Corrigendum and Addendum to my Paper "On the Real Part of an Entire Function, Its Derivative and Its Lower Order"

By

T. V. Lakshminarasimhan, Madras, India

(Received May 10, 1968)

It was brought to our notice by Dr. S. JAENISCH that Lemma 2 and the condition that Re[zf'(z)] > 0 for entire functions f(z) with f'(z)denoting the derivative of f(z) do not hold good thereby vitiating our argument in a part of the proof of our Theorem B in [1]. This theorem can however be reformulated as given below so as to obtain a counterpart of Rajagopal's theorem ([2], Theorem I).

Theorem. If f(z) is an entire function of lower order $\lambda(0 \le \lambda \le \infty)$ then

 $\lim \inf \log \left[A_1^*(r)/A^*(r)\right]/\log r \leq \lambda$

$$\liminf_{r \to \infty} \frac{\log \log A_1^*(r)}{\log r} \ge \lambda$$

where $A_1^*(r) = \max_{|z| = r} |Re[zf'(z)]|$ and $A^*(r) = \max_{|z| = r} |Ref(z)|$.

The proof depends on deriving the two inequalities

(a)
$$\liminf_{r \to \infty} \frac{\log \lambda(r)}{\log r} \leq \lambda$$
, (b) $\liminf_{r \to \infty} \frac{\log \log A_1^*(r)}{\log r} \geq \lambda$

with $\lambda(r) = [A_1^*(r)/A^*(r)]$. The inequality (a) is easily derived as on page 247 in [1] above where we have to replace Max. Re zf'(z) by $A_1^*(r)$ with the steps preceding the inequality (5) being replaced by

$$A_1^*(r) \le 2 \ \nu(e_n) \ A^*(e_n) \le 2 \ e_n^{\lambda+\varepsilon} \ A^*(e_n)$$

where ε is arbitrary and the sequence $\{e_n\}$ is derived from the set $E \cap F$ where F denotes the set of points r which lie outside a set of exceptional segments in which for r > R, the variation of log r is less

than $K \nu(R/k)^{-1/12}$ and E is the set defined as in [1], page 247. Now to derive the inequality (b) we need the following lemmas.

Lemma 1. In the preceding notation $A^*(r)$ is an increasing convex function of log r in the interval $r_1 \leq r \leq r_2$.

Proof. This follows easily since u(z) = |Re/(z)| is subharmonic in $D: r_1 \le |z| = r \le r_2$ and it is well known that $\max_{|z|=r} u(z)$, for any subharmonic function $u \equiv u(z)$, is a convex function of log r.

Lemma 2. For
$$r > r_0$$

$$\max_{|z|=r} |\operatorname{Re} zf'(z)| \ge A^*(r)/(\log r).$$

$$|\operatorname{Proof. With} A^*(r) = |\operatorname{Re} f(re^{i\theta})|,$$

$$|\operatorname{Re} zf'(z)| = \left|\operatorname{Re} \left[r e^{i\theta} \lim_{\varepsilon \to 0} \frac{f(re^{i\theta}) - f(r(1-\varepsilon) e^{i\theta})}{\varepsilon r e^{i\theta}}\right]\right]$$

$$= \left|\lim_{\varepsilon \to 0} \frac{\operatorname{Re} f(re^{i\theta}) - \operatorname{Re} f(r(|-\varepsilon) e^{i\theta})}{\varepsilon}\right|$$

$$\ge \lim_{\varepsilon \to 0} \frac{A^*(r) - A^*(r-r\varepsilon)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{g(r) \log r - g(r-r\varepsilon) \log (r-r\varepsilon)}{\varepsilon}$$

$$\ge g(r) \lim_{\varepsilon \to 0} \frac{\log r - \log (r-r\varepsilon)}{\varepsilon}$$

$$= g(r) \lim_{\varepsilon \to 0} \frac{-\log (1-\varepsilon)}{\varepsilon}$$

$$= g(r) = A^*(r)/\log r.$$

In the above steps $g(r) = A^*(r)/\log r$, an increasing function of $\log r$ by Lemma 1.

Lemma 3. For the entire function f(z) of order ϱ and lower order λ we have

$$\lim_{r \to \infty} \frac{\sup_{r \to \infty} \frac{\log \log A^*(r)}{\log r} = \frac{\varrho}{\lambda} \quad (0 \le \lambda, \varrho \le \infty).$$

Since

$$|a_n| r^n \le 2 A^*(r) \le 2 \max_{\substack{|z|=r}} |f(z)| = 2 M(r), n > 0,$$

we have, if $\mu(r)$ is the maximum term in the power series for f(z) corresponding to |z| = r,

$$\mu$$
 (r) $\leq 2 A^*(r) \leq 2 M(r)$

from which we derive

$$\limsup_{r \to \infty} \frac{\log \log A^*(r)}{\log r} = \varrho$$

and similarly for the lower order λ .

Proof of Theorem. Lemmas (2) and (3) yield

$$\liminf_{r \to \infty} \frac{\log \log A_1^*(r)}{\log r} \ge \lambda$$

which is inequality (b). Since inequality (a) is already established the theorem is completely proved.

Our thanks are due to Dr. S. JAENISCH for his comments.

References

(1) LAKSHMINARASIMHAN, T. V.: On the real part of an entire function, its derivative and its lower order. Mh. Math. 70, 244-247 (1966).

(2) RAJAGOFAL, C. T.: On an asymptotic relation between an entire function, its derivative and their order. Mh. Math. 66, 339-345 (1962).

Department of Mathematics Madras Christian College Madras-59, India.