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Summary. The paper obtains bounds on the Hausdorff and packing measures 
of the image X(E) ofa  Borel set E by a transient strictly stable process X t which 
a.s. hold for all E and for every measure function h,,~(s)= J]logsl ~. In" some 
cases examples are constructed to show that the bounds are sharp. 

Introduction 

In this paper we consider not only Brownian motion in N a (d > 2), but also strictly 
stable processes X(t) of index e in IRa (e < d). Our object is to explore connections 
between the measure properties of a Borel set E contained in a compact interval 
and those of its image X(E) on the sample trajectory. Whenever E is a fixed subset 
such results were obtained first by McKean [10] if X is a Brownian motion and 
then by Blumenthal and Getoor  [-1] for strictly stable X. These early methods are 
not valid whenever E is a random set depending on the process. The only effective 
way of attacking the problem for such sets is to seek results which are a.s. valid 
simultaneously for every Borel set E C [0, M]. Hausdorff  dimension is the most 
studied fractal index, so the first natural result is to show that for a fixed stable 
process of index e in N d 

a.s. dimX(E)=c~dimE for every Borel E,  (0.1) 

where d i m e  stands for the Hausdorff dimension of E. 
When e = 2 and X is Brownian motion, (0.1) was first proved by Kaufman [8]: 

it was extended to all strictly stable X by Hawkes and Pruitt  [6]. We note that not 
all independent increment processes in IR d(d > 2) have an index e which makes (0.1) 
valid: the first counterexample is due to Hendricks [7]. 

* While preparing this paper, the author was partially supported by NSERC and by NSF on contract 
:~DMS-8317815 
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Within a given Hausdorff dimension fi we can obtain more precise information 
about the size of a set by considering its Hausdorff measure with respect to 

for real numbers 7. More precise results of this kind for a fixed set E and a 
subordinator X were obtained by Hawkes [21]. Our object in this paper is to 
search for the best possible uniform comparison theorems which will imply that for 
a fixed strictly stable X of index e, a.s. 

h~p,~l-m(X(E))<Co.lhp,~-m(E ) for all 7e~,fle(0,1), Borel E (0.2) 

h,p,~2-m(X(E))>Co.2hp,~-m(E ) for all 7elR, fl~(0,1), Borel E (0.3) 

for some known functions 7i = 7i(fl, 7), i= 1,2. 
Such results were obtained by Kaufman [8] for planar Brownian motion. Our 

Theorem 3.4 improves his lower bound while example 4.2 shows that his upper 
bound is best possible. The proof of(0.1) given in Hawkes and Pruitt [6] does yield 
some estimates for 7~ which satisfy (0.2) and (0.3), but we modify their arguments to 
get better bounds. The lower bound result (0.3) takes a different form for the critical 
cases of planar Brownian motion (e=2=d)  and linear symmetric Cauchy 
X(c~=l =d) and the noncritical cases (c~<d). Whenever 0<c~<1 we recall that 
Taylor [15] distinguishes two types of stable process X of index c~: the type A 
process has a positive transition density at 0 and none of its linear projections is 
monotone, while the type B process has zero density at 0 and projects on a suitable 
line to give a subordinator. The lower bound for type B processes is given by 
Theorem 3.1, and for type A processes by Theorem 3.4. Examples are given to 
show that Theorem 3.1 is best possible (Corollary 3.3), while Theorem 3.4 is sharp 

at least up to a factor log log ~ (see Examples 3.7, 3.8). 
A 

The key idea needed to obtain uniform lower bounds is to consider the 
asymptotic behaviour as a J,0 of the maximum sojourn time in any ball of radius a. 
Results of this kind are stated without proof in [16] but only for noncritical 
Brownian motion in Ne(d > 3). In Lemma 2.3 precise results are proved for d = 2, 
the symmetric Cauchy X in II, and strictly stable process with e < d. 

Uniform upper bounds leading to (0.2) are easy for Brownian motion. The 
corresponding result for the stable processes is contained in Theorem 4.1. We 
cannot decide whether this theorem is best possible. 

In a recent paper of Taylor and Tricot [20], a new fractal measure q~-p is 
defined for each growth function ~b. Packing measure 4~-P(E)> ~b--m(E), the 
Hausdorff 4~-measure, and the two fractal measures can be of a different order of 
magnitude. Using the scale qS(s)=s p, fl> 0 yields a new fractal index which we 
denoted by Dime and call the packing dimension of E. Our fundamental lemmas 
proved in Sect. 2 are good enough to give uniform results which yield the 
analogues of(0.2), (0.3) for packing measure. This is the main content of Sect. 5. For 
technical reasons we need a result (Lemma 1.2) which estimates the effect of 
requiring packing to be done with equal balls, rather than allowing unequal balls - 
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we believe this lemma to have independent usefulness. This means that our 
uniform packing measure results may not be sharp - constructing interesting 
examples to test the theorems seems to be hard. However, the theorems in Sect. 5 
certainly imply that for each X stable of index e < d, 

a.s. DimX(E)=,DimE for all Borel E. (0.4) 

In [-17] Taylor defines a set E C IR a to be a fractal if dim E = DimE but is different 
from the topological dimension of E. Thus (0.1) and (0.4) together tell us that, for 
any stable process X, 

a.s. the image X(E) of each fractal E is a fractal. (0.5) 

We remark that the results in Taylor [18] show that, for more general L6vy 
processes (0.5) may fail. 

We start by collecting, in Sect. 1, definitions and probability estimates which 
are essential to our calculations. Finite positive constants whose values are 
unimportant, and often unknown, will be numbered consecutively in each section. 

1. Prel iminaries  

In this paper we are interested in the study of subsets of IR or IRa of zero Lebesgue 
measure. In order to get information about their size we use either Hausdorff 
measure or packing measure. We restrict attention to the class 4~ of functions 
q~ : (0, ~)~(0, 1) which are monotone increasing, right continuous with ~0(0 +)  -- 0, 
and smooth in the sense that there is a finite constant c1.1 with 

(p(2s)/q~(s)<cH for 0 < s < � 8 9  (1.1) 

The Hausdorff measure of a set E is defined by 

q) - m ( E )  = l im inf{X ~0(diamEi) : E C ~J Ei, d i a m E  i < q} (1.2) 

and may be zero, finite and positive, or infinite. If we replace arbitrary coverings by 
coverings from the class of cubes of side 2-k and vertices whose coordinates are of 
the form j2 -  k (j, k are integers) we get a new "dyadic" Hausdorff measure ~o - mD(E ) 
which satisfies 

(p - m ( E )  <= q~ - roD(E) < c t .2~o - r e ( E )  (1.3) 

for all sets E, using (1.1) and replacing an arbitrary cover by a dyadic cover. 
When we need to obtain an upper bound for (p-re(E) we only require to 

produce economical covers of E by sets (or dyadic cubes) of small diameter. To 
obtain a lower bound, the definition (1.2) requires us to consider all possible covers 
by sets of small diameter. In the present paper we will repeatedly use the following 
result, which is useful for Cantor-like sets E. 

Lemma 1.1. Suppose Te4L t/>O, c>O. Let K be a compact 
representation M~ 

K= ~ E,~,Em+IcE,~,E,,= ~ Im, i, 
m=l i=1 

set with the 
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where the I,,,i(1 ~ i ~ M m )  are disjoint closed subintervals of  [-0, 13 contained in 
E,,_ 1. Then 

- re(K) >= c-  ~ 

if, for every interval J C [0, I]  with [J[ <t/, there is a f inite integer re(J) such that 

U,,(J)<=cTt(]J[)Mm for m>_m(J), 

where Nm(J) denotes the number of the I,,,i which are contained in J. 

This is Lemma 2.2 of [11]. 
In a recent paper [193 we defined a new set function (P -P(E)  in which 

economical coverings are replaced by disjoint packings. For  (p ~ 4~, 

( P - P ( E ) =  lim sup{Z(p(2ri)" S(xi, ri) disjoint, x i~E ,  ri<rl}, (1.4) 
~$o 

where S(xi, ri) denotes the open ball of radius ri centered at xi. Again, it is helpful to 
have a restricted class of sets to pack, which are almost nested. We show that if we 
replace S(xi, ri) by semidyadic cubes of side 2-  k, and vertices of the form either j 2 -  g 
or (j + �89 -k, which contain a point of E in the concentric cube of side 2-k-2,  we 
obtain a set function ( p -  Po(E) which satisfies 

c1.3( p -- P(E) < (p -- P o(E) <= cl.4(p - P(E) . (1.5) 

The set function ( p - m  is a CarathOodory outer measure, but ( p - P  is not 
because it fails to be countably subadditive. To obtain an outer measure, which is 
called (p-packing measure, we need a final step in the construction 

( p -  p(E) = i n f { Z ( p - P ( E , ) : e c  (.) E,} . 

There is enough structure in the set function ( p -  P to deduce that, for each Borel E, 
(p -  p(E) has good approximations of the form (p - P(E,) with E, C E. In fact, we 
show that 

(p - p(E) = inf{lim (p - P(E,) : E, TE}. (1.6) 

In general we have ( p - m ( E ) < ( p - p ( E ) ,  so there are two definitions of 
dimension coming from these measures: 

dim E = inf{~ > 0 : s ~ -  m(E) = O} 
(1.7) 

D i m e  = inf{~ > 0 : s ~ -  p(E) = 0} 

which are called, respectively, the Hausdorffdimension and the packing dimension 
of E. For  Ec ]R  d 

O<=dimE < D i m E  <d 

and all values allowed by these inequalities are attainable for a compact set E. 
Packing measures are less easy to calculate because of the disjointness condition in 
(1.4). This time it is the upper bound for ( p - P ( E )  which is hard to determine. 
However, we can get some (imprecise) information by considering packings of E by 
balls all of the same radius. Let Nr(E) be the maximum number of disjoint open 
balls of radius r which can be centered in E. 
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Lemma 1.2. Suppose ~p, 7 j ~ ~, h(s) = tp(s) ~(s), and ~ 7j(s) ds < ~ .  Then for any E, 
O+ S 

lim sup Nr(E)~p(2r)< ~ ~ h - V ( E ) = O .  
r.~0 

Proof. For  ~/> 0, K < ~ ,  suppose 

0 < r < ~ /  ~ Nr(E)q~(2r)<K 

but h - P ( E ) > c l . s > O .  Then, for each 6~(0,~/) we can find a packing of E by 
disjoint open balls S(xi, ri) with ri < 6 and Zh(2r~) > cl.s. The balls remain disjoint if 
we replace each r i by 2 - a  where 2 -k~+ 1 >ri>2-ki .  By (1.1) we now have disjoint 
balls with dyadic radii such that ~h(21-k') > cl.6" Group these according to the 
value of ki and note that N2-k(E) is not less than the number of these balls for which 
k i = k. Hence, 

gl.6 < ~ E h(2"2-k') -< -- ~ Nz-k(E)h(2*-k) < K  ~ ~(2~-k) �9 
k = r  k i=k  k =r  k = r  

This final estimate converges to zero as r ~ ,  or as 6+0, since ~ 7J(s~) ds< 0% so 
0+ S 

we have obtained a contradiction, establishing the lemma. []  

Remark. For  Hausdorffmeasure, it follows from some unpublished work of Claude 
Tricot that economical covers by balls of the same radii, lead to a very different 
measure which can give a different value to the dimension using (1.7). The above 
lemma shows that we could define packing dimension using balls of equal radii and 
get the same result, DimE. The maximum effect of using equal balls is less than a 

f 1"~ 1+~ 
factor ~log ~)  , ~ > 0 in the measure function. 

\ / 

In the present paper we will consider only the strictly stable processes of index 
~(0 < ~ ~ 2) in ~a. These have the important  property that, for each ,~ > 0, 

2-  ll~X(2t) is another version of X(t). (1.0) 

This scaling property is used repeatedly, often without mention. Whenever d = 1 
we will usually assume that a.s. X(t) does not hit a singleton {x0} for t >  0, which is 
equivalent to 0 < ~ ~ 1 ; as 1 < ~, d = 1 implies that X(t) fills intervals and no uniform 
measure results of the form (0.2), (0.3) are then possible. For  0 < ~_<_ d, the trajectory 
of a stable process has zero Lebesgue measure, but complete information about  
both Hausdorff measure and packing measure is available, see [-19] for a survey of 
results. 

The class of strictly stable processes is defined and discussed in [16]. We always 
assume that X(t) is genuinely a process in Nd, that is, there is no subspace of lower 
Euclidean dimension in which the process takes its values. We also assume that we 
have a nice version which has cadlag paths and satisfies the strong Markov 
property. When c~ = 2, the paths are continuous but, for 0 < a < 2, the discontinu- 
ities are a.s. everywhere dense. For  c~ = 2 there is only a Gaussian component  in the 
Lhvy-Khintchine formula. This means that there is no loss in generality in 
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assuming that X(t) is a standard Brownian motion. Since this is often the most 
interesting case of our results, we will state many theorems with Brownian motion 
singled out as a specific case. We use B(t) to denote the Brownian motion case. The 
natural potential theory for this case comes from the kernel 

k ( x , y ) = l x - y l  z-a,  d > 3 .  

In the critical planar case, B(t) is neighborhood recurrent, so the potential theory 
has to be carried out relative to the first exit from some disc. We summarise the 
results for hitting probabilities which we need. If z e = i n f { t > O : X ( t ) e E } ,  
F 1 = S ( 0 ,  r l )  , _F2=S(O, r2) c, r a <=o<=r2 and x~lR  d with [x[=0. Then, for a standard 
Brownian motion process in Re; 

log r2 

d = 2, PX {~rl < Zr2} - 0 (1.9) 
log r2 '  

rl 

02-a_r~-a  
d> 3, P~{'Cr, < Zr2 } - r~-d--r2-d ' (1.10) 

. ( , . , , )  

Whenever X(t) is symmetric stable of index ~ < 2, that is, the characteristic 
function is 

E {exp i(X(t + h ) -  X(t), u)} = e-  ~" f"l=, 

the relevant potential theory comes from the symmetric kernel k(x, y)= I x - y l  ~- a 
when d > c~, or the logarithmic kernel for the symmetric Cauchy process. As proved 
by Takeuchi [15], this leads to bounds for the hitting probabilities: 

d = 1 = ~, P*(zrl < ~r2) < 

log r2 log 
0 - 1  rl 

log r~ log r2 
r l  r l  

d>~,PX(zrl < oo)= 

(1.12) 

0 .13)  

It is quite easy to get a lower bound in (1.13), but we do not need to use it. However, 
we will require a sharp lower bound for (1.12) which needs some argument. Spitzer 
[14] pointed out that the symmetric Cauchy process in IR 1 can be recovered from 
planar Brownian motion by observing it on one of the axes. To be precise, if Bl(t), 
Bz(t  ) a re  independent Brownian motions on IR, L(s) is the local time of B2(t) at x = 0 
and Y(t) is the function inverse to L(s), then X(t) = B ~ (Y(t)) is symmetric Cauehy on 
IR. We could use this fact with an explicit conformal mapping of the complement in 
R z of ( -  0% 1] ~ [ - r ,  r] u [1, oo) into an annulus to obtain the required estimate. 
However, we prefer to obtain a proof by probabilistic reasoning. 



Uniform Measure Results for the Image of Subsets 263 

Lemma 1.3. For a symmetric Cauchy process in N 

log 
rl 

PX(zr2 < ~rl)--< q . 7  - -  
log r2 

for erl <o<r2.  rl 

Proof. B(t) now denotes a planar Brownian motion, the probability we have to 
estimate is 

Px{'CA2 <'CAt } for x real, erl < x < r z ,  

where A1 = {(x, 0)" Ix] < r 1 }, A2 = {(x, 0)" Ix[ > r2}. If we put 

q(r 1, rz)= sup {pr {Zr~ < ZA,} "IY[-= rl}, 

then the strong Markov property implies that 

px {.CA 2 < Zal} ~ px {.CA ~ < Zrt} + q(rl ' r2), 

so that 
px {zA~ < %~} < px {.Or: <.cr,} + q(rl ' r2). (1.14) 

All the probabilities now relate to planar Brownian motion. Now choose M large 
enough to ensure that, for all y e l R  2 with ly[=rl,  we have 

pr {Zr3 < z~} < �89 (1.15) 

where F 3 = S(0, rJm) .  Then, for ]y[ = rl, 

Pr{zr2<zA~} <P'{zr3  < zr~ < ZA1} + P '  {Zr~ <Zr3} 

< �89 r2)+ Pr{zr2 < Zr3}, by (1.15). 

The right hand side does not depend on y with lyl=rl ,  so we can take the 
supremum over y to give 

q(rl, r2) ~ �89 r2) q- p ,  {zr2 < Zr3}. 
Thus 

log 
210gM ra 

q(r l, r 2) <= logr a/r 1 -<_21ogM 
log r2 

rl 

since 0 > er~. Since M does not depend on r~, r2 (1.14) now completes the proof with 
c l .7=(1+21ogM).  []  

In 1-16], Taylor divided transient (e<d)  strictly stable processes into two 
classes: 

Type A, if the transition density p(t, x) is positive at x = 0 ;  
type B, if p(t, 0) = 0. 
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Type B processes can only occur for 0 < c~ < 1 and are such that their projection on 
some line through the origin is a subordinator. Simpler arguments work for type B 
processes because the first passage time of a subordinator out of S(0, r) is the same 
as the total sojourn time, if the process starts at 0. Difficulties arise with type A 
processes because the potential kernel need not be of the same order as that for the 
symmetric case. In studying sample path properties we overcome this problem by 
considering delayed hitting probabilities, 

Q(x, a, T) = px {X(t) e S(0, a) for some t > T}. 

In Pruitt and Taylor [13, Theorem 4] it is proved that 

Q(x, a, T) <= Cl.s(aT- 1/~,)a-~ (1.16) 

for any strictly stable X with index ~ < d. No lower bound of the form (1.13) is valid 
in the general nonsymmetric case, if d > 2. 

It was proved by Erd6s and Taylor [4] that planar Brownian motion satisfies a 
strong law in respect of the number qk of dyadic squares with side 2 -k entered by 
B(t) for O < t < M .  There is a constant eL9 such that 

a . s .  qkk2-2k----~ M c l . 9  . (1.17) 

For d > 3, the corresponding strong law is 

qk2-2k~Mcl .  IO . (1.18) 

We believe the corresponding strong laws hold for any strictly stable X(t) of index 
< d, but a rigorous proof will be tedious. It will be sufficient to use the fact that 

given e > 0, 
a.s. qk2-~k-~<1<q,2 -~k+" for k>ko .  (1.19) 

The upper bound in (1.19) follows from a simple first moment argument, while the 
lower bound comes from considering a sublattice of larger dyadic cubes and an 
inclusion/exclusion estimate. 

If Q >0, ~P(0) will denote the collection of intervals I of the form [iQ, (i+ 1)~]. 

2. Uniform Bounds for the Sojourn Time 

For a stable process of index ~ in Rd(~ < d) which hits a ball S(x, r) = J, we expect 
the sojourn time to be of the order rL If ~ = 1 = d or ~ = 2 = d, the expected sojourn 
time is of order r~logl/r. Our main objective in this section is to obtain 
information about the a.s. asymptotic behaviour of sup {IX- l(S(x, r))[: x ~ R d} as 
r,~0. We have two methods of doing this, both using a decomposition of the sojourn 
time. If we use a decomposition given by successive exits from a larger ball, the 
proof can be completed for all the symmetric processes while using blocks of 
sojourn time of a fixed length works for all the (~ < d) strictly stable processes of 
type A. For planar Brownian motion the first method gives more precise 
information, but we will use the second method as it works for all cases. 

We start with a preliminary lemma. 
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L e m m a  2.1. For f ixed r e (0, 1), let F 1 be {x : Ixl < r}, r 2 = {x :ix[ _-__ ra}, ]3 e ( -  1, 1) and 
suppose %.1 > 0 ,  A =  {X(t) hits F 1 before F 2 for values of t >c2.1r=}, Then if X(t) is 
either planar Brownian motion (~ = 2) or a symmetric Cauchy process (~ = 1) on JR, 

1 -  \ r/ 

uniformly for x ~ F 1. 

Proof We do the case where  X(t) is Cauchy:  a s impler  vers ion of the same 
a rgumen t  works  for p l ana r  Brownian  mot ion .  F o r  t =  c2.~r, x ~ FI, 

E~ = {(e ' - 1  - l ) r  < I X ( t ) -  X(O)[ < (e s -  1)r} 

satisfies PX(E,)<_ce -s for s = l , 2  . . . .  and  oasEs ~ [X(t)l<=e~r so that,  by Lem-  
m a  1.3, for s > 3 ,  

PX( '{Zr2<Zrl}<=cl .7( -{~  log , 

and  for s = 1,2 a similar inequal i ty  holds with c1.7 replaced by 3c~.7. Hence,  

-- s=l ce-  l-tiff- l ~  

1 - ] 3  " 

Now,  for F = { I X ( t ) - X ( O ) l < ( e + l ) r  } we have  P ( F C ) = c 2 . 3 < l .  Now,  
co e F c ~ IX(t)[ > er so that,  for all x s F 1, 

W(A) <= P(F) + P(F~)W ~ {Zr~ < Zr2 } 

~ 1 - - 1  / jC2"3._ log , by  (1.12). [] 

Given  any strictly stable process  with IX(0)[ < r and  c > 0 a fixed constant ,  we 
set up a sequence of s topping  t imes z o = 0 

z i -- inf{t >__-q_ 1 + cr~: [X(t)l < r},  i = 1, 2, . . . .  

This  sequence a.s. te rminates  whenever  ct<d. F o r  fixed ] 3 ~ ( - 1 ,  1) we can also 
define 

a(fl) = inf{t > 0 : IX(t)[ > ra}, 

and  finally denote  by Ma(co) the n u m b e r  of the z~ < a(]3): thus the r a n d o m  integer 
M B is given by 

Ma = 1 + m a x  {i: z i < a(]3)}. 

We  now wan t  to es t imate  the p robab i l i ty  of Mp being large. 
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Lemma 2.2. Suppose X (t) is strictly stable of  type A and index ~ < d in ]R d. Fix c > O, 
? > 0, fl ~ ( -  1, 1) and define M~ as above in terms of  successive hitting times of  S(O, r) 
after a delay of  cr ~. Then 

(a) I f  X is planar Brownian motion or a linear symmetric Cauchy process and 

then 

1-~c2.4___<~(r)=< c2. 5 for O < r < r  o. 

(b) I f  c~ < d and c is large enough, 

then 
?c2.6<=~(r)<7c2.7 for O < r < r  o. 

Proof. (a) We decompose the path using the stopping times ~i. Since IX(~i)l < r we 
can use Lemma 2.1 to give, for i=  1, 2 . . . .  

( 0-' ( 0 -1 c2"3 log ~ c2"2 log _>_P{zi<a(fl)lzi_ 1 < a(fl)} ~1 -- 1 - - ~  " 1 (1 -~)  

Hence, by iteration, 

C2.2 ] - I  ~ logL 2 ] 2 
[ 1 - - 1 _ ~ ( l ~  ) ] 0 r) ~ P { M ~ = > Y ( l ~  ) 

> 1 - -  C2"3 og 

= V - - t /  

If we replace both extremes by exponentials and let r+0, we obtain the required 
estimate. 

(b) Since a < d and the process is of type A, the potential kernel k(x, y) satisfies 

k(x ,y)> C2s d - ~  (see [13]) 
Ix-yl 

for all x, y e Nd. Hence, if Ixl < 2r 

Px{Ix(t)[<r for some t > 0 } > c 2 . 9 > 0 .  

Take fla = �89 1), then f l<fil  < 1. By taking r small, we can arrange that 

< C2.10 ra(fll -fl) 

1C2. 9 . 



Uniform Measure Results for the Image of Subsets 267 

Now 
Px{X(t)hitsS(O,r) for t>=r ~1} 

<c1.8(r 1-~1)a-~ by (1.16) 

~1C2. 9 

when r is small. Hence, for all x satisfying Ixl < 2r, 

Px{X(t) hits S(0, r) before a(fl)} > �89 = c2.11 > 0. 

Now choose c big enough to make the estimate 

c1.8(a T -  1/~)d-~< �89 

whenever a=r, T=cr  ~. By (1.16) we now have 

P{z,< + c~]'h_ t < + oe} <�89 
and iteration yields 

P { M B > y l o g ~ }  <�89176 <r7C2.6 as required. 

On the other hand 

P {'~i < (T(fl)lTi-1 <~ O-(fl)} ~ P {IX(or c~) -- X(0)l < r} c2.11 

=P{[X(c)[< 1} c2.11 =c2.ta 
so, by iteration, we get 

P M ~ > y l o g  >c2.ta = 

whenever 0 < r__< r 0. []  

We now come to the basic lemma which estimates the maximum concentration 
of the sample path in a ball. There are three distinct cases to consider. 

Lemma 2.3. Throughout X(t) is a strictly stable process of index c~ in IR d and ~ <_ d. 
For fixed M, let 

E~,,-- {t~ l-0, M-l:lX(t)-zl  <_r}. 

For k~N,  let 2=[~k] and let Nk(Z ) be the number of dyadic intervals [j2 -z, 
( j+ 1)2 -z] which intersect E~,~ for r=2 -k. Then 

(a) in the critical cases, ~= 2 =  d of planar Brownian motion and ~= 1 = d of 
linear symmetric Cauchy process, 

(i) a.s. ~ko=ko(cO ) such that k >=k o ~ Vz, Nk(Z)SCa.13kZ; 

(ii) Vk >= ko(co), ~z k such that Na(Zk) >= c2.14 k2; 

(iii) a.s. 3ro=ro(Co)>O such that O < r < r  o ~ Vz, 

[Ez, rl<=c2.a5r~(log~)2; 
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(iv) Vr~(O, ro)3Z r such that [E ... .  I>cz.16 r~ log . 

(b) For ~ < d, X(t)  of  type A. 

(i) a.s. 3k o such that k > k  o ~ Vz, Nk(Z)<Cz.lvk; 
1 

(ii) a.s. 3r o such that 0 < r < r  o ~ IE~,rl<Cz.lsr' log-; 
r 

(iii) Vr~(O, ro) , qz=z(r,  co) such that Ez,~ contains an interval J with IJ[ 
1 

~-~ C2.19 r~ log r" 

(c) For 0 < c~ < 1, X (t) of  type B and such that its projection on the first axis is a 
subordinator, 

(i) a.s. 3ko such that k > k o  ~ Vz, Nk(Z)<C2.2okl-~; 

(ii) a.s. 3ro>0 such that 0 < r < r  o ~ gz, IE~ ~[<C2.alr ~ log 

(iii) gr~(0, ro), Sz=z(r,o~) such that Ez, i contains an interval J with [J] 
[ 1 \  1 -~ 

Proof. (a) We give details for planar Brownian motion, but write the proof so that 
only trivial and obvious changes are needed to deal with the symmetric Cauchy 
case on N. Start by considering E~, ~ for the points Z~,k = (i12 -k-  1, i2 2-k - 1), il ' i2 ~ Z  
and r--2 -k. The disk 

Di, k = {z ~ ]Ra : iz-- zi, k[ < 2  -k} 

may be hit by B(t), O < t < M .  Let Qk be the number of such Di, k which are hit. If 
0 < e < ~ ,  we can find kl =kl(co) such that, for k > k l ,  

22~(1 -") < Qk < 22k(1 +~). (2.1) 

Now fix attention on one disk Di, k. Let ro=in f { t>O:B( t ) eDi ,  k} and form the 
sequence of stopping times used in the proof of Lemma 2.2(a), with c = 1. If Ei, k is 

the corresponding set of sojourn times in this disc, we can write Ei,k C U Fj,~,~, 
where J = o 

Fj, i, k C[Zj, Zj+ 2-  2k] . 

We can clearly find k 2 = k2(co ) such that all of B [0, M] is within 2 �89 k- 1 of the origin, 
for k > k 2. For  k > k 2, all of B/-0, M] will be included in L z = M_ 1/2(o9) pieces F j, r k. 
Hence 

L1 

IEi, k]< ~, Yj, (2.2) 
j = 0  

~j-k2 -2k 

where Yj= S 1D(B(t))dt are the successive sojourn times in O. The random 
~j ~ 

variables Y~ have a distribution depending on the starting point B(~j), which will 
sometimes be inside the disc. However, by scaling, the random variables 2:kyj = V~ 
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are uniformly bounded above by 1 and below by 

1 
v =  ~ 1D(B(t))dt, 

o 

where D is the unit disc {[zl <= 1 } and B(t) is a planar Brownian motion starting at 1. 
On the other hand, provided -co(D ) < �89 there is a k3 = k3(co) such that, for 

k>-k3 L2 
7Ei,k]>-- - Z gj, (2.3) 

j=O 

where L2 = M1/2(~o) is defined in Lemma 2.2(a). The bound 

Nk(zi, k) >= 22k [Ei, k[ (2.4) 

is immediate. Since each interval (zi, zj + 2-  2k) intersects at least one, and at most 
two, dyadics of length 2 -2k, we also have, for k>max(k2, k3), 

L2 < Nk(Zi, k) < 2L1. (2.5) 

By Lemma 2.2, for one disk Di, k 
2 

P {L1 > 7(log 2k) 2} < 2-kY 3~C2'4 

so that the probability that at least one of the Q~D~,k hit by B[0,M] satisfies 

M_I/2> ? log is bounded by 2ak(t+~ -k~gr A suitable choice of ? 

makes this the general term of a summable series. By Borel Cantelli, there is a 
k 4 = k4(c0 ) such that, for k >  k,  every one of the D~, k hit by B(t) satisfies 

L 1 =< 7(1og2k) a . 

With (2.5) this establishes (a) (i) and (2.4) now gives (a) (iii) for these special discs. 
But any disk of radius r satisfying 2 -k - 2 < r < 2 -k - ~ is contained in at least one of 
the disks Di, k, so we have proved a(i) and a(iii) for all disks in 1R z which are 
sufficiently small. 

To show that our bounds are of the right order of magnitude, we use a large 
deviation argument to give, for large enough K, 

(2.6) 

In order to avoid independence problems, we use only a small number of the disks 
Di, k, and use only that part of the path which is traversed before the next disc is hit. 
In fact, weonly consider the L 2 returns before the first exit from a concentric disc of 

radius 2 -~k. By (2.1) this gives us more than 2 k(1 -~) fresh starts in [0, M] and the 
strong Markov property ensures that each of these pieces are independent. 

In Lemma 2.2(a) we now choose 7 small enough to ensure 

p (log ) 2}  rl/2 
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{ ( so that the event Ao=  co:M1/2(oJ)< 7 log satisfies 

P(Ao) < 1 - r 1/2 . (2.7) 

Now set up another sequence of stopping times ~o = 0, 

~j+a = inf{t > ~j: IB(t)-  B((j)I > 2 -  �89 

If A~ is the event corresponding to A o for the piece of path starting at t = ~z, using 
the disk D~, k whose centre is nearest to B(~), then the events A~ are independent and 
(2.7) implies 

When k is large enough we can take s = 2  k(1-~) and deduce that the event that 
{M1/2(co)<7(log2k) 2} happens for every one of the discs Di, k whose centre is 

1 _ 2 ~ k  
nearest to B(~j) has probability bounded by [ I -  2-2k]  z~-~  e by taking 

< �88 Since this is the general term of a summable series, at least one of this 
particular set of discs of radius 2 -k, each k>ks(co) must satisfy 

L2 = M1/2(co) >= 7 ( l o g l  ) 2 �9 

An application of (2.5) now completes the proof  of (a) (ii). 
Now assume k is large enough to ensure that (2.6) is valid with 

K = 7(1og2k) 2 = C2.24k 2. 
Using (2.1) again, the probability that at least one of the discs Di, k hit by 

B [0, M]  satisfies 

is now bounded by 22k(1 +")e ~c2.2~k~. By Borel-Cantelli, this will never happen for 
k >  k6(c0). By (2.3), the disc which we just found to satisfy Nk(Zk)> c2.14k 2, must 
when k > max(ks, k6) have [E~, 2-~l > � 89  2k > c2.262- 2~(1og2k)2. This is still 
valid for 2 - k < r < 2  -k+ t, SO we have established (a) (iv). 

(b) The uniform upper bounds (i) and (iii) come from the same arguments as 
used in (a) using a value of c large enough to make Lemma 2.2(b) valid with the 
stopping times zj + 1 = inf{t > zj + cr ~: X(t)  ~ S(z, r)}, However, the arguments used 
to establish (a)(ii) and (iv) will not work now, since the bound given by the large 
deviation estimate is too large when multiplied by the number of balls hit. Results 
corresponding to (a) (ii) and (iv) are true since they follow from the stronger result 
(b) (iii) which we now establish. Thus (b) (iii) shows us that in this transient case, the 
largest sojourn time in a ball is not more than a constant multiple of the largest first 
exit time. This is not the case for the critical processes discussed in (a). 

Divide [0, M] into M n  pieces of the form I j=  [ j n - l , ( j +  1)n-a], and put 

R j(,0 = sup {IX(t) - - X ( / n -  1)t: t I j}. 
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Then the Rj(n) are independent and, by scaling, 

P {Rj(n) < 2n- 1/~} > e x p ( -  CZ.2 7}~- a) 

using the corollary to Lemma 5 of Taylor [16]. Hence, 

P[tA=~"l { Rj{n) > 2n-1/~} ] <= [ ] --exp(--e2"z'7)~-~)]M" " 

Now take n~=c2k~k - 1, )o= 2-kn + 1/~=c1/~ k-  1/~, and we have obtained an upper 
bound estimate for the probability of the event B k that there is no Ij such that X(Ij) 
is contained in a ball of radius 2 -k, this is 

P(Bk) <= [1 -- exp(-- c . c2.27k)1 ~c2k~k ', 

which is the term of a summable series provided e log2 > c. c2.27. This will be true 
for a suitable choice of c = c2.28 > 0. By Borel-Cantelli we can now find ko(co) such 
that, for k < ko, there is always a ball S(z, 2 -k) such that X - 1(S) contains an interval 
of size 0k= c2.28- lk2 -k~. Hence, for 2 -k+l >_r_>2 -k, k>ko, there will be a ball of 

radius r such that X-1(S)contains an interval J of length at least c2.19r~(log~). 
/ - - \  

N - - /  

(c) This case is quite different. Let Y(t) be the projection of X(t) on the first axis. 
Now Y(t) is a stable subordinator of index e, so the uniform lower growth rate 
established in Hawkes [5] gives, for t E [0, M], 

- l + a  

Y( t+h)-Y( t )>cz . z9h l /~( log~)  ~ (2.8) 

for all h ~(0, ho). Clearly (2.8) implies 

[X(t-l-h)-X(t)]~c2.a9hl/'(log~) ~ 

so that X-l(S(z, r)) has to be contained in an interval of length cz3or ~ log 
for r < ro(co). We now easily get (c) (i) and (ii). 

If the L6vy measure generating the distribution of X(1) ~ supported within a 
cone of semi-angle 0 < ~/2 and axis the first axis, we can now deduce c(iii) from the 
Hawkes result showing that (2.8) is best possible. However, the support can be a 
complete hemi-sphere, and in this case we have to adopt the same method used 
above for (b) (iii) together with the estimate in Lemma 6 of [16] that 

P {S(a) __> )~a ~} > e x p ( -  e2.3121/(1 - ~)), 

where S(a) denotes the first exit by X(t) from a ball of radius a. [] 

Remark. Throughout the above arguments we have not tried to find the best 
constants. In our first proof for planar Brownian motion, we decomposed the 
sojourn time in S(z, r) in terms of successive exits from S(z, er) and entries to S(z, r). 
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If one takes care the method of proof we used in (a) yields that a.s. 

�88 lim inf~su~ IEz, rl < lira sup~sup [E~'r[ ] 
r+o [ z ~  ( r l o g ! )  2 r~0 [ z ~ : ( r l o g ~ )  z < c ,  

where c = 2E(U) and U is the time spent in { rz[ < I } before exiting from { [zJ = e} by a 
planar Brownian motion starting at 1. We believe the following 

Conjecture 2.4. I f  B(t) is a planar Brownian motion and Ez,r is as defined in Lemma 
2.3, 

a.s. l im~suo IEz'rL / = 2 E ( U ) .  
r~~ {~g2 ( r l o g ! )  2 

We note that the corresponding results for the transient case were announced 
in [-173. 

The uniform upper bound estimates for Brownian motion will follow easily 
from L6vy's modulus of continuity. For  0 < e < 2 paths are discontinuous so we 
replace continuity by a uniform covering principle. The idea is due to Hawkes and 
Pruitt [6], but we obtain a sharper version of their Lemma 5. This time the same 
result is valid for all strictly stable processes of index c~ in IR d. 

Lemma 2.5. Suppose X(t) is strictly stable of index ~. Then for a suitable c2.32, a.s. 
there is a 60(09) > 0 such that, if the interval J ( [0, M] and ]J[ = ~ < 60, then X (J) can 
be covered by c2.32 log(l/q) balls of diameter ql/~Oogl/q )-  1/~. 

Proof It is clearly sufficient to prove the result for every semi-dyadic J = [u, v] 
where k e N, v - u = 2 - k, U = i2 - k or (i + �89 2 - k, 0 < i < M2 k. The number of such J is 
M2k + 1. For a fixed c > 0, we call J bad if X(J)  cannot be covered by ek balls of 
diameter k-a/ '2 ~/~. Set up the sequence of stopping times 

Co(J) = u, r i + l(J) = inf{t > zi : IX(t) - X(zi)l > k -  1/~2/q~}. 

c k -  1 

Then, i f J  is bad, ~ ( z i+ l -~ i )<2  -k. Putting 
i = 1  

T(s) = inf{t > 0 : IX(t)[ > s}, 

writing mk= ck--1 and using the scaling property, gives 

P(J is bad)=<P ~-~ T~(k-1/~)<l 

=P{e-aXr'(k-~/~)>e-~}, for 2 > 0  

<e~[E(e-~r(k - '/~))3,,~ 

since Ti(k-1/~) are independent, identically distributed, 

= eZ[E(e-~T(1) ~- ')],,~. 
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1 
Now choose 2 = c 2.3 3 k where c 2.3 3 is such that E(e - ~=.~ ~ r< 1)) < 2ee and choose the 
initial c=(1  +cz.3a) to give 

1 ~c2.33kWk-1 
P(J  is bad)<_ e ~ . ~  \2ee} 

< 2 e . 2 - k e  -k. 

Hence, P {at least one J is bad} < 4e Me-k. An application of BorehCantelli now 
tells us that a.s. 3ko=ko(cO) such that, for k>ko, every semi-dyadic interval of 
length 2 -k is good. []  

Corollary 2.6. I f  X(t) is strictly stable of index ~, there is a constant c2.az such that 
a.s. there is a 30(oo)>0 with the property that no JC [0 ,M] with l J[ = 2 < 6  o has an 

1 
image X(J) containing more than c2.32 log i points which are mutually separated by 

at least t2/ l~ i )  " 

We remark that, because the sample paths are continuous for Brownian 
motion B(t), it would be more efficient to cover B(J) with a single ball of size 
c(t/log l/q) ~/z, so Lemma 2.5 merely recovers L6vy's uniform modulus when ~ = 2. 

3. Lower Bounds for Hausdorff Measure 

We start with the easiest case - when 0 < c~ < 1 and X(t) is strictly stable of index 
and type B. Choose an axis on which the projection Y(t) of X(t) is a subordinator of 
index e, and use the fact that any covering of a subset of X [0, M] projects onto a 
covering of the corresponding subset of Y[0, M]. 

Theorem 3.1. Suppose X(t) is strictly stable of index ~ < 1 and type B. There is a 
constant Ca. 1 such that a.s. 

for all Borel EC(O, oe), for all ~eeb, if 

~o(s) = kg(c3.1s~(log + 1/s) ~ -~), then cp - m(X (E)) > 7 j -re(E).  
1 

Proof For  fixed M > 0, if t/(h) = ht/~(log l/h) ~ - g, Theorem I of Hawkes [-5] tells us 
that a.s. there is an eo=~o(m)>0 and c3.2 such that 

Y( t+h)-Y( t )>c3 .2q(h  ) for he(0 ,eo] ,  t~[-0,M].  (3.1) 

- 2 c - % d - =  Take Ca. 1 - 3.2 , so that for small enough y 

r I - I(y/c3.2) "< 2c;.~2od -~y~(1og 1/y)~ -~ (3.2) 

Start with a fixed co for which eo(aD > 0 and measure functions q), ~' related as in the 
hypotheses. Choose a covering {J~} of Y(E) with IJ~[ <c3.2r/(eo) and 

S~o(IJi] ) < (p - m(Y(E)) + 3 
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for a fixed 6 > 0. We may assume that Ji = Y(I,) for a collection of open intervals 
{I~} covering E, and of length less than ~o, by (3.1). We may also assume that all 
intervals are short enough to make (3.2) valid. Hence, by (3.1) and (3.2) with 
y = Y(t + h ) -  Y(t), 

Z ~(lli[) < Z ~ o  g([J,[) = Zcp([J,]) < q~- m(Y(E)) + 6, 

where g(s)=ca.~s~(logl/s)l-% Since 6 is arbitrary, we have shown that 
cp - m(Y(E)) > 71-  re(E) for bounded Borel E. This extends trivially to all E, and the 
theorem follows from 

~p-m(X(E))> tp -m(Y(E)) .  [~ 

Lemma 1.1 will allow us to show Theorem 3.1 is best possible up to a constant 
factor (Corollary 3.3 below). We first obtain a general result which is also needed 
for an example in the next section. 

Lemma 3.2. Let X(t) be an Nd-valued process with independent increments and 
cadlag paths. Fix q ~ �9 which is strictly monotone and continuous with inverse 
function t l -  1. Assume that for each 6 > O, there is a K > 0 and r o > 0 such that 

P ~ sup [X(t + h ) -  X(t)[ < Kt/-  l(r)} > r ~, (3.3) 
(0_<h_<r 

for 0 < r <= ro, t E [0, M]. I f  fl ~ (0, 1) and ~ot~(s ) = (q(s)) p, there is a random closed set E 
C [0, 1] and a constant ca.3, depending on q, fl and the law of X(1), such that 

�88 <=xt~-m(K)< l and q~p-m(X(K))<ca.a.  

Proof Given t ,  fix 6 > 0 such that fl + 6 < t and choose K, r o such that (3.3) holds. 
Choose inductively a decreasing sequence r m such that r l < r  o, rs  and 

0,, = (] r j, then 
i =1 ~ Qs 1 ~ ~+~-1 (3.4) e x p ( -  0.,r,,+ 1 /4)<oo.  

m = l  

Let J , ,  = J(o,,) (see the end of Sect. 1). For any I e J , ,  we cart partition I into r2, P+ 1 
subintervals Ji each of length 1 p ~r,,+ ~ . ,  and separated by intervals of the same 
length. Within each of these Ji there are at least [_2"m+ l/rl~'fl- 1 ] _ _  2 = 4"m+ 1 > -~.B- a subintervals 
of J , ,+ l  (make r0 smaller if needed to ensure this). Therefore, using (3.3) and 
independent increments, 

P~sup IX(s)--X(t)l>2Krl-l(Om+l) for all JcJ i ,  J ~ j m + t  
(s ,  teJ  

and at least one Ji C I ~ J,~} 

l r / ~  - l 

<  rT.P+ - & +  1) 
l~-t 4 <~7,1r~,~+1 exp(--O,,+ xr,,+ ~/ ). 

Since (3.4) makes this the term of a convergent series, Borel-Cantelli allows us a.s. 
to find too=too(CO)< oo such that, if m>mo, I e J ~  and Ji is any one of the 
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subintervals of the construct ion,  there is a J C Ji, J E J , .  + ~ such that  

IX(s) -X( t ) [  < 2K~/- 1(0,. + 1) Vs, t s J .  (3.5) 

We can now inductively const ruct  a Cantor- l ike  r a n d o m  closed set K. Let  
M~ 

Eo = [-0, 1]. Assume E,. = U I~' where I) ~ ~ J , . ,  Mr, = Q,~P and the distance between 
j = l  

neighbour ing I~'s is at least 1 p ~r,.o,._ 1. Divide each I)" into r~+ p 1 subintervals of 
length 1 yr,.+aOm, separated by intervals of the same length. Choose  one interval 
f rom J , .+  1 conta ined in each of these subintervals. This will give us a collection of 
m, .  + 1 intervals in J , .  + l{I'j' + 1: j < m, .  + 1}. By (3.5), for m > too(co) we may  always 
choose I~ "+1 so that  

sup IX(s ) -  X(t)[ < 2Kt / -  1(0,. + ~). (3.6) 
s, t~I~ + 1 

Mm+ l I~ + T h e n E , . + l =  U �9 I C E , . . P u t K =  fl E,.. 
j = l  , .=1  

Fix co such that  too(co ) < ~ ;  we will use L e m m a  1.1 to show that  s p -  re(K) > 0. If 
m,.(J) denotes the number  of the intervals {I~'} which intersect J and IJI < Omo, we 
can choose n > mo such that  0, + ~ < [JI < 0,. By dividing J into two subintervals if 
necessary we may  assume J ( I~  for some j. The  spacing of the subintervals now 
ensures that  

M,+ a(J)< ZlJ lof  lr~+Pl + 2 ,  

so that, for m > n 

M"(J)/M"<=(2IJIo; 'r[$I  + 2) ( f i  r ;  B) ~P m 
\ j = n + 2  

=<2lJl~ -1 + 2 0 ~ + 1 = 4 1 J f .  

L e m m a  1.1 now gives s a - r e (K )  > �88 and the obvious cover  gives s a - m ( K ) <  1. 
N o w  (3.6) implies that, for m > too, X ( K )  is covered by a union of 0~,+ ~ 1 sets each 

of d iameter  2Kq-1(0 , .  + 1). The growth condi t ion (1.1) on t /e  ~b now tells us there 
has to be a constant  c3.3 < oe such that  

~o~(2Ks) < c3.3 opt(s) 

so that  
O~n~ 1~13(2Kq- l(0rn+ 1)) ~ C3.3~m+~ 1 " ~ +  1 ---~ C3.3, 

and this establishes 

cp~-m(X(K))<c3.3 .  [] 

Corollary 3.3. Let  T(t) be a stable subordinator of index ~, and f ls(0,1) ,  
~op(s)=[s~(log+l/s)l-~] ~. Then a.s. there is a random set K C [ 0 , 1 ]  such that 
�88 < s p -- re(K) <= 1, but cp~ - m(T(K)) < c3. 3. 

Proof  Note  that  this shows that  Theo rem 3.1 is best possible up to constant  
factors, for sets Of all dimensions. We apply L e m m a  3.2 with X = T and r/- ~(y) 
= f /~( log+ 1/y)1 - 1/~. The  required estimate (3.2) follows from L e m m a  1 of Hawkes  
[5]. [ ]  
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The result for type A stable processes is more complicated, instead of a uniform 
growth rate on T(t) we use Lemma 2.3(a) or (b). 

Theorem 3.4. Let X ( t ) be a strictly stable process of  index ~ in ]R d ( ~ < d) which is of 
type A. Then there is a constant Ca. 4 depending only on the process such that a.s., for 
each tP ~ ~, if 

~c3.,~(s')(log+l/s) 2 if d=cr 
cp(s)= [c3 47J(s')(log +l/s) if d>~ 

then q~--m(X(E))> ~ - m ( E )  for all Borel EC[0,  ~) .  

Proof All the cases of this theorem have the same proof, based on Lemma 2.3(a) or 
(b), so we will write the detailed argument only for the critical case e = 2 = d of 
planar Brownian motion. Fix ~o so that the conclusion of Lemma 2.3(a) (i) holds 
with the constant c2.13 and the integer ko(cO)< oo. For  fixed M > 0, and E Borel 
C[0, m), cover X(E) by balls S(zi, ri) with r i< �88  -k~ Choose ki such that 
2 - g ' - ~ <  ri < 2 -k', and let {I~ : j =  1,..., N~} be the set of intervals in J ( 2  -2k') that 
intersect X-l(S(zi ,  ri))c~[O,M]. Then, by Lemma 2.3(a) (i), Ni<ca.la k2. Take 
c3.4=4c2.~3(log2) -2 and define cp(s) by the formula in the statement. Then 

cp(2rj)>=c3.4 ~, (1og2k'-l)zgJ(z-2k~) 
i=1 i=1 

1 ~ k2~y(2 _2ki) 
=> C3'4(1og2)2 4 i= 1 

->- Z m(e)- 
i=1 j=l  

whenever all the balls r~ < h. The theorem now follows for E C [0, M] and extends to 
E C [0, oo) by monotone convergence. [ ]  

We now try to show that Theorem 3.4 is close to best possible as a uniform 
bound. For  this purpose Lemma 3.2 is a useful construction tool. We can obtain 
the hypothesis (3.3) by using estimates on exit times from a ball (Ciesielski, Taylor 
[3] for Brownian motion or Taylor  [16] for a type A process). The appropriate 
functions are 

rl-l(r)=rl/~(logl/r) -1/~, rl(y)~,-ccy~logl/y as y$0. 

Lemma 3.2 now shows that for fle (0, 1) there is a random closed set K C [0, 1] such 
that 

�88 <= s p -  m(K) <_<_ 1, cp~ - m [X(K)] < c3.3, 

where q~p(s) = [s~(log + 1/x)] ~. There is a substantial gap between this and the results 
of Theorem 3.4, particularly for the critical cases d = 0r but also in the transient case 
when fl is small. This means we need a more subtle construction to get an example. 
All our processes will now be symmetric stable, and we give the details for the 
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Brownian motion case. In the transient case e < d, there is still a gap of a factor log 
log 1Is between the theorem and our Example 3.7, but in the critical cases d = e, we 
can do considerably better (Example 3.8). 

We first introduce the notation 

Ux(t, a, r) = inf{s > t : X(s) q~ S(a, r)} 

Vx(t, a, r) = inf{s > t : X(s) ~ S(a, r)}. 

B(t) is a d-dimensional Brownian motion, B(0) = 0. g, h are decreasing functions 
on (0, 6] such that 2 < g < h, h(0 +)  = oe and 

logg(s) 

log 1/s 

togg(s) ,0 if d = 2 ,  (3.7) 
logh(s) 

g(s)  ,, 
,0 ,  and h~--+v if d__>3. (3.8) 

For  a fixed re(0,  6], define inductively a sequence of stopping times by 
V = Us(0, 0, rh(r)), S 1 = Us(0, 0, �89 T i = Us(S,, O, r), U i = UB(T/, 0, rg(r)), 
Si+ 1 = VB(Ui, O,�89 ). We call [Si, Ui] a good pass from S(0,�89 to S(O, rg(r)) c if 

T i -  S i > 2r 2 and U i -  T i >= r2(g(r)) 2 . 

Let N(r, g, h) be the number of good passes completed by time V,, that is 

N(r, g, h) = ~ I(S i < V, T i - S i > 2r 2, U i -- T i :> r2(g(r))2). 
i = 1  

Lemma 3.5. Given ~ >0, there are positive constants c3. 5 = ca.5(tl) and r o = ro(g , h) 
such that, i f  0 < r < r o 

(log l /r) log h(r)~ 
P N(r 'g 'h )>ca 's  logg(r) j > r " ,  if d = 2 ;  

(logl/r)~ 
P N(r ,g ,h)>c3.  5 @ j  >r" ,  i f  d > 3 .  

Proof  We now suppress dependence on r, g, h where possible and let 

N ' =  ~ I (Si< V). N'  is a geometric random variable by the strong Markov 
i = l  

property. Moreover, the well-known hitting probabilities for B(t), (1.9), (1.10), give 

(i) d = 2 ,  

p ( N , > n ) =  [ l _  ( l o g 2 _ l o g  r~(r)) ( log  2_ 1 "~-a~" 
r -- l~ r ~ )  J 

> exp { -- 3n logg(r)/logh(r)}, {3.9) 
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for O<r<ro(g,h), where ro(g,h)>0 and we have used (3.7) and g > 2 .  

(ii) d > 3, 

=> [-i - (1 - (2h(r)) -ca- 2))- 1 + (2g(r))-(a- 2)In 

>(4g(r))-"ca- 2) (3.10) 

for 0 < r < to(g, h), where ro(g, h) > 0, and we have used (3.8). 
The excursions of [B[ on [Si, U/] are independent  of the excursions of [B[ on 

[Ui, Si+ 1] by the strong Markov  property. Therefore, condit ional  on N ' =  n, N is 
binomial  (n, p), where, if T(r) is the total  time spent in S(0, r), 

= e(r(1)  >_ 2/[No[ = I/2)P(T(1) > 1/IBol = g(r)- 1) 

(scaling) > Po > 0, 

where we have used g(r) > 2 in the last line. Therefore there is a universal constant  
cl > 0  such that  for O<r<ro(g,h ) and nE]N, 

P(N > npo/2) > E(P(N > poN'/21N') I (N' > n)) 

)%xp { - 3n log g(r)/logh.(r)} d = 2 (3.11) 
C3.6 ((4g(r))-"/(d- z) d > 3 

(by (3.9), (3.10)). 
(i) d = 2  

For  c > 0, and r e (0, to), let 

n = [(2c/po) log 1/r log h(r)/logg(r)] + 1 

in (3.11) to see that  for some Ca.6>0, 

P(N > c(log 1/r) log h(r)/logg(r)) 

> c3.6 exp { - (6c/po) log 1 / r -  3 logg(r)/logh(r)} 

>=c3.7r 6c/p~ (by 3.7). 

(ii) d > 3 

For  c > 0 and r e (0, ro), let n = [((6c/po) log 1/r)/logg(r)] + 1 in (3.11) to see that  

P(N >= (c log 1/r)/logg(r)) 
> cl(4g(r))- {(2c/p~ 2)logl/r)/logo(r)-(d- 2) 

> c lr6C~a- 2)/pO(g(r))- a(a- 2) (recall that  g > 2). 

The lemma now follows from the above two estimates and (3.8). [ ]  
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In the next lemma, we use the notation: 

~(log + l/s)2/log +log + l /s ,  if d = 2  
f ( s )=  [(log + l/s)/log + log + l /s ,  if d > 3 .  

L e m m a  3.6. Let /?e(0,2), 7>0 ,  6>0 ,  and r/e(0,1) satisfy f i+6<2t / ,  and let 
/ ,re(0,1), r - e s N  and s=Ir. There are constants r'o~-r'o(7,tl), c3.8 and c3.9 
---c3.9(G 6,r/) such that if s <r'o, then except for a set of probability at most 

31- 2r - e exp { - ca. 8 re + ~ - 2~/z2(1 - . )+  ~} ,  (3.12) 

for any I ~ J(12), I C [-0, 1], I contains r-e closed intervals of length 12re~2 separated 
by lZre/2, such that each interval contains at least c3.9 f (s ) subintervals in J ( s  2) that 
are separated by a distance sZ(log l/s) 2r and are all mapped into a single ball of radius 
s b y B .  

Proof Consider I = [0,12]. Inductively define stopping times by 

Td=jreI z, T/+I=UB(Tj, B(T/),s"), j = O , . . . , r - e - - l ,  i e N  o. 

Let 

Nj=min{ i :T j>q+l /2 ) re l2} .  

If cl = (4E(T(1)))- 1 and { T~:i E N} is an i.i.d, sequence with each T i equal in law to 
r(1), then 

P(Nj < cls - 2"rel 2) = P [T[~ ~,~z:l _-> rP12/2] 

[ [c~s- 2nral2] 

=P Z 
i = i  

[ [ c l s -  anrt312] 

<--P i~=1 

T i >= rel2s - 2n/2 ] 

T i -- E(Ti))/[Q s- 2"rel2] >__ E(T)]  

< exp { - Or e- 2"12(1 - ")} 

for some universal constant 0 > 0. Here we have used the fact that T~ has an 
exponentially bounded tail (see Ciesielski-Taylor [3] for its exact law) and the well- 
known exponential bounds of Cramer. We have shown 

P(N j <=clre- 2"l 2(1 -")VO <=j <=r - e -  1) 

__< r -  e exp { - Or e- 2~12(1 -")}. (3.13) 

Let N{ denote the number of good passes completed by B{(t)= B(T/+ t)--B(T/), 
from S(O,s/2) to S(O, sOogl/s)~) c before leaving S(O,s"). (Here a good pass is as 
defined before Lemma 3.5 with g(s)=(logl/s)L) Let c3.9=c3.s6(1--q)/7. Call 
[Tj, T/+ 1] a good interval if i<  Nj and Ni > 3.9f(s). Apply Lemma 3.5, with g(s) 
= (log 1/s) ~ and h(s) = s ~- l, and (3.13) to see that if s < ro(g , h) = r~(7, t/), then 
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P (there is no good interval in [Tj, Tg~] for some j__< r -a - 1 )  

r - ~ - I  

Nr-aexp( - -OrP-2~12( l - " ) }+ ~ P(N{<c3 .9 f ( s )  
j = O  

for all 1 < i < c 1 rp - 2~12(1 - ~ l ) )  

< r -  a [exp { -- Or a- ~l 2(1 - 7)} + (1 - sa) E~" - ~t~" -"~1] 

__< r-P [exp { -Ora-n l  2~1 -")} +2  exp{ -clrP+a-2"12(x-~)+~ 

(make r o smaller, if necessary) 

_-< 3r -~ exp{ --C3.srll+a-Enl 2(1 -n)+a}, 

where ca.8 = 0/x cl. The above estimate is valid for any I e 3(12), so except for a set 
whose probability is bounded by (3.12) for each [(k - 1)l 2, kl 2] C [-0, 1] in J ( l  2) and 
each 0 ___<j < r - p - 1 there is a good interval, [ T~ j_ 1, T/I, in [(k - 1) 12 +jrPl 2 , (k - 1 ) 12 
+ (]+ 1/2)raF]. Each such good interval contains at least c3.9f(s) subintervals in 
J ( s  2) that are separated by at least s2(log I/s) 2r and are all mapped into a single ball 
of radius s by B. This follows from the definition of a good pass. The proof is 
complete. [] 

Recall the definition of f given before Lemma 3.6. 

Example 3.7. Suppose 0 < fl < 2, ~a(s) = sP/2(f (sl/2)) - 1, q~a(s) = 7Jp(s2) f (s) = s ~ and 
g e ~. Then there is a random closed subset E of [0, 1], and a constant c3.9 > 0 such 
that a.s. 

tP p - m(E) >_ C3.9 ,  (gq ) f l )  - -  m(B(E)) = O . 

Proof. Fix fie(0,2) and g s ~ .  Let 7=2/ f i  and choose 6 > 0  and t/e(0, 1) so that 

+ 6 < 2t/. Let F(r) = C3.s f (r) .  Choose rm$0 (rm > 0) fast enough so that if 0= = IeI ri 
i = 1  

then r,7, p s N, 

m = l  

07.2rTuP+l ~.~,. ,s ,~ , . / 1 + 6 - 2 , 1 . , 2 ( 1 - , i ) + a }  < oo  (3.14) 

r a - 1  

l~ F(~~ < g(0~)- 1/2 (3.15) 
i = 1  

t r, = ro(> rl), F ( q )  >= 1. (3.16) 

We now use Lemma 3.6 inductively to construct a Cantor-like random set, E, 
with the desired properties. Let E o = I ~  [0, 1] and M o = l .  At the mth stage 
suppose E,, is a union of disjoint closed intervals {I)" : j=l . . .Mm} in J(~2m) 

contained in [0, 1], where M,, = I~ r f  p [f(0i)]. Each I~' contains r~+ p 1 intervals of 
i = I  

length o,,rm2 ~ + 1/2 separated by intervals of the same length. In each such interval 
choose IF(0,,+ 1)] subintervals in J (0~+l)  separated by a distance of at least 

2 0m+ l(1og(1/O~+ 1)) 27 and, if possible, so that all of these IF(if,,+ 1)] intervals are 
mapped by B into the same ball of radius 0,,+1. By (3.14), Lemma 3.6 and the 
Borel-Cantelli Lemma, there is an mo(O))< oe a.s. such that if m > too(CO), this last 
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condition holds for each 1~' and each of the r,~+P 1 subintervals of 1~. Let t I ~ + l : j  
m+l } L 

< Mm+ 1 = Q,~ 1 l-[ [F(Q~)] denote the collection of closed intervals constructed 
i=1 

from {I T :j __< Mm} as above, let E~ +1 denote their union and finally let E = ~ E,~, 
a closed random set. ,.= 1 

Fix ~o such that too(CO)< ~ .  Again we use Lemma 1.1 to get a lower bound on 
tg~-m(E).  Let J be an interval of length IJl<O2o and choose n > m o  so that 

2 Q.+ 1 ----< [J[ < O~- m.,(J) denotes the number of intervals in {I7' :j =< mm} that intersect 
J. As in the proof of Lemma 3.2, we may assume that J C 17 for somej. The spacing 
of the r,7+Pl subintervals of I~ implies that the number of such subintervals that 
intersect J is at most 2[JIQ~-2r~-+~ 1 + 2. Therefore, if m > n, then 

Mm(J)/Mm~(21JIQ;Zrn+~I + 2)[F(Q.+I)] ri-tJ[F(oi)] r~-~[V(~i)] 
i=n+2 i= 

<4(IJIp;2r~+~l + 1)0~+aF(Q.)- 1 (by (3.16)) 

__< 4 IJIQ~ - 2F(Q.)--1 ~_ 4Q~+ I F(Q.)-I 

< 41J] p/2 F(IJ] 1/2) - * + 40. ~ +1F(O.)- 1 (3.17) 

by the monotonicity of x--+xZ-#F(x). 
Case 1. pP.+ 1F(Q.)- 1 < IjI#/2 F(Ijla/2)- 1 

From the above we get 

Mm(J)/M,. < 8c~.~ [JIP/2 f (IJll/2)- l . 

Case 2. QP.+ 1F(Q.) -1 > IJIP/2F(IJII/2) -1 

The spacing of the 17 + l's shows that 

M.  + l(J) _-< IJI Q~-+za (log 1/O. + 1)- 2, + 2 

and therefore if m > n + 1, then 

< 2 IJIQ~.+Z(logltQ.+O-Z'F(Q.+O -1 +4Q.~+IF(Q.+0 -1 

< 2 [J[~/Z(log I/Q. + 1)- 2~F([ J] 1/2)2/p - 1F(Q. + 1) - 1F(Q.)I - 2/~ 

+ 4]Jl~/aV(lJla/z)-'1 

(using the assumed lower bound on 0. + 1 to handle the first term) 

< [j[~/ZF(]j [ 1/2)- 1 (2F([j [ 1/2)2/~(log I/Q. + 1)- 2~ + 4) 

<=c 1 [J[e/2 F(IJ]l/2)- i (3.18) 

for some c 1 < oe by the choice of 7 and definition of F. 
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Lemma 1.1 now shows that for some r > 0 we have ~go - m(E) > c3. 9. Finally 
m - - l .  

for m > mo(O~), B(Em) is contained in a union of Q2, ~ YI [F(r < r162 - 1/2 (by 
i = 1  

(3.15)) balls of radius ~,,. Therefore (gq)~)-m(B(E))=O and the proof is 
complete. []  

There are several possible improvements and extensions of the above example. 
We only sketch the arguments. 

It is not hard to drop the arbitrary g ~ q~ in Example 3.7, at the cost of replacing 
T~ by a slightly more complicated measure function, ~ ,  which is still of the form 
sP/ZL(s) for some slowly varying L. The conclusion then remains valid with qS~(s) 
= ~p(sZ)f(s) in place of gcp~, and ~Pp in place of Tr This is done by taking 
advantage of the product of the F(~i)'s which were dropped in (3.17) and (3.18), and 

/1 

constructing g ~ �9 such that g(~, ) -1= IF[ F(Qz). Given the gap of a factor of 
i = 1  

log logl / s  that still exists between this example and Theorem 3.4, a more 
interesting refinement (if d = 2) is 

Example 3.8. Let fie(0, 2), n ~ N ,  f ,(s)=(log + 1/s)2(log+(")(1/s)) - l(log+~")denotes 
the composition of log +), 7~p,,(s)= s~/2f,(sl/2)-1, and ~0~,,(s)= ~,,(s2)f,(s).  Ifd = 2, 
there is a random closed subset, E, of [0, 1] and a positive constant c3.~o such that 
~#,n(E)~c3.1o but ~oa,,(B(E))=0 a.s. []  

This effectively shows that Theorem 3.4 is best possible, at least if d= 2. If n= 3, say, 
the key idea in the proof is to define a very good pass from S(0, s/2) to S(0, s(log 1/s)~) c 
as a good pass that contains logtZ)(I/s)/logt3~(l/s) good passes from S(0, s/2) to 
S(0, s(log (2) l/s)~) c. (3.9) shows that ifd = 2 an appreciable portion of good passes are 
very good passes, and hence the fundamental estimate obtained in Lemma 3.5 
remains valid for the number of very good passes. (This is not the case if d >  3 as an 
application of (3.10) suggests.) Now proceed as before. In the (m + 1) ~t stage of the 
inductive construction of E we find crT,~+l(log(1/~,,+ 1))2/log~3)(1/~+ 1) subinter- 
vals of each IT', that belong to or162 2 + 1). They are divided into r,~+ ~ 1 "spaced" blocks, 
each containing at least c(log(1/r + 0)2/log(2)(1/r + 1) (appropriately spaced) very 
good passes. Each of these very good passes in turn contains at least 
logtZ)(1/r162 1) (appropriately spaced) good passes, each of which 
contains one of the Iy'+~'s. The appropriate spacing at each level gives 
~ ,  3 - re(E) > 0 and the fact that groups of e(log(1/r + 0)2/logt3)(1/~,, + ~) of these 
intervals are all mapped into a single ball of radius r leads to 
~o~,a-m(B(E))<oe. ((p~,3(B(E))=0 follows from the n = 4  case.) To handle a 
general n we can iterate this scheme. 

Finally, with a bit more work similar examples can also be found in the 
symmetric stable case. In this case define 

~log+(1/s)~/log + log + 1/s if d = ~  
f ( s ) =  [log+(l/s)/log + log + l /s  d > e .  

Example 3.9. Let 0 < f l < e < 2 ,  7~,~(s)=s~/'f(s~/~)-~, q~,,~(s)=7~,~(s~)f(s) and 
g ~ q~. If X is a symmetric stable process of index e, there is a random closed set, 
E(co), and a constant c~.a ,>0 such that 7~,~-m(E)>c3 .a l  but (gq~,,~) 
- -m(X(E))=O a.s. 
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The proof is essentially the same but it is now complicated by the "overshoots" 
of X when it exits from or hits from a ball. This means that in the proof of 
Lemma 3.5 the random variable N' is no longer geometric. By using the 
distribution of these overshoots, given in Blumenthal-Getoor-Ray [2] Theorems 
A and B, one can stochastically bound N' below by an appropriate geometric 
distribution. Similarly, although the law of N conditioned on N' = n is no longer 
binomial, it is not hard to bound this conditional distribution below .by an 
appropriate binomial law. Once the analogue of Lemma 3.5 is established the 
proof proceeds with only minor alterations (the required estimates for the passage 
time of X out of a sphere may be found in Taylor [-16], Lemma 5. 

If d =  c~ = 1, one can construct a better example, analogous to Example 3.8. 
Finally we note an interesting corollary of Theorem 3.4 and its proof for planar 

Brownian motion or linear Cauchy processes. It is known that these processes 
have some points of multiplicity c. How big a time set can map into a singleton? 

Corollary 3.10. I f  X(t) is a strictly stable d-dimensional process, with ~ = d, then a.s. 
h - m ( X -  l({z})) < oo Vz �9 IR d, where h(s) = (log + l / s ) -  a. 

This leads to a natural question. 

Problem 3.11. For which c~ �9 (0, 2] can one find z �9 p 2  such that h e -  re(B- 1 {z}) > 0, 
where he(s ) = (log + l/s) -~. 

4. Upper Bounds for Hausdorff Measure 

Consider now the problem of finding a uniform (in E) upper bound on the 
Hausdorff measure of X(E), where X is a strictly stable d-dimensional process of 
index e. For  Brownian motion one need only use L6vy's modulus of continuity (see 
Kaufman [8]) and for e < 2, the result is a simple consequence of Lemma 2.5. 

Theorem 4.1. Let X be a strictly stable process of index ~. There is a positive 
constant, C4.a, depending only on the law of X, such that for a.a. co and any 7 ~ �9 ~b, if 

~7t(c4.1s21og+(1/s) - I )  /f e = 2  

q~(s)= [c 4 l log+(l/s)  -17j(c4 lselog+(1/s)) if e < 2 ,  

then (p - m(X(E)) < 7 j -  re(E) for all E �9 ~([0, ~)). 

Proof We omit the well-known (and trivial) proof in the Brownian case and fix 
c~<2. 

By Lemma 2.5 we may choose co outside a null set so that for each M � 9  there 
is an 6M(co) > 0 such that if I C I-0, M] and [II< 6M(co), then X(I)  is contained in a 
union of at most c2.321og@ -1) balls of diameter (log(fl[-1))-l/e[lll/~. If 6>0,  

E �9 N([0, M]) and 7 / �9 ~b, choose {Ji:i �9 N} so that IJil < 6M(~o)/, ~ and ~ 7J([Jil) 
Ni i= 1 

<= g ' - m ( B ) + ~ .  Then X(J~)c U B~, where N~<c2.32 log(I/lJ~l) and B~ is a ball of 
k=l  

diameter (log 1/[Ji[)- t/e [Ji[ 1/e. If ~0 is defined as above for some c4.1, then by taking 
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supilJil smaller, if necessary, we have 

Z ~p((log aM,I)- 1/~ IJ,[ ~/~) 
i=1 k=l 

~< ~ C2.32 log(1/lJ~l)% a(c~- ~ log l/IJ~l + ~ -  * log log 1/IJ~l)- 
i=1 

x 7'(c4.1(log l / I J~ l ) -  ~lJ,I (~- ~ log 1/IJ,I + cr ~ log log 1/IJ,I)) 

=-< ~ C2.32C4.120~-1 }P(ca.12cc-11Jil) 
i=1 

~ ~(]Jil) ~ ~ -  re(B) + 6, 
i=l 

providing %1 is chosen small enough (independent of 6). Let 6~0 to complete the 
proof for bounded B and hence in general by monotone convergence. []  

The following example shows the theorem is best possible at least for Brownian 
motion. 

Example 4.2. Let fl~ (0, 1), ~ ( s ) =  s~/Z(log+ l/s) ~/2, ~ ( s ) =  ~(sZ(log + l/s)-1) and B 
be a d-dimensional Brownian motion starting at zero (d> 1). There is a random 
compact set E(o) C [0, oe) such that ~e - re(E) < c 3.2 < oo and 
�88 < (o/j-- m(B(E)) < oo. 

Proof We will apply Lemma 3.2 to the passage time process, ZB(S), of B. It is well 
known that IB(t)l = W(t)+ A(t) where W is a one-dimensional Brownian motion 
and A is a nondecreasing, nonnegative process. Therefore, if s > 0, h > 0 and 
T(u) = inf{t: W(t) > u}, then 

P(zB(s + h ) -  z~(s) <= Krl(h)) >= P( T(h) <= Ktl(h)) . 

As in the proof  of Corollary 3.3, one sees that (3.2) holds with q-  ~(y) = yZ/log+ l/y) 
and zB in place of X (recall T is a stable subordinator of index 1/2). Lemma 3.2 now 
shows there is a random closed set/~(co) C [0, 1] such that 1/4 < x ~ -  m(/~)< 1 but 
~ - m(zB(/~)) < e3.3. Let E = zB(/7 ). E is closed because z~ t is continuous, and hence 
E is a compact set a.s. Moreover, one has 

IBI (E) = IBI (~B(/~)) = E. 

An elementary covering argument shows that 

s p - m(B(E)) > s ~ - m(IBI (E)) = s p - m(/~) > 1/4 

[note that any cover of B(E) trivially produces a cover of [BI (E)]. The fact that 
(o~ (y ) y -~2  ~/2 as y~0 implies 

Cop- m(B(E)) > 2~/2/4 > 1/4. 

The finiteness of (op--m(B(E)) follows from Theorem 4.1. []  
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Our conjecture is that Theorem 4.1 is sharp for ~ < 2, but we have not been able 
to produce an example. 

5. Uniform Packing Measure Results 

There are technical difficulties in the construction resulting from the condition that 
the packing sets have to be disjoint. This introduces an uncertainty factor in the 
relevant measure functions of order logl/s,  but less than (logl/s) 1+~, see 
Lemma 1.2. For  general nonrandom sets one can give examples to show this factor 
is really there, but our techniques are not sharp enough to produce such examples 
on the trajectory of a stable process. We start with a lower bound result: 

Theorem 5.1. Suppose X (t) is a strictly stable process of  type A of  index ~ < d in ]R d, 

a.s. i f  heq~ is such that S h(S) ds< ~ 7J~q~, and if  EC[0 ,M] ,  
o+ s 

(a) For c~ = 2 = d, ~o(s) = T(s 2) (log l / s ) -  2 h(s), 

q0--p(E)>0 ~ 7J--p(B(E))= + oo; 

(b) For c~ = 1 = d, q0(s) = tP(s) (log 1/s)- 2 h(s), 

q) - p(E) > 0 ~ 7 j -  p(X(E)) -- + oo ; 

(c) For ~ < d, (p(s) = T(s ") (log 1/s)- 1 h(s), 

~o-p (E)>0  ~ ~ - p ( X ( E ) ) =  + oo. 

Proof  (a) It is sufficient to prove the corresponding result for the premeasures 
~o-P,  7 J - P .  Using (1.6), if T - p ( B ( E ) ) < K <  0% we can find A,~B(E) such that 
7 ~ - P(A,)Tc < K + 1 and so B-  I(A,)TF 3 E. Then qo - p(E) 
< ~o --p(F) = lira ~o - p (B-  I(A,)); thus, for large n we have 

n--* co 

c p - P ( B - ~ ( A , ) ) > q ) - p ( B - ~ ( A , ) ) > O ,  but T - P ( A , ) < K  + 1 < + oo. 
Now take any set A C ~  2 with 7 j - P(A) < K < oo. This implies that, for suitable 

6>0 ,  if 0 < r < 6 ,  then 

M~(A) T(2r) < K + 1, (5.1) 

where Mr(A) is the maximum number of disjoint balls of radius r with centres in A. 
I f 2 - k > r  > 2  -k - l ,  then Lemma 2.3(a) (i) tells us that for k>ko ,  and all x e l R  2, 

we have not more than c5.1 k2 semidyadic intervals of length 2-2k which intersect 
B - l(S(x, r)). Hence, if E = B - l(A)c~ [0, M], r = 2 - k < 3, k _--> ko, 

M z ~k(E) <= cs.~k2Mz_~(A). 

Using (5.1) now yields 

M2- 2k(E) 7J(2- 2k) 
k2 <c5.2, 
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which implies Mr(E)~r2) ( log l / r )  -2 =<c5.3 < + o% and an application of Lem- 
ma 1.2 now gives q ) -  P(E)= O. 

(b) and (c) can be proved by identical arguments substituting the other cases of 
Lemma 2.3. []  

Much sharper results can be obtained for subordinators, as in this case Lemma 
1.2 is not needed. 

Theorem 5.2. Suppose X (t) is a stable process of  type B and index ~, 0 < c~ < 1 in lR d, 
q) ~ fb and ~(s) = ~o(s')(log l/s) a - ' .  Then there exists a constant cs.4 such that, for all 
Borel sets E 

l I I  - -  p ( X  (E)) ~ C 5 .4q) -- p(E) . 

Proof  As explained at the beginning of the proof of Theorem 5.1, it is sufficient to 
show that 

7 j - P(X(E))  > c s.4~o -- P(E).  (5.2) 

Without loss of generality we may assume that the projection Y(t) of X(t)  on the 
first coordinate axis is a subordinator, and for h > 0, the increment 

[X(t + h) - Y(t)[ > { Y(t  + h ) -  Y(t)}. (5.3) 

By Hawkes [5], Lemma 2, since Y(t) is a stable subordinator of index c~, there exists 
c5. 5 such that if O<_h<_ho=ho(co)>O, O<t<_M 

Y(t  + h ) -  Y(t) > cs.5hl/'(log l/h) 1 - 1/,. 

Hence, if to < tl < . . .  < t, are a finite set ofcentres in E of disjoint intervals of lengths 
2r i____ 6, the intervals with centres Y(t  0 and radii Oi = cs.5(ri/2)l/~(log2/ri) 1 - 1/, will be 
disjoint. By projection this means that the balls centred at X(ti) with these radii are 
also disjoint. Thus each packing of E with 

q)(2r,) > (1 - e)q~ - P(E) 
i=0 

yields a packing of X(E)  such that 

Y_, ~(20i ) >= cs.6 S(p(2ri) , 

using the fact that s~(log l / s ) l - ,  and ch t/'(log l/h) 1-1/,  are asymptotic inverses as 
s J,0. This establishes (5.2). []  

Remark. Theorem 5.2 relies on the fact that a stable subordinator in N a escapes at a 
uniform rate from each point that it hits. We had originally hoped to use this 
simple method of proof  to obtain uniform dimension results for packing measure 
of the subsets of transient Brownian motion and symmetric stable processes. The 
method fails completely, because even when there are no double ponts (2e < d), this 
uniform escape rate is a power strictly greater than l/a, so that it gives just a very 
crude estimate with the wrong power if we use the method of Theorem 5.2. These 
escape rate problems are discussed in detail in [12]. 

We now turn to the upper bound results. 
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Theorem 5.3. I f  B(t) is a standard Brownian motion in IR a and M > 0, r] > 2; then a.s. 

for all Borel sets A C [0, M],  all ~P ~ ~, if we define go e 4) by go(2s) = ~ tl l ~ l / s  ' 
then 

~0 - p(B(A)) __< ~ - p(A). 

Proof. It is again sufficient to show that,  for all Borel sets A C [0, M]  we have 

go - P(B(A)) <__ ( P -  P(A). (5.4) 

Pick ~ />t / '>2 .  Then  the L6vy modulus  of  cont inui ty  tells us that  a.s. 
35 o = 5o(CO ) > 0 such that  

O<t<-i ,O<h<=5o ~ ]B( t+h)-B( t ) [<(r fh logl /h)  1/2. (5.5) 

There  is no th ing  to prove if go - P(B(A)) = 0. First  assume 0 < go -- P(B(A)) < + oo. 
For  e > 0, Oo = (6o log 1/6o) 1/2 and any O such that  0 < 0 --< 0o, we can find a packing 
of B(A) by a finite collection of balls B(xi, oi) with Oi<O, xi=X(t i )  and 
O<to<t~<t~+l <M ,  t i eA  and 

Zgo (2q,) > (1 - e)go -- P(B(A)). 

q/2 Since N o w  let Ji be the interval centre t~ and length 2ri where r~= 2~/ logl /0[  

(qh log l/h) 1/2 and s2(2~] tog 1/s)- 1 are asymptot ic  inverses and sZ(logl /s)-  1 is 
convex, (5.5) now ensures that  these intervals Ji are disjoint. We have therefore 
const ructed a packing of A by small disjoint intervals and, by definition, 

ZtP(2rl) = 227 j ( O/~ \~.log i/OiJ = Sgo(2q3 

=> (I - e)go - P(B(A)). 

Hence,  7 j -  P(A) >= (1 - e) go - P(B(A)). Since e is arbi trary,  (5.4) is established in this 
case. The  same argument  shows that,  if go -P (B(A) )=  + ~ ,  then so is 
~--P(A) .  [] 

Corollary 5.4. A.s. for each fl ~ (0, 1), ~ ~ IR every Borel A C IR, 

2~-Ph2~,7-~-P(B(A)) < hp,~- p(A). 

This follows by taking T ( s )=  h~,~(s) in the theorem and using a countable  
sequence of t/~2. This is a result of type (0.2) for packing measure,  which we believe 
to be close to best possible. Fo r  the strictly stable processes of index e we have no 
modulus  of cont inui ty  and our  replacement  forces us to consider balls of equal size. 
As we saw earlier this necessarily results in a possible e r ror  factor  of  the order  
(logl/s). The  precise result we can prove is 

Theorem 5.5. Suppose X(t) is strictly stable of index ~ ~ (0, 2) in IRa. Then a.s. if 

go ~ q~ and ~P ~ q~ is such that ~ tP(s) ds < 0% then for every Borel set A C [0, M ] , / f  
O+ S 

~o l(s) = 7~(s) (log 1/s)- 1 go(s �9 log 1/s), 
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then 
go-p(A)< oo ~ go t - p ( x ( A ) ) = 0 .  

Proof  As usual, it will be sufficient to show that 

go - P(A) < oo ~ go t - P(X(A))  = 0. (5.6) 

Suppose A is such that ~Ol-P(X(A) )>O.  By Lemma 2.2, if Mr(E ) denotes the 
maximum number of disjoint balls of radius r and centres in E, we must have 

lira sup M,go2(r)= + oo, 
r ;0  

where ~Oz(S)=got(s)/TJ(s). If we put rk=2--k/~(log2k/~) t/~, then rk/rk+l~21/~ is 
bounded, so using (1.1) for q)z(S) gives 

lim sup M/p2(r)= + c~. 

For  each K, however large, we can find a sequence ki--+oo such that 

Mrk, > K/go2(rkl). 

I f l c  [0, M] and III= 2-u', Corollary 2.6 tells us that not more than cs.vki of these 
centres of balls can lie in X(/). Hence, the number of dyadic intervals [j2 -k~, 

K 
(j+ 1)2 -k~] which intersect A must be at least cs.7~i g0z(rk~) which is greater than 

cs.sK/go(2-kg. This gives g o - P ( A ) > c s . s K .  Since K is arbitrary, we must have 
q ) - P ( A ) =  + oo which establishes (5.6). [] 

Corollary 5.6. For any e > O, a.s. if  0 < fi < 1, 7 ~ lR and 7 t = fl + 7 - 2 -  ~, then V 
Borel A 

h~,~--p(A)< ~ ~ h ~ , ~ - p ( X ( A ) ) = O .  

Example 5.7. Take ~p(s) = s in the theorem and we see that h,, _ t - ~ - P ( X  [0, 1]) = 0. 
In fact, this is not too far from the truth, for 

h~, _ 1/2 - p(X [0, l J ) =  + oo. 

A proof of this is contained in [18]. 
We state a final 

Corollary 5.8. I f  X ( t) is strictly stable of  index o~ < d in IR ~, then a. s. for all Borel sets 

E Dim X(E)  = a Dim E.  

Together with the corresponding result for Hausdorff measure this means that 
for any stable X(t)  of index c~ < d, a.s. every fractal A maps into a fractal X(A).  
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