compared with HIV-1,
little is known about the rate and nature of sequence evolution in FIV. Here
we describe the in vivo evolution of FIV isolates obtained sequentially from a
persistently infected cat over a three-year period. By analysing the consensus
sequence of various viral genomes present at each point in time, our findings
show that the FIV env gene is capable of relatively rapid and extensive variation
in vivo in the order of 10~ 3 nucleotide substitutions/site/year. By contrast, the
major capsid (p24) and reverse transcriptase genes were highly stable when
compared with envelope glycoprotein gene. These results indicate that genetic
variation in FIV is similar to the pattern and rate of variation found in other
lentiviruses including HIV-1.

Materials and methods
Virus isolates

FIV isolates T 90, T 91, and T 92 were obtained at yearly intervals from a cat with naturally
acquired infection. Isolates N 91, DC91 (Perth, Western Australia) and S 90 (Melbourne,
Victoria) were derived from FIV-infected cats [10]. An isolate (4.3/92) was obtained by
inoculating subcutancously a 22-week-old cat, seronegative for FIV and antigen-negative
for feline leukaemia virus (Fel.V) with 1ml of T 90 culture supernatant containing ap-
proximately 10°° TCIDs,. Isolate 4.3/92 was obtained from this cat at 74 weeks postin-
fection. Virus was isolated as previously described [22, 23]. Briefly, peripheral blood mono-
nuclear cells (PBMCs) from infected cats were purified over Ficoll-Hypaque and virus
isolated either by co-cultivation of PBMCs with MYA-1 cells, a feline interleukin-2 de-
pendent T-lymphoblastoid cell line [25] or co-cultivation of PBMCs with Concanavalin-
A stimulated PBMCs from FIV-negative cats. Sequential isolates were stored as MYA-1
cell supernatants at — 70°C. Sequences from other FIV env genes were obtained from
published sequences deposited into GenBank which comprise two clones (34TF10 and FIV-
14) from the U.S. Petaluma isolate [30, 46], FIV PPR also from the U.S.A. [36], FIV
TM 1 and TM 2 from Japan [20, 267, two clones 19 k 1/k 32 from the Netherlands [42],
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FIV Z1 and Z2 from Switzerland [28], FIV Wo from France [31], and FIV UK 2 and
UK 8 from the UK. [38].

Oligonuclectide primers

Three oligonucleotide primer pairs were used to amplify subgenomic regions within gag,
pol, and env genes, respectively. Primer pairs L 928-R 1394 which amplified a 467 bp segment
of gag and L 2402-R 3039 which amplified a 638 bp segment of po!/ have been described
previously [10]. The primer pair L 6299-R 6866 amplified a fragment of predicted size of
568 bp. 16299 is located at positions 6299-6319 of env (gp 120) and has the sequence
5" AGGACCAGAAGAAGCTGAAGA 3, while R 6866 is located at positions 6866-6846
of env (gp 120) and has the sequence 5’ TTCTGGTGCCCAACAATCCCAY.

Polymerase chain reaction (PCR)

Genomic DNA containing FIV proviral sequences for use in PCR reactions was isolated
as described [10] according to the method of Kellogg and Kwok [16]. PCR was performed
using 10 pmol of cach primer, 50 ng DNA, 0.2 mM each dANTP, 2mM MgCl,, and 2U Tag
polymerase (Biotech International, Perth, W.A.) in a 25l total reaction volume. The
reaction was overlayed with paraffin oil and cycled on a Hybaid thermoreactor (Hybaid,
Teddington, U.K.) for 35 cycles with 30 sec at 94 °C, 1 min at 55°C and 2 min at 72 °C with
the exception of 5min at 94°C, on the first cycle and 10 min at 72°C on the final cycle.
PCR products were resolved on 1.5% agarose gels stained with 0.1 pg/ml ethidium bromide.

DNA sequencing

FIV proviral DNA amplified by PCR was purified using Prep-a-Gene (Bio-Rad, Richmond,
CA) to remove excess deoxynucleotides and primers. Sequencing reactions were performed
by the dideoxynucleotide chain termination methods using a Tag DyeDeoxy Terminator
cycle sequencing kit (Applied Biosystems, Foster City, CA) according to the manufacturer’s
instructions. The sequence was resolved on an Applied Biosystems model 373 A automated
DNA sequencer.

Rates of evolution

Rates of evolution, expressed as nucleotide substitutions per site per year, were calculated
using the method of Gojobori and Yokoyama [9] where R = D/2T and R = subs/site/
year, D = — 3/41n (1-4/3P), T = time since divergence, and P = the proportion of different
nucleotides.

Results
Sequence variation in FIV gag and pol genes

Subgenomic regions of gag (p 15/p24) and po! (RT) amplified by PCR from
T90, TI1, and T 92, shown in Fig. 1 which represent sequential virus isolates
obtained at yearly intervals from a persistently infected cat with naturally
acquired FIV, were directly sequenced. For each isolate, the nucleotide sequence
was identical with no changes over the 3 036 nucleotides analysed (Fig. 2). This
was consistent with a mutation rate of less than 1.7 x 10~ # substitutions/site/
year (assuming one change over the three-year period). Inoculation of isolate
T90 into a separate cat followed by virus isolation (isolate 4.3/92) and se-
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quencing 74 weeks later also revealed 100% nucleotide sequence identity
(Fig.2a, b).

Sequence variation in FIV env genes

A 5" segment of the env gene coding for an N-terminal region of gp 120 spanning
the first and second variable domains (see Fig. 1), was also amplified by PCR
and sequenced for each of the sequential isolates; T90, T91, and T92. The
nucleotide sequence for each isolate, representing a different time point, was
found to be unique (Fig.2c), with nucleotide sequence homologies with the
original isolate (T 90) being 99.4% for T91 and 98.6% for T92. T91 and T 92
isolates had a sequence identity of 99.2%. This represents an average of
3.4 x 107 3 substitutions/site/year for env which is at least 10-fold higher than
that found in highly conserved domains of gag and pol.

T 90 was injected into a FIV-negative cat and 74 weeks later a new isolate
(4.3/92) was obtained. This isolate had an env sequence different from T 90,
T91, or T92 with 98.6%, 98.4%, and 98.1% sequence identity with each of
these isolates, respectively. Both unique and shared base changes were observed
with 2 of the 7 differences between isolates T 90 and 4.3/92 being shared with
either T91 or T92. The nucleotide sequence variation between isolates from
different cats was greater than that found between sequential isolates from the
same cat. Isolate T 91 differed from the three other Australian isolates, DC91,
N91, and S90 with 90.3%, 88.6%, and 87.8% nucleotide sequence homology
in this env region, respectively.

The sequence variation in env was due to simple base substitutions with
many of these also causing amino acid changes. These tended to cluster within
the variable regions (Fig. 3) which had a high proportion of mutations leading
to amino acid changes (non-synonymous mutations) than the conserved regions.
Significantly, of nine nucleotide substitutions in or very near variable regions
of the T90-T 92 and 4.3/92 isolates (Fig. 2) seven (78%) were non-synonymous.
By contrast, only two of the five (40%) were non-synonymous in the conserved
framework regions of gp 120.

The base changes in T90-T 92 were found to be directional with no nu-
cleotide reversion to that of the original isolate. Thus all changes, once acquired,
were retained and this was also evident at the amino acid level (Fig. 3).

As was found for the nucleotide sequence, the amino acid homology was
much higher between virus isolated from the same cat at different times than
between virus isolated from different cats. T90 showed 99% amino acid ho-
mology with T 91, 98% with T 92, and 97% with 4.3/92. By contrast, the amino
acid sequence homology was 81-84% between the four Australian isolates
(DC91, N91, T91, and S90) shown in alignment with eleven other published
FIV env sequences (Fig. 4). The pattern of env amino acid variability found in
the Australian isolates was consistent with the recently proposed nomenclature
for FIV env variable regions [31]. The enwv region of the Australian isolates was
most closely related to the U.S. Petaluma isolate, U.K. 2 and 8 isolates, and
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a) gag Region (948-1370)
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b) pol Region (2425-3013)
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Fig. 2. Nucleotide sequence alignment of a gag p24, b pol RT, and ¢ env gp 120 gene

segments from sequential isolates of FIV (T 90, T91, T92) taken at yearly intervals from

a naturally infected cat. Also shown is 4.3/92 obtained 74 weeks postinfection of a naive
cat with the T 90 isolate. Asterisks indicate sequence identity with T90

V-1 V-1 V2
86
T90 DFDIATQLSEEGELNPGVNPFRVEGITEKEKQGYCTILOPRLODLRNE IQEVKLEEGNAGKFRRARFLRYSDETILSLIHLF IGYW
791 - v K--- e -
T92 - ——— K e -
4.3/92 -—- e e Ve
v

- 172
790 TYLCKONKLGSLRHDIDIEVLQEEHYHNKEKGETDNIKYGSRCLIGTMILYLLLFTGVI I Y SRTAQAQVVWRLPPLVVPVAESET T
TOL e —- R~ e e
792 - - -— R e Form e e Do
4.3/92 ———-—- SR R Gmmrmemm Do

Fig. 3. Comparison of deduced amino acid sequences of an N-terminal region of env gp 120
from sequential isolates of FIV. Dashes indicate sequence identity with FIV isolate T 90.
Bars denote variable domains according to [31]

the Swiss isolate Z 1 (80—-85% amino acid homologies) and most distant from
the Japanese isolates TM 1 and TM 2 (69-71% homology).

Discussion

We have examined the extent of genetic variation of FIV over time by directly
sequencing three regions of the genome: conserved domains of the gag and pol
genes and an N-terminal region of gp 120 in the env gene. These regions were
chosen because previous studies of lentiviral genomic variation have shown that
the major capsid protein and reverse transcriptase enzyme of gag and pol,
respectively, are highly conserved, whereas the env gene, and in particular the
hyper-variable regions of gp 120 are significantly more variable [5, 11, 14, 44].
A direct sequencing approach was chosen because as recently pointed out by

TET
*kk

23
AR
AAR
R
Rk
aEk
GTA
R
[2 T

233

€842

5587
TCA
S L)

*kk

AR

6674
GAG
Ak

rEK

kA K*

6761
ATA
khn
P

*k%



58 W. K. Greene etal.

V-1 V-1 V2
DE‘DIATQMNEEGPLNPGVNPFRVPG1TEKEKQDYCNILQPKLQDLRNEIQEVKLEEGNAGKE‘RRARFLRYSDETILSLIHLFIGYCSG
PET/34TF10(US) N RV---V-A
PET/FIV-14(US} 3 N V-——V-A————~
PPR (US) -—K b A AD = B R o e e R B T
TML {(JAP} e v SQm DR P —E ~K~~VEK-A~T Y NV-~IVY-T~=-1L
M2 {JAP) % QD e K e o e — B K VK = == T Y NY-=IVY-L-——L
19%k1/k32 (NETH) L I ) BT 2 R Y§~V-mF
%1 {SWITZ) N D T HY— e B e
22 {SWITZ) I IR K N
Wo (FRA) ————m I Amw=E GK-
UKZ (UE) I~L ]
UK8 (UK} I T A
DCY1 (AUS) ] T s T v
N31 (AUS) -5 V- PR GA~~H-R — e -
T91 {AUS) LS G
590 (AUS) ~L===P~—f=mmmm Vo T e e P Ko m—eR————K:
vz
1
TYLCNRNKLGsLRHDIDIEAPQEECYNNKEKGTTDNIKYGRRCCIGTVTLYLLLFTGVIIYLQTADAQWWRLPPLWPVEESEI1‘72
PET/34TPL0O I--G R Lo I V=G
PET/FIV-14 I--G R I I--I-I S—-TN
PPR Qe SR Qe L-—-AS I-—A-——G-TN-~I=m——m—m——————————
TM1 ~8 L S~F IM==I—=A-—G-W-.G-R————m = I~-DDT-——
™2 R-—IDHRS-- e G o Ly o e S=FIM——I--A——G—H—.G-R-——~———m————— DDT-——
19k1/k32 R--VD-K-F Y Moo sess e =LV = —AAF ~~~—~AL~I—-—I IR-V
Z1 I--G YR L I--I---V-5-—-G
72 —=——RK-E-————————— DEH =Y oo T e i, Py e e e L===AA=-~=w =I=I~-~=T—=TK F
Wo PH=~R=HE———=————— Ty R e DV e e e K——L=——AV—————, SL~I~=H..-CK
UK2 ———-K T-V-N B TA~-——-L——I-—-T--TQ
UKS8 -——L——KE SR-QSI KemF DG I--G---G--K
DCIl —--—-K-DR vV AREKK—w=5—~IR—A L-RG: A
N9l ] D ¥ I-——L-—-T~-I A
T91 §===KQ VIl B L-—-M SR—-0 A
590 I DR S~KD A Ty ———T' I-——SP—-Y A

Fig. 4. Comparison of deduced amino acid sequences of an N-terminal region of gp 120

from Australian isolates together with all published env sequences of FIV. Dashes indicate

identity with the consensus sequence and dots represent deletions. Bars denote variable

domains according to [31]. The geographic origins of the virus isolates are indicated in
parentheses

Uhlen and colleagues [49], studies of lentiviral quasispecies using PCR have
involved the time-consuming sequencing of many individual virus clones which
may be subject to errors introduced by Tag polymerase.

As found for other lentiviruses, the internal structural genes of gag and pol
appeared to incur substitutions at a much lower frequency than the env gene,
with a difference of at least an order of magnitude (~ 10~ ? substitutions/site/
year for env versus less than ~ 10~ * for gag and pol). Nevertheless, although
the sequential isolates from the same cat differed from one another in the order
of 0.5-1.5% at the nucleotide level in the env region, this difference was much
less than isolates from different cats (10-12% difference between Australian
isolates), which is similar to the situation found for HIV-1 [11]. Additionally,
within the env gene of FIV the mutations were generally confined to the variable
domains recently proposed by Pancino etal. [31].

Experimental infection of a second cat with the original viral isolate led to
a different pattern of nucleotide and hence amino acid sequence changes in the
env gene. This finding, along with the fact that both nucleotide and amino acid
substitutions appeared to be directional, provided evidence for host selective
pressures influencing the evolution of FIV env genes. Variation within the
variable domains of env is most probably the result of selection imposed by
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the immune response. Genetic variation thus appears to provide for antigenic
variation, as first indicated by studies with other non-primate lentiviruses such
as visna [4, 41], caprine arthritis-encephalitis virus (CAEV) [6] and EIAV [27,
407; and more recently by HIV-1 [21, 29, 37, 48].

The intrinsic mutation rates between gag, pol, and env genes are relatively
high because lentiviruses, like all retroviruses, replicate via an error-prone re-
verse transcriptase enzyme which has either limited or no proof-reading function
[45]. This, however, is not reflected in a rapid mutation rate in gag or pol of
progeny virus since many mutations in these critical genes are strongly disfa-
voured. By contrast, the envelope glycoproteins which are targeted by immune
response, appear to be subject to a positive selection for change. Such a phe-
nomenon has been well documented for HIV-1 and SIV env genes [2, 43]. In
this study, mutations in the variable domains of gp 120 resulted in an amino
acid substitution 78% (7 of 9) of the time compared with only 40% (2 of 5)
for the conserved domains. Thus as well as undergoing a greater number of
nucleotide changes, the variable regions were selectively subject to non-syn-
onymous mutations, presumably as a result of intense pressure by the immune
system. In support of this, a recent study has identified two immunogenic
epitopes within variable domains of FIV env glycoproteins [32].

Although the immune system appears to be an important selective mech-
anism in lentiviral env variation, it may not be the only selective force. For
example Johnson etal. [14] found significant variation in SIV env genes in
regions normally not exposed to the immune system. Moreover, only a transient
humoral response was observed. This is not surprising, however, since apart
from critical domains such as that responsible for CD 4-binding, the env gly-
coproteins appear to be pliable structures built upon a conserved structural
framework. They are, therefore, permissive to amino acid sequence changes in
regions (loops) which play little or no role in the structure of these molecules.
Another role for genetic variation in lentiviral env genes may be to allow rapid
adaptation to different environments by altering host or tissue tropisms. Indeed,
env variants of EIAV have been shown to home to different tissues, most likely
as a result of selection of tissue-specific determinants [15].

Collectively, the data in this paper reveals FIV to resemble other known
lentiviruses in terms of its rate and nature of sequence evolution, which suggests
that these viruses share a common mechanism(s) for genomic variation. This
together with the similar morphology, genomic organisation, cell tropism, and
disease pathogenesis between FIV and HIV-1 strengthens the usefulness of FIV
infection as a model for human AIDS.
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