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Infinite-Dimensional Diffusion Processes 
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Summary. An infinite lattice system of interacting diffusion processes is 
characterized as a Gibbs distribution on C[O, 1] zd with continuous local 
conditional probabilities. Using estimates for the Vasserstein metric on 
C[0, 1], Dobrushin's contraction technique is applied in order to obtain 
information about macroscopic properties of the entire diffusion process. 

I. Introduction 

Consider the infinite-dimensional diffusion process X = (XI, 0 < t < 1)i ~ ~ satisfying 

dX I =- bi(Xt, t)dt + d W/ (i ~ I) 

X o ,,~# 

where I is some countable set, (Wi)i~i is a collection of independent real-valued 
Wiener processes and # a distribution on ]R*. In the time-homogeneous case and 
under some bounds on the interaction in the drift terms, reversible equilibrium 
distributions of the process can be described as Gibbs measures on F,J whose 
interaction potential is determined by the drifts (bi)i~1, cf. e.g. Doss-Royer [7], Fritz 
[10], or F611mer-Wakolbinger [9] for the non-reversibel case. 

Here our approach will be different. We shall view the law Q of the entire 
process as a Gibbs measure with state space C[0, 1] and apply Dobrushin's 
contraction technique to the system of local conditional probabilities (Qi( ]x))i~ t 
in order to obtain information about the macroscopic properties of Q. In a first 
paper [5], the infinite-dimensional smoothing problem of computing the con- 
ditional distributions is solved in a robust form for local gradient drifts. Using the 
explicit form of the conditional density given in [5], we shall now estimate the 
Dobrushin coefficients 

i X  i } f R(Q ( I ) ,Q( Ix ) )  
ck'i: = s u p ~  ~X~ Z~-~I I :xJ=_~J , j*k  
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with respect to the Vasserstein metric R(,) on C[0, 1]. This allows us to give 
bounds for the interaction of the drifts and initial measure in such a way that 
Dobrushin's uniqueness condition 

sup ~ C k'i < 1 
i k * i  

is fulfilled. Applying Dobrushin's contraction technique et al., cf. [6], we shall 
obtain conditions which guarantee the uniqueness of Q, the exponential decay of 
correlations and the central limit theorem for Lipschitz continuous functions on 
C[0,1 ]z. In particular we can derive the distribution-valued stochastic differential 
equation associated to the Gaussian field of fluctuation in the sense of It6 [13], and 
Holley-Stroock [11]. 

A similar approach has been proposed independently for the pollaron problem 
by Spohn in [23]. 

In Sect. 2 we estimate the Dobrushin coefficients assuming that the conditional 
distributions are given by a smooth exponential family. In Sect. 3 bounds are 
stated for a gradient system in order to fulfill the uniqueness condition. Finally in 
Sect. 4 we recall a few applications of Dobrushin's contraction technique and 
determine the equation of the fluctuation field. 

2. The Vasserstein Metric of a Smooth Exponential Family 

Let 0 = C [ 0 , 1 ]  ~ be the countable product space of continuous real-valued 
functions on the interval [0, 1]. Denote by 

X=(X~,O<=t< l)i~I 

the coordinates on f2 and by f f  = (~ ,  0__< t < 1) the canonical filtration. We shall 
consider a measure Q on (O, ~-) as a random field and write Qi(IX) for the 
conditional probability of the ith coordinate X~= (X~, 0 < t < 1) with respect to the 
a-field 

~ "  =a(X~, O<=t <= l ,k  * i). 

Let pi be the Wiener measure on C[0, 1] started offwith an initial distribution 
2 i where we shall assume, that the function 

Az(p,K): = inf~lxi--ylPeKlx~--yl)~i(dxi)/~e-KIx~-Yl21(dx i) (2.1) 
yeN. 

is finite for all positive p and K. 
We shall say that the law Q*([X) is given by a smooth exponential family with 

respect to U, if there exist a finite neighborhood V(i) of i and a (Fr6chet-) 
differentiable function T i on C[0, 1] x C[0, 1] v(~ with bounded partial derivatives, 
denoted by DkTi(X i, X), such that 

Q~(dX~IX) = exp(T~(X ~, X))Z'(X) - 1U(dXZ) (2.2) 

with normalizing constant Zi(X)= ~ exp(Ti(X i, X))Pi(dXi). 
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Let 1] 1] be the supremum norm on C[O, 1], the Vasserstein metric of two 
probability measures P and P on C[O, 1] is then defined by 

R(P,P): =sup{lyfdP-$fdPl : 6 ( f ) <  1} 

with 6(f): = sup [ U ( X ) - f ( Y )  :X  :~ Y~ C [0, 1]~. 
(I IIx-  vii J 

Assuming that the Qi(Ix) ,  i e I, are of the form (2.2), the aim of this section is to 
compute estimates for the Dobrushin coefficients 

C k'i" su [R(Qi(IX),  Qi([2~)) j 4= k} 
= P l  ~ X ~ [ I  ' XJ=XJ '  (2.4) 

in terms of the function Az,(p, K) and of the bounds of the partial derivatives of km 

I [ D k ~ l i ] ] m  := sup  [[Dktlti(Xi, X)Nop ( O0 (k @ V(i)w{i}) 
X,  X i 

with I[DkT~(X ~, X)l]op: = sup ](DkT'i(X ~, X), h)]. 
llhll_<1 

At first we shall derive an estimate for the moments  of the condit ional  law 

M~" = sup inf EQ~(ix) [ [I X i - Y l/v] 1/v 
X Y 

for p > 1. Let (ff~, 0 __< t <  1) be the enlarged filtration 

~ r  ~, 

then it follows from the theory of the Girsanov transformation that there exist 
(ff~, 0_<_ t < 1)-adapted drift (6~, 0 = t__< 1) and Wiener process ( ~ ,  0__< t =_< 1), such 
that Q~(]X) is the law of 

dX~= ~dt  + dVVt i , 
�9 (2.7) 

x 'o-  fi'( IX), 

cf. Liptser-Shiryayev [18]. Rewriting the initial law of the conditional process in an 
exponential form with respect to 2~: 

fi'(dX~o]X) = exp (fi(X~o, X))W(X) - ~ 2~(dX~) (2.S) 

with fi(Xio, X) :=  log(Eft [exp (tpi(X i, X))]fr one can show by the chain rule that 
fi(xi, X) is differentiable in x i ~]R. More precisely we have: 

Lemma. (2.9) Qi( ]X) is the law of the stochastic differential equation (2.7) where the 
drift ~i and the derivative c~if i are uniformely bounded by 

]fi[[ ~ _-< s u p  ]Ditr/i(xi, x)((t, 1])[  = "][Di~sil]*~, 
t , X , X  i 

(2.10) 
II 0~fill ~ < II O3"'l[ oo. 

Proof. We follow an argument of Bismut and Michel Eli: Let 

i . _  Eei[exp(~i(xi ,  X ) ) ] ~ ] ,  M r . -  
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then since the density is locally bounded in LP(P~): 

Epi[exp(Ti(X i, X)) p] ~ c~ exp ( 2 pIIDkTi]I oo IlXkll'~ 
\ k  E V(i) / 

with c/p depending on [IDiTil] oo, cf. Lemma (2.6) in [5], by Clark's formula we have 

t 
i i i i Mr-  Mo + ~ hflX~ 

0 

with h~ = Ep,[exp(T~(X ', X))DiTi(X ~, X)((t, 1 ])lff~]. 
Hence the Girsanov transformation implies that 

dlPVti : = dX~-- 6~dt 

is a Wiener process under ((#i)-Qi(IX) with 

~ = h~/ M~ = E fi[exp(T~(X ~, X))D~ Ti(X ~, X)((t, l ])l(#~]/Epi[exp(T~)lffl] . 

This gives us the first bound. For the second, it suffices to apply the chain rule and 
to differentiate inside the expectation: 

oifi(x~, X)=Epi[exp(Ti(X i, X))DitIti(X i, X)([0, 1])]ff~]/Epi[exp(Ti)]ff~o] . [] 

Remark. (2.11) If the function T i is additive on the interval [0, 1], i.e. if for all 
t6 [0, 1] 

x)  =  ei(x', x )  + x )  

with ff~-measurable 7~ and (r = a(X~, t < s __< 1) v ~i-measurable Ti' t, then the 
drift of the conditional process is of the form 

~(X~ X, t)=Eei[exp(Ti'~)D~Ti't((t, 1])[a(X~) v ~i]/Epi[exp( Ti't)la(X~) v ~ ' ]  

by Markov property of P( This together with (2.7) imply that X ~ is a Markov 
process under Qi(IX). 

Corollary. (2.12) The moments of the conditional law are uniformly bounded in X 
with 

Mp(A~,(p, HDiTiHoD)I/p+ nDiTin* +qCp (p> 1). (2.13) 

Proof Q*(IX) being the law of the equation (2.7), we have by Doob's inequality 

Eo,( ix)[[IX ~- YolIP-la/"<E~,( ix)[IX~- YolP] vP + I]Ytl, + qEo,( IX)[] I?V~[P] 1/p 

Hence by (2.10) it suffices to show that 

sup inf f IX~ - YolP exp(f ' (x~,  X))2'(dX~o)/S exp(f ' (x~,  X))2'(dX~o) 
X Yo 

< Az(P, IIDiTill J .  

But this follows from the Lipschitz continuity of f i(x i, X) in x i and the definition of 
A~,. [] 
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The coefficients C k'~ will be now estimated by the mean value theorem, cf. 
Simon [22], Levin [16]. For fixed X and X in C[0, 1] vr let 

X ~ : = X + z ( 2 - X )  (0<z<1)  

be a path from X to 5~ in C[0,1] v~~ By the chain rule Ti(z): = Ti(xi, x ~) is 
differentiable in -c e l-0, 1] with 

f--~ Ti(z) = Z (DkTi(z), .~k-Xk) 
k e V( i )  

and 

~ ~(~) ~ E IIDk~llooli~k--xkll �9 
k e V( i )  

For a function f on C[0, 1] such that 6(f) < ~ put 

Qi(flX*) : = EQ, t Ix*)[f(Xi)] . 

Lemma. (2.15) The function Qi(f[X~) is differentiable in z e [0, 1] with 

d I { d~i(z)-Ee~t [ff~ Ti(z)]}] (2"16) dN Qi(flX~) = EQ,~ Ix') {f( Xi) -  f(Y)} dzz Ix*) 

for all Y in C[O, 1]. 

Proof. Since the density exp(Ti(xi, x~)) is locally bounded in LP(P i) we can 
differentiate in the expectation and obtain successively 

J~Zi(X~)= d ~ [exp(T~(z))dT~(z)] ~z Eei[exp(T (z))] =Eei 

and 

dQ~(fiX~) = d dzz Eei[f(x') exp (Ti(z))zi(x*) - ~3 

= evi l  f(Xi)exp( T'(.c))zi(x~)- l { d Ti(z)- eo,( ix~)[ d Ti(z)l} l .  17 

We have now the tools to prove the following estimates: 

Theorem. (2.17) Under assumption (2.2), the Vasserstein metric of any two 
conditional probabilities Qi( iX ) and Qi( i)~) ' X, X in C[0,1] v(~ satisfies 

R(Qi( Ix),o~( 1~7))_-< ~ ck'illxk--~klt (2.18) 
k e V( i )  

with 
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Proof By the definition (2.3) of the Vasserstein metric, the mean-value theorem and 
preceding lemma we have 

R(Q'(IX), Q'(12)) < sup sup d Q,(f]X,) 
~(f)--< 1 0--<~--<1 

__< sup infEeq Ix~) IX i -  gJI T~( ~)-  Ee,(Ix~) T~(z 
0_<z_<l Y 

Hence (2.14) and Schwarz's inequality imply (2.18) with 

Ck'~< sup inf{Eeqlx~)[HX~-yl[2] ~/2 
0_<v_<l 

• Ee,~ ix~[ Ii Ok Ti(z) -- Eo_q IX~)[Ok Ti(z)] 11 o~.] ~/~} 

<Mi21]PkTill~o. [] 

Remark. (2.20) i) From the proof one sees that I lDk Ti[I o0 can be replaced in (2.19) by 
a bound of the conditional variance of DkT~(X i, X): 

O-2(Dk t/ti). = sup Eeq ix)[ ]10 k T i ( x  i, X )  - El2, ( ix)[Dk ~Ji(Xi, X ) ]  ]l 2 ] ,  
x 

cf. Sect. III.3 of [3]. 
ii) If the conditional probabilities are given directly in terms of the Eq. (2.7) 

with smooth drift Y(X i, X, t) and function fi(Xi o, X), then one can derive the 
following estimate for the Dobrushin coefficients 

ck'~<exp(llD~B~ll JA'(2, IIc~if'll~)~/2[IDkf~ll ~ + [IDkYH oo, 

is again in L(C[0,1]I), 
probabilities (Qi( IX))i~i. 
condition we obtain: 

cf. [53. 
iii) Usually the Qi(IX), i e I, are determined only for Q almost all X. By 

inequality (2.18) one can use the completeness of J/I(C[0, 1]) with respect to the 
Vasserstein metric and extend the definition of the Q~(IX) to all X. 

Let L(C[0, 1] I) be the class of Lipschitz continuous functions f on C[0, 1] I 
satisfying 

[ f (X)-  f(Y)l< ~ fit(f)II x ~ -  Y'II, ~ j~(f)< co 
iel iel 

f [ f ( X ) - f ( Y )  :xk= t where 6~(f)" = sup ] ~ yk, k ~ i j  is the oscillation of f at i. If for 

each f e  L(C[0, 1] I) and i ~ I, the function 

X--+S fdQi( IX) 

then Q is called Gibbs measure with conditional 
Since the inequality (2.18) implies this continuity 

Corollary. (2.21) Under assumption (2.2), Q is a Gibbs measure with conditional 
probabilities (Qi( [x))i~1. 
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In the next section we shall apply our result to smooth gradient systems of finite 
range. The following example, taken from F611mer-Walkolbinger [9], provides an 
other illustration of the Gibbsian approach to infinite-dimensional diffusion 
processes: 

Example. (2.22) Let Q be the distribution of an infinite-dimensional Wiener process 
conditioned to have terminal distribution v at time 1: 

Q = ~ P,v(dy) 
Rx 

with PY : = H pr ,  where PY~ is the law of a one-dimensional Brownian bridge 
i e l  

leading from 0 at time 0 to y~ at time 1. Using time reversal, one can determine the 
stochastic differential equation satisfied by (X~, 0 < t < 1), cf. [91. The conditional 
probability Q~(IX) is simply the law of a Brownian motion constrained to have 
terminal distribution vi( [XJ. If the V([X~) are given by 

v'(dX] IX~) = exp(f~(X], X O)Z~(X O- ~dQ i 

with smooth f i  on IR x N~ N(~ IN(/)I < 0% and r = N(0, 1), the standard normal law, 
then Qi(IX) depends only on finitely many X], k t N(i), and is of the form (2.1) with 
7J~(X i, X)=f i (X~,  X~). Hence the Qi(IX), i t  I, fulfill a (spatial) Markov property 
whereas the drifts of the global forward description are not local. 

3. Dobrushin's Uniqueness Condition for Gradient Systems 

Consider the probability measure Q on (C[0,1]r,@) of a diffusion process 
(XI, 0 =<_ t < 1)i~ 1 satisfying 

dX~-- bi(X,, t)dt + dWt ~ (i e I), 
(3.1) 

Xo,-~ # 

where (Wt i, 0 < t < I)i~ i is a collection of independent Wiener processes and # is a 
distribution on IR I which is tempered in the following sense 

sup Eu[IXio - yi[2] < oo 
i 

for a fixed (y~)~ with ~ ( t  +li[)-2Plfil2 < oo for some p > l .  Let (9 be the class of 
i 

finite subsets of I. We assume the following conditions: 
[A.1] The drifts (bi)i~i are given by a smooth gradient system of the form 

bi(x, t) = 8iH~(x, t), Hi(x, t) = 2 B~4( x, t) (i e I) 
M : i ~ M  

where (B ~ : M t (9) is a potential of finite range, i.e. a family of smooth functions 
with bounded derivatives on IR~x [-0, 1 l, such that for each i t  I the set 

N(i) : = {k 4 = i[SiBM(x, t)~O and 8kBM(x, t)g~O for some M t (9} 
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is finite. Moreover we have 

sup ~ ]J 6hi63kBM II ~ < 0(3 
i keN(i)u{i} 

[A.2] The conditional laws of the initial distribution (pi( iXo))i~x are given by 
a smooth exponential family with respect to a measure 2 i satisfying (2.1): 

ff(dX~lXo) = exp(fi(Xio, Xo))Zi(Xo)- 12i(dX~) (i e I) 

where f i  is a real smooth function on R • R u(i) with bounded derivatives. 
Under  these conditions the system (3.1) has a unique tempered solution 

satisfying 

sup E a [ 11Xi - yi H 2] < 
i 

for a fixed tempered (yi)i ~ ~ with ~ (1 + 1i[)- 2e [r yi I[ 2 < ~ for some p > 1, cf Shiga- 

Shimizu 1-20]. 
Let N2(i) denote the second order neighborhood of i 

N2(i): = N(i) U N ( k ) -  {i} 
keN(i) 

and define a smooth function gi with bounded derivatives on R x RN2(i) • 1-0, 1] by 

gi(x, t): = cltHi(x, t) + Z {b~(x, t)61kHi(x, t) 
keN(i)w{i} 

+ 1/2c92Hi(x, t)+ 1/2(~k Hi(x, 0) 2} (3.3) 

with ~(x, t): = bk(x, t)-- O,Hi(x, t) = ~ C~kBU(x, t). 
M:k~M,  iCM 

Then for each i e I  the conditional probability Qi(IX) is given by a smooth 
exponential family of the form (2.1) with respect to the Wiener measure pi on 
C[0, 1] with additive ~i 

1 
Ti(X i, X): = Hi(X~, i i X1, l ) - Ig(X, ,X , , t )d t+f ' (X~o,  Xo)-H'(X~o, Xo, O) (3.4) 

0 

cf. Proposition (2.3) of [5]. 
By the preceding section, Q is a Gibbs measure with conditional probabilities 

(Qi( IX))i~l depending on finitely many X k, k e N2(/). Hence a local interaction for 
the drifts and initial measure in Eq. (3.1) implies the (spatial) Markov property of 
Q. Note that this is not a necessary condition, cf. example (2.12). 

Remark. (3.5) i) We need here a gradient system for the drifts in order to obtain the 
continuity of the conditional density exp(Ti(x ~, X)) in X with respect to the norm 
II I1, cf. Remark (2.5) of [5]. Otherwise, for f~L(C[O, 1]t), the function 

X-~I  fdQi( IX) 

is not in L(C[O, 1] *) and we cannot apply Dobrushin's technique. 
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ii) More generally the finite-dimensional conditional probabilities 
Q~t( ]X r-  M), M C I finite, have also a smooth exponential form with respect to the 
product Wiener measure p~t on C[0, 1] M, cf. Sect. II.3 of [3]. 

iii) If we introduce diffusion coefficients ai(x i) to our system (3.1): 

dX~ = bi(Xv t)dt + ai(Xl)d Wt i (i ~ I) 

then the Q~(IX), i~ I, are still of the form (2.1). The Wiener measure pi has to be 
replaced by the law of the martingale X ~ satisfying 

i i i i dX,  = a (X,)dW, , 

cf. [5]. 
Using the estimates of the Dobrushin coefficients C k" i computed in Sect. 2, we 

shall now bound the interaction of the drifts and conditional initial measures in 
such a way that Dobrushin's uniqueness condition 

sup Z ck'i < I (3.6) 
i k ~ i  

is fulfilled. We restrict ourself to pair interaction, i.e. 

and 

BM----0 for IM[>2 

fi(xi,  x ) : =  ~ fi'k(xi, xk) 
keN(i )  

in order to simplify the computation. The method can be applied to the general 
gradient case as well. 

Let us associate the bounds 7, fl, a2, and N ~ I R  + to our systems (bi)i~1 and 
(~;( IXo))~,: 

[B.I] 7 for the self-interaction: 

sup lla~0iBiklo~<? and sup lL01")Bilko~< ? for n=1 ,2 ,3  
i i 

[B.2] fl for the pair-interaction: 

sup ilc3ifi'kll~o V IIC~kfi'klLoo <[3, sup IIC~taiBi'kH~ V IhC3 fkBi'k[I ~ <[3 
i ,k i ,k  

and 

[B.3] 

sup HO~")O(k")Bi'kl] oo < fi 
i , k  

a 2 for the variance of 2i: 

sup var(2 i) < o -2 
i 

[B.4] N for the range: 

sup IN(i)[ < N.  
i 

for n + m = l , 2 , 3  
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Moreover let v be the symmetric exponential distribution with variance o-2: 

v(dx) = 1/(~f2~) e x p ( -  ~//2/a[x])dx, 

then we shall assume that 

sup A~,(2, K) < A,(2, K) 
i 

= f x a exp((K - 2~) [xJ )dx /~  e x p ( - ( K  + ~ ) [ x [ ) d x  

1 +K /1/2 
(1  - 3 

In terms of these bounds we have: 

Lemma. (3.7) The following estimates hold 

sup p[ 8 i l l  i[I co < 7 "-b Nfl 
i 

sup Z HSkHillo~<Nfl 
i k~=i 

sup 110ig irl o~ < 2(Nil) 2 + 2Nil + 3N[37 + 3/27 + ?2 = .pl(Nfl, ~) 
i 

sup Z ]J 8kg ill ~ < Nfl(4Nfl + 2 + 37) = :p2(Nfl, 7). 
i k ~ i  

Proof In the pair interactive case we have 

Hi(x i, x, t) = Bi(x i, t) + Z Bi'k( xi, xk, t) 
thus keN(i) 

8iHi=OiBi+ ~ 8i Bi'k and 8kHi=OkB i'k 
keN(i )  

which gives the two first bounds. Rewriting gi we have 

gi=8tBi+ E c~t Bi'k + E (~''SkBi'k + l/282Bi'k + l/2(SkBi'k) 2) 
keN( i )  keN( i )  

+ l/2O~Bi+ l/2 E 8~Bi'k+ l/2(8, Bi+ E 8iBi'k) 2 
k s N(i) k e N(i) 

with ~ = t~kBk-'} - ~ Ok Bk'j independent of x i. Hence 
j e N ( k ) , j * i  

81gi=SiStBi+ ~ 8iStBi'k + ~ (~kOiOkBi'k +1/28i82Bi'k +8iOkBi'kOkBi'k) 
k e N(i) k ~ N(i) 

2 i 2 i ,k  i +1/2c~3Bi+1/2 E c3~B"k+(Oi B +  ~, c~iB "](OiB + Y c~i Bi'k ) k e N(i) \ k ~ N(i) / \ k ~ U(i) 

implying the third bound. On the other hand we have 

i__  i ,k  i ,k  L~ 2 i ,k  3 i ,k  2 i k i k ~3kg --~katB +~k~k~3k B +b OkB +1/28kB +t~kB' OkB' + 1/2t~k~iB i'k 

+SiC~kBi'k{8~ Bi+ ~ 8iBi'k) + Z 8kBjBJ'koi Bi'j 
keN( i )  J jeN(k)c~N(i) 

with Ok~ = 82B k + Y, ~2nk, j ~k~ for k ~ N(i) 
j e N ( k ) , j : ~ i  
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and 

Cqkg'= ~ akOjBk'Jr~jB ''j for keN2(i)-N(i)w{i} 
j e  N(k)nN(i) 

Hence we obtain the last bound with 

sup • II Okg'll o o  < (4N 2 -  2N)fl 2 + 2Nil + 3N 7 < p2(Nfl, 7). 
i k:~i 

Now by the explicit form (3.4) of the function Ti we have 

Dk'P'(X ~, X)(ds) = akH~(X~, X ,, l)a l(dS ) - Okgi(Xis, Xs, s)ds 

+ (akf'(X~, Xo)-- akH'(X~, X o, O))6o(ds) for 

and 

[] 

keN(i)w{i} 

DkT'(xi, x)(ds)= --~kgi(X~,Xs, s)ds for keN2(i ) -  N(i)w{i}. 

This together with (3.8) imply the bounds 

llDiT i[I m < 211 c3iH ill m 4- H c3ig ill ~o + ~ 1[ c3kfi 'k 110o < 3Nil + 27 + p 1(Nil, 7), 
k e N(i) 

I[DiTill*~ < II0iH~H ~ + H#~g~ll ~ <Nfi+y +pl(Nfi,7), (3.9) 

Z IIDWql ~ < Y, 211~kH~ll ~ + II~g~lL m + II~kf~'~ll | < 3Nil + p2(Nfl, 7). 
k4:i k~ i  

Using the estimates (2.19) and (2.13) for p = 2  we finally obtain 

sup ~ ck'~<r(nfl, y,a) (3.10) 
i k4:i 

with 

r(Nfl, 7, a): = [o- (1__+ (3Nil + 27 + p 1(Nil, 7))a/]/2)1/~ 
L (1 - (3Nil + 27 + pl(Nfl, 7))o'/]~) 3/2 

+ Nfl + 7 + Pl(gfl, 7) + 2]. [3Nil + p2(Nfl, 7)-] 

For fixed 7 and er < 1/~/(7/27 + 72), let fl* = fi*(?, a) be the smallest positive root of 
the equation 

r(fl*, 7, ~ ) -  1 = 0 .  (3.11) 

Since r(x, 7, a) is continuous and monoton increasing in x with 

r(0, 7, o-) -= 0, 

fl* is strictly positive. Therefore we have shown: 

Theorem. (3.12) Suppose we can associate the bounds [B.I]-[B.4] to our gradient 
system (3.1), then for all 7 and a<1/2/(7/27+72) we can find a fl*=fi*(y,a)>O 
solution of the equation (3.t 1) such that the condition (3.6) holds if fl<fl*(?, a)/N. 
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Remark. (3.13) If the process (X~, 0 < t < 1)~i starts off with a deterministic law, then 
r(x, 7) reduces to a polynomial of 4 t~ grade: 

r(x, 7) = (x + ? + Pl( x, 7) + 2) (x + P2(X, ?)) 

= 8x 4 + 18(1 + 7)x 3 + (1372 + 187 + 17)x 2 + 3(1 + 7) (72 + 5/27 + 2)x 

and Eq. (3.11) can be explicitely solved. 

4. Exponential Decay of  Correlations and Central Limit Theorem 

In the preceding sections we have shown that, under conditions [A.1] and [A.2], 
the law Q of the diffusion (3.1) can be viewed as a Gibbs measure, tempered in the 
sense of (3.2). 

Moreover we have stated conditions on the bounds [B.1]-[B.4] which 
guarantee Dobrushin's uniqueness condition: 

sup Z C k ' i < l .  (3.6) 
i k * i  

We can now apply Dobrushin's contraction technique in order to derive the 
exponential decay of correlations and the central limit theorem for functions of the 
class L(C[0, 1It). 

In this section we shall suppose that the interaction of the drifts (bl)i~z and 
initial measure ~ satisfies the condition of Theorem (3.12) such that (3.6) holds. The 
first result due to Dobrushin [6] is the unicity of Q. More precisely, let 
G((Qi([X))iei) be the set of tempered distributions ~ on (C[0, 11I,~ -) such that, for 
all i e I 

~i( IX)= Qi(IX) 0~ almost surely. 

Proposition. (4.2) (Dobrushin)  Under conditions (3.2) and (3.6), the measure Q is 
uniquely determined by its conditional probabilities (Qi( [x))i~i, i.e. 
IG((Qi( IX))i~i) ] = 1. 

Remark. (4.3) i) It is important to restrict one self to tempered distributions. In 
general there exist non-tempered distributions satisfying (4.1). 

ii) In the Gaussian case conditions (3.6) is sharp, i.e. one can construct a 
diffusion process with linear interaction with sup Y~ Ck'~=l such that 
t G ( ( Q i (  IX) ) i~7) l  = ~ "  In example (2.22) take i k * i  

v'( IX1)=N( 2 a~X~+k, 1) for I = Z  ~. 
\k*O / 

In this case the Dobrushin coefficients C k' i reduce to [a k- i[. Choosing the a k, k + O, 
such that 

Z lakr =1 
k*O 

for d > 3 implies a phase transition for v, cf. Kfinsch [141 which is equivalent to a 
phase transition for Q, cf. also Sect. III.7 of [-3]. 
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Let D = (D k' i) denotes the sum ~ C" of the powers of C and define the constant 
n = 0  

s2: =sup  [i fs llx'- rlh2Q'(dXqX)] 

Then by Theorem (3.7) of F611mer [8], the following estimate holds 

Icove (f, g)l < s2 Z 6,(f) Oi'kfk(g) (f, g e L(C[0, 13')), 
i,k 

see also Kiinsch [15] and Gross [12]. Let 1= Z a be the d-dimensional lattice and 
let 0' be the usual shift on C[0, 1] I, i.e. (O~X)k=X~+k. Consider a translation 
invariant metric d(,) on 1 such that 

(: =sup y~ ed(k'OCk'i< 1. (4.5) 

Then by Corollary (1.7) of [-8] the correlations decay exponentially: 

Proposition. (4.6) I f  ~ < 1 then 

Elcove(f,g'Oe)lea"'~ (f,g~L(CI-0,1] I) 
i 

with Hfll0: = ~ ea"'~ 

The rest of this section is devoted to the derivation of the central limit theorem 
and the equation of the fluctuation field. We shall assume from now on that the 
drifts (b~)~z, I = Z d, and the initial distribution # are translation invariant under the 
shift (O~)k~1, i.e. bi+k=b~.O k and # = # . 0  -k for all i, kEI, which implies under 
uniqueness the translation invariance of the measure Q and its conditional 
probabilities (Qi( iX))~z. Moreover C k'i depends only on the difference k - i  and 
condition (3.6) becomes 

C k < l .  
k#O 

For a function f in L(C[0, 13 x) let 

S*(f):=IV,] -tIe Z {f" Oi-Eo[f]}  
i~Vn 

where V, is the cube [ - n ,  n]d in Z ~. Since the Qi(IX) are of finite range we have 

~, Cklkla < o~ (4.7) 
k + 0  

and we can apply the central limit theorem of Kiinsch [16], see also Bolthausen 
E2l: 

Theorem. (4.8) Under conditions (3.2), (3.6), and (4.7), the distribution of S*(f) 
converges for f ~ L(C[O, 1] I) to the centered normal law of variance 

az(f) :=  E COVe(f,f'O~) >0 .  (4.9) 
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Let 5~(N v") be the Schwarz space of all rapidly decreasing smooth functions on ]R v" 
and 5z'(R v") be the space of tempered distributions. Put 5P~ : = @ 5P(R v") for the 

n=>0 

direct sum viewed as a nuclear space, cf. Yamazaki [24], and 5#L : = @ 5~'0R v") 
for the dual. We define the b~ process ,>=o 

by 

Yr = (Yt(")(r 0 _-< t_-< 1) r  

V")(r = s*(r (4.1o) 

Since 5z~o CL(C[0, 1] I) with 

Ir Y tl kClXo lxk--Ykr for 
k e V m  

a multi-dimensional version of Theorem (4.8) implies that, for all t 1 . . . .  , tk ~ [0, 1] 
and r Ck~SZ~, the vector tY~") v-t,)~ converges in law to a centered ---7 \ t l  ~" "'7 ~tk 1 

Gaussian vector. More precisely: 

Proposition. (4.12) The process Y(") converges in law to a continuous 5Z~-valued 
Gaussian process Y =  (Ydr 0 < t <_ 1)r ~ ~ ~ with variance 

= Z covdC(x0, r ~ 
k e I  

Proof  Since all finite-dimensional marginal distributions converge it suffices to 
show the tightness of the laws of Y(')((o), n ~ N, for each r ~ 5Q, cf. Theorem 5.3 of 
Mitoma [19]. But this follows from inequality (4.11)7 cf. Proposition 5.4 of 
[193. []  

From now on suppose that b ig  .) e 5P(]R x Rmi)), iN(/)] < co. Let Lt and O be the 
linear operators from 9~ to 5P  defined by 

L,r = E bk( x, t)Okr + 1/2~r 
k e V ~  

(4A3) 
Dr E (~kr for Cedz(~v, , ) .  

k e V m  

We can derive the following 5zo~-valued stochastic differential equation for the 
fluctuation field (Yt, 0 =< t _< 1)7 cf. It6 [ 13]: 

Proposition. (4.14) The process ( Yt, 0 <= t <= 1) satisfies the linear stochastic differential 
equation 

dY~(r = YdLtdp)dt + dBt(Dr 
Yo(r ~ N(0, a~(r (r e 5~o) (4.15) 

where B=(Bt(dp),O<=t<=l)4,~ ~ is a 5~-valued Wiener process with quadratic 
variation 

(B(q~))t = i Eq[(r ds" 
0 
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Proof. Let q5 e 5a(lRV"), then by Ith's formula we have 

Yt(")(q ~1 - Yo(")(q 5) - i Y~(")(L~dp)ds = MI")(r 
0 

where (M}")(~b), 0 =< t < 1) is the martingale 
t 

MI")((O'=IV.1-1/2 Y. Z $(G4)Oil(XOd~ k+' 
i e V ~  keVrn  0 

Since Ltq5 is in SPo o the L.H.S. of (4.16) converges in taw to 

t 

g~(,~)- Yo(4)- I ~(G4))ds 
0 

by Proposition (4.12). On the other hand, by ergodic theorem we have 
t 

lim ( M( n ) ( ( 9 ) ) t  = lim I~1-1 Z f(D~b) 2"0i(X~) ds 
n~oo n-->oo i~Vn 0 

t 

= ~ Ee[(Oqg(Xs))2]ds Q.a.s. 
0 

which implies the convergence in law of the R.H.S. of (4.16) to BdDch), cf. Shiryayev 
[203. [] 

Remark. (4.17) i) If we simply take q~ in 5e(lR), then we have 

d Yt( (a ) = Y~(Ltdp)dt + dBt( dp') 

t 

with ( B(dp) )t = i Eo.[(~b(X~ ds = ~ ~ (dP(x))2G(x)dx ds where pt(x) is the density of 
0 O R  

the law of X ~ In this case the Wiener process B can be represented as a stochastic 
integral with respect to a Brownian sheet, cf. [4]. 

ii) Let (T~,t, 0 <- s <_ t <_ 1) be the semigroup associated to (Xt, 0_< t =< 1): 

T..,~(X.): = ~e[ r  

then the solution of the equation (4.15) is given by 

t 

Yt((a) = Yo(To,tO)+ ~ dBs(D(T~,,~)) 
0 

cf. Holley-Stroock [1 I]. From this explicit form one can easily see that the variance 

t 

a{(~ b) = r + S EQ[(D(T~,/?))2]ds 
0 

is strictly positive whenever II G~ l[ ~ ~= 0 for some k e I. 
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