Corrigendum and Addendum to my Paper "On the Real Part of an Entire Function, Its Derivative and Its Lower Order"

By
T. V. Lakshminarasimhan, Madras, India
(Received May 10, 1968)

It was brought to our notice by Dr. S. Jaenisch that Lemma 2 and the condition that $\operatorname{Re}\left[z f^{\prime}(z)\right]>0$ for entire functions $f(z)$ with $f^{\prime}(z)$ denoting the derivative of $f(z)$ do not hold good thereby vitiating our argument in a part of the proof of our Theorem B in [1]. This theorem can however be reformulated as given below so as to obtain a counterpart of Rajagopal's theorem ([2], Theorem I).

Theorem. If $\dagger(z)$ is an entire function of lower order $\lambda(0 \leq \lambda \leq \infty)$ then

$$
\begin{gathered}
\underset{r \rightarrow \infty}{\lim \inf } \log \left[A_{1}^{*}(r) / A^{*}(r)\right] / \log r \leq \lambda \\
\underset{r \rightarrow \infty}{\lim \inf } \frac{\log \log A_{1}^{*}(r)}{\log r} \geq \lambda
\end{gathered}
$$

where $A_{1}{ }^{*}(r)=\underset{|z|=r}{\operatorname{Max} .}\left|\operatorname{Re}\left[z f^{\prime}(z)\right]\right|$ and $A^{*}(r)=\underset{|z|=r}{\operatorname{Max}}|\operatorname{Re} f(z)|$.
The proof depends on deriving the two inequalities

$$
\text { (a) } \liminf _{r \rightarrow \infty} \frac{\log \lambda(r)}{\log r} \leq \lambda \text {, (b) } \liminf _{r \rightarrow \infty} \frac{\log \log A_{1} *(r)}{\log r} \geq \lambda
$$

with $\lambda(r)=\left[A_{1}^{*}(r) / A^{*}(r)\right]$. The inequality (a) is easily derived as on page 247 in [1] above where we have to replace Max. Re $z j^{\prime}(z)$ by $A_{1}{ }^{*}(r)$ with the steps preceding the inequality (5) being replaced by

$$
A_{1}^{*}(r) \leq 2 \nu\left(e_{n}\right) A^{*}\left(e_{n}\right) \leq 2 e_{n}^{\lambda+\varepsilon} A^{*}\left(e_{n}\right)
$$

where ε is arbitrary and the sequence $\left\{e_{n}\right\}$ is derived from the set $E \cap F$ where F denotes the set of points r which lie outside a set of exceptional segments in which for $r>R$, the variation of $\log r$ is less
than $K v(R / k)^{-1 / 12}$ and E is the set defined as in [1], page 247. Now to derive the inequality (b) we need the following lemmas.

Lemma 1. In the preceding notation $A^{*}(r)$ is an increasing convex function of $\log r$ in the interval $r_{1} \leq r \leq r_{2}$.

Proof. This follows easily since $u(z)=\mid$ Re $f(z) \mid$ is subharmonic in $D: r_{1} \leq|z|=r \leq r_{2}$ and it is well known that $\max u(z)$, for any $|z|=r$
subharmonic function $u \equiv u(z)$, is a convex function of $\log r$.
Lemma 2. For $r>r_{0}$

$$
\operatorname{Max}_{|z|=r}\left|\operatorname{Re} z f^{\prime}(z)\right| \geq A^{*}(r) /(\log r)
$$

Proof. With $A^{*}(r)=\left|\operatorname{Re} f\left(r e^{i \theta}\right)\right|$,

$$
\begin{aligned}
\left|\operatorname{Re} z f^{\prime}(z)\right| & =\left|\operatorname{Re}\left[r e^{i \theta} \lim _{\varepsilon \rightarrow 0} \frac{f\left(r e^{i \theta}\right)-f\left(r(1-\varepsilon) e^{i \theta}\right)}{\varepsilon r e^{i \theta}}\right]\right| \\
& =\left|\lim _{\varepsilon \rightarrow 0} \frac{R e f\left(r e^{i \theta}\right)-R e f\left(r(\mid-\varepsilon) e^{i \theta}\right)}{\varepsilon}\right| \\
& \geq \lim _{\varepsilon \rightarrow 0} \frac{A^{*}(r)-A^{*}(r-r \varepsilon)}{\varepsilon} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{g(r) \log r-g(r-r \varepsilon) \log (r-r \varepsilon)}{\varepsilon} \\
& \geq g(r) \lim _{\varepsilon \rightarrow 0} \frac{\log r-\log (r-r \varepsilon)}{\varepsilon} \\
& =g(r) \lim _{\varepsilon \rightarrow 0} \frac{-\log (1-\varepsilon)}{\varepsilon} \\
& =g(r)=A^{*}(r) / \log r .
\end{aligned}
$$

In the above steps $g(r)=A^{*}(r) / \log r$, an increasing function of $\log r$ by Lemma 1.

Lemma 3. For the entire function $f(z)$ of order ϱ and lower order λ we have

$$
\lim _{r \rightarrow \infty} \sup \frac{\log \log A^{*}(r)}{\log r}=\frac{\varrho}{\lambda} \quad(0 \leq \lambda, \varrho \leq \infty)
$$

Since

$$
\left|a_{n}\right| r^{n} \leq 2 A^{*}(r) \leq 2 \underset{|z|=r}{2 \operatorname{Max}_{\mid c}|f(z)|=2 M(r), n>0}
$$

we have, if $\mu(r)$ is the maximum term in the power series for $f(z)$ corresponding to $|z|=r$,

$$
\mu(r) \leq 2 A^{*}(r) \leq 2 M(r)
$$

from which we derive

$$
\limsup _{r \rightarrow \infty} \frac{\log \log A^{*}(r)}{\log r}=\varrho
$$

and similarly for the lower order λ.
Proof of Theorem. Lemmas (2) and (3) yield

$$
\liminf _{r \rightarrow \infty} \frac{\log \log A_{1}^{*}(r)}{\log r} \geq \lambda
$$

which is inequality (b). Since inequality (a) is already established the theorem is completely proved.

Our thanks are due to D_{r}. S. Jaenisch for his comments.

References

(1) Laksiminarasimban, T. V.: On the real part of an entire function, its derivative and its lower order. Mh. Math. 70, 244-247 (1986).
(2) Rajagopal, C. T.: On an asymptotic relation between an entire function, its derivative and their order. Mh. Math. 66, 339-345 (1962).

Department of Mathematics
Madras Christian College
Madras-59, India.

