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It was brought to our notice by Dr. 8. JAENISCH that Lemma 2
and the condition that Re[zf (z)] > 0 for entire functions f(z) with f'(2)
denoting the derivative of f(z) do not hold good thereby vitiating our
argument in a part of the proof of our Theorem B in [1]. This theorem
can however be reformulated as given below so as to obtain a counter-
part of Rajagopal’s theorem ([2], Theorem I).

Theorem. If f(2) is an entire function of lower order A0 <A< o)

then
lim inf log [4,*(r)]/4*(r)]/log » << A

o> w
log log 4,*
e log »
where A *(r) = Max. | Re[zf (2)] | and A*(r) = Max. | Re f(z) |.
|2 |=1r |2]|=r

The proof depends on deriving the two inequalities

log log 4,*
(a) lim inf - 1g() < A, (b) lim w>l
ogr log »

T > ®

with A(r) = [4,*(r)[4*(r)]. The inequality (a) is easily derived as on
page 247 in [1] above where we have to replace Max. Re 2f'(z) by 4,*(r)
with the steps preceding the inequality (5) being replaced by

A5(0) < 2 9(e,) A¥(e,) < 2 62 A%(e,)
where ¢ is arbitrary and the sequence {e,} is derived from the set

E n F where F denotes the set of points 7 which lie outside a set of
exceptional segments in which for » > R, the variation of log 7 is less
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than K »(R/k)~""* and E is the set defined as in [1], page 247. Now to
derive the inequality (b) we need the following lemmas.

Lemma 1. In the preceding notation A*(r) is an increasing convex
Junction of log r in the interval vy < r <7,

Proof. This follows easily since w(z) = | Re f(z) | is subharmonic
inD:ry<|z|=r<r and it is well known that max wu(z), for any

|g]=1r

subharmonic function % = u(z), is a convex funection of log 7.
Lemma 2. For r > 1,

Max | Rezf'(2) | > A*(r)/(log 7).

|2f=1r

Proof. With A*(r) = | Re f(re"®) |,
firé®) —fir(l —e) €& ")] l

| Rez f(2) | =

gref

Re [7" ¢ % lim

>0
Ref(re'®) — Ref(r(] — &) €9

£

im
e>0

lim A*¥(r) — A¥(r —reg)

v

e>0 €

g(r) log r — g(r —r¢) log (r —re)
m ;

g->0 &

log r —log (r — r &)

> g(r) lim
>0 &

— log (1 —

— gt tim —EE=0

>0

= g(r) = 4*(r)/log r.

In the above steps g{r) = A*(r)/logr, an increasing function of
log r by Lemma 1.

&

Lemma 3. For the entire function f(z) of order ¢ and lower order A we
have
%
lim §up@w:g (0<< A, 0 o).
r> o If log r A
Sinece
|a, | << 2 A*(r) < 2 Max | f(z) | = 2 M(r), n >0,

lej=r



Corrigendum and Addendum 71

we have, if y(r) is the maximum term in the power series for f(z) corres-
ponding to |z | =1,

p () << 2 A%0) < 2 M)
from which we derive
. log log A*(r)
lim sup =
> o log »

and similarly for the lower order A.
Proof of Theorem. Lemmas (2) and (3) yield
log log 4,*(r)

lim inf - > 2
r > log

which is inequality (b). Since inequality (a) is already established the
theorem is completely proved.

Our thanks are due to Dr. S. JAENISCH for his comments.
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